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1 Introduction 

Nowadays, communication software is used every day and in every part of the world. 

No matter whether it is used only in small networks such as intranet or worldwide. 

Everybody wants to have a connection with their family, friends and colleagues. 

Therefore, people very often use some social networks (Facebook, Twitter) and 

various applications (Skype, TeamViewer, Messenger) that provide various forms of 

communication (voice call, video call, chat).  

One of the purposes for using communication software is the need to talk about some 

work related matters, which is the reason for writing this bachelor thesis. The idea of 

creating new communication software arose in JYVSECTEC project. 

JYVSECTEC is dedicated to development and maintenance of a cyber-security 

infrastructure RGCE (Realistic Global Cyber Environment). It enables research, 

development and training for their co-operate network. 

JYVSECTEC-project is implemented by the Institute of Information Technology at 

JAMK University of Applied Sciences in Jyväskylä. It started in September 2011. The 

goal of the project is to improve the awareness of the meaning of security, risk 

management and maintenance of security.   

In JYVSECTEC project some interesting cyber security exercises are organized for 

students at JAMK University of Applied Sciences and companies as well. The 

members participating in the exercises are divided into a number of teams and have to 

fulfill some specified tasks. There is a team called the “white team” that has to 

manage many accounts in order to liven up the scenario of the exercises. Currently the 

members of the white team have to log in and out of the accounts on the website, 

which takes their precious time. Therefore, there is a requirement for creation of an 

application that provides a communication interface for more than one signed user. 
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Thus, the most important points in this thesis, are: 

 Creating GO packages that establish communication between GNU Social 

server and application interface running in a web browser. 

 Creating a user interface that allows to users basic functions as sign in, sign 

out, tweet and remove tweet.  

 The application is packed into .rpm package and it is possible to install it 

under Linux. 
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2 Analysis 

2.1 Requirements  

Twitter manager is an application that will help to manage more accounts created in 

GNU Social/StatusNet simultaneously. It will be used during cyber security exercises 

in JYVSECTEC. It is intended for the “white team” that is responsible for livening up 

the scenario of the exercises and needs to discuss tasks at hand. 

The list of basic requirements for back-end is as follows: 

Table 1. The back-end requirements 

Requirement 

ID 

Requirement description 

NFR 1 The program has to be packed as a DEB package and also as RPM 

package as well (preferably using FPM). 

NFR 2 The application has to be coded in GO language 

FR 1 It has to be possible to add and remove users in the application (in 

this case add and remove a user is taken as login and logout). 

FR 2 It has to be possible to add and remove tweets from the timeline of 

the user 

FR 3 The application has to contain API for authorization by the OAuth 

1.0 Authorization protocol that is used in GNU Social/Statusnet. 

FR 4 Communication with GNU Social will use the REST API 
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The list of basic requirements for front-end is presented below: 

Table 2. The front-end requirements. 

Requirement 

ID 

Requirement description 

1.  User interface will be displayed in a web browser. 

2.  The twitter manager doesn’t have to be a single page application. 

3.  The design should use CSS framework Bootstrap that is also 

used in other JYVSECTEC projects. 

4.  JavaScript should be used for front-end logic. 

5.  The act of tweeting on behalf of some user should be intuitive. 

6.  A list of users should be displayed, in which all logged users will 

be shown. 

7.  The UI should display all discussions. 

8.  The user should be able to see whether the tweet was sent or not. 

  

2.2 Designed solution 

As mentioned above, back-end of the application was coded in GO. It was divided 

into four packages. Every package had its own functionality. The Application was 

divided into smaller and better understandable components. The most problematic part 

was to create package for authorization via OAuth 1.0, and secondly the part related to 

GNU Social REST API.   
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Packages in GO (back-end of the application):  

1. Oauthlogin – It contains all necessary features related to OAuth 1.0 

authorization protocol. This is package that includes all the features to 

establish a communication between an application, written in GO, and any 

server that allows to use OAuth 1.0 as authorization protocol.    

2. Gnusocial – That is a package that contains GO API for work with GNU 

Social REST API. All functions related to user logging and tweeting are 

placed there. 

3. Decoder – Small package that includes some additional functions that are 

intended for parsing data from responses or requests and other stuff. 

4. Twittermgr – It contains the main part of the application. All business logic is 

placed in this package. The twitter manager that will be running between GNU 

Social server and web browser is placed there. 

 

Figure 1 Package diagram of back-end of the application. 
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The front-end of the Twitter manager is composed of more technologies. The UI of 

the application has to run in a web browser. Therefore, HTML (HyperText Markup 

Language) will be used that is intended for creating websites. For design CSS 

(Cascading Style Sheet language) is usually used. As mentioned in requirements, 

Bootstrap CSS framework was used for the design. JavaScript was used for basic logic 

that is executed in web browser. In order to improve the maintaining of code and 

performance of the application, one of JavaScript frameworks called React was used. 

The framework was developed by Facebook. Getting data was to be realized by Ajax 

that allows to work with the data asynchronously. Basic interactions between a user 

and Twitter manager are shown in Figure 2.

 

Figure 2 Use Case Diagram of Twitter manager. 
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3 Used technologies 

This part includes all technologies related to topic of this bachelor’s thesis. A short 

description of used technologies during creation of the bachelor’s thesis is devote to 

this chapter. Every technology mentioned bellow contributed to the fulfillment of the 

goals of the thesis. 

3.1 Back-end 

3.1.1 Client-server architecture 

This architecture consists of two parts. The one part includes the client’s systems and 

the other part includes the server’s systems, and they communicate together over the 

computer network. When the client-server model is used as a basic architecture of any 

software system, the software has to be divided into the abovementioned parts. Both 

parts of the software can be running in the same computer. By using this architecture, 

many clients can be connected to the server at the same time. (Client–server model, 

2015) 

When client is connected to the server, the client’s task is just to require the services 

of the server. For example, if there is any web application, then a client can be 

considered to be some web browser. (Client–server model, 2015) 

The server is the part that waits for requests of the clients and after arrival of any 

request, it has to send a response to the client who sent the request. Of course, the type 

of the data in request depends on the type of the server. For example, if the server is a 

web server then the client can ask for some websites. If the server is a file server and 

is used as a remote storage (e.g. it can be a cloud), then the client requires any files 

from the server. Its task is waiting and responding to requests and to be responsible for 

sharing resources. (Client–server model, 2015) 

Client and server send messages that are called requests (from client) and responses 

(from server). If they want to communicate, computers have to have a common 

language. It ensures that both of them know what to expect from the other side. The 
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language and rules needed for communication are defined in communication protocols 

that operate in the application layer. Of course the server can implement some API for 

a specific content format. The API is an abstract layer for resources such as databases 

or custom application. (Client–server model, 2015) 

 

Figure 3 Client-server architecture 

3.1.2 OAuth 

It is an open standard used for secured communication. It provides client applications 

a secure delegated access to resources. Thanks the OAuth, the client application can 

get access to resources on behalf of the resource owner. OAuth is a supplement to 

client-server architecture, and it adds third role to the model. The role is called 

resource owner. In OAuth model the client is not resource owner, but only third party 

application that acts on behalf of resource owner. OAuth allows to client to require 

resources of a user and in addition, it allows to server to verify not only the resource 

owner but also the client that require the access to the resources. OAuth 1.0 

authorization protocol is shown in the Figure 4. (E. Hammer-Lahav, 2015) 
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History 

OAuth was first mentioned in November 2006 when Blaine Cook was developed 

Twitter OpenID and Ma.gnolia needed OpenID for Authorization Dashboards 

Widgets. Cook, Chris Messina, Larry Half and David Recordon met together to 

discuss the usage of OpenID in Twitter and Ma.gnolia API. They concluded that there 

is no open standard for API access. In April 2007 OAuth discussion group was created 

and DeWitt Clinton was interested in the project and expressed his support in the 

effort to create OAuth open standard. On 4th December 2007 final proposal for OAuth 

core version 1.0 was released. In April 2010 the OAuth authorization protocol 1.0 as 

RFC 5849 was published. Nowadays, there are the next versions of OAuth as OAuth 

1.0a or the latest version 2.0. (Oauth, 2015) 

OAuth authorization process consists of several steps as follows: 

1. The client application sends the signed request for temporary credentials. If 

the server supports OAuth 1.0, then temporary token and token secret 

response arrive. (E. Hammer-Lahav, 2015) 

2. The client has to send a signed authorization request to server that will 

send response, in which it will require resource owner authentication. (E. 

Hammer-Lahav, 2015) 

3. When the resource owner sends its credentials and the server verifies them 

then the server sends verifier back to client. (E. Hammer-Lahav, 2015) 

4. The client sends a signed request that has to include the verifier as well, 

and then the client obtains token and token secret that have to be used 

whenever the client requires some resources from the server. (E. Hammer-

Lahav, 2015) 

For better understanding how this works, there is short example below. 

In order to obtain the access to the user resources, the application has to be registered 

on the server, which stores the resources. After registration of the client application on 
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the server, consumer key and consumer secret that are necessary for signing of 

requests are generated. There are three important links for communication:  

 Temporary Credential Request URI: https:// test.jamk.fi /initiate 

 Resource Owner Authorization URI: https:// test.jamk.fi /authorize 

 Token Request URI: https:// test.jamk.fi /token 

The first step is to send a request in the following form:  

POST /initiate HTTP/1.1 

     Host: test.jamk.fi 

     Authorization: OAuth realm="Album", 

        oauth_consumer_key="abcd152abcd152", 

        oauth_signature_method="HMAC-SHA1", 

        oauth_timestamp="137151200", 

        oauth_nonce="lkjfk", 

        oauth_callback="http%3A%2F%2F test.jamk.fi %2Fready", 

        oauth_signature="encodedSignature" 

A short explanation of parameters is included in the Authorization header: 

1. oauth_consumer_key – It is a consumer key generated by server for registered 

app. (E. Hammer-Lahav, 2015) 

2. oauth_signature_method – Method that is used for creation of signature. (E. 

Hammer-Lahav, 2015) 

3. oauth_time_stamp – Every sent request has to contain its own time stamp. It is 

used for security as a way of preventing compromised requests to be sent 

again. (E. Hammer-Lahav, 2015) 

4. Oauth_nonce – This parameter of authorization header is used for the same 

purpose as time stamp. (E. Hammer-Lahav, 2015) 

5. oauth_callback – A link to client application intended for redirecting after 

authorization. (E. Hammer-Lahav, 2015) 

6. oauth_signature – A generated signature that is always generated for every 

request. (E. Hammer-Lahav, 2015) 

https://photos.example.net/initiate
https://photos.example.net/authorize
https://photos.example.net/token


 

 

11 

 

After sending this request, the server verifies the request, and if it is alright, then the 

server sends back the oauth_token and oauth_token_secret, which are placed into the 

response body. The form of the response body is following: 

oauth_token=tempTok1&oauth_token_secret=tempTok1Secret&oauth_callback_confi

rmed=true  

After obtaining temporary credentials, the request intended for authorization can be 

sent. This request is much simpler than previous request because this request does not 

need to include authorization header. The request is shown below. (E. Hammer-

Lahav, 2015) 

https:// test.jamk.fi /authorize?oauth_token=tempTok1 

When the authorization is successfully done, it requires user to grant access to the 

resource that is, in this case, test.jamk.fi. Then the user-agent is redirected to the 

callback link that was specified in the authorization header of the first request. The 

response has the following form: 

http://test.jamk.fi/ready?oauth_token=tempTok1&oauth_verifier=tempTok1Verifier 
 

When the client obtains verifier, then it can require a set of token credentials. This is 

again somewhat more complicated request because it has to contain the authorization 

header. 

POST /token HTTP/1.1 

     Host: test.jamk.fi 

     Authorization: OAuth realm="Album", 

        oauth_consumer_key=" abcd152abcd152", 

        oauth_token="tempTok1", 

        oauth_signature_method="HMAC-SHA1", 

        oauth_timestamp="137151201", 

        oauth_nonce="asjdkj", 

        oauth_verifier="tempTok1Verifier", 

        oauth_signature="encodedSignature" 
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After successful verification of the request above, the server sends a set of token 

credentials that have to be used for getting resources from test.jamk.fi. An example of 

the request, which asks for a resources from the test.jamk.fi, is shown below. 

GET /album?file=vacation.jpg&size=original HTTP/1.1 

     Host: test.jamk.fi 

     Authorization: OAuth realm="Album", 

        oauth_consumer_key=" abcd152abcd152", 

        oauth_token="tok1", 

        oauth_signature_method="HMAC-SHA1", 

        oauth_timestamp="137151202", 

        oauth_nonce="ufjlkg", 

        oauth_signature="encodedSignature" 

A very important part of the request, which asks for resources, is signature. Therefore, 

the last part of this section will be de devoted to the creation of the signature. 

Signature creation: 

This is probably the most difficult part of the OAuth protocol. The signature is created 

by encoding a base signature string that consists of all sent parameters of a request, 

request URL without the part that includes parameters and sending method (GET, 

POST…). There are two steps that have to be fulfilled during the creation of signature. 

The first step is creating a base signature string and the second step is encoding of the 

string by a method that is filled in the authorization header. Next short explanation, 

how to create the base signature string. To join all parameters with their values into 

one string. For explanation a request is used as illustrated bellow. (E. Hammer-Lahav, 

2015) 

GET /album?file=test.jpg&size=original HTTP/1.1 

     Host: test.jamk.fi 

     Authorization: OAuth realm="", 

        oauth_consumer_key="abcd152abcd153", 

        oauth_token="tok1", 

        oauth_signature_method="HMAC-SHA1", 

        oauth_timestamp="137151202", 

        oauth_nonce=" ufjlkg" 
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Before putting them together into string they have to fulfill following rules: 

 Every name of a parameter and its value have to be percent encoded. (E. 

Hammer-Lahav, 2015) 

 All parameters are alphabetically sorted by name. If a situation occurs, in 

which there are more parameters with the same name, then they are ordered by 

value. (E. Hammer-Lahav, 2015) 

 After that, the parameter’s names and their values are joined by “=”. (E. 

Hammer-Lahav, 2015) 

 When every parameter has assigned value, all these small strings are joined by 

“&”. (E. Hammer-Lahav, 2015) 

 After that, the whole string has to be percent encoded again. (E. Hammer-

Lahav, 2015) 

When all rules mentioned above are fulfilled, then a string like this as follows is 

illustrated. 

file%3Dtest.jpeg%26oauth_consumer_key%3Dabcd152abcd153oauth_nonce%3D 

ufjlkg%26oauth_signature_method%3DHMACSHA1%26oauth_timestamp%3D13715120

2%26 oauth_token%3Dtok1%3Doriginal 

When all parameters are joined, it is time to merge the string of parameters with 

request method and with a part of the URL that does not contain parameters. Of 

course, the URL is encoded by percent-encoding as well. Then all base signature 

string looks as the following string below: (E. Hammer-Lahav, 2015) 

GET&http%3A%2F%2Ftest.jamk.fi/album&file%3Dtest.jpeg%26oauth_consumer_key%3

Dabcd152abcd153oauth_nonce%3Dufjlkg%26oauth_signature_method%3DHMACSHA1

%26oauth_timestamp%3D137151202%26oauth_token%3Dtok1%3Doriginal 
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Now it has to be hashed by the method that is mentioned in authorization request and 

the signature is done. 

 

Figure 4 OAuth Authorization protocol process. 

 

GNU Social is a newly created social network, the base of which is created according 

to UNIX philosophy that states “the small programs do small jobs”. Therefore, it is 

possible to install GNU Social on some small server. Of course, it has to be 

mentioned, the GNU Social belongs to free open source projects. (Matt Lee, 2015) 

The whole core of GNU Social is coded in PHP. If a user likes to install GNU social 

on their own server, there are few requirements. For running of the server Apache or 

another HTTP server are necessary to install. PHP 5 and some components related to 

PHP 5 have to be installed. Of course, GNU Social is a social network and it needs 

some database server to store the data. There are two possibilities. The first one is 
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MySQL 5 or the second one Maria DB. Which one will be used, is up to the user who 

decides to install GNU Social on their own server. 

When all requirements are accomplished, it is necessary to set up some basic 

properties in configuration file and the server is ready to use. 

3.1.3 REST API  

REST abbreviation stands for Representation State Transfer. It is one of the software 

architecture that consists of many guidelines and best practices. This architecture is 

very useful for creating scalable web services. The most used uniform interface in 

REST is HTTP. The data in REST are typically transferred as JSON or XML. There 

are some constraints that apply to the components of REST. (Representational state 

transfer, 2015) 

REST is based on client – server architecture (Representational state transfer, 2015) 

Stateless – It means that server does not contain any state of the client. Any session 

state, which could be available, is held on the client. (Representational state transfer, 

2015) 

Cacheable – Client can cache any response from server. The responses can be 

cacheable explicitly, implicitly or negotiated. In the future, the cache ability can 

improve performance and scalability. (Representational state transfer, 2015) 

Layered system – In this case, it means that a client cannot exactly say, whether it is 

directly connected to a server or not. It improves scalability of the system. 

(Representational state transfer, 2015) 

Code on demand – This one is an optional constraint. It means that the server can 

transfer some logic to client, on which the logic is to be executed. For example, it 

could be any JavaScript or Java applet.  (Representational state transfer, 2015) 
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3.1.4 GO language 

This project is developed by Google. The first version of GO was released in March 

2012. It does not belong to object-oriented languages although it allows programmers 

to create small structures that have a type struct and also to define some methods for 

them however, it is not enough the GO was included in a group of object-oriented 

languages. Go belongs to languages that include a garbage-collector. (Google, 2015) 

Programing in Go can be slightly difficult because there are only some plugins for 

developing so far. There is no IDE that includes direct support for GO programming 

language yet. Nevertheless, some of the plugins are quite good for work with GO. 

Under Linux, there is a possibility to install the GO plugin for VIM editor. Syntax 

highlighting works as well as autocomplete. Of course, it can be a bit complicated to 

set it for users who are not very familiar with Linux. There are also other alternatives. 

A very useful plugin is developed for IntelliJ IDEA. The plugin provides support for 

syntax highlighting, autocomplete, and for debugging too. There are also some plugins 

for other tools, for example Notepad++, Eclipse, Atom or LiteIDE. Maybe in the 

future there will be direct support for GO.   (Google, 2015) 

GO has some interesting features: 

The formal grammar in Go uses semicolons; however, they can be omitted. It is 

necessary to follow two rules to omit the semicolons.  

a) Semicolon is automatically added at the end of non-blank line, if the line’s 

final token is an identifier, integer, floating-point, imaginary, rune, string 

or one of the few keywords used in GO such as break, continue, 

fallthrough or return, or one of the operators ++, --, ), ], or }. (Google, 

2015) 

b) If a complex statement occupies one line then a semicolon may be omitted 

before closing of the statement by “)” or “}”. (Google, 2015) 

GO as well as C or C++ use pointers. It is necessary to be very careful here because 

GO allows to define functions for structures and also for pointers to the structures. 
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There is one important issue, which everyone should remember. If a function of a 

structure is called as a function of an instance of the structure, then all changes, which 

will be realized within the instance, will be realized within a copy of the instance. It 

means, if some attribute of the instance was changed during processing the function, 

after processing, the instance will be in the same state as before the execution of the 

function. However, if the function is called as a function of a pointer to the instance, 

after execution of the function, all changes which were made within the instance will 

be done. (Google, 2015) 

One very interesting matter however, also very dangerous is shadowing. It occurs 

when any variable declared in certain scope has the same name as another variable 

that is declared in outer scope. In GO, this effect can occur within some function that 

includes nested scopes. 

Go belongs to programing languages that allow functions to have more than one 

return value. It means, if somebody needs, for some reason, the function to return two 

or more values, then the function just needs to have defined types of return values that 

are separated by comma. (Google, 2015) 

3.1.5 RPM and DEB packages 

RPM, its original name Red hat package manager and DEB are installation packages 

for Linux.  

DEB packages are primary intended for Debian and its distributions. It is binary 

package that usually contains configuration files, executable files, some man 

documentation pages and other documentation. Primarily, these packages are 

unpacked by dpkg. (Fernandez-Sanguino, 2015) 

RPM packages are primarily used by Red Hat and Fedora. They can contain an 

arbitrary set of files. Usually, they contain mainly binary files. Then they are called 

binary RPMs. They may also contain some source files. Then they are called source 

RPMs. (RPM Package Manager, 2015) 
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3.2 Front-end  

This part is devoted to user interface (UI) and technologies that are used for its 

creation. In this chapter mainly technologies useful for creating webpages are 

mentioned because UI should be a kind of webpage. 

3.2.1 HTML, CSS, Bootstrap 

HTML stands for HyperText Markup Language. This language is used for definition 

of webpage structure. Every HTML document should begin with DTD – document 

type declaration that helps web browser to define the rendering mode. (HTML 

Introduction, 2015) 

CSS is abbreviation for Cascading Style Sheets. This language is intended for creating 

website design. The main reason, for which the CSS was developed, is separation of 

document content from document presentation. Separation of content and design can 

improve accessibility and flexibility. After separation, more HTML files can share the 

same CSS file etc. (CSS Tutorial, 2015) 

Bootstrap is a framework based on HTML, CSS and JavaScript. It is intended for 

developing responsive design of websites and web applications. Its original name was 

Twitter Blueprint. Bootstrap consists of smaller components. From version 3.0 on it 

supports basic philosophy for designing of mobile applications. Because Bootstrap 

belongs to open source projects, developers can adapt the core according to their 

wishes. (Twitter, 2015) 

3.2.2 JavaScript, Ajax, JQuery, React 

JavaScript is a dynamic programing language that is usually used in webpage 

development. It is the part that interacts with the user, control the web browser, allows 

asynchronous communication and can modify the document that is displayed. 

(JavaScript Tutorial, 2015) 

Ajax is a shortened form for asynchronous JavaScript and XML. This is not a 

programming language. It is just a technique that allows web applications to obtain 
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data from the server asynchronously. Ajax merges more technologies together: 

HTML, CSS, DOM, and JavaScript. DOM is used for dynamic interaction with data 

and their dynamic display.  

JQuery is a cross-platform JavaScript library that contains many useful functions 

intended for selecting DOM elements from displayed website, creating beautiful 

animations and developing Ajax applications. It is the most used JavaScript library. 

React is a JavaScript framework developed by Facebook and Instagram. It is intended 

for building large applications that work with data, which changes over time. There 

are two basic ideas, in order to reach what React is intended for. (Facebook Inc., 

2015) 

1. Simple – Simple expresses a look of application in given point in time and 

React manages all data updates. (Facebook Inc., 2015) 

2. Declarative – When data changes, React updates only part that was changed. 

(Facebook Inc., 2015) 

Very important part in React is how to think in React. There are few rules for correct 

approach.  

The UI has to be divided into component hierarchy. It is necessary to look at the 

whole UI and very carefully divide it into smaller components that can be nested. For 

this part single responsibility principle could be very useful, which states that each 

component should do only one thing. (Facebook Inc., 2015) 

After dividing UI to components, it’s good to create static version of the UI in React. 

By creating this static version, states and props must not be used at all because they 

are intended for the interactive model. (Facebook Inc., 2015) 

It is necessary to identify the minimal but complete UI state representation. It must be 

identified what is state and what is not. There are three questions, to which it is 

necessary to answer in searching for states. 
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a) Is it passed from parent via props? If so, then it probably is not a state. 

b) Does it change over time? If not, it probably is not a state. 

c) Can it be computed based on props in component? If so, it is not a state. 

(Facebook Inc., 2015) 

It has to be identified, where the state should be placed. This could be a very 

confusing part for people who first time use React. Therefore, it is wise to follow 

these steps:  

a) It is necessary to identify all components that render something based on 

the state. 

b) It is necessary to find the component that owns the state. 

c) Also the component higher in hierarchy that could own the state should be 

found. 

d) If it is not possible to find a state owner, it is good to create a new one, that 

will be placed in hierarchy above and it will be the owner of the state. 

Simply put, all states should be placed close to the higher component. 

(Facebook Inc., 2015) 

Add inverse dataflow. After all steps mentioned before, the states have to be sent 

down the hierarchy by props. If child components are to do something after click or 

should have another function that can change the state, it is necessary to define the 

function in the component, in which the state is placed. After that, the function 

(callback) is sent as one of the props down the hierarchy and can be assigned to some 

event or called in some function. (Facebook Inc., 2015) 
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4 Implementation 

This part includes a detailed description of the created packages. It is divided into two 

basic parts. The first part is devoted to back-end implementation and that part contains 

a description of the packages and their contents. The second part includes the 

description of front-end of the application and a short description of Twitter manager 

functionality. 

4.1 Back-end  

4.1.1 OAuth package – oauthlogin 

This Package includes basic features needed for authorization by OAuth 1.0. It 

contains two small structs called Config and Credentials. There all necessary links 

and settings are placed.  

Config contains these attributes: 

 Host – It is URL to GNU Social main page  

 ReqTokenUrl – This is link intended for getting temporary credentials from 

GNU Social. 

 AuthorizeUrl – Address for starting authorization process. 

 AccessTokeUrl – Address for getting credentials for third party application. 

 ConsumerId – This is an ID that is generated by server for the application that 

is registered by user and will be used for resources processing. 

 ConsumerSecret – This one is also generated by server for registered third 

party application and it is used for signing the requests.  

 SignatureMethod – it says what kind of method is used for creation of request 

signature. 

 Version – It is version of the OAuth that is used for authorization. 

 Callback – This contains link to application, to which user will be redirected 

after successful authentication. 



 

 

22 

 

Config features 

String () – this method writes to the standard output all information stored in an 

instance of the Config structure. It is very useful for debugging and can be used for 

displaying information loaded and used at the runtime of the application. 

LoadConfig (confPath string) – this method loads data from JSON file. A parameter is 

a string that contains the path directly to the configuration file. Configuration data are 

placed in the configuration file in order to allow user to change and set up them. For 

example, host of GNU Social and others.  

Credentials – contains only three attributes: 

 Token – This token is used during authorization process and also during 

getting resources. 

 TokenSecret – Also used during authorization and getting resources. Primarily, 

it is used for creating signatures. 

 Verification – It is used to verify credentials over authorization process.  

The main functions that are intended to establish communication 

RequireRequestToken (conf * Config) (*http.Response,error) – This functions is used 

for getting temporary credentials from the GNU Social server. By using this function, 

it is only necessary to provide pointer to Config structure as a parameter. All needed 

things, which have to be done before sending request, are automated. If all is 

successfully done, it returns a response that contains temporary credentials (token and 

tokenSecret) and no error. Otherwise, it returns no response and some error. 

Authorize (oc *Config, credentials *Credentials) (*http.Response, error) – This one is 

second step in authorization process. It is necessary to provide pointer to Config and 

pointer to Credentials as parameters. If all is in order, it returns a response that should 

contain form for user authentication and no error. If not, it returns no response and any 

error. 
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SendVerification (oc *Config, credentials *Credentials) (*http.Response, error) – 

After successful user authentication, verification code will be sent to callback address 

that is specified in configuration file. The verification code has to be placed in 

Credentials. Then this function can be called that sends the verification code to server 

and after verification by the server, it should receive a response that includes 

credentials for an access to resources. If all is in order, it returns the mentioned 

response and no error. If not, it returns no response and some error. 

RequireResources(oc *Config, credentials *Credentials, srcUrl, method string) 

(*http.Response, error) – This function requires resources from the server. There are 

some parameters that have to be provided. The first two parameters include 

credentials and necessary things intended to create signature. The third parameter is 

srcURL. It is a link to resources that are required. If srcUrl contains some parameters 

then they have to be percent-encoded. The last parameter states, what method will be 

used for sending request (POST, GET…).  

GenerateSignature(method, reqUrl, consumerSecret, tokenSecret string, 

authHeaderMap map[string]string) string – This method is used for generating 

signature. It needs many parameters.  

 Method – Method of sending request (POST, GET…). 

 reqUrl – Address of the resource. 

 consumerSecret – This one is used as a key for encoding signature. 

 tokenSecret - It is used as a key for encoding signature. 

 authHeaderMap – Parameter includes necessary parameters intended for 

signature. The parameters are obtained from configuration file. 

CreateBaseStringForSignature(method, reqUrl string, authHeaderMap 

map[string]string) string – It creates the base signature string as is mentioned in 

Chapter 3.1.2 describing OAuth 1.0. A meaning of the parameters is the same as it is 

described in previous method. 
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Hmacsha1(baseString, key string) string – This function creates the hash of the 

baseString. It is named according to the algorithm used for hashing (HMAC-SHA1). 

GenerateNonce() string and GenerateTimeStamp() string are small functions for 

generating nonce and timestamp mentioned in Chapter 3.1.2 describing OAuth 1.0.  

4.1.2 GNU Social API – gnusocial package 

This package contains functions that use GNU Social REST API and OAuth 1.0 for 

logging. This API is developed for the needs of JYVSECTEC. It means, only 

significant features and properties are implemented that are currently needed. Of 

course, because it is intended to communicate with GNU Social REST API, all 

functions depend on the REST API and are also limited by the API.  

Description of implemented features: 

There are two small structures that represent the user profile and tweet in GNU Social, 

and one small structure that contains user credentials and configuration things needed 

for communication. Of course, they do not contain all attributes that GNU Social 

provides. Currently, there are only five attributes needed so far. 

Structure User has got the following attributes:    

 Id – It is ID of registered user in GNU Social. 

 Name – Name of the user that is displayed in GNU Social. 

 Screen_name – This is name that is specified during registration process. 

 Profile_image_url – It is a link to user profile picture. 

 Friends_count – That says, how many friends the user has got. 

Structure Tweet contains these attributes:  

 Id – Identification number of tweet. 

 Text – Included text written by user who created the tweet. 

 Created_at – It is a date on which the tweet was created. 
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 In_reply_to_status_id – If the tweet is in reply to another tweet, then this 

parameter is filled in. Otherwise, it is empty string. 

  In_reply_to_user_id – Similar to previous attribute. But it is the identification 

number of the user that created the tweet that is commented. 

 In_reply_to_screen_name – Screen name of the user that is filled in previous 

attribute.  

 User – It contains information about owner of the tweet.  

 Favorited – It is used to inform currently logged user whether the tweet is liked 

by the user or not. 

 Repeated – Also intended to inform currently logged user, but this time, it is 

related to repeating the tweet. 

Small structure Conn contains only two following parameters described in Chapter 

4.1.1 describing oauthlogin package: 

 OauthConf – pointer to Config structure in oauthlogin package 

 OauthCred – pointer to Credentials as well placed in oauthlogin package. 

StartAuthentication(conn *Conn) (*http.Response, error) – This function starts 

authorization by OAuth 1.0. It has only one parameter Conn that contains all 

necessary things for authorization process. This function returns response that 

contains a form for user authentication and no error, only if everything was 

successfully otherwise it returns no response and any error. 

FinishAuthentication(conn *Conn, authReq *http.Request) bool – This method is 

called for finishing Authorization process. It needs two parameters: 

 conn – It contains parameters for Authorization. 

 authReq – Request that contains the verification code from  GNU Social. 

When the function is successfully finished, credentials needed for getting resources 

should be stored in conn parameter, and the function returns true. If something 
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happened over processing, credentials will not be placed in conn and false will be 

returned.  

GetUserProfile(conn *Conn) (string, error) – This one is intended to get information 

about a user that is currently logged in. Parameter conn contains all needed parameters 

for identifying the user. It returns a string that contains JSON document corresponding 

to User structure that is mentioned in this chapter. If something happens over 

processing, it returns an empty string and some error. 

SendTweet(conn *Conn, status string, id int) bool – This feature has two possible 

uses. The first is to send new tweet to GNU Social server, and the second is to send 

tweet in reply to another. This is decided by parameter id that specifies whether it is a 

new tweet or a reply to another. If id is less than 0, then the function sends a new 

tweet. Otherwise, it sends a tweet in reply to the tweet, the identification number of 

which is specified as id parameter. Parameter conn was mentioned above. It returns 

true, if all was processed correctly. Otherwise it returns false. 

GetTweetById (conn *Conn, id int) (string, error) – It is intended for getting one tweet 

from GNU Social, the identification number of which is specified as parameter id. If 

all is in order, it returns a string containing JSON document corresponding to Tweet 

structure that is described in this chapter. Otherwise, it returns an empty string and 

some error. 

RemoveTweet (conn *Conn, id int) bool – This feature removes tweets. Each call of 

the function can remove only one tweet, identification number of which is specified as 

a parameter id. If a tweet will be removed, it returns true. Otherwise it returns false.  

RetweetTheTweet (conn *Conn, id int) bool – It retweet the tweet that is specified as 

parameter id. Also, if everything is alright, it returns true otherwise false. 

AddFavorite (conn *Conn, id int) bool – User in GNU Social can mark a tweet as 

favorite, when they like the tweet. This function adds the tweet to the user’s favorite 
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tweets. It only needs the identification number of the tweet. It returns true, if all will 

be done correctly, otherwise false.  

RemoveFavorite (conn *Conn, id int) bool – Every tweet marked as favorite, can be 

also unmarked. It is necessary to provide the identification number of the tweet in this 

function and it will be done. After finishing that, it will return true, if tweet was 

unmarked, otherwise false. 

GetListOfFavorites (conn *Conn, count int) (string,error) – Function that returns 

tweets that were favorite of a user who is currently logged in. Parameter count limits 

the amount of tweets to be returned. It can return the number of tweets between 0 and 

200 at once. If the count is not defined, then it returns 20 tweets as a default amount. 

The tweets are placed in string as JSON array and every tweet corresponds to Tweet 

structure that is described in this chapter. If something happens over processing, then 

it returns empty string and any error 

PublicTimeline(conn *Conn, count int) (string,error) – It returns the most recent 

tweets from all posted tweets. If the count is less than 0, it returns 20 tweets. It can 

return amount of tweets between 0 and 200 at once. All tweets are placed in the string 

as JSON array. It returns tweets and no error, if all is successfully done. Otherwise it 

returns an empty string and some error. 

HomeTimeline(conn *Conn, count int) (string,error) – This feature is similar to the 

previous one. Although, this does not return recent tweets from all tweets, but recent 

tweets from all tweets related to the currently logged user. It means, there are tweets 

that state, for example, the user added something to their favorite tweets. Also, there 

can be tweets that state, the user retweeted something. It is slightly different from 

getting the public timeline described above because the public timeline returns only 

new tweets and the replies to tweets. At once it can return from 0 to 200 tweets and all 

are placed in a string as a JSON array. If something fails over processing, it returns an 

empty string and any error. Otherwise it returns a string of tweets and no error. 
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GetTimeline (conn *Conn, urlToTimeline string) (string,error) – This method arose 

only because of code optimization. It contains code that is used in the two previous 

functions. If all is in order after processing, it returns a string including tweets as a 

JSON array and no error. Otherwise, it returns an empty string and some error. 

ParseTweets(r io.Reader) ([]Tweet,error) – This one is intended to parse tweets that 

are placed in Reader structure as a JSON. All tweets, which are placed there, are 

returned in an array. Every tweet placed in the array has the same structure as Tweet 

mentioned in this chapter. If something happens during the processing of the tweets, 

the function returns an empty array and some error. 

EncodeTweetsToJson(tweets []Tweet) (string, error) - It makes the opposite of the 

previous function.  This has as a parameter an array of tweets and encodes them to 

JSON string. Of course, if something fails during the process, it returns an empty 

string and some error. 

4.1.3 Twitter manager and supplement package. 

The First, small package is to be mentioned that contains some additional functions. 

Its name is decoder. As the name indicates, the functions inside are mainly devoted to 

parsing data. The second one is to be mentioned Twitter manager and basic 

introduction about how it works. The last one is the package twittermgr that contains a 

runnable application.  

Functions included in decoder 

ParseString(text, sep1, sep2 string) map[string]string – This function is intended to 

parse any string, which is specified as parameter text, by two separators that are 

specified as parameters sep1 and sep2. The first step is to divide text into n parts by 

sep1. After that, each part which arose by the first dividing is divided into n parts by 

sep2. Then strings which arose after the second dividing are placed into a map. 

Although, only the first two strings of every part are placed to the map, because one is 

used as a key and other one as a value. This function is not absolutely general, because 

it is designed mainly for parsing parameters that are placed in HTTP requests. After 
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all, if no error occurred, it returns the map of parameters and no error. Otherwise, it 

returns an empty map and some error. 

ParseResponseBody (res *http.Response) (map [string] string, error) – It is based on 

the previous function. This is less general because separators are exactly specified 

inside the function. Those separators are “&” and the second one is “=”. It parses 

parameters from the HTTP response and provides them in a map. If all is successfully 

done, it returns map and no error. Otherwise it returns an empty map and some error.  

GetVerificationFromResponse (res *http.Response) string – This one arose based on 

the Callback parameter that is mentioned in Chapter 3.1.2 related to OAuth 1.0. This 

function is used only if the callback parameter is set to oob. In that case, the 

verification code is placed inside the body of the response and has to be cut out. It is 

tested and prepared to the future. 

GetVerificationCodeFromReq (req *http.Request) map [string] string – This feature is 

also based on Callback however, in this case, the value is any address and the 

verification code is placed in URL as a one of the parameters. It returns a map of 

parameters including the verification code and no error or an empty map and some 

error. 

Twitter manager 

The application is designed for running under Linux. It runs as a small proxy server on 

localhost. The default port is set to 4000 however, it can be changed by user before 

starting. All the configuration parameters necessary for running, are to be loaded from 

configuration file. At runtime it gets requests from the user interface, which are 

described in the next chapter devoted to front-end (4.2). It answers only to requests 

specified in the package called twittermgr. If it gets any request that is not specified it 

ignores that. The application stores logged users at runtime. The only thing that can be 

provided without user authentication is public timeline. The functions intended for 

users as like, unlike, tweet, retweet will not be done, until any user is logged in and 

chosen in user interface. 
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Twittermgr package 

LoggedUser – This structure represents the user that is currently logged in Twitter 

manager and contains basic information about the user and their credentials intended 

for GNU Social. The attributes are as follows: 

 Cred – It is pointer to structure Conn that is declared in package gnusocial. 

 UserProf - This is pointer to structure User declared in gnusocial too.  

Handler takes care of all requests that are delivered to Twitter manager. It contains the 

following attributes:  

 GnusConn – Pointer to structure Conn. It is used as a template for user 

authentication. 

 Users – It is an array of LoggedUsers. Every user is stored in this array after 

authentication.  

 NewUser – When authentication starts, in this attribute is stored every 

information about the user. After authorization the user is moved to Users and 

this reference is set to nil.  

Functions defined for Handler structure 

(h *Handler) UsersInJason() string – This function returns a string that contains all 

information about logged users. If no user is logged in, it returns a string containing 

only an empty array. Otherwise, the string that contains JSON array of users is 

returned. 

(h * Handler)getUserById(id int) *LoggedUser – This one returns a user, whose 

identification number is defined as a parameter id. If the user is not placed in the 

attribute Users, then it returns nil.  

(h * Handler) removeLoggedUser(id int) bool – When handler gets the request for 

logging the user out, this method is used for removing the user from logged users. If 
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the user is not placed in Users, then it returns false. Otherwise, it removes the user and 

returns true. 

(h *Handler) ServeHTTP(wr http.ResponseWriter, req *http.Request) – This one is 

the largest method. It takes care of catching requests and their processing. Here are the 

registered requests and under each of them is a brief example:  

"/getPublicTimeline" – This is requirement for tweets that are available on the public 

timeline. It can contain one parameter that is user identification number. If the 

parameter is included, then the tweets, which will be sent as a response, will be 

partially related to the user that asked for them. Otherwise it will return tweets without 

any relationship with user. 

“http://localhost:4000/getPublicTimeline?id=1”  

“http://localhost:4000/getPublicTimeline”  

"/getHomeTimeline" – It requires tweets available on the home timeline. The response 

to this request depends on the logged user. The request has to contain the 

identification number of a user that requires records from home timeline. If the request 

does not contain user ID or contains a bad user ID, then the response includes only an 

empty array. 

“http://localhost:4000/getHomeTimeline?id=1” 

"/profile" – This is registered as a requirement for obtaining the user profile. It also 

has to include identification number of user that asks for its profile. If not, it will 

return only expression about a failure. 

“http://localhost:4000/profile?id=1” 

"/logInUser" – Requirement for starting user authentication. It does not need to 

include any parameters. For starting of user authorization it is not necessary to provide 

any information. 

http://localhost:4000/getPublicTimeline?id=user_id
http://localhost:4000/getPublicTimeline
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“http://localhost:4000/logInUser” 

"/logOutUser" – Requirement for user logout. This request has to contain user 

identification number. Without that, it is not possible to log out any user.  

“http://localhost:4000/logOutUser?id=1” 

"/getLoggedUsers" – It requires information about all logged users. This does not 

need any parameter. 

“http://localhost:4000/getLoggedUsers” 

"/newTweet" – This is the request for sending a new tweet to GNU Social. It has to 

contain the identification number of the user that sends the tweet and also any text.  

“http://localhost:4000/newTweet?id=1&text=any%20text”  

"/like" – This one is a request for adding any tweet among favorite tweets of the user. 

It has to include some parameters. One is the identification number of a user who 

wants to add a tweet to their favorite tweets. Number two is the identification number 

of a tweet that is to be added to the user favorite tweets. 

 “http://localhost:4000/like?id=1&tweetId=45” 

“/unlike” – it is very similar to “/like” request. Also, it has to contain the same 

attributes, however, it does the opposite. 

“http://localhost:4000/unlike?id=1&tweetId=45” 

“/removeTweet” – As the previous two functions, this one contains the same 

parameters. The identification number of tweet specifies, which tweet will be 

removed, and the user identification number specifies who wants to remove the tweet. 

Although, all parameters are correct, the tweet does not have to be removed. If user, 

who is specified by id is not owner of the tweet, then tweet won’t be removed.  

http://localhost:4000/logInUser
http://localhost:4000/getLoggedUsers
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“http://localhost:4000/removeTweet?id=1&tweetId=45”  

“/retweet” – This is a requirement for retweeting. As the previous three functions, this 

one has the same parameters. User identification number states who wants to retweet, 

and tweet ID says, which tweet will be retweeted.  

“http://localhost:4000/retweet?id=1&tweetId=45” 

“/replyToTweet” – requirement that needs to contain the following three parameters. 

 id – Identification of the user that wants to send a reply. 

 tweetId – It is ID of the tweet that will include the reply. 

 text – Text of the reply. 

main () – is a function that executes Twitter manager. 

4.2 Front-end  

Significant role by creating the front-end of the application belongs to React 

framework. Thanks to that framework, all view is divided into more parts that are 

joined together. Because the design was not the main goal of the bachelor’s thesis, it 

does not look very good. It will be redesigned in the future. The nature of the front-

end is to create a user interface runnable in web browser that will fulfill all needed 

functions. The interface has to support tweeting and changing users at runtime. Also, 

it should be designed in order to ensure intuitive work for users. The basic appearance 

of the application is displayed in the Figure 5.  
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Figure 5 Basic View of the application. 

4.3 GUI of Twitter manager and its functionality 

As mentioned before, all views consist of few parts. Every part is designed as a small 

component. The list of the components contains these parts: 

 navigation bar 

 timeline  

 new tweet 

 tweet  

 list of users 

These five parts is contained in an element called “MainPage”. In the following part, 

each component is described with its functions. 

4.3.1 Navigation bar 
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Figure 6 Navigation bar of main page 

This navigation bar consists of three parts. The first part on the left side is button 

“Public timeline”. After clicking on this button, the application displays default 

amount of tweets in the middle of the main page that is called “timeline”. After 

scrolling down, it displays previously created tweets. “Home timeline” is a part that 

contains tweets that are in the public timeline and also tweets that are more related to 

the logged-in user. The tweets are displayed in the middle of the main page inside 

“timeline”. If no user is logged in or none is chosen in the list of users, it returns no 

tweets. The last part is drop-down menu “User” that is displayed in the Figure 7. 

 

Figure 7 drop-down menu for user 

As can be seen in the Figure 7, there are three options.  

 “Sign in” will open a new tab that is intended for user authentication. 

 “Sign out” will log out the user that is currently chosen in the list of users. 

 “Profile” is used for getting some information about a user that is currently 

chosen in the list of users.  
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4.3.2 Timeline  

This part is used for displaying tweets from GNU Social. It is updated always when 

the user clicks on the part “Public timeline” or “Home timeline” and also when the 

user sends a new tweet or any reply to tweet. The timeline is updated, even if the 

current user is changed. Outlook of the timeline is shown in the Figure 8. 

 

Figure 8 Timeline displaying some tweets 
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4.3.3 New tweet 

This part is not only intended for sending a new tweet but also for replying to tweets. 

It contains a part for writing text and two buttons. One button sends the tweet and the 

next one cancels the tweet. It automatically forbids to send an empty tweet. If the 

tweet was sent correctly, it is shown in the timeline. 

 

Figure 9 Form for sending new tweet and replying to tweets. 

4.3.4 Tweet  

The next part is intended for displaying a tweet and making some actions that are 

related to the tweet. For the illustration the Figure 10 is added. 

 

Figure 10 Looks of the tweet in twitter manager 

The tweet in the figure bellow has few parts. The one part contains the text of the 

tweet. In the right top corner is placed a small button for removing the tweet. Of 

course, it is hidden right now because only the user creating the tweet, can see the 

cross in the corner, which is because only the owner of the tweet can remove it. Under 

text, in the left down corner the user who made this tweet and time are shown as well 

as when it was published. In the right down corner three buttons are placed one is for 
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retweeting the tweet that is called “retweet”. “like” is the button that adds the tweet to 

the user favorites. After that, it changes the text of the button to “unlike”. After 

clicking on it again, the tweet is removed from user favorites. The last one is “reply” 

which displays the part “new tweet” inside this part. Then it will change a view 

slightly, and its appearance is as follows in the Figure 11. 

  

Figure 11 Tweet with part for retweeting 

The functionality is almost the same as mentioned in the section about new tweet (See 

page 37). The only difference is if the button “cancel” is clicked, then the form for 

retweeting is to be hidden again. 

4.3.5 List of users 

After successful user authentication, the user is shown in this part of the main page. It 

is a clickable list and always after click on any user, the user is set as the current one. 

If the current user is set and the user clicks on the “sign out” (it is mentioned in 

section navigation bar), the current user is immediately removed from the list of users. 

After that, no user is chosen and public timeline is refreshed. List of users is shown in 

the Figure 12. 
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Figure 12  List of users  
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5 Testing 

Testing is included in every kind of development and this application is no exception. 

Software testing is the part of the software development that provides the information 

about the quality of the software under test. Testing can provide an answer whether 

the requirements were met or not, whether the software responses are correct to all 

kinds of inputs or not, and also whether the performance is sufficient or not. Of 

course, testing can answer to many other questions and provide interesting 

information. 

Currently, there are many testing methods and types. Static and dynamic testing, 

black-box testing or white-box testing belong to the popular test methods. Testing of 

the software is divided into four levels. The lowest level is unit testing. The second 

level is integration testing that is slightly more complicated. The third level is 

component interface testing and the last one, the highest and the most complicated is 

the system testing.   

The tests of the Twitter manager are not a part of the bachelor’s thesis, however, it is 

necessary to mention the testing phase. Every part of the application was tested during 

development in many different situations. Of course, many errors were caught and 

repaired, however, only one single person is not able to catch all errors and test all 

possible situations that can occur during the use of the application. Therefore, next 

two phases of testing will be written. The first phase will be the creation of the unit 

tests. Currently the unit test are well known. They are often used in many software 

companies. The unit test for this application will be created for front-end and back-end 

as well. Every package of the back-end will have its own test package that should 

cover 100 % of content of the tested package. The tests of the front-end will test every 

component created in React. The second phase will be a test after the deployment of 

the application on the server. This will be a part, in which many errors can be 

revealed. The first time, this test will be probably made by the employees of 

JYVSECTEC. After this testing and repairing all occurred errors the application will 

be ready to use during the cyber security exercises.  
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6 Conclusion and results 

The objectives of the thesis were to create GO API for communication with GNU 

Social, GO API for OAuth 1.0 authorization protocol and the application was to be 

able to manage more than one account simultaneously. The application was developed 

according to the requirements mentioned in chapter 2.1 Requirements. GO API was 

divided into three packages and the application was placed in separate package.  

The OAuth package (oauthlogin) contains API for communication with some server 

that uses OAuth 1.0 authorization protocol. Using this package, it should be possible 

to establish communication with any server that uses OAuth 1.0 authorization 

protocol. 

The package for GNU Social contains many functions for communication with GNU 

Social server. Besides, the implemented GO API for GNU Social contains many 

additional functions that were not required in the first version. There are additional 

functions intended for retweeting, adding tweets to favorites, removing tweets from 

favorites, showing favorites and other functions. This package is directly dependent 

on the GNU Social REST API. If some change in the REST API related to the GO 

API in this package will be made, then it is necessary to make the changes in this 

package as well. 

The back-end of the application is placed in the package called twittermgr. Many 

functions created for communication with GNU Social are used in Twitter manager 

and a few can be used in the future. All the functions necessary for the communication 

with the front-end part of the application have been implemented.  

The front-end of Twitter manager consists of three files. It was created as a single 

webpage application so far. New webpages can be added in the future if necessary. 

The front-end of the application is designed according to the requirements mentioned 

in Table 2. Every front-end requirement was fulfilled in the first appearance of the 

application as well as in the new one. The new outlook of the application is shown in 

Figure 13. The new appearance was designed for the following reasons: 
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 to make the appearance of the application visually more pleasing to the eye 

 to make the user interface more user friendly 

 to make the functionality of the UI more intuitive 

Only one back-end requirement was not met. The requirement is related to the 

creation of RPM and DEB packages. The packages were not created because a new 

appearance of the application was created. The appearance is almost finished and 

prepared for testing.  

The application was tested during the development in many situations. Of course, it is 

necessary to make more tests in order to ensure the quality of the application. 

Therefore, in the near future the application will pass further tests. The application 

will be tested in two ways. The unit tests will be the first kind of tests. Secondly, it 

will be tested by the users who can provide some feedback. Then the application can 

be repaired and improved according to the feedback. 

Then next step after the testing can be to add the groups to the application. The group 

could be used as a container for some topic. Dividing the topics into groups could 

ensure even higher clarity of the content. 
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Figure 13 New design for Twitter Manager 
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