

Ashrafuz Zaman Noor

GATEWAY FOR BLUETOOTH COMMUNICATION IN ANDROID

GATEWAY FOR BLUETOOTH COMMUNICATION IN ANDROID

 Ashrafuz Zaman Noor
 Bachelor’s Thesis
 Spring 2015
 Degree programme in information technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Degree programme: Information Technology

Author: Ashrafuz Zaman Noor
Title: Gateway for Bluetooth Communication in Android
Supervisor: Kari Laitinen
Term and year of completion: Spring 2015 Number of pages: 53 + 4

This Bachelor’s thesis provides a detailed overview of the Gateway software
which acts as an intermediary between Ceruus’ manufactured IoT devices
called Catchers and the Ceruus’ cloud system named IoLiving. The idea of the
Gateway software is to collect data from the Catchers and upload the data into
the cloud using a smartphone as a medium.

The thesis describes the main theory behind each major functionality of the
Gateway and how the design was done based on the theory. Important issues
such as Internet of Things, Bluetooth Low Energy and Android platform are also
discussed in the theoretical part of the thesis.

The implementation part of the thesis covers how each of the major use cases
of the Gateway were handled programmatically. The testing phase was a repeti-
tive process and the results were used to fine tune the Gateway even further.

Tools that were used for developing the Gateway software includes Star UML,
Eclipse with the ADT plugin and Android SDK.

The outcome of this thesis is a fully functional Gateway software for Android
that can be downloaded from the Google Play Store under the name ‘IoLiving’
app. The application can successfully retrieve data from the Catcher and upload
it to the IoLiving cloud.

In conclusion, this thesis states that Gateway software, with its continuous
background process is unique in nature. Gateway can connect up to 20 Catch-
ers consistently and disconnect from them automatically. It is not a typical case
that so many devices are handled automatically by background services. Fur-
thermore, it is possible to add new features by tweaking the design a little.

Keywords: Android application, Internet of Things, Bluetooth Low Energy, Gate-
way

 4

CONTENTS

ABSTRACT 3

ABBREVIATIONS 6

1 INTRODUCTION 7

2 USED TECHNOLOGIES 11

2.1 Internet of Things 11

2.2 Android 11

2.2.1 Configuration 11

2.2.2 Application components 11

2.3 Bluetooth Low Energy 13

2.4 Catcher 15

2.5 Project management 16

3 GATEWAY SOFTWARE DESIGN 17

3.1 Gateway Architecture 17

3.2 Login functionality 21

3.3 Background processes 23

3.4 Catcher communication 24

3.5 Server communication 26

3.6 Main screen functionality 28

3.7 Database 29

4 GATEWAY SOFTWARE IMPLEMENTATION 31

4.1 User interface 31

4.1.1 Splash Screen 31

4.1.2 Login Screen 32

4.1.3 Main Screen 34

4.2 Background processes 35

4.2.1 Main Service 36

4.2.2 Timer 37

4.2.3 Catcher Service 38

4.2.4 AsyncTask 39

4.3 Bluetooth communication 39

4.3.1 Advertising data 40

 5

4.3.2 Measurement data 41

4.4 Server communication 42

4.5 Data Model 44

5 TESTING 46

5.1 Application start-up 46

5.2 Background processes 47

5.3 Main screen function 49

6 CONCLUSIONS 50

6.1 Final status of the work 50

6.2 Personal comment 50

REFERENCES 52

 6

ABBREVIATIONS

Terms Definitions

BLE Bluetooth Low Energy

IoT Internet of Things

IoLiving Internet of Living

EEPROM Electrically Erasable Programmable Read-Only Memory

GATT Generic Attribute Profile

SDK Software Development Kit

HTTP Hypertext Transfer Protocol

UI User Interface

API Application Program Interface

Sync Synchronisation

CPBP Ceruus Proprietary Broadcast Protocol

 7

1 INTRODUCTION

The time has come that we get quantifiable data about our environment instead

of solely trusting our senses. The feeling of ‘warm’ or ‘cold’ should rather be re-

placed by what the temperature is in centigrade scale; the rather vague feeling

of moist or dry can be replaced with the exact relative humidity of the day. At

this age of technology, it is about time to get more out of our gadgets, and make

wiser choices based on solid and more reliable information than our senses.

The Gateway software for the Bluetooth communication in Android lets us do

exactly that. It is the intermediate between sensors called ‘Catchers’, which

measure and transmit environmental data. The Gateway software collects these

data in our cell phone and uploads it to a cloud network for a storage and fur-

ther processing. The software is designed for a Finnish startup named Ceruus

Oy.

Ceruus Oy is a company which develops reliable, new mobile Internet services

for facilitating everyday household tasks in an affordable cost. The service

named 'IoLiving’ and the Gateway application enables web-based temperature

monitoring and energy efficiency optimisation. Catcher, a small device invented

by Ceruus, creates a secure web connection through a smartphone or a tablet

while the Catcher is in vicinity.

The service offers a solution to a major challenge in the temperature monitoring

and use of electricity. The Room-specific temperature can now be monitored so

that energy savings can reach 15-25 % in a detached house with electric heat-

ing. Should customers have a spot agreement with their energy company, the

savings can be substantially larger due to the service’s capability to alert the

user while the temperature reaches a certain level. A usable interface allows a

complete temperature monitoring. (Ceruus internal documents, date of retrieval

6.4.2015).

IoLiving service can also be used in a restaurant for monitoring the food temper-

ature. Starting from the storage of the food products and until they are served to

 8

the customers, the service can provide a consistent temperature logging and

thus it can provide a great solution for the quality control of the food.

IoLiving service also provides a solution for motion monitoring. This offers an af-

fordable choice for a tracking activity compared to an expensive smartwatch or

an activity wristbands. Using this service, users can keep track of their daily

workout target, facilitating a better health. For seniors living alone, family mem-

bers or care home staff can monitor the movement and can check on them, if

the module has not moved for a certain period.

Ceruus is also introducing a handy Internet-based carbon dioxide and moisture

module for Catcher which can be placed to a number of places unobtrusively,

and which allows monitoring the air carbon dioxide and moisture in the room.

‘There are typically several smartphones or tablets in a household. IoLiving sys-

tem does not require separate wireless base stations, because the connection

to the Catcher is maintained directly from the mobile device. Therefore, the

price of the service and related hardware is substantially lower in comparison to

traditional wireless solutions.’ (Ceruus internal documents, date of retrieval

6.4.2015).

There are several modules of Catchers and each module is designed to collect

a specific type of data. For example, the temperature module of Catcher col-

lects temperature data whereas the movement tracking module collects only

movement data. Gateway acts as a common entry point for the data from all

modules of Catchers.

The Gateway is unique in nature as, once initiated, it continues to run for an in-

definite amount of time in the background of the Android phone and can syn-

chronise data from up to 20 Catchers consecutively. It is not typical that so

many devices are actively connected to one phone. Thus, it presents a new set

of challenges to handle the connection management.

An even bigger challenge is to handle different Bluetooth stacks of Android.

Based on different Android versions and manufacturers, the Bluetooth stack

 9

that handles the functioning of the Bluetooth varies, which in turn needs a spe-

cial consideration so that Gateway works in a similar manner in most of the

smartphones.

In order to better understand how the Gateway is designed, we need to under-

stand how the whole system works. Figure 1 shows an overview of the system.

A
P

I

SQL
No-SQL

Br

an

d

Br

an

d

E
d
i
t

Bluetooh

Low Energy

HTTP(JSON)

IoT Catcher®

IoT Service platform

consists of:

1. Cloud service interface

(rest API)

2. Data stream handlers in

cloud and in catcher

3. Cloud databases

4. Catcher local memory

5. Gateway smart phone

app

6. Web-IoT applications

1

2

2

3

4

5

6 IoLiving

web

FIGURE 1. IoLiving System Overview (Ceruus internal documents, date of re-

trieval 6.4.2015)

The whole system can be divided into three parts:

i. Information collection: Small devices called Catchers handle the

collection of data.

ii. Information transfer: Gateway installed in Android smartphone handles

the transfer of data from Catcher to the IoLiving cloud service. Gateway

retrieves data from Catcher either by scanning for the Catcher when it is

in the advertising mode or by establishing a connection and requesting

 10

the stored data from the EEPROM of the Catcher in the form of

notifications.

The Gateway also enables the Android phone to establish a connection

with the IoLiving cloud server and then to upload the collected data for a

storage and further processing. An active internet connection is required

for server communication to take place.

iii. Information storage and handling: When Gateway uploads information to

the cloud server, it is stored in the database in a bulk format. This stored

information is then further processed to make it readable and presentable

to the end user.

The main objective of this thesis is to provide a comprehensive overview of the

current state of the Gateway software. However, this document does not cover

detailed solutions to the presented Android Bluetooth stack problem or connec-

tion management system but rather this document presents the user with a

chance to understand how the Gateway software is designed to work in har-

mony with the whole IoLiving system in typical situations.

 11

2 USED TECHNOLOGIES

This chapter provides information about some of the technologies used in the

project and the core concept of the Gateway software.

2.1 Internet of Things

The idea of data exchange over a network between uniquely identifiable physi-

cal objects, embedded with electronics, software, sensors and connectivity with

the minimal human interaction is believed to be the next form of revolution in

technology after the Internet. Internet of Things is the term that defines this idea

and has evolved from the convergence of wireless-technologies, micro-electro-

mechanical systems and the Internet. (Rouse, Date of retrieval 6.4.2015 and

Wikipedia, date of retrieval 6.4.2015).

2.2 Android

This section provides a general overview of the used features of Android to de-

velop the Gateway software.

2.2.1 Configuration

In order to start an app component in Android, the Android system must know

that the component exists. The Android platform provides a configuration file

named AndroidManifest.xml to configure the application components for an opti-

mal functioning.

In addition to declaring app components, the manifest file identifies any user

permission the app requires, declares API Level required by the app, declares

hardware and software features used or required by the app and other configu-

ration related tasks. (Android Developers, date of retrieval 8.4.2015).

2.2.2 Application components

In Android, application components can be considered as building blocks of an

app and can be categorised into four main types:

 12

Activities:

In Android, interaction with the user mostly occurs through activities. Therefore,

an activity is a class that presents a user a screen with which the user can inter-

act and perform a certain task. The Android platform assigns a frame by means

of a layout to each activity in order to build the user interface on top of the

frame.

An activity lifecycle is based on a series of callback methods and these callback

methods are responsible for starting, stopping and running an activity.

Services:

As long running operations tend to affect the responsiveness of the UI thread,

the Android platform provides components that run in a separate thread. It can

perform long running operations in the background without sacrificing the effi-

ciency of the UI thread. These components, referred to as services, can essen-

tially take a form of a bound service or a started service.

A started service can be started by an application component by calling

startService() and it can run indefinitely in the background whereas a bound

service can be bound when an application component is bound to it by calling

bindService().It will run as long as the application component bound to it runs.

Content providers:

The app data in Android is managed by the content provider which allows a

data storage in the file system, SQLite database, on the web or in any other

persistent storage location the app has access to.

Broadcast receivers

Broadcast receivers respond to system-wide broadcast announcements and

thus act as a communication module between applications or within the system

itself. For example, if a broadcast announces that the battery is low, it can in

turn be used as a means to reduce the power consumption by turning off Blue-

tooth.

 13

Android provides a rich framework that allows developers to build innovative

apps for mobile devices in a Java language environment. Android is one of the

most popular platforms for a smartphone and it provides a rich documentation

and a technical support. It is up to date and equipped with the latest features.

Moreover, from API level 18 and onwards, it provides a full functional support

for BLE communication which makes this platform particularly suitable for this

project. (Android Developers, date of retrieval 8.4.2015).

2.3 Bluetooth Low Energy

Bluetooth low energy (BLE), as the name suggests, is a technology for wireless

communication that uses a considerably less amount of energy compared to

Bluetooth classic while providing a very similar communication range. (Gibbele,

date of retrieval 9.4.2015).

However, it is crucial that a Bluetooth low energy module remains in a low-

power mode for most of its lifetime and makes any connection for a short

amount of time to achieve the low energy consumption from the module.

In context of the IoLiving BLE system, the communication process consists of

one central and one peripheral role. The peripheral role is played by a Ceruus

manufactured device named Catcher, while in the central role is any Android

device where the Gateway application is installed.

The peripheral, Catcher acts as a server and advertises ‘data’ to the air inter-

face periodically which is detected by the central. This periodic advertisement

helps to keep the power consumption at minimum. The central, Gateway acts

as a client and scans the air interface for an available Catcher periodically. Fig-

ure 2 shows how this process works:

 14

FIGURE 2. Advertising data transfer (Connect Blue, date of retrieval

13.04.2015)

Measurement data is saved to EEPROM of the Catcher and can be retrieved by

establishing a connection. The broadcast state indicates that the peripheral is

ready for a connection. And when the central intends to make a connection, it

initiates a connection request. Figure 3 illustrates the connection process:

FIGURE 3. Measurement data transfer (Connect Blue, date of retrieval

13.04.2015)

 15

‘The GATT profile of the Catcher specifies the structure in which data is ex-

changed. The top level in a hierarchy is a profile which contains several ser-

vices including a proprietary service for the Catcher. Each service includes one

or more characteristics. A characteristic has a value and may contain optional

information about the value.’ (Bluetooth Developer portal, date of retrieval

9.4.2015 and Connect Blue, date of retrieval 13.04.2015).

2.4 Catcher

Catcher is Ceruus’ invention of Bluetooth low-energy (BLE) technology

equipped with various sensors to create a different way of providing environ-

mental information such as temperature, humidity and motion based data to

smartphones and web.

There are several module of Catchers. For example, ‘IoLiving T’ is a Catcher

module that measures temperature, ‘IoLiving M’ measures motion. Based on

the module, the size may vary but the colour remains white for every type of

Catchers. A waterproof casing enables a Catcher to be installed outdoor and

underwater. Figure 4 shows how Catchers look like.

FIGURE 4. Catchers (IoLiving, Date of retrieval 13.04.2015)

Catchers collect data from the environment and periodically advertise it in the

form of packets. Ceruus Proprietary Broadcast Protocol (CPBP) uses the manu-

facture specific fields of the advertising packets of BLE through the advertising

channels. It is aimed at the fast data transfer from Catcher to Gateway. The

 16

broadcast data frame is 27 octet long. Broadcast frame is a system parameter

and it can be set in a range of 20 milliseconds to 10 seconds.

Catcher also stores the measurement data from sensors to an external

EEPROM memory chip. This data can be collected by establishing a connection

between the Catcher and the Gateway. (Ceruus internal documents, date of re-

trieval 2.03.2015).

2.5 Project management

The scope of this project extends from just an Android app to a fully-functional

system where each part of the system works in harmony with the others. Man-

agement of such a large scale project development needs to fulfil certain criteria

such as collaboration between self-organising and cross-functional teams.

Hence Scrum, an iterative and incremental agile software development method-

ology, was the most suitable development method. Also, this method promotes

adaptive planning and continuous improvement, and encourages a rapid and

flexible response to change. (Wikipedia, date of retrieval 28.3.2015).

However, this document only focuses on the Android app part of the system

and other associated parts are only described in order to facilitate the under-

standing of the Android app. Also, the Bluetooth connection mechanism in An-

droid comes as a supporting material to better understand where the actual

data comes from.

 17

3 GATEWAY SOFTWARE DESIGN

This chapter describes the detailed design and architecture of the Android gate-

way software for the multi device BLE communication.

3.1 Gateway Architecture

FIGURE 5. Architecture of Gateway (Noor, A.2015)

The Gateway software can be compartmentalised into two parts. The UI where

interaction with the user occurs and the background processes. Figure 5 shows

the main architecture of the Gateway software.

The Gateway application consists of three user interfaces namely Splash

Screen, Login Screen and Main Screen. These activities are loosely bound to

each other.

The Gateway starts with Splash Screen which decides whether to open the

Login Screen or the Main screen based on the presence of the authentication

 18

token in the SQLite database of the application in the phone memory. This is il-

lustrated in Figure 6. This feature facilitates the usability by minimising the ne-

cessity to login each time the user opens the Gateway and allows the user to

maintain a steady session and an uninterrupted use of the IoLiving services.

FIGURE 6. UI flow of Gateway (Noor, A.2015)

For the very first time, when the user opens Gateway, there is no authentication

token present. So it opens the Login Screen which holds the login form. Figure

7 shows the Login Screen.

FIGURE 7. Login Screen (Noor, A.2015)

Login form has two fields, namely, email and password and a login button. The

user must fill in the two fields with correct information in order to login. When the

 19

user presses the login button, the Main Service of the Gateway sends an au-

thentication request to the IoLiving web service via the server communication

module. The server then sends 200 in response along with the authentication

token and the number of Catchers the user has access to. The server communi-

cation module then saves the authentication token and the list of Catchers to

the database and sends a message to the Login Screen that the login is suc-

cessful. The Login Screen then sets the Main Service to run in a loop until it is

explicitly stopped and starts the main screen.

The Main Service is responsible for the Gateway to work in the background.

FIGURE 8. Main Service Loop (Noor, A.2015)

The Main Service runs in a loop and performs the tasks in an alternate fashion

which is shown in Figure 8. The main tasks are: server communication and

Catcher communication. When the Main Service loop is running and the task is

set to Catcher communication, it starts the Catcher communication module.

The Catcher communication starts by initialising the Bluetooth adapter of the

phone. After that, Gateway searches for devices by scanning for Catchers.

When Gateway finds Catchers in proximity, it collects the advertising data from

the respective Catchers and saves them to the database. While searching,

Gateway cross checks each Catcher found, whether the Catcher has enough

priority to go for a connection process.

When Gateway finds a suitable Catcher for a connection, Gateway starts

Catcher Service, the remaining part of the Catcher communication module.

 20

Catcher Service then sends a connection request to the selected Catcher and

collects the information stored in the EEPROM of the Catcher. Catcher Service

then saves the collected information to the database. The Catcher communica-

tion module unbinds the Catcher Service and sets the next task for the Main

Service loop to be the server communication.

The server communication module then retrieves the saved information from

the database and if the phone is connected to the Internet, it sends the data to

the IoLiving cloud. On a successful data transfer, the server communication

module removes the information from the database and sets the next task for

the Main Service loop to be the Catcher communication.

Because IoLiving is a paid service, the user will be able to view most of the in-

formation collected from the Catcher only from the web service with a paid sub-

scription. Nevertheless, the user can view some information from the Main

Screen of the Gateway.

The Main Screen, as shown in Figure 9, contains the list of all Catchers the user

has access to. For each Catcher, Main Screen shows Catcher communication

and the server communication status as well as the latest temperature if the

Catcher contains a temperature sensor. Each Catcher also shows the signal

strength based on the scan result. The Main Screen retrieves this information

from the database. Other features of the Main Screen include a ‘Logout’ button

and a ‘Settings’ button in the action bar, a button to open the web service and

an error message and instructions to the user depending on the state of the

Gateway (e.g. If there is no Internet connection, the error message appears on

top of the web service button).

 21

FIGURE 9. Main Screen (Noor, A.2015)

Based on the general design of the Gateway, the functionality can be divided

into five major parts:

i. Login functionality

ii. Background processes

iii. Server Communication

iv. Catcher communication

v. Main Screen functionality

3.2 Login functionality

Gateway presumes that the user is already a registered member of the IoLiving

web service and possesses a proper email and password in order to log in to

Gateway. Figure 10 shows the sequence of events that takes place when the

user attempts to log into Gateway.

When the user fills in the login form and presses the login button, Gateway

makes a call to loginAttempt() which is a method in the Login Screen object.

This method checks whether the user filled the login form with the proper email

and password. If any of the fields in the form remains empty, the user will get an

error message instructing the user to fill in the form correctly.

 22

However, if the information is in a correct format, Gateway proceeds to the next

step, i.e. saving the information to the database and initialising the Re-

sultReceiver, a generic interface for receiving a callback result from the some

other part of the application, a server communication module in case of Gate-

way. At the same time, Gateway calls onStartcommand() of the Main Service

object which then commands the server communication module to perform an

authentication sync.

The authentication sync is actually the process of sending the HTTP request to

the IoLiving Server with login information retrieved from the database and re-

ceiving the response from the server. Before performing the sync, Gateway al-

ways makes a check for the Internet availability and only proceeds with the sync

if the Internet is available.

FIGURE 10. UML diagram of login functionality (Noor, A.2015)

 23

The server communication module then saves the data to the database and

sends the response code via the ResultReceiver. The onReceiveResult()

method of the ResultReceiver in the Login Screen receives the response code

and decides what to do next. Usually, the server sends 200 as a response code

if the login information is correct. If the code is 200, then the Login Screen

opens the Main Screen and closes itself. If the code is anything other than 200,

the Login Screen shows an error message to the user, e.g. ‘a wrong username

or password’.

3.3 Background processes

One of the features of Gateway is that once the user starts it, Gateway is able

to run in the background for an indefinite amount of time unless the user explic-

itly stops it or the phone is switched off. This feature of running in the back-

ground is achieved by using a service to perform the background operations

and a repeating alarm to continuously call the service once it completes its

work. Figure 11 provides the sequence of events that take place in the back-

ground.

FIGURE 11. UML diagram for background processes (Noor, A.2015)

 24

A successful login starts the Main Service of Gateway with a call to the onCre-

ate() method from the Login Screen. The next call is to the setTimer() method of

the Timer object which then sets a repeating alarm based on the AlarmManager

class. AlarmManager enables Gateway to perform time-based operations out-

side the lifetime of the Main Service. The repeating alarm calls the Timer class

at a certain time interval regularly. The timer class extends the BroadcastRe-

ceiver, a base class which responds to broadcast messages from the Alarm-

Manager. The onReceive() method of the BroadcastReceiver then starts the

Main Service with a call to the onStartCommand(). The onStartCommand() then

commands a server communication module to carry out a measurement sync.

The ServerTask, before completion, sets the next task in the Main Service as

the BluetoothTask. When the Timer class calls the onStartCommand() of the

Main Service next time, it performs the BluetoothTask in the Catcher communi-

cation module. Before completion, the Catcher communication module also sets

the next task, but this time it sets the next task to be the ServerTask. The next

time the Timer calls the onStartCommand() method of the Main Service, it per-

forms the ServerTask. This process runs in a loop for an indefinite amount of

time in a regular interval between each task.

3.4 Catcher communication

The Catcher communication plays a crucial role in the IoLiving system architec-

ture as this is the entry point of all the information collected by the Catchers and

the sequence of events are shown in Figure 12.

When the Main Service calls the doBluetoothTask() method of the Catcher com-

munication module, it checks whether the Bluetooth is tuned on. The process of

Catcher communication only proceeds if the Bluetooth is turned on.

The next step in Catcher communication module is a BLE scan. The BLE scan

allows a smartphone to look for advertising devices in proximity, Catchers in this

case. To find Catchers, the Catcher communication module uses the star-

 25

tLeScan() method which has a callback as a parameter and which thus can re-

trieve the result of the scan. The scanning process continues for a certain

amount of time and the Catcher communication module saves the data to the

database.

Based on the scan result, the Catcher communication module checks if there is

any Catcher with enough priority to make a connection. When there is no device

with enough priority, the Catcher communication module sets the next task to

be the server communication in the Main Service and then it exits.

FIGURE 12. UML diagram for the Catcher communication (Noor, A.2015)

However, when there is a Catcher with priority, the Catcher communication

module starts a bound service, namely a Catcher Service, to take care of the

connection process.

 26

The Catcher Service sends the connection request to the GATT server of the

Catcher. The request includes a callback parameter which delivers results to

Gateway such as the various state of the connection phase as well as any fur-

ther Gateway operations, e.g. reading or writing characteristics.

Once the Catcher Service makes a successful connection to the GATT server

of the Catcher and discovers the required services, the Catcher Service can

read and write an attribute to the service which supports it.

The Catcher Service then sends a request for notifications, which returns the

packets of information stored inside the EEPROM of the Catcher in the form of

notifications. When the Catcher Service finishes receiving notifications and sav-

ing the information to the database, it calls the close() method to release the re-

sources appropriately.

The Catcher communication module then unbinds the Catcher Service. Right

before exit, the Catcher communication module sets the next task in the Main

Service to be the server communication.

3.5 Server communication

Once the user passes the login phase, there comes the server communication.

The server communication includes mostly a measurement sync, which is very

similar to the authentication sync of the login functionality. The target is to send

the information collected from Catchers to the IoLiving web service. The sync

process requires an Internet connection, so the first task in the server communi-

cation module is to check the availability of the Internet. If the smartphone is not

actively connected to the Internet, the process cannot continue and it always

skips to the next task: a Bluetooth communication task.

However, if the smartphone has an active Internet connection, the server com-

munication module checks whether enough time has passed since the last

server connection. If the time elapsed since the last server connection is not

enough for the next server connection to take place, the server communication

module sets the next task to the Bluetooth communication task and exits. Con-

versely, if enough time has elapsed since the last server connection, the server

 27

communication module proceeds with the usual request-response process. Fig-

ure 13 shows the sequence diagram for the server communication module.

FIGURE 13. UML diagram for the server communication module (Noor, A.2015)

The request-response process starts by retrieving the saved information from

the database and converting this information to a proper format so that the IoL-

iving web service can recognise the information.

In the next step, the server communication makes the actual request to the IoL-

iving web service, i.e. an HTTP request containing the necessary information,

using the IoLiving API for the measurement sync. The server then sends a re-

sponse, based on the information the server received. Usually, in a successful

case, the response contains a list of Catchers to which the user has an access

and the header contains the response code which is 200. The server communi-

cation module then saves the response to the database by converting it again to

a proper format. In case of failure, the server communication module typically

 28

throws an exception which is displayed on the Main Screen. The server commu-

nication module then defines the next task to be the Bluetooth communication

task and exits.

3.6 Main screen functionality

The Main Screen of Gateway provides the user with information of the interme-

diary state of what is going on in the background service of Gateway. The Main

Screen also shows the user the current temperature of the Catcher if the

Catcher is equipped with a temperature sensor. It provides ways to refresh

Bluetooth and Logout, and to open the web service. Figure 14 sums up the se-

quence of events that take place on the Main Screen.

FIGURE 14. UML diagram for the Main Screen functionality (Noor, A.2015)

 29

After a successful login attempt, Gateway opens the Main Screen. The Main

Screen has a loop of its own that keeps the main screen up to date with the

data Gateway collects. The loop starts by retrieving advertising information, an

error message (if any) and the Catcher communication and the server commu-

nication status from the database.

The Main Screen functionality is a foreground process and only takes place

when the user opens the Gateway UI. Closing the application results in exit

from the loop.

As stated before, the Main Screen includes some additional features like a web

service button and a menu. The menu item includes a ‘Settings’ button and a

‘Logout’ button. The Settings button opens a dialog that contains various setting

options to facilitate the user experience. The Logout button deletes the authenti-

cation token from the database and redirects the user to the Login Screen. The

web service button allows the user to directly open the IoLiving web service

page from the Main Screen.

3.7 Database

A database can be considered as one of the most crucial parts of Gateway as it

saves and manages all the information based on which the Gateway runs. The

database acts as a bridge between the background services and the foreground

activities. Gateway makes use of three tables to manage the communication

modules and the in-app functionalities:

 The settings table stores the general settings of Gateway, e.g. a

username, a password, an authentication token.

 The catcher table stores Catcher specific data like a catcher name, ad-

vertising data and various timestamps.

 The measurement table is dedicated to handle only the measurement

data, which is the information collected as notifications from the Catcher.

 30

FIGURE 25. Database Model (Noor, A.2015)

In the database class, the actual data management is handled through methods

that contain a SQLite statement to take care of data retrieval, data removal,

data insert and update to the respective tables. Figure 15 illustrates the data-

base model.

 31

4 GATEWAY SOFTWARE IMPLEMENTATION

This chapter describes the implementation of the design and the theory upon

which Gateway is based. Taking into account of all the functionalities of Gate-

way, the implementation part can be split into five parts: user interfaces, back-

ground services, the Bluetooth low energy communication, the server communi-

cation and the data model.

4.1 User interface

Gateway defines the user interface by declaring UI elements in a file with ’.xml’

extension and also, in some part, by managing the user interface by instantiat-

ing layout elements at runtime.

4.1.1 Splash Screen

As the task of the Splash Screen is just to check whether Gateway has a valid

authentication token saved in the database, the Splash Screen activity does not

have any dedicated user interface functionality.

The UI of the Splash Screen just shows the IoLiving logo in an ImageView when

the Gateway starts for the first time. The following codes from the activ-

ity_splash_screen.xml file uses an ImageView inside a LinearLayout in order to

view the logo:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/splash_screen" />
</LinearLayout>

The Splash Screen uses an onCreate() callback from the activity lifecycle to

load the activity_splash_screen.xml file:

 32

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //set up the UI elements
 setContentView(R.layout.activity_splash_screen);
}

In order to check the availability of the authentication token, the Splash Screen

uses the following Java code:

// create instance of Data Model
DataHandler dHandler = DataHandler.getInstance(this);
// declare variable and retrieve authentication token
// from data model instance
String authToken =dHandler.authToken();
if(authToken!=null){
 //open MainScreen
 startActivity(new Intent(this,

com.ceruus.ioliving.ui.MainScreen.class));
}
else{
//open LoginScreen
startActivity(new Intent(this,

com.ceruus.ioliving.ui.LoginScreen.class));
}
//close SplashScreen
this.finish();

4.1.2 Login Screen

In Gateway, the Login Screen is the entry point for the user who has a valid

email and password. The onCreate() callback of the Login screen loads the xml

file which uses a similar layout as the Splash Screen layout but has more UI

components including e.g. TextView, EditText and a Button.

The button has an onClickListener, which listens to the click event of the button.

The following Java statement creates the listener:

 33

View.OnClickListener loginButtonListener = new View.OnClickListener() {
 public void onClick(View v) {
 EditText nameText = (EditText) findViewById(R.id.loginNameEdit) ;
 EditText passwdText = (EditText) findViewById(

R.id.loginPasswordEdit) ;
 String strUserName = nameText.getText().toString();
 String strPassword = passwdText.getText().toString();

//save email and password to database
mDataHandler.updateLoginCredentials(namText.getText().toString(),pass-
wdText.getText().toString()) ;

//Now we have possible username + password in db,
//ask for MainService to try them out:

Intent intent = new Intent(LoginScreen.this, MainService.class);
 intent.setAction(Intent.ACTION_CALL) ;
 intent.putExtra("receiver", resultReceiver);
 startService(intent);

}
};

When the button is clicked by the user after inserting an email address and a

password in their respective fields, the onClickListener saves them to the data

model and starts the Main Service in order to attempt login. An instance of the

ResultReceiver is passed to the service. The ResultReceiver practically works

as a callback from the Main Service and tells Gateway what to do in a success

or an error case of the login attempt. The implementation uses the onReceiv-

eResult callback method like the following:

class LoginScreenResultsReceiver extends ResultReceiver {

 public LoginScreenResultsReceiver(Handler handler) {
 super(handler);
 }

 @Override
 protected void onReceiveResult(int resultCode, Bundle resultData) {
 super.onReceiveResult(resultCode, resultData);
 if(resultCode==0){
 // start main service and main screen. Close this screen

}
 else{
 //view error message to the UI
 }
 }
}

 34

4.1.3 Main Screen

As the name suggests, the Main Screen serves the purpose of the main view as

most of the interactions with the user take place in the Main Screen. The xml

layout includes an action bar, a TextView, a button and a customised ListView

inside a LinearLayout. The ListView uses a RelativeLayout in a different xml file

to define each row of the ListView and includes the TextView and ImageView.

The ListView occupies the most part of the Main Screen. The ListView shows

information by retrieving it from the database and the following lines demon-

strate the implementation:

ArrayList<HashMap<String, Object>> catcherData = mDataHandler.getAllCatcherData();
String[] catcherName = new String[catcherData.size()];
for (int i = 0; i < catcherData.size(); i++) {
catcherName[i] = (String) catcherData.get(i).get("catcher_name");
}

After a successful data retrieval from the database using a database, the Main

Screen puts the data in a map and with the help of a ListView adapter, shows

them in the ListView. The code below shows how this is done:

String[] from = new String[] { "catcherName" };
int[] to = new int[] { R.id.catcher_name };
ListView listView = (ListView) findViewById(R.id.list);
List<HashMap<String, String>> ListViewMap = new ArrayList<HashMap<String,
String>>();
HashMap<String, String> map = new HashMap<String, String>();
map.put("catcherName", catcherName[i]);
ListViewMap.add(map);
ListAdapter adapter = new SimpleAdapter(this, ListViewMap,R.layout.list_row,
from, to);
listView.setAdapter(adapter);

The Main Screen also shows error messages, if there are any, while trying to

make a server connection. The error messages come from the server communi-

cation side of Gateway and they are then shown in the Main Screen. The code

below shows an example of how the error messages are shown:

TextView errorView = (TextView) findViewById(R.id.tv_error_handler);
errorView.setText(“no internet!”);

 35

In order to view the latest information to the user, the Main Screen needs to up-

date its contents repeatedly after a certain time interval. This update method

runs in a loop by means of a handler:

private Runnable runnable = new Runnable() {
 @Override
 public void run() {
 if(mDataHandler.authToken()!=null){
 //update Main Screen here
 //repeat the process after certain delay.
 mHandler.postDelayed(this, 10 * 1000);
 }
 else{
 close();
 }
 }
};

The Main Screen includes a web service button, which has an onClickListener

that redirects the user to the IoLiving web service by means of the following

code:

Intent webIntent = new Intent(Intent.ACTION_VIEW, Uri.parse(
"https://ioliving.com/login.php"));

startActivity(webIntent);

The action bar of the Main Screen has two menu items: Settings and Logout.

The click function of these items use the following lines to make selections:

case R.id.logout :
// logout function
break;
case R.id.settings:
// show a dialog listing settings
break;

4.2 Background processes

The functionalities of Gateway requires it to perform certain operations in the

background because running these operations in the foreground, i.e. in the UI

thread, will affect the responsiveness of the user interface. The Android frame-

work offers several ways to carry out these operations in a separate thread,

thus minimising the load from the UI thread. Gateway makes use of mainly dif-

ferent types of services. It also uses AsyncTask to take care of the background

operations and a Timer class to repeat these operations at a regular interval.

 36

4.2.1 Main Service

The Main Service of Gateway is a started service and it is started by the follow-

ing code:

Intent intentForService = new Intent(LoginScreen.this,MainService.class);
intentForService.setAction(Intent.ACTION_SYNC) ;
startService(intentForService);

Once started, the onStartCommand() method of the Main Service decides the

next operation based on the type of action set to the intent which starts the ser-

vice. The following code shows an overview of how the Main Service decides

the next operation using the action type of intent as a filter:

@Override
public int onStartCommand(Intent intent, int flags, int startId) {

if (actionOfIntent.equals(Intent.ACTION_SYNC)) {
// perform authentication sync
authSync();
}
else if (actionOfIntent.equals(Intent.ACTION_CALL)) {
// perform measurement sync or Bluetooth communication

if (mNextTask == taskType.ServerTask) {
measurementSync();

}
 else if (mNextTask == taskType.BluetoothTask) {
 bluetoothCommsTask();
 }

}
}

The Main Service makes use of an enum to enlist the type of operations the

service needs to perform. These operations always fall into two categories,

namely, a server communication and a Bluetooth communication and the code

below shows the use of enum in the Main Service to handle these tasks:

 37

private enum taskType {
 BluetoothTask, ServerTask
 }

private taskType mNextTask = taskType.ServerTask;
public void onTaskTypeChange(String nextTask) {
 switch (nextTask) {
 case "BluetoothTask ":
 mNextTask = taskType.BluetoothTask;
 break;
 case "ServerTask":
 mNextTask = taskType.ServerTask;
 break;
 }
}

4.2.2 Timer

The Timer class basically enables Gateway to run background operations out-

side the lifetime of Gateway and provides a certain amount of interval between

operations for the smooth functioning of Gateway. The Timer class accom-

plishes this with the aid of repeating alarm which is set when the Main Service

is first initiated and after that, the repeating alarm keeps the background pro-

cesses of Gateway running as long as the phone is turned on. The code to set

the repeating alarm is as follows:

public void setInterval(Context context, int seconds) {
AlarmManager alarmManager =
(AlarmManager)context.getSystemService(Context.ALARM_SERVICE);
 Intent intent = new Intent(context, Timer.class);
PendingIntent pendingIntent = PendingIntent.getBroadcast(context, 0, intent,
PendingIntent.FLAG_UPDATE_CURRENT);
alarmManager.setRepeating(AlarmManager.RTC_WAKEUP,
(1000 * 10), 1000 * seconds, pendingIntent);
 }

The Timer class extends the BroadcastReceiver. Thus, each time the repeating

alarm wakes up, the onReceive() method of the timer class retrieves the broad-

cast performed by the PendingIntent. The onReceive() method, presented be-

low, then starts the Main Service to perform the other background operations:

 38

@Override
public void onReceive(Context context, Intent intent) {

try {
Intent intentForService = new Intent(context, MainService.class);
 intentForService.setAction(Intent.ACTION_SYNC);
 context.startService(intentForService);
 }

catch (Exception e) {
 Log.v(TAG, "timer exception: " + e.toString());
 }

}

4.2.3 Catcher Service

The Catcher Service is solely responsible for handling the Bluetooth smart con-

nection between the phone and the Catcher. The Catcher Service is a bound

service which does not run indefinitely in the background. This feature makes

the Catcher Service very useful to perform connection related tasks between

the Catcher and the phone.

The following code is used to bind the service to the Bluetooth communication

task:

Intent serviceIntent = new Intent(context, CatcherService.class);
isBound = context.bindService(serviceIntent, mServiceConnection,
Context.BIND_AUTO_CREATE);

To end the lifetime of the Catcher Service, it is necessary to unbind the service

which is done by means of the following code:

if (isBound) {
 mOwningService.getBaseContext().unbindService(mServiceConnection);
}

In order to manage the lifecycle of the Catcher Service, a callback function is

implemented in the Bluetooth communication module of Gateway. The code for

the callback function is the following:

 39

public ServiceConnection mServiceConnection = new ServiceConnection() {
@Override

public void onServiceConnected(ComponentName componentName, IBinder service) {
 // commands for establishing Connection with the Catcher

}

 @Override
 public void onServiceDisconnected(ComponentName componentName) {
 // commands for terminating Connection with the Catcher
 }
};

4.2.4 AsyncTask

The server communication module in Gateway is mostly an implementation of

the AsyncTask, as this module does not require a direct UI thread and the oper-

ations in this module are generally short lived. Gateway uses the following code

to execute an AsyncTask to perform either an authentication sync or a meas-

urement sync:

// retrieve login url from config file
URL urlOfSync = new URL(Config.loginUrl);
// initialise the serverCommunication module object with data model instance and
// application context
ServerCommunication serverSync = new ServerAuthController(mDataModel, this);
// excute the AsyncTask

serverSync.execute(urlOfSync);

4.3 Bluetooth communication

The operations in the Bluetooth communication module, categorised as either

an advertising data collection or a Measurement data collection, always start by

a Bluetooth initialisation. The sequence of events, which take place when the

Main Service commands Gateway to perform the Bluetooth communication, in-

cludes the Bluetooth initialisation, the BLE scan and the Bluetooth connection.

The code for initialising Bluetooth is the following:

 40

private BluetoothAdapter mBluetoothAdapter;
private void initializeBluetooth(Context context) {
// Initializes Bluetooth adapter.
final BluetoothManager bluetoothManager =
 (BluetoothManager) getSystemService(Context.BLUETOOTH_SERVICE);
mBluetoothAdapter = bluetoothManager.getAdapter();
if (mBluetoothAdapter == null || !mBluetoothAdapter.isEnabled()) {
 Intent enableBtIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(enableBtIntent, REQUEST_ENABLE_BT);
 }
}

4.3.1 Advertising data

After confirming that the phone has an active Bluetooth adapter, the next step in

the Catcher communication module is scanning for Bluetooth low energy de-

vices, i.e. Catcher to be more specific. The scan is initiated using the following

code:

scanLeDevice(true);

The scanLeDevice() method then performs the actual scan for Catcher for a

certain period of time after which, this method commands the BLE scan to stop

and start selecting Catcher from the priority list to go for a Low Energy connec-

tion. The code is illustrated below:

private void scanLeDevice(final boolean enable) {
if (enable) {

 mHandler.postDelayed(new Runnable() {
 @Override
 public void run() {
 // stops scanning
 mBluetoothAdapter.stopLeScan(mLeScanCallback);

}
 }

},
//runs scan for certain period
Config.scanPeriod);
mBluetoothAdapter.startLeScan(mLeScanCallback);

 } else {
 //stops scanning
 mBluetoothAdapter.stopLeScan(mLeScanCallback);

 }
}

 41

The callback function is used to get broadcast data when there are Catchers in

proximity is as follows:

private BluetoothAdapter.LeScanCallback mLeScanCallback = new
BluetoothAdapter.LeScanCallback() {
 @Override
public void onLeScan(final BluetoothDevice device,
 final int rssi, final byte[] scanRecord) {
 // save broadcast data to database
 //add found Catcher to the database
 }
};

4.3.2 Measurement data

The next usual step for the Bluetooth communication module is to select a suit-

able Catcher to go for a BLE connection. Gateway prioritise Catcher on the ba-

sis of timestamp when the latest connection was made to that Catcher. Usually,

the earliest Catcher that went through the process of connection, or a newly in-

troduced Catcher which is yet to make a connection, is given the priority by

Gateway. However, it is crucial that the Catcher is in proximity of the phone in

order to proceed with the connection attempt.

The command for the connection attempt is implemented in the Catcher Service

and the following is the statement to execute it:

mBluetoothGatt = device.connectGatt(this, false, mGattCallback);

The following callback is used to retrieve and save the notifications:

 42

private final BluetoothGattCallback
btleGattCallback = new BluetoothGattCallback() {

@Override
public void onCharacteristicChanged(BluetoothGatt gatt,
 final BluetoothGattCharacteristic characteristic) {
 // this method gets called when Gateway
 // performs a read or write characteristic operation
 }

 @Override
 public void onConnectionStateChange(final BluetoothGatt gatt,
 final int status, final int newState) {
 // this will get called when a device
 // connects or disconnects
 }

 @Override
 public void onServicesDiscovered(final BluetoothGatt gatt,
 final int status) {
 // this will get called after the client initiates a
 // BluetoothGatt.discoverServices() call
 }
}

When the notifications from Catchers are saved to the database, the Catcher

communication module destroys any existing connection. The following code is

used to close the GATT:

mBluetoothGatt.close();
mBluetoothGatt.disconnect();

4.4 Server communication

In order to perform network operations, Gateway must include the following per-

missions in its manifest:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

However, having these permissions does not always confirm that a communica-

tion with the IoLiving web service can be established since an active network

connection is needed for that. So, before making any connection attempt, Gate-

way always checks whether a network connection is available using the follow-

ing statements:

 43

ConnectivityManager connMgr = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();
if (networkInfo != null && networkInfo.isConnected()) {

// proceed with communication process
} else {

// report error
}

Gateway makes use of the Apache HTTPClient to send and receive data from

the IoLiving web service. AsyncTask provides a separate simple thread to carry

out network operations using the HTTPClient which is demonstrated by the fol-

lowing code:

// retrieve data from database
JSONObject dataToSend = mDataHandler.authCommsEntity();

// prepare proper request format for IoLiving API
URL realUrl = urls[0];
HttpParams httpParameters = new BasicHttpParams();
int timeoutConnection = 10 * 1000;
HttpConnectionParams.setConnectionTimeout(httpParameters, timeoutConnection);
int timeoutSocket = 30 * 1000;
HttpConnectionParams.setSoTimeout(httpParameters, timeoutSocket);

DefaultHttpClient httpclient = new DefaultHttpClient(httpParameters);
HttpPost httppost = new HttpPost(realUrl.toString());
httppost.setEntity(new ByteArrayEntity(dataToSend.toString().getBytes("UTF-
8")));

// Execute HTTP Post Request
HttpResponse response = httpclient.execute(httppost);

The Measurement sync and authentication sync use a very similar mechanism

to send and receive data to and from the server, apart from using a different

API. Another significant difference is that while making the authentication sync

with the server, the response from the server contains messages that need to

be interpreted by the Login Screen in order to decide what to do next. The Login

Screen has a ResultReceiver and the following lines of code is used to send the

response from the server communication module to the Login Screen:

Bundle resultData = new Bundle();
resultData.putString(aOptionalErrorMessage, aOptionalErrorMessage);
mResultReceiver.send(aSuccess == true ? 0 : 1, resultData);
// set the resultreciver value to null after sending
mResultReceiver = null;

 44

After the communication with the server is complete, the following code is used

to set the next operation for the Main Service:

// set the next task to Bluetooth communication
((MainService) mContext).onTaskTypeChange("BluetoothCommunication");

4.5 Data Model

In Gateway, the data storage and management is done with the help of three

database tables and methods to insert, select, and update data. The creation

and data management processes for all three tables are the same except that

they contain different numbers and types of fields. The code below illustrates

how a ’settings’ table is created:

String CREATE_SETTINGS_TABLE = "CREATE TABLE settings ("
 + "user_account text,"
 + "user_password text,"
 + "auth_token text)";
db.execSQL(CREATE_SETTINGS_TABLE);

In a data model, methods are implemented to perform certain tasks. Each

method has a specific task assigned to it. The following method shows how to

insert data to the database:

public boolean insertAuthToken(String auth_token) {
ContentValues valuesToInsertToDb = new ContentValues();
valuesToInsertToDb.put("auth_token", auth_token);
db.insert("settings", null, valuesToInsertToDb);
}

In some cases, Gateway needs to override the previous data in the table. The

code below shows how this update process is done:

ContentValues cv = new ContentValues();
cv.put("auth_token", auth_token);
db.update("settings", cv, null, null);

Data is retrieved from the database table in the following way:

 45

String authToken = null;
SQLiteDatabase db = getReadableDatabase();
Cursor cursor = db.rawQuery("SELECT auth_token FROM settings", null);
if (cursor.moveToNext()) {

authToken = cursor.getInt(0);
}
cursor.close();
return authToken;

 46

5 TESTING

Testing the functionalities is one of the major phases in software development.

Testing provides new information about how the software works in different situ-

ations. It will help in further modifications and improvements of the software.

This section provides a description of the test cases for Gateway. They can be

divided into three categories: an application start-up, background processes

and Main Screen functions. The tests are carried out using different

smartphones to ensure that Gateway works similarly in every smartphone.

5.1 Application start-up

After the installation of the Gateway app in a smartphone, launching the app for

the first time should take the user to the Login Screen. The user should then fill

in the login form. On pressing the login button, wrong or inadequate information

should result in an error message in the UI, whereas correct information should

open the Main Screen. The next time the user launches Gateway, it should au-

tomatically open the Main Screen.

Table 1 provides a list of tests that are carried out to check how Gateway works

during the start-up. From the table it can be seen that the desired outcome

matches the results of all tests. These ensure that, at start-up, the final version

of Gateway works as specified in the design.

 47

TABLE 1. The test cases used in functionality test of the application start-up

process of the Gateway (Noor, A.2015)

 Initial State Step(s) Desired Outcome Match

Desired

Outcome

1. Application is

installed in the

system

Launch application

Application checks if

there is authentication

token in local database

No authentication to-

ken in local database.

Application opens

Login Screen.

Yes

2. Application is

launched

Login attempt with

wrong username or

password

Error message telling

that username or pass-

word is wrong

Yes

3. Application is

launched

Login attempt with

empty username and

password

Login button disabled.

Error message show-

ing empty field

Yes

4. Application is

launched

Login attempt with

proper username and

password

Application opens

Main Screen

Yes

5. Application is

launched

Application checks if

there is authentication

token in local database

Application opens

Main Screen

Yes

5.2 Background processes

After the initial start-up process is done, the next test cases for Gateway are the

automated background processes. These test cases presume that the user al-

ready has a registered Catcher available near the phone and Gateway is run-

ning in the background.

 48

The background processes can be tested simply by looking at the UI. The

ListView that displays the list of Catchers should also show the state of the data

collected from the Catchers. The UI should update this state when there is a

change.

Table 2 enlists the test cases that are used to confirm the proper functioning of

the background processes. The final version of Gateway, as seen from the ta-

ble, functions as expected.

TABLE 2. The test cases used in functionality test of the background processes

of the Gateway (Noor, A.2015)

 Steps Desired Outcome Match Desired Outcome

1. Open Main Screen and

wait for some time

‘Scanning’ or ‘Data

waiting’ text should ap-

pear beside the Catch-

ers which are near

Yes

2. Close all network connec-

tions from phone

Data from nearby

Catchers owned by

user will be read to

phone but not sent to

server

Yes

3. Allow network connection

from phone and wait for

some time

‘Full sync’ or ‘Partial

sync’ text should ap-

pear beside the Catch-

ers which are near

Yes

 49

5.3 Main screen function

The Main Screen in Gateway should act as a window and provide the user with

information on what is going on in the background. Also, the Main Screen has

buttons which upon click, should redirect to the IoLiving web service and option

menu in the action bar. This should enable users to logout or set various prefer-

ence options.

Table 3 presents a list of test cases that are used to test the Main Screen of the

final version of Gateway. The results for all the Main Screen functionalities

match the desired outcomes, as seen from the table.

TABLE 3. The test cases used in functionality test of the Main Screen (Noor,

A.2015)

 Steps Desired Outcome Match Desired Outcome

1. Open Main Screen and

wait for some time

Nearby Catcher should

show temperature

value in real time

Yes

2. Press web service button IoLiving web service

page should appear

Yes

3. Press Settings button Provides option to re-

serve Bluetooth for

IoLiving

Yes

4. Press Logout button Main screen should

open Login Screen

Yes

 50

6 CONCLUSIONS

6.1 Final status of the work

Gateway can already be downloaded from the Google Play Store and be used

commercially by Ceruus’ clients which is a clear indication of the success of the

whole project. The commercial name for the Gateway software is the ‘IoLiving’

app.

In its current state, Gateway can consistently connect to and disconnect from up

to 20 Catchers without any problem. However, a key point to note is that the An-

droid Bluetooth stack is not designed to handle such frequent communication

and over time, it can become unresponsive to certain connection commands.

Therefore, it is crucial that all the parameters in the sync logic are correctly set.

The optimal values for the parameters in the sync logic are selected by testing

with different phone models.

The data collection interval from Catcher and the data upload interval to a

server might also vary from phone to phone due to a different manufacturer and

a different Bluetooth stack. At some point of the application lifetime, the data

collection can even be a failure. As the background process for Gateway is con-

tinuous and, once started, runs for an indefinite amount of time, the failure

cases are often ignored and in critical cases Gateway automatically resets the

Bluetooth of the phone.

6.2 Personal comment

Being able to work in collaboration with the other team members is the key thing

that helped me to do my part in this project. The deadline was always a factor

we could not avoid and it was necessary to be able to adapt to the situations on

the basis of requirements. These, apart from gaining more skills in programming

and software design, version control and work load management issues helped

me to enrich the experience that I am sure will help me a lot in the near future to

develop my career. I am very pleased with my colleagues and employer for pre-

 51

senting me with such a wonderful opportunity to work in a completely profes-

sional environment. Also, I am grateful to my teacher and School for making it

as a part of study and all the support they provided. I believe that this type of

professional project for a thesis can be considered as one of the most funda-

mental key to learn. It will also give a head start to an early career plan.

 52

REFERENCES

1. Android Developers. 2015. Getting Started. Date of retrieval 8.4.2015.

http://developer.android.com/training/index.html

2. Android Developers. 2015. Developer Support Resources. Date of re-

trieval 8.4.2015.

http://developer.android.com/support.html

3. Android Developers. 2015. Package Index. Date of retrieval 8.4.2015.

http://developer.android.com/reference/packages.html

4. Rouse, M. 2014. Internet of Things(IoT). Date of retrieval 6.4.2015.

 http://whatis.techtarget.com/definition/Internet-of-Things

5. Wikipedia. 2015. Internet of Things. Date of retrieval 6.4.2015.

http://en.wikipedia.org/wiki/Internet_of_Things

6. Gibbele, M. 2014. Android Bluetooth Low Energy Tutorial. Date of re-

trieval 9.4.2015.

http://toastdroid.com/2014/09/22/android-bluetooth-low-energy-tutorial/

7. Wikipedia. 2015. Bluetooth low energy. Date of retrieval 9.4.2015.

http://en.wikipedia.org/wiki/Bluetooth_low_energy

8. Bluetooth Developer portal. 2015. Generic Attribute Profile (GATT). Date

of retrieval 9.4.2015.

https://developer.bluetooth.org/TechnologyOverview/Pages/GATT.aspx

9. Wikipedia. 2015. Agile software development. Date of retrieval

28.3.2015.

http://en.wikipedia.org/wiki/Agile_software_development

10. Wikipedia. 2015. Scrum (software development). Date of retrieval

28.3.2015.

http://en.wikipedia.org/wiki/Scrum_(software_development)

 53

11. Dmazzoni. 2010. How to send a JSON object over Request with An-

droid? Date of retrieval 13.04.2015.

http://stackoverflow.com/questions/3027066/how-to-send-a-json-object-

over-request-with-android

12. Connect blue. 2013. Bluetooth Low Energy Serial Port Adapter - Getting

Started. Date of retrieval 13.04.2015.

http://support.connectblue.com/display/PRODBTSPA/Blue-

tooth+Low+Energy+Serial+Port+Adapter+-+Getting+Started

13. Ceruus Internal Documents.2014. Connection Establishment of Blue-

tooth Low Energy Devices. Date of retrieval 2.03.2015.

14. Ceruus Internal Documents.2014. Press release. Date of retrieval

6.04.2015.

http://support.connectblue.com/display/PRODBTSPA/Bluetooth+Low+Energy+Serial+Port+Adapter+-+Getting+Started
http://support.connectblue.com/display/PRODBTSPA/Bluetooth+Low+Energy+Serial+Port+Adapter+-+Getting+Started

 APPENDIX 1/1

 APPENDIX

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ceruus.ioliving"
 android:versionCode="3"
 android:versionName="1.0.3" >
 <uses-sdk
 android:minSdkVersion="18"
 android:targetSdkVersion="19" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-feature
 android:name="android.hardware.bluetooth_le"
 android:required="true" />
 <uses-permission android:name="android.permission.BLUETOOTH" />
 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <service android:name="com.ceruus.ioliving.MainService" />
 <service
 android:name="com.ceruus.ioliving.catcherComms.CatcherService"
 android:enabled="true"
 android:exported="true" >
 </service>

 <receiver
 android:name="com.ceruus.ioliving.TimerHandler"
 android:enabled="true"
 android:process=":remote" >
 </receiver>

 <activity
 android:name="com.ceruus.ioliving.ui.SplashScreen"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name="com.ceruus.ioliving.ui.LoginScreen"
 android:launchMode="singleTask" />
 <activity
 android:name="com.ceruus.ioliving.ui.MainScreen"
 android:launchMode="singleTask" />
 </application>
</manifest>

 APPENDIX 1/2

XML Layout Contents

TextView

<TextView
android:id="@+id/errorMessageText"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:layout_marginLeft="40dp"
android:layout_marginTop="20dp"
android:layout_weight="0.21"
android:textColor="#000000"
/>

EditText

<EditText
android:id="@+id/loginNameEdit"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_gravity="center"
android:background="@drawable/layout_bg"
android:inputType="textEmailAddress"
android:layout_marginStart="39dp"
android:textColor="@color/ioLivingTextColor"
android:textCursorDrawable="@drawable/color_cursor" >

Button

<Button
android:id="@+id/loginButton"
android:layout_width="120dp"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:layout_marginLeft="130dp"
android:layout_marginRight="100dp"
android:text="@string/buttontext_login"
android:textSize="25sp" />

 APPENDIX 1/3

ListView

<ListView
android:id="@+id/list"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:divider="#a1a1a1"
android:dividerHeight="4px"
android:listSelector="@drawable/list_row_selector" >
</ListView>

ImageView

<ImageView
android:id="@+id/status_image"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentRight="true"
android:layout_marginRight="10dp" />

 APPENDIX 1/4

Menu

Main.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:yourapp="http://schemas.android.com/apk/res-auto" >

<item android:id="@+id/menu_new_form"
 android:title=""
 android:icon="@drawable/detail"
 android:showAsAction="ifRoom|withText">
 <menu>
 <item
 android:id="@+id/settings"
 android:orderInCategory="101"
 android:showAsAction="withText|always"
 android:icon="@drawable/settings"
 android:title="@string/menu_settings"/>

 <item
 android:id="@+id/sync"
 android:orderInCategory="101"
 android:showAsAction="withText|always"
 android:icon="@drawable/search"
 android:title="@string/menu_sync_now"/>

 <item
 android:id="@+id/logout"
 android:orderInCategory="101"
 android:showAsAction="ifRoom|withText"
 android:icon="@drawable/logout"
 android:title="@string/menu_logout"/>
 </menu>
 </item>
</menu>

