

Vladimir Maskov

Implementing REST Сlient for Android

Helsinki Metropolia University of Applied Sciences

Degree Bachelor of Engineering

Degree Programme Information Technology

Thesis

8 April 2015

 Abstract

Author(s)
Title

Number of Pages
Date

Vladimir Maskov
Implementing REST Сlient for Android

48 pages + 3 appendices
8 April 2015

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Development

Instructor

Peeter Kitsnik

The aim of this final year project is to explore various ways to build an Android REST client
by evaluating existing solutions and approaches. The project introduces several popular
REST client libraries and persistence options, which allow to simplify an interaction with
RESTful Web services and enable important features, such as caching, response parsing
and result filtering. Object relational mapping and networking solutions are covered in detail.

The practical result of the study is illustrated in a start-up application developed since May
2014 to demonstrate the whole development process from back-end solution selection until
the product is ready for the market. The materials are presented in the form of analysis,
extensive code listings and figures. Several approaches and products have been compared
to provide comprehensive insight according to the discovered facts.

The main components and resources utilized by the application are SQLite, BaasBox An-
droid SDK and custom Content Provider working in a pair with SyncAdapter. SQLite and
BaasBox were replaced with Realm and Retrofit in the later part of the work due to certain
constraints and performance issues. Modularity of an application is suggested as a key ele-
ment essential for successful development. Information gathered during development is an-
alysed and the most efficient solutions are planned to be applied in future projects.

Keywords REST, HTTP, Android, SQLite, JSON, XML

1

Contents

 Introduction 3

 Restful API Architecture 4

2.1 HTTP Methods 4

2.1.1 HTTP GET 4

2.1.2 HTTP POST Request 5

2.1.3 HTTP PUT 6

2.1.4 HTTP DELETE 7

2.2 REST URI Format 8

2.3 Statelessness 9

2.4 Data Transfer Format 10

 REST Client Implementation Patterns and Solutions 12

3.1 Implementation Patterns 12

3.2 Important Details and Optimizations 15

3.3 REST Client Libraries 16

3.3.1 Robospice 16

3.3.2 Datadroid 17

3.3.3 RESTdroid 18

3.3.4 Retrofit 19

3.3.5 Comparison of REST Client Libraries 19

4 Object-Relational Mapping and Storage Solutions 22

4.1 Storage Solutions 22

4.1.1 SharedPreferences 22

4.1.2 SQLite 24

4.1.3 Realm 27

4.2 Mobile ORM Libraries 30

4.2.1 OrmLite 30

4.2.2 GreenDAO 31

4.3 Summary 33

2

5 Implementing REST Client for Android (with Examples) 35

5.1 Introduction 35

5.2 Backend Solution: Building Own or Choosing Available on the Market 36

5.3 BaasBox Android SDK and Client Initialization 37

5.4 Building BaasAccessor Class with Client Methods 38

5.5 New API: Challenges and Solutions 44

6 Conclusions 48

References 49

Appendix 1. SQLite Example 52

Appendix 2. Android SQLite ORMs and Realm Comparison Graphs 53

Appendix 3. Source Code (Quikoo Project Based on BaasBox) 54

3

 Introduction

History of Representational State Transfer (REST) begins from the moment when it was

initially described by Roy Fielding in his paper "Architectural Styles and the Design of

Network-based Software Architectures" [1] in 2000 as a concept of web architecture for

distributed computing. Nowadays it has become a popular standard used by market lead-

ers (Google, Facebook) and has mostly substituted the Simple Object Access protocol

(SOAP) and the Web Services Description Language (WSDL) due to its simpler and

lighter architecture. REST frameworks and Application Programming Interfaces (APIs)

continuously develop. REST is a high-level concept that could be adopted by the use of

a wide technology stack to handle various types of data. Due to the abstract nature of

the REST concept, there are no exact specifications about methods and their certain

behavior. Standard implementation of the REST concept is HyperText Transfer Protocol

(HTTP-based, it relies on Web architecture and utilizes HTTP verbs for a uniform inter-

face). Restful API provides a flexible way to represent a service’s resources for different

applications in a standard data format, which simplifies integration for complex systems

where data is mixed or combined. The RESTful Web service architecture is required to

follow four basic design principles: explicit use of HTTP methods, statelessness (appli-

cation state is never stored on the server), URIs are represented in a format, which is

similar to the directory path structure on a PC, data is transferred in eXtensible Markup

Language (XML), JavaScript Object Notation (JSON), or in both formats. [2]

The content of the thesis primarily focuses on a client side of the REST services, their

adoption on an Android mobile platform and real-life implementations in production. How-

ever, the REST client topic would not be covered completely without a basic knowledge

of essential design principles and implementation of methods on the server side. Several

REST patterns presented by Google are covered in chapter 3 conjointly with a list of

libraries, necessary for optimal implementation of the client on an Android platform. Per-

sistence is the main topic of chapter 4, which provides important information about a

developer choice of various storage solutions. Traditional SQLite database, its ORM add-

ons and modern Realm.io solution (which is just gaining its popularity in 2015) are com-

pared and discussed. Practical work is mainly based on a startup project work carried

out since May 2014 until January 2015. The project passed through several evolution

stages while knowledge and experience were evolving during the development and prep-

aration of the thesis. All stages are covered in chapter 5, and extensive source code

listings are placed in appendices 3 and 4.

4

 Restful API Architecture

2.1 HTTP Methods

A RESTful Web service should always use HTTP methods explicitly according to RFC

7231. For example, HTTP GET, is supposed to be used by a REST client to retrieve data

from a web service or to execute a query to fetch a result set which consists of the re-

quested resources. [3, 23] The fundamental REST design principle is exact mapping

between create, read, update, and delete (CRUD) operations and REST HTTP methods.

Mapping should follow certain rules:

 POST creates a resource on the server [3, 25].

 GET retrieves an appropriate resource [3, 23].

 PUT should be used to update the resource or change the state [3, 25].

 DELETE is used only to remove the resource [3, 28].

However in the case of incorrect architecture design Web APIs use HTTP methods for

unintended and unexpected (for a client-side developer) purposes: transactions can be

triggered on the server and records modified or deleted from remote database.

2.1.1 HTTP GET

The HTTP GET method invocation may look like the one shown below.

GET /addproduct?title=mangos&amount=35 HTTP/1.1

Listing 1. An example of an incorrect HTTP request

HTTP GET method represented in listing 1 is not used correctly and does not follow the

original REST approach. The HTTP/1.1-compliant GET request by design returns re-

source representation as a response and is not designed to serve as a trigger to add a

record to a remote database. The requests are used only to read the data and not change

it. If the data is modified, a request is considered unsafe. If it could be executed without

a risk of data modification or removal, calling it once has the same effect as calling it

multiple times, or none at all. Furthermore, GET is idempotent, which means that making

multiple requests using the same URI must produce the same result as just a single

request.

5

GET http://products-example.com/products/vegetables

GET http://products-example.com/products/fruits

GET http://products-example.com/products/vegeta

bles/cucumbers

Listing 2. Examples of an HTTP GET request

If the request is executed successfully (URI is correct), GET will return a representation

in XML or JSON and the HTTP response code of 200 (OK) [3, 57]. In the case of a failed

request, 404 (NOT FOUND) [3, 65] or 400 (BAD REQUEST) [3, 64] errors are returned.

Listing 2 illustrates examples of valid GET requests.

2.1.2 HTTP POST Request

The HTTP POST method is used mostly to create new resources. When a new entity is

being created, the service associates it with a parent and assigns an ID (new resource

URI). If the resource is created successfully, the web server returns the HTTP status

code 201 and a link to the newly-created entity in a Location header [3, 53-54]. Listing 3

illustrates how new resources are created via HTTP POST request. POST is not consid-

ered safe nor idempotent and is supposed to be used for non-idempotent HTTP requests

[3, 74]. However when POST requests containing an equal URI and the same entities

are repeated, the server creates resources which contain the same data under the com-

mon parent. [3, 50-51].

POST http://products-example.com/products/vegetables

POST http://products-example.com/products/fruits

Listing 3. Examples of valid HTTP POST request

If HTTP GET is unsafe, Web caching tools and search engines (for example, Google)

can execute data changes accidentally. To eliminate that problem parameter-value pairs

in the request URI could be bundled into the XML entity. The created XML representation

may be delivered in the body of an HTTP POST request, where the URI serves as a

parent of an entity and the xml entity is a payload. Listing 4 demonstrates how data can

be embedded into the request body. If the chosen format is xml, the content-type field

should be set to “application/xml”; by default it is “plain/text”. [2]

6

POST /products/vegetables HTTP/1.1

Host: products-example.com

Content-Type: application/xml

<?xml version="1.0"?>

<product>

 <title>Cucumbers</title>

 <amount>15</amount>

</product>

Listing 4. XML payload in HTTP POST request body

The client defines the relationship by URI in the HTTP POST request. When the request

is received on the server side, new resource is added to the parent “vegetables”. This

relationship between the parent and new entity specified in HTTP POST is similar to the

tree structure of the file system.

2.1.3 HTTP PUT

HTTP PUT is used mostly for updating certain resources, which are available via an

existing URI. The request body includes an updated version of an entity already stored

on the server. If the request was successful, the 200 OK result code should be returned.

If the response does not contain an embedded body then 204 code is used instead of

200 code [3, 25-26].

HTTP PUT will create a new entity on the server in case the supplied id of the resource

does not exist, yet. This behavior does not seem obvious to every developer and is rec-

ommended to be avoided in order to eliminate problems and confusion. When it is

needed to create new resource, the HTTP POST request should be used instead of

HTTP PUT. There is also an alternative way: the resource id can be determined in the

entity’s body and the URI should skip the resource id part. [2]

When HTTP PUT is used to create new resource on the server, HTTP code 201 is re-

turned if the request did not fail. The body is usually not included in the response (the

client keeps the resource id in memory) [3, 26].

7

PUT http://products-test.com/vegetables/egg_plants

PUT http://products-test.com/fruits/oranges

Listing 5. Examples of valid HTTP PUT request

However HTTP PUT is not considered safe [3, 74] (because the state of data on the

server is modified when the request is processed), but if one of the statements presented

in listing 5 is repeated multiple times, the entity stored on the server does not change

and remains in the same state as after the initial request. This makes HTTP PUT an

idempotent operation, but in a certain case the request can become not idempotent. That

happens if the value is incremented and delivered to the server using HTTP PUT. Using

the HTTP PUT method only for not idempotent operations helps to avoid mistakes and

inconsistency. This is considered the recommended approach according to documenta-

tion. [2]

2.1.4 HTTP DELETE

The HTTP DELETE method operation is quite straightforward: it allows to remove data

from the server using a resource identifier. If the resource is removed successfully, HTTP

DELETE returns HTTP code 200 in response, if not - code 204 is returned [3, 28-29].

Sometimes the body may be attached and include removed entity. For example, when

“potatoes” are deleted from the server in listing 6, the response may contain details about

the removed item – weight, price, quality and other information.

DELETE http://products-test.com/vegetables/potatoes

DELETE http://products-test.com/fruits/lemons

Listing 6. Valid HTTP DELETE requests

According to specifications, the HTTP DELETE method is considered idempotent. On

the first request, the resource is removed and if that operation is repeated multiple times,

the result is the same. [2] The HTTP DELETE method should be kept idempotent and

used only to remove a certain entity on the server-side, however if data on the server is

already removed, executing one of the statements again from listing 6 will produce 404

responses [3, 58], because the resource is not reachable anymore.

8

2.2 REST URI Format

The URI scheme of REST API [4, 16] is especially important for a client-side represen-

tation of resources addressed on the server. The URI should be designed in such a

manner that it is relatively simple and intuitive to encode paths to the Web API resources

without or with minimal amount of extra information (documentation, references). The

URI scheme endpoints should be clear to understand and highly predictable.

The most straightforward approach is to accommodate directory structure-like URIs: the

address is built in strict hierarchy, resources have a single common root (base URI) and

they include multiple branches (paths). The URI could be imagined as not just a simple

string, which is delimited, as a tree with branches which represent resource main cate-

gories. [2] For example, all books in a web shop can be represented in the form of a URI

structure as shown in listing 7.

http://products-test.com/books/genres/{genre}

Listing 7. URI structure used to present books by genres

The node “/genres” is attached to the root “/books”. Under the “/books” branch there are

several genres, such as sci-fi, romance or drama and each genre points to a set of books.

Using this clear intuitive structure it is easy to guess a certain book URI. Resources can

be organized hierarchically based on predefined rules, for example by title as done in

listing 8.

http://products-test.com/articles/2014/11/18/{title}

Listing 8. Hierarchical URI structure

This URI format looks intuitive and makes a perfect directory-like structure. The first part

of the path attached to “/articles” is a four-digit year, the second is a two-digit month and

the third - a two-digit day. The URI in listing 9 is well-formed and keeps a human-readable

format entirely and at the same time can be encoded by the server using predefined

rules.

http://products-test.com/arti-

cles/{year}/{day}/{month}/{title}

Listing 9. Complex URI in human-readable format

9

In a properly designed REST API URIs remain static and can be bookmarked. Even if

implementation changes on the server-side, client endpoints and relations between re-

source nodes do not change.

2.3 Statelessness

Two state types exist in a service which is built on the REST architecture. One is a re-

source state, which stores resource information and application state – the information

about the resource path [5, 90]. The RESTful service holds only resource state and

sends it to the REST client as entities. Clients keep an application state, which can be

used for all CRUD operations. The application state can be transferred to the server via

HTTP POST, PUT and DELETE requests. On the server side it is transformed into a

form of resource state. The stateless nature of the REST service introduces server-side

limitations: the application state is saved only on the client side. The stateless REST

service may consider the application state, but only as a part of the HTTP request, which

may include a session id or account credentials (for example, user name and password

hash), which should be sent with each request. [5, 217]

The stateless REST service has better performance, simpler design and scalability be-

cause it does not hold and manage the application state. The REST server only produces

responses to client requests and enables the interface to help the client manage the

application state. [5, 86] For instance, the client should include a certain title of the book

to fetch instead of requesting the next one. The client’s application state is managed by

sending representations; the server’s resource state is changed by submitting a repre-

sentation. The client handles resource state by sending a representation via POST or

PUT. [5, 218] Collaboration between the client and the server is an important feature

which makes a RESTful service stateless. It also helps to save bandwidth between those

components by minimizing the amount of data transmitted.

Each request sent to the server includes all the required information (including applica-

tion state) to process data and never considers requests accomplished before. All data

stored on the server should be represented in the form of a resource accessible via URI.

States stored on the server are considered resources and exposed via URI: "The client

should not have to coax the server into a certain state to make it receptive to a certain

request” [5, 87]. Some web services do not follow a stateless approach and restrict the

10

order of client requests. If this happens, the user is not able to navigate between previ-

ous, current and next pages (states). It could be confusing when the user presses the

backbutton in the browser or repeats the request.

Resource representation carries the state of a resource, multiple attributes including ex-

act time when the resource was requested by the client and acts like a snapshot. As a

good example, a parallel with a database record or data model could be provided, where

resource representation is a snapshot of various attributes requested by a REST client.

2.4 Data Transfer Format

In order to transfer data from the RESTful Web service to a REST client, the data format

should be chosen to determine the request and the response HTTP body payload. It is

highly important to keep relationships between resources while transferring data objects.

[2] In the notification service author names, heading and message body can be provided

all together in a response to a certain requested resource as illustrated in listing 10.

<?xml version="1.0"?>

<message>

<to>John </to>

<from>Jane</from>

<heading>Reminder</heading>

<body>Hello, my friend</body>

</message>

 Listing 10. XML representation of a message

For RESTful web application is recommended to use the HTTP Accept header [3, 37]

and specify the MIME type to request an appropriate content type. Table 1 includes spe-

cific MIME types used by RESTful Web services.

Table 1. Common MIME types used by RESTful services [2]

MIME-Type Content-Type

JSON application/json

XML application/xml

XHTML application/xhtml+xml

11

The MIME types allow to make the service really cross-platform and target maximum

number of various platforms and devices. However, in certain cases it is enough to pro-

vide only one of the formats (when the number of platforms is limited and the clients

require a specific content type).

12

 Patterns and Solutions for REST client implementation

3.1 Implementation Patterns

REST client implementation on Android has a few key features. Various approaches

were extensively described by Virgil Dobjanschi on Google I/O 2010 developer confer-

ence [6]. Google developed three correct ways of REST client implementation.

Pattern A. Use Service API: Activity <-> Service <-> Content Provider [7, 366]. In this

case, Activity works with Android Service API (as illustrated in Figure 1). Whenever the

REST request is ready to be sent Activity creates Service then Service asynchronously

passes requests to REST-server and saves results in the Content Provider (SQLite).

Activity automatically receives notification about the request completion status and reads

data from the Content Provider (SQLite).

Figure 1. Pattern A presented at Google IO 2010 [6, 11]

Pattern B. Use Content Provider API: Activity <-> Content Provider <-> Service [7, 367].

In this case, Activity works with Content Provider API: Activity <-> Content Provider <->

Service, which acts as a facade for the Service (as illustrated in Figure 2). This approach

is based on common features of Content Provider API [8] and REST API: HTTP GET

REST request is equivalent to SELECT query to database, HTTP POST REST ~ IN-

SERT, HTTP PUT REST ~ UPDATE, DELETE REST ~ DELETE. Activity loads results

from SQLite database (as done in pattern A).

13

Figure 2. Pattern B presented at Google IO 2010 [6, 24]

Pattern C. Use Content Provider API and Sync Adapter: Activity <-> Content Provider <-

> Sync Adapter [7, 367]. Pattern C is a modification of Pattern B where SyncAdapter is

used instead of Service (as shown in Figure 3). Activity queries Content Provider to get

records from the database and local data itself is synced with a remote server using the

onPerformSync method of the Sync Adapter class [9].

Figure 3. Pattern C presented at Google IO 2010 [6, 26]

Sync Adapter is executed indirectly from Sync Manager and there are several options to

run the Sync Adapter according to documentation:

1. “Run the Sync Adapter When Server Data Changes

2. Run the Sync Adapter When Content Provider Data Changes

14

3. Run the Sync Adapter After a Network Message

4. Run the Sync Adapter Periodically

5. Run the Sync Adapter On Demand” [9]

It is important to notice that according to Android documentation the Sync Adapter should

not be run as the direct result of a user action, because in this way the application does

not get full benefit of the Sync Adapter approach. Google emphasizes that a developer

should avoid providing a refresh button in user interface when using Sync Adapter.

The easiest approach which could be implemented (and used by beginner level program-

mers), is totally incorrect: a separate thread is executed from Activity, the data is sent to

the REST server via a request, and the results are saved in memory (for example, as

the Array List structure without a database and any kind of persistence). Due to its unre-

liable nature this approach should not be used for production. Figure 4 illustrates incor-

rect implementation, which does not handle persistence.

Figure 4. Incorrect REST client implementation [6, 6]

Most of the problems are related to Activity Lifecycle - an order of states, which activity

passes in its lifecycle, cannot be predicted due to user interactions. Activity can be

paused or even destroyed at any time by Android OS. It means that it is impossible to

reliably execute long-running operations in the Activity code, because it can be destroyed

before the results are received and the operation finished. There could be two conse-

quences of such behavior: results are lost and data is desynchronized between the

server and the client. Therefore, long-running operations should be executed in the Ser-

vice. The service has a higher priority than the Activity and memory management will not

stop for most cases. The Service and Activity are two different components of the An-

droid framework and the data between them should be passed using serialization. As

15

described by Virgil Dobjanschi in Google I/O 2010, there is a parallel with marshalling –

using marshalling it becomes possible to pass data, but the amount of data should be

minimized. An optimal approach is to store the data in the database and then read it back

in the Activity.

In correct implementation of the REST client, a response received from the REST server

is persisted and never passed directly to Activity. Activity is notified that the data is stored

in the database and can be loaded (this can be achieved by using the Content Provider

with the Content Observer). While INSERT, DELETE, UPDATE operations are being

executed, the data in SQLite is updated twice: the first time before a REST request is

sent, the second time when the HTTP response is received. [8] The first operation sets

status flags, signaling about the type and status of the executed operation. The REST

methods should always be executed in a separate thread and the Apache Http Client is

a preferred due to various bugs in HttpUrlConnection class implementation on different

Android SDK versions [10].

3.2 Important Details and Optimizations

Several ways to optimize a REST client operation were presented in Google IO 2010 [6]:

 Gzip (GNU Zip) [4, 38] compression brings benefits if used in REST-client imple-

mentation. The Gzip library is included in native Android SDK and it helps to min-

imize traffic, accelerate data reception, save battery power.

 When data is stored in the SQLite database, transactions would increase the

overall speed. If the application is required to download more than 10 images, it

is better to start only 1-3 parallel downloads and queue for others. It allows the

first images to appear faster and leaves a certain percentage of bandwidth to

other applications.

 The Activity registers a binder callback (Result Receiver) to get a response from

the Service. This callback should be removed when onPause is called in the Ac-

tivity lifecycle, otherwise the Application Not Responding dialog may appear.

 Long-running operations should always be executed from the Service. Service

should be always stopped when requested operations finished.

 Database should not grow infinitely, old records have to be removed (for exam-

ple, by timestamp).

 Data should be paginated (if REST API supports that).

16

 If time is not a critical parameter, data should be synchronized using the Sync

Adapter framework.

There are also certain problems which should be resolved when implementing a REST

client:

 Manage Service: start/stop.

 Pass data from Service to Activity.

 Cache results in SQLite database.

 Save status of data before and after REST-request.

 Record information about current REST-operations in SQLite database.

 Parse received response.

 Build REST-request based on encoded URI and set of parameters.

 Execute REST-requests to server.

 Database cleaning to save space from stale data.

 In case of fail, unsuccessful REST-request should be repeated using exponential

back-off timer.

 Possibility to execute REST request via Sync Adapter.

The presented patterns can be implemented manually or using external libraries to build

the REST client. The simplest solution is to use one of the external libraries described in

following sections.

3.3 REST Client Libraries

3.3.1 Robospice

RoboSpice is a modular Android library that simplifies the process of handling asynchro-

nous requests [11]. RESTful Web services are supported out-of-the box. Request can-

cellation, request prioritization and request aggregation are supported. The library lever-

ages caching and has an external cache option available (it is required to implement an

abstract class CacheManager). There are several options for cache format: JSON (Jack-

son/Jackson2/Gson supported), XML, plain text or binary data. When a request is being

executed, a cache option can be set on/off, cache time (the time when the results are

valid). Among important library extensions there is an ORMLite module used to write and

read POJO to and from SQLite. Data identification is based on class implementations.

17

The Robospice library is strongly typed; therefore POJOs are used as request parame-

ters and POJOs are received back as request results. The library is well tested (the re-

pository includes more than 200 tests) and has extensive documentation; thereby stabil-

ity and efficiency are guaranteed. [11]

Extra information gathered from library classes published in the repository includes the

following:

 There is no built-in support for pre- and post- operations of the REST methods,

but it is possible to create implementation using a class derived from Spic-

eRequest.

 A network connection is customized and configured via a class derived from Spic-

eRequest (loadDataFromNetwork method). The library includes implementation

of SpiceRequest by default based on java.net.URL for plain text data and

HttpURLConnection [10] for binary data.

 A retry algorithm is configured via RetryPolicy. DefaultRetryPolicy used by default

implements an exponential back-off algorithm.

 The data is passed from Activity to Service using RequestListener. The result

type is customized using a generic parameter. A listener is passed as a parame-

ter into spiceManager.execute(), the results are received in a parsed representa-

tion.

3.3.2 Datadroid

According to a repository hosted on GitHub [12], the Datadroid purpose is to ease the

data management in an Android application. Brief documentation includes several steps

to set up a library project (no gradle or maven support). The repository includes a sample,

but to integrate the library properly, a fair amount of research is required (classes in the

repository, external resources), which means that Datadroid cannot be used by a begin-

ner developer. Unfortunately, the library is not in active development anymore (the last

commitment on 10 March 2014), but it can still be used and adopted by an Android de-

veloper with a high level of expertise.

18

Extra information gathered from library classes published in the repository includes fol-

lowing:

 Cache is embedded in the RequestManager, data is stored as an LruCache ob-

ject. For every type of the request caching is set separately. It is not possible to

use database instead of LRU cache (it cannot be disabled).

 There is no built-in support for pre- and post- operations of the REST methods,

but it is possible to create an implementation using a class derived from Opera-

tion.

 Network resources accessed via OkHttp from Square or HttpURLConnection.

The first options are used through java.lang.reflect and if an exception is raised,

default HttpURLConnection will be used.

 A retry algorithm is not available. In the case of an error during the request exe-

cution, an exception is raised with detailed information about the problem.

 Data is passed from Activity to Service using RequestListener. The results are

loaded into Bundle. A listener is passed as a parameter into the execute method.

The results are received as a bundle.

3.3.3 RESTdroid

RESTDroid [13] provides similar features as previous libraries and follows a modular

approach (like RoboSpice). The library includes a necessary functionality to handle re-

quests, but additional features are also available via external modules, which can be

found in the RESTDroid repository. For example, the ORMlite-Jackson module handles

data persistence and mapping/parsing using the JSON Jackson format and the ORMLite

framework (described in chapter 4). Extensive documentation and beginner guides are

published on the site of the developer. [13]

Extra information gathered from library classes published in repository includes the fol-

lowing:

 Cache is embedded (CacheManager), cache results are stored in separate files.

Validity of data in the cache is determined by file creation time. It is possible to

disable cache reading, but not cache writing. Storage method can be modified by

changing the implementation of the object inherited from PersistableFactory.

 Logic of pre- and post- requests can be modified using the derived class Proces-

sor which has overridden the methods preRequestProcess and preGetRequest.

19

 The Apache HTTP client is used to access network resources (for Android 2.3

and higher HttpURLConnection is the preferred implementation). Automatic retry

is done after a predefined time interval (by default after 1 minute).

3.3.4 Retrofit

Retrofit is a modern type-safe REST client library for Android and Java created by

Square Inc (2013-2015). It provides a convenient way for authenticating and interacting

with various APIs and allows sending network requests with OkHttp or HttpUrlConnec-

tion. The library fetches JSON or XML data from the RESTful web service and once the

response is received, it will be parsed as a Plain Old Java Object (POJO), which

should be specified for the object in the response. Custom JSON parsers and the

GSON utility library are supported for deserialization and auto parsing. Retrofit works

with REST API using Java interface implementation, which could be generated with a

help of RestAdapter. Implementation in this case acts like a local instance of the ser-

vice and every call corresponds to the HTTP request. [14]

The library uses annotations extensively to specify how each request will be handled:

 For automatic URL parameter replacement and query string support.

 To support form-encoded and multipart data in request body.

 To enable file uploads.

 To set custom headers.

 To set a remote method relative path.

Retrofit annotations and integration of the library into the project are covered in more

detail in chapter 5 with a focus on practical matters.

3.3.5 Comparison of REST Client Libraries

Table 2 illustrates common features of REST-client libraries discussed in sections 3.3.1

– 3.3.4. This section includes a comparison and summary about the most popular solu-

tions.

20

Table 2. Common features of REST-client libraries

Library RoboSpice [11] Datadroid [12] RESTDroid [13]

Pattern type A A A

Data cache External Embedded Embedded

Identification of
REST-request
types

- int UUID

Service Helper
layer

SpiceManager RequestManager WebService

Pre- and post- op-
erations for REST
methods

No built-in support No built-in support +

Embedded tools for
parsing results

Method loadData-
FromNetwork in Spic-
eRequest<T> supports
parsing implementa-
tion

It is possible to create
implementation of the
parser (there is an ex-
ample in sample appli-
cation)

Parsing of results
is supported via
parseToObject in
Processor

Automatic retry in
case of failed re-
quest

Available Not available Available

Gzip support Is implemented via
class customization
SpiceRequest

Is embedded, config-
ured via setGzipEnabled
in NetworkConnection
class

Not implemented
(HttpRequestHan-
dler class).

REST-request buil-
der

All standard implemen-
tations of Spic-
eRequest<T> accepts
encoded URL as a pa-
rameter (but it should
be encoded before by
external method)

Request class allows to
set parameters of the re-
quest. NetworkConnec-
tionImpl implements
URL encoding for the
REST-request.

RESTRequest ac-
cepts encoded
URL as a param-
eter (but it should
be encoded be-
fore by external
method)

Notifications in UI
thread about opera-
tion execution

Embedded (SpiceNoti-
ficationService).

No No

Multithreading on
REST-request
send.

Size of thread pool is
configured by overrid-
ing the method
getThreadCount in
SpiceManager and by
default number of sim-
ultaneous threads is 3.

Size of thread pool is
configured by overriding
the method getMaxi-
mumNumberOfThreads
in RequestService and
by default only one
thread is allowed.

Size of thread
pool is configured
by constant de-
fined in Web-
Service class, by
default it is set as
10.

Embeded support
of SyncAdapter

No (consequence of using pattern A)

Minimal Android
SDK version

8 (Froyo / 2.2)

Sample applicati-
ons

Samples are available
in repository

Sample application Da-
taDroidPoC is available

There is no sam-
ple included. Doc-
umentation and
guide are availa-
ble

Unit test availability More than 160 test (as
mentioned in descrip-
tion on github reposi-
tory page).

No unit tests available

Facts about REST client libraries can be summarized into following:

21

1) RoboSpice is a powerful, modular and well-documented library, which is updated

frequently. It adopts Pattern A and has several useful features. Robospice is quite

flexible library, which is suitable in the role of the fundamental element for a highly

customizable solution.

2) RESTDroid implements pattern A and also has sufficient documentation.

3) Datadroid also uses pattern A, but does not have detailed documentation.

4) In RESTDroid and Datadroid customization is done based on generics (strict typ-

ing) and policies, common solutions are available. Both libraries include certain

advantages and disadvantages and both follow the approach “plug and go”.

5) Retrofit. HTTP requests are described via annotations, the library supports syn-

chronous and asynchronous REST method calls, and data can be transferred in

JSON format or XML [14]. Retrofit is covered in more detail in chapter 5.

22

4 Object-Relational Mapping and Storage Solutions

4.1 Storage Solutions

4.1.1 SharedPreferences

SharedPreferences are considered the simplest and quickest storage solution for local

data in Android framework. [15] It provides a straight way to store and retrieve defined

key-value pairs associated with application. Each SharedPreferences file is managed by

the framework and can be private, which allows data to be kept securely, or shared, in

order to provide common data storage option. Unfortunately, because of its simplicity

and minimalistic approach, SharedPreferences only can manage to save primitive data

types (boolean, float, int, long, strings). This rule must be considered when choosing

data types to save. [16, 8]. However, API 11+ supports sets of values to be saved in

Set<String> format. SharedPreferences APIs can be paired with Preference APIs to cre-

ate user interface for application settings screens based on reading and writing key value

pairs.

Preferences data can be stored in a single file or in several separate files (quantity will

depend on the number of activities):

- getSharedPreferences() — used if application needs several shared preference

files identified by unique name. This method can be called from any Context in

Android application.

- getPreferences() — used if only one shared preference file is needed per activity.

This method does not require unique name as a parameter (preference is bind to

Activity automatically). [15]

Listing 11 describes how to store and retrieve small pieces of data easily in a concise

manner.

// Get instance of SharedPreferences

SharedPreferences pref = getSharedPrefer-

ences(“com.cloudnotify”, Context.MODE_PRIVATE);

23

// Retrieve SharedPreferences editor object

Editor editor = pref.edit();

editor.putString("user_id", "user@gmail.com");

editor.putString("token", “ar564645drtgd345”);

// This way set of values can be easily saved using

Shared Preferences framework

Set<String> userName = new HashSet<String>();

values.add("First Name");

values.add("Last Name");

editor.putStringSet("user_name", userName);

// Commit changes – this is important to save data

e.commit();

// Get values back (default values defined)

String stringValue = pref.getString("user_id", "er-

ror");

boolean booleanValue = pref.getString("token", “0”);

Set<String> userName = pref.getStringSet(userName, new

HashSet<String>());

Listing 11. SharedPreferences typical implementation

The first argument specifies which shared preference mapping instance should be re-

trieved (several shared preference files can co-exist per application). The second argu-

ment of the method sets an access level of the shared preference instance that is being

retrieved (MODE_PRIVATE modifier means that data is kept securely, which guarantees

that preference can be read and changed only by application which originally created it).

When shared preferences object is instantiated, key value pairs can be retrieved using

methods such as getString(), getInt(), getBoolean(), getLong(), etc. Each method takes

two parameters such as key and default value in case data was not saved with this key

before. Shared Preferences can be updated in a similar manner: Editor object is re-

trieved, values are set with any of put*() methods and then changes are stored with

commit(). Deleting shared preference is also done in simple way. Remove() method is

called and then changes are finalized with commit(). [15]

24

However, Shared Preferences class does not provide sophisticated schemes to store

large pieces of data. There are several frequent use cases where Shared Preferences

act as a perfect solution:

1. Verify if user enters the application for the first time.

Developers often would like to provide guidance and hints when user enters app for the

first time. Sometimes it could also be necessary to remember user set rating for the

application on Google Play. In this case dialog can appear, for example, when application

is started for second time.

2. Last sync time.

Android client application requires synchronizing and caching data with backend regu-

larly in order to keep information up-to-date. Last sync time can be saved to check if new

sync process should execute.

3. Store user login credentials.

When user passes authorization steps necessary data should be saved to keep account

information. If REST server needs access token to provide access to certain resource,

token string should be saved in REST client via Shared Preferences to send a request.

4. Remembering an application's state.

Functionality of applications relies on application state saved on a client side and man-

aged by user; this state should be kept in order to provide best user experience possible.

Messenger applications such as WhatsApp and Viber have dedicated sections where

user may choose the notification ringtone and manage push notification settings and

other user preferences.

5. Save high score and current level in games.

Usually application also requires to save complex data structures, which makes Shared

Preferences no longer the best choice. When complexity raises and various data types

should be saved, it is better to switch to the mobile database solution and organize all

data.

4.1.2 SQLite

SQLite is an open source self-contained, server-less database, which supports standard

SQL syntax, prepared statements and transactions out-of-the-box. The library is de-

signed to handle many kinds of system failures, such as low memory, disk errors, and

power failures. No extra configurations are required for SQLite databases and SQLite is

bundled with all API levels. Several data types are supported by default on Android:

25

INTEGER - corresponds to long, REAL – double in Java/Android, TEXT – simple String.

If application needs to save any other data type, it should be converted into appropriate

format, but there is no automatic validation and integer can be stored as a TEXT string.

[17]

As a starting point to make use of SQLite database in Android application, subclass of

SQLiteOpenHelper [18] must be created as illustrated in listing 12. Constructor includes

a call to super() method which takes database name (String) and database version (int)

values. Each database table should have column with “_id” (BaseColumns._ID constant)

name, which is going to be used as a primary key in a standard way [16, 21]. If there is

no such column it will be problematic to pair SQLite database with Cursors and Content

Provider. All operations which require database access should be done asynchronously.

Otherwise UI thread could be blocked (database file is stored in file system).

public class SQLiteHelper extends SQLiteOpenHelper {

private static final String DB_NAME = "sqlite.db";

// Version number should be incremented when updating

application

private static final int DB_VERSION = 1;

// Table name is related to data which should be

saved, no spaces allowed

public static final String TABLE_NAME = "table_name";

// Fields should be created

public static final String ID = "_id";

public static final String USER_NAME = "name";

public static final String USER_PHONE = "phone";

// Constructor which implements super() method

SQLiteHelper(Context context) {

super(context, DATABASE_NAME, null, DATABASE_VERSION);

}

// Override annotation is important here

@Override

public void onCreate(SQLiteDatabase db) {

db.execSQL(“CREATE TABLE “ + TABLE_NAME + “ (“ + ID +

" INTEGER PRIMARY KEY AUTOINCREMENT,” + USER_NAME + “

VARCHAR(25),” + USER_PHONE + “ VARCHAR(15));”);

 }

26

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVer,

int newVer) {

// Remove table if it exists

db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);

// Create new table via onCreate() method

onCreate(db);

}

}

Listing 12. Building SQLiteOpenHelper for SQLite database

It is important to override two methods for creating and updating the database:

1) onCreate() – creates database on first access attempt and defines structure.

2) onUpgrade() – triggered if database version increments in application.

Method is necessary to update or drop existing schema and possibly rebuild

it using onCreate() method. [18]

SQLite queries are executed using the query methods of SQLiteDatabase instance. Sev-

eral query parameters allowed to be accepted: projection, selection, columns, sorting,

name of the table, fields. Complex queries can be constructed using SQLiteQuery-

Builder, which provides built-in methods for building queries, or native SQL syntax (man-

ual way). Every SQLite query returns a Cursor, which points to all the rows, fetched by

the query. Cursor enables navigation between result rows and allows to retrieve column

data. In example provided in Appendix 1, SQLiteDatabase object is obtained via SQLite-

Helper instance. Then ContentValues class instance is used as a wrapper for values to

provide a convenient way for insert, update and delete operations in SQLite table. There

is no need to assign “_id” column value, because it is incremented automatically due to

AUTOINCREMENT option. [16, 21-24]

Use of SQLite without object relational mapping (ORM) in complex project can lead to

cumbersome code, which is hard to support and maintain. ORM provides higher level of

abstraction, allows to access a relational database in object-oriented manner and elimi-

nates the need to implement conversions between objects and database. Android in-

cludes Content Provider class [8] (which was shortly described in chapter about REST

client patterns), but it does not simplify database management and can even make de-

27

velopment more time consuming, if no any code generators were used. However, Con-

tent Provider allows integration of useful Android components such as CursorLoaders

and SyncAdapter.

4.1.3 Realm

Authors of Realm introduce their innovative product: “SQLite was revolutionary when it

launched in 2000 but developing mobile apps in 2014 is obviously a very different beast

than it was 14 years ago, and our notion of what a “phone” or “app” is has also changed

drastically. We saw a clear opportunity to provide a fresh start for data on mobile with an

easier API and an architecture that benefits from the last decade of innovation in data-

bases. In short, we’re the first mobile-first database.” [19]

Compared to iOS Core Data or other ORMs built on top of SQLite, Realm utilizes simpler

API, it is totally thread-safe and has better performance on queries and write transactions

(comparison graph is available in the end of the chapter in section "Summary"). Realm

itself is not built on top of SQLite and includes its own persistence engine built for opti-

mized performance. Core is written on C++ from scratch and provides memory-efficient

access to application data by using Realm objects (which consume less resources than

native objects). There is also optional persistence layer available that can manage object

retrieval and storage automatically. RealmObjects act like regular objects, but support

queries with parameters, relationships (Many-to-One, Many-to-Many), search index, pri-

mary key, transactions, built-in thread-safety. Realm supports the several field types:

boolean, short, ìnt, long, float, double, String, Date and byte[]. Integer types short, int

and long are mapped to long. Relationships can be established by including Realm-

List<RealmObject> in RealmObject. [19]

Realm supports iOS & Android platforms. Realm files can be shared across platforms

and adopt the same object models for Swift, Objective-C and Java. That simplifies pro-

cess of porting an app from one platform to another, because business logic is similar,

and reduces expensive development time.

Realm has important features:

1) Plain old Java object (POJOs) can be easily converted to RealmObjects using

subclassing as shown in listing 13. Class should also include setters and getters

(can be generated automatically in Android Studio).

28

public class Message extends RealmObject {

private String messageText;

private long timestamp;

}

Listing 13. RealmObject and its fields.

2) Persistence is achieved via efficient transactions illustrated in listing 14.

Realm realm = Realm.getInstance(this.getContext());

// Transactions give you easy thread-safety

realm.beginTransaction();

Message msg = realm.createObject(Message.class);

msg.setMessageText("This is my message");

msg.setTimestamp(2545611661L);

realm.commitTransaction();

Listing 14. Realm transaction

3) Thread Safety

Realm guarantees that all operations with database are thread safe and ACID comp-

liant. ACID (Atomicity, Consistency, Isolation, Durability) means that database trans-

actions are processed reliably. A single logical operation on the data is called a trans-

action. All operations between beginTransaction() and commitTransaction() are con-

sidered a single transaction. Commiting multiple operations in a bulk is more efficient

than handling each operation separately. Transaction guarantees that objects are in

consistent state and carry all necessary properties.

4) Object relations are handled as described in listing 15. AttachedData is a

RealmObject which is bound with Message object in relation.

public class Message extends RealmObject {

private String messageText;

private RealmList<AttachedData> attachedData;

}

realm.beginTransaction();

Message message = realm.createObject(Message.class);

29

AttachedData attachedData = realm.createObject(At-

tachedData.class);

message.setMessageText("This is message text");

message.getAttachedData().add(attachedData);

realm.commitTransaction();

// Changes can be also discarded instead of committing

realm.cancelTransaction();

Listing 15. Creating relations between RealmObject’s

5) Database can be queried using various filter parameter (multiple supported). All

filter conditions are self-descriptive and can be used simultaneously (as shown

in listing 16).

// Queries use Builder to build up query conditions

RealmResults<Message> query = realm.where(Message.class)

.greaterThan("timestamp", 26264642)

.contains("messageText","this is").findAll();

// Queries can be filtered further

RealmResults<Message> messages = query.where()

.contains ("messageText", "some text").findAll();

Listing 16. Realm filter parameters: simple solution to filter results

Realm.io is being developed actively and many features are going to be added to Android

version of Realm library in future releases (migrations, encryption, fine-grained notifica-

tions – already available on iOS), but it already became a nearly perfect persistence

solution. Realm supports direct object copying from response retrieved by Retrofit and

helps to get rid of the boilerplate code necessary to store data on the REST client when

communicating with REST service. There is no need to create helpers. The object can

be copied using copyToRealm() static method.

30

4.2 Mobile ORM Libraries

4.2.1 OrmLite

OrmLite provides lightweight functions to implement persistence in Java applications (not

only Android) and eliminates the need for manual table creation introducing efficient ab-

stract Database Access Object (DAO) classes and annotations. OrmLite requires to cre-

ate database helper class that will extend OrmLiteSqliteOpenHelper class (similar to

SQLiteOpenHelper) and override OnCreate and onUpgrade methods. [20] Usually it is

enough just to copy the source code from example tutorial application to implement

Helper. Library extensively uses annotations: each class, which should be persisted,

needs to have @DatabaseTable and @Database as presented in listing 17.

@DatabaseTable(tableName="message")

public class Book {

public Book() {}

@DatabaseField(generatedId=true, id=true)

private String id;

@DatabaseField(dataType=DataType.STRING)

private String text;

}

Listing 17. Use of annotations in OrmLite

It is easier to retrieve helper (by calling getHelper method) if one of the following clas-

ses is implemented: OrmLiteBaseActivity<Helper> OrmLiteBaseService<Helper>,

OrmLiteBaseListActivity<Helper> or OrmLiteBaseTabActivity<Helper>.

// Retrieve the DAO for Message.class

// DAO will be created or returned from cache

public Dao getDao() throws SQLException {

if (bookDao == null) {

bookDao = getDao(Message.class);

}

return bookDao;

}

Listing 18. Obtaining DAO object in OrmLite

31

In the case the developer decides to create custom Activity or Service implementation,

it is required to maintain helper state manually by calling OpenHelperManager.getH-

elper in onCreate method and OpenHelperManager.releaseHelper in onDestroy. After

helper instance has been retrieved, it is possible to get appropriate DAO (as illustrated

in listing 18). Using DAO database queries can be executed.

4.2.2 GreenDAO

GreenDAO follows different approach than OrmLite. In order to use greenDAO in Android

project, a second project, called the “generator” is required (pure Java, not Android).

Generator task is to create necessary boilerplate code based on initial data specific to

developed application. GreenDAO generator library (greenDAO-generator.jar) and the

Freemarker library (freemarker.jar) have to be included in generator's classpath. [21]

Process is quite straightforward: executable Java class is created, required entities are

added to project schema and code generation can be started by running the project

(scheme is illustrated in figure 5).

Figure 5. GreenDAO code generation scheme [21]

The code generation approach brings its own features:

 Improved performance (comparison is illustrated in following section 4.3).

 Tables are treated like entities (objects).

 Entities and boilerplate code required for SQLite are generated.

 Low memory consumption.

 No need to use annotations (although database schema should be generated).

32

Just several lines of code are required to initialize database and there is no need to

create a subclass of helper like in OrmLite or pure Android SQLite approach. Initialization

is illustrated in listing 19.

// Creating helper instance

helper = new DaoMaster.DevOpenHelper(this, "messages-db",

null);

// Getting database instance with read/write rights

db = helper.getWritableDatabase();

// Creating DaoMaster object to manage database

daoMaster = new DaoMaster(db);

// Initialize session

daoSession = daoMaster.newSession();

// Initialize MessageDao object

MessageDao messageDao = daoSession.getMessageDao();

Listing 19. Initializing database and DAO objects using GreenDAO

GreenDAO requires schema to be defined for the code generator. This can be accom-

plished by adding entities to the schema as shown in listing 20. Entity properties and

relations (“to-one” and “to-many”) can be created as follows:

 // Schema and entity are created

Schema schema = new Schema(1, "com.qco.qco");

Entity message = schema.addEntity("Message");

note.addIdProperty();

note.addStringProperty("body").notNull();

note.addLongProperty("authorId").notNull();

note.addDateProperty("date");

// Generator produces boilerplate required for SQLite

new DaoGenerator().generateAll(schema,

"../GreenDao/src-gen");

Listing 20. Creating GreenDAO schema for code generator

Entities may inherit from super class, which cannot be entity as illustrated in listing 21.

But there is no possibility to inherit another entity (polymorphic queries are not available).

33

messageA.setSuperclass("CommonMessageBehaviour");

Listing 21. Super class inheritance

It could be preferred to implement interfaces for common entity properties and behavior

as described in listing 22.

messageA.implementsInterface("messageCommon");

messageB.implementsInterface("messageCommon");

Listing 22. Implementing common properties via interface

For example, if entities messageA and messageB have a common set of properties,

these properties (including necessary getters and setters) can be placed in interface C.

4.3 Summary

Overview of storage solutions started off by investigating the simplest and least sophis-

ticated storage method, the SharedPreferences class [15]. Key advantages and disad-

vantages were discovered while using a SharedPreferences solution in an application,

and though the class is quite limited and allows to store primitive data types only, several

important use cases exist.

Both SQLite [15] and Realm [19] databases were examined to understand drawbacks

and benefits. SQLite is a mature database technology which is stable, efficient and has

built-in support in most popular mobile operating systems, such as Android and iOS. Its

source code has been open-souce and is published in a public domain. Unfortunately,

despite of its popularity and transparent nature, being originally developed in 2000, it

brings all burden and unneccessary complexity into modern mobile platforms. Data in

SQLite is represented via tables consisting of rows and multiple columns, an approach

which migrated from the server side into the embedded database solution. On the cont-

rary, mobile platforms are object-oriented in nature and developers operate with objects,

not rows in the table. In modern RESTful Web services most popular format is JSON –

objects are delivered in response to the REST client. If pure SQLite solution is used for

persistence, object data need to be converted into database rows manually via incon-

venient helper methods. Realm and various ORMs can be an appropriate solution in this

situation. Both allow to manipulate data as objects and make life easier for developer.

34

Realm offers significant boost in performance compared to pure SQLite and SQLite-ba-

sed ORMs according to an open-source code generic benchmark written by Realm.io

team available on Github [22]. Comparison graphs are listed in appendix 2. Compared

to SQLite Realm additionally supports such data types as Date and byte array byte[] [19].

Realm allows to eliminate use of content providers (if no data have to be presented to

external applications), content values, URI matchers, SQL builders, cursors and column

interfaces. The ContentProvider [8] could be extremely useful in Android, however. For

instance, it helps to share database data across applications and makes possible to use

a Sync Adapter. There is a way to implement ContentProvider with Realm, but URI que-

ries are handled in a different manner (it may be needed to construct cursors manually

and for some cases to use matrix cursors). It is important to mention that Realm lacks

stable support for database migrations and encryption (this functionality is still under de-

velopment and has some issues listed in the Github repository of the library).

Realm is a complete persistence solution and it includes its own database core. On the

other hand ORM solutions act like an intermediary interface and utilize SQLite database,

which is already built in into Android. ORMs map Java objects to database tables. In this

way an application can store, update, delete, and query for Java objects using a simple

object oriented API.

If choice is made between most popular ORM solutions, GreenDAO is considered faster

solution than ORMLite due to its code generation mechanism: “For the same given entity,

greenDAO inserts and updates entities over 2 times faster, and loads entities 4.5 times

faster for loading entities than ORMLite”, according to the official GreenDAO documen-

tation [21]. Several top Android applications rely on GreenDAO (for example, Pinterest,

which has more than 50 million installs). This shows library reliability in production. [24]

To summarize discussion about persistence solutions, last choice belongs to developer

and each use case should be investigated. Right choice of storage solution may save

time and help developer to focus on real problems and achieve better result.

35

5 Implementing REST Client for Android

5.1 Introduction

This section is dedicated to implementation of REST client for Android in startup com-

pany “Quikoo” and describes whole development process from early beginning (choos-

ing back-end solution) until product is ready for the market (managing data on the client

side). However, it is important to start from concept of idea itself to understand deeper

technical problems and implementation details.

Main features of the Quikoo application are as following:

1. Plan time for the user and time for people he/she communicates with.

Time planning is achieved by sending so called “quiks”: reminders, requests to

do something or invitations to an event (business meeting, cup of coffee, party)

making sure person will not forget to do, or arrive at the venue on time.

2. Quikoo is a social platform.

It is possible to send public “quiks” that will reach people from all the world

through own contacts, and contacts of contacts (via forward feature). Public com-

ments are also allowed for each “quik”.

3. Quikoo is a user-friendly mobile application.

It is easy to use: in two clicks user can create “quik” with media files, location and

reach the whole world.

Technical details about the application are summarized as following:

1. All data received/sent should be cached in database.

Application uses SQLite database to store data.

2. Geolocation services.

Application can use fine location (via GPS signal) or coarse location (base station

triangulation and Wi-Fi network positioning) to execute reminders. Both services

are provided by Android Framework.

3. Fine reminder timer.

Application loads and sets reminders (basically alarms on Android) automatically

on every reboot and when each reminder is added into database.

4. Every Quikoo user has a registered status and his own profile on the server.

This data is synchronized in order to allow users to send “quiks” to each other.

5. Every Quikoo user keeps registered status and own profile on the server.

36

This data is synchronized in order to allow users to send “quiks” to each other.

5.2 Backend Solution

There are several challenges an average mobile developer deals with:

 Time investment. It usually takes a fair amount of time to develop the front-end

for mobile app and development of back-end increases the work to be done sig-

nificantly.

 Skill investment. If developer is experienced in Google Android or Apple iOS, it

does not mean that he/she has experience in back-end development. They are

completely different technologies, so it takes a huge amount of time to learn them,

and the company and developer might not have the time. Especially if certain

time constraints exist, nobody can guarantee the quality of the final product.

 Problems of scalability. Due to nature of mobile applications developer never

knows whether app become used by millions of users worldwide or not. So, de-

veloping back-end (or choosing back-end solution) so that it scales efficiently

along with increasing usage is quite important.

Nowadays developers no longer need to develop their own back-end for every applica-

tion. Several companies offer ready-made and highly configurable web back-ends that

can be easily integrated into the product. Back-end as a service (BaaS) is a new cloud

computing service offered to minimize the complexity and time taken by app developers

to build their application. All these services provide a backend storage and other func-

tions, which can be accessed from mobile app, usually using a compact Android / iOS

library for integration simplicity via embedded SDK. Most of the companies offer free

accounts with a wide set of features included as well as priced tiers for apps that need

to scale up (which sometimes cost up to several thousand USD; for example, Parse.com

asks 3700 USD for the highest tier which allows to handle 400 request per second sim-

ultaneously).

Because Quikoo company did not have sufficient resources (a startup in a state without

investments, no clients yet), initial decision was made to use one of the promising open-

source solutions on the market called BaasBox. BaasBox is an open source BaaS re-

leased under the Apache 2 license and is totally free to download, free to use and free

37

to modify. BaasBox is a server that provides general back-end services for both mobile

and web applications. [24]

The most important that BaasBox can be installed on any platform like Google Cloud

Computing, Amazon Elastic Compute Cloud (EC2), dedicated server or VPS (Virtual Pri-

vate Server), at any time, and then backend services can be managed using administra-

tor control panel. In the project BaasBox solution was installed on the cheapest VPS

hosting which costs 5 USD per month. VPS hosting has sufficient resources for alpha

and beta testing stage when the number of users is low.

5.3 BaasBox Android SDK and Client Initialization

The SDK is distributed as a jar. Current version is 0.8.4 (16.11.2014). It can be down-

loaded from BaasBox site [24] and integrated by including library in the project’s libs

folder. Developer can also use gradle or maven to add library dependency in build.gradle

file (in Android Studio): “compile 'com.baasbox:baasbox-android:0.8.4' ”.

BaasBox client should always be initialized when application is started in onCreate()

method of Application class (listing 23).

BaasBox.Builder b = new BaasBox.Builder(this);

client = b.setApiDomain("address")

.setAppCode("appcode")

// Used for push notifications

.setPushSenderIds("google sender id")

.init();

Listing 23. Initialization of BaasBox client

Most BaasBox REST resources are accessible through wrapper classes. Endpoints can

be reached through asynchronous methods, that accept a general callback interface

BaasHandler<T> to handle result (success/failed). It is possible to access endpoints us-

ing synchronous alternatives using the *Sync version of the methods. Results are always

wrapped in BaasResult<T>, which represents the actual result or a failure. Synchroniza-

tion methods are useful when requests should be done sequentially (not in parallel) and

are used in SyncAdapter project’s class as described in the section below.

38

All asynchronous requests are executed by a pool of threads and can be managed by

RequestToken returned value. Tokens allow to suspend the assigned callback without

interrupting the request itself, which allows to resume processing current request later.

This is quite useful when callbacks are tied to the lifecycle of activities (for example, when

images are being attached to message in application and user decides to cancel image

uploading process – this situation also exists in Quikoo and is described in section be-

low).

Some endpoints of the BaasBox API can be reached only via rest() and restSync() meth-

ods of SDK, because they were not yet implemented in current version of SDK. Docu-

mentation includes “To be implemented” marks for certain cases. Some rest endpoints

have no direct equivalent in the API. Documentation says: “Using these methods an ap-

plication can access these APIs while still enjoying the rest of the SDK features, such as

concurrency and lifecycle management, caching, handling of the authentication” [24], so

it means there is no need to worry about Session ID handling and other unnecessary

things, which is helpful. For certain cases in Quikoo project it was much easier to use

rest() and restSync() methods, because they allowed to make a query by submitting un-

limited number of parameters appended as a string.

5.4 Building BaasAccessor Class with Client Methods

In the early beginning, the application was built using a simple, but incorrect approach.

All REST client methods were placed in Fragment and Activity classes and did not follow

Google IO 2010 patterns [6] at all. It made app code totally cumbersome and unstable,

because methods were not bind to activity lifecycle properly. Among other consequences

of the initially chosen approach were problems with data caching, synchronization and

high data traffic load due to repeated requests. Geofences (geolocation reminders) and

time reminders were disabled. It was enough for the start, but insufficient to build com-

plex application with all predefined features.

Quikoo application is based on frequent synchronizations, so Pattern C seems to be the

most appropriate for adoption (Activity <-> Content Provider <-> Sync Adapter) [6, 26].

In order to make use of SyncAdapter BaasAccessor class was written to accommodate

all client methods (which were spread across application before). Methods were created

to fetch “quiks” for current user (getAllReceived(),getQuicksForUser()), to receive all sent

39

“quiks” (getSentQuiks()) and information about users from the contact list (getRegis-

tered()). Methods are reached via instance of BaasAccessor class (illustrated in listing

24).

BaasAccessor accessor = new BaasAccessor();

// Get all “quiks” from server

ArrayList<Quik> quiks = accessor.getQuiksForUser();

Listing 24. BaasAccessor class used for backend operations

In order to understand how data is fetched from server, data scheme should be present

in listing 25.

// Unique name of the object

{

 “id": "e80ff970-fdf5-48e6-850d-39b0279544f2",

// Sender’s phone number

 "creator": "79991111111",

// Text of reminder

 "reminderText": "Reminder Text",

 "latitude": 55.75291,

 "longitude": 37.59846,

// Time in unix format (long integer)

 “reminderTime”: 23535355

// Type: 2 (reminder), 1 (request), 0 (reminder)

 "quik_type": 2,

// Id of the file on server

 "attached_photos": [

 "0b4bacba-1693-4e63-9fe8-51ad3274f34e"

]

}

Listing 25. Data scheme for BaasBox

Every reminder is saved according to this format. It handles all data related to “quik” in

“quiks” collection, but receivers are saved separately in “receivers” collection as illus-

trated in listing 26.

{

 "quikId": "e80ff970-fdf5-48e6-850d-39b0279544f2",

40

 "rcv": "375207737506",

 "acc": 1, // 1 - accepted, 2 - declined

 "quik_type": 2 // quik type

}

Listing 26. Item in “receivers” collection

Field “quik_type” is saved for every receiver (used to fetch queries by type). “quikId” is a

string key which corresponds to “id” field of the parent “quik”. Information about every

registered user is saved in “rg” collection and has photo attached (identified by unique id

stored on the server). Data scheme for “rg” collection is shown in listing 27.

{

// User number

 "n": "74952051986",

// Photo id attached

 "photoId": "b1a450e6-98db-4501-86a2-8d76a9c35f47"

}

Listing 27. Data scheme for every registered user

BaasAccessor class is also responsible for sending push messages to recipients.

final JsonObject message = new JsonObject()

.put("quik_type", quik_type).put("quikId", quikDocId)

.put("reminderText", reminderText).put("sender",

BaasUser.current().getName());

if (reminderTime!=null)

message.put("reminderTime", reminderTime);

if ((latitude!=null) && (longitude!=null)) {

message.put("latitude", latitude).put("longitude",

longitude

}

if (attached_photos.size()!=0)

message.put("attached_photos", attached_photos);

BaasBox.messagingService().newMessage()

.profiles(BaasCloudMessagingService.DEFAULT_PROFILE)

.text(message.toString()).to(users)

.send(new BaasHandler<Void>() {

@Override

public void handle(BaasResult<Void> result) {

41

// handle the result

if (result.isSuccess())

Log.e("BaasAccessor", "Push sent successfully");

else

Log.e("BaasAccessor", result.error().toString());

}

});

Listing 28. Sending push message as JSON string

JSON document is sent as a string via message field of push notification using

BaasBox.messagingService() method (used in listing 28). Push can be delivered to many

users at once using one request to server.

When Sync Adapter is performing synchronization, it compares reminders data on the

server and in SQLite database using simple rule: If incoming reminders are missing in

local database, they are inserted using ContentProvider’s “insert” method. UriMatcher

instance is used to differentiate tables by content URI to make sure that incoming re-

minders would never mix up with sent reminders.

@Override

public Uri insert(Uri uri, ContentValues values) {

int uriType = sURIMatcher.match(uri);

SQLiteDatabase sqlDB = database.getWritableDatabase();

long id = 0;

String table;

switch (uriType) {

case REMINDERS_INCOMING:

table=TABLE_REMINDERS_INCOMING;

id = sqlDB.insert(table, null, values);

break;

case REMINDERS_SENT:

table=TABLE_REMINDERS_SENT;

id = sqlDB.insert(table, null, values);

break;

default:

throw new IllegalArgumentException("Unknown URI: " +

uri);

}

42

getContext().getContentResolver().notifyChange(uri,

null);

return Uri.parse(table + "/" + id);

}

Listing 29. Insert method of Content provider

If incoming reminder is modified by a local user, it will be saved in the database with

modifiedByCurrentUser flag (every user can choose different reminder time and location

according to specifications). During synchronization process, reminder document on the

server, which corresponds to the current user, is updated using BaasAccessor (HTTP

PUT implementation in BaasBox SDK). Reminder resources which carry user infor-

mation are stored in separate collection called ”receivers” and common reminder infor-

mation is saved in ”quiks”.

An essential part of the application design is an AlarmHelper class and its method Con-

tentValues populateContent(Quik quik). It allows to rapidly store a set of values which

ContentProvider can use in one of the predefined methods (for instance, insert, in listing

30)

// Generate ContentValues from Quik object

ContentValues cv=AlarmDBHelper.populateContent(quik);

provider.insert(Uri.parse("content://" + QuikooCon-

tentProvider.AUTHORITY + "/" + QuikooContentPro-

vider.TABLE_REMINDERS_INCOMING), cv);

Listing 30. Generating ContentValues object

Opposite operation is also necessary in order to construct an object from cursor data. All

necessary fields can be assigned using a pattern as described in listing 31.

43

// An example of getting value from cursor

fieldname = cursor.getString(cursor.getColumn-

Index(column_name));

// Getting reminder time via cursor method

quik.reminderTime = cursor.getLong(c.getColumn-

Index(AlarmContract.COLUMN_NAME_REMINDER_TIME));

Listing 31. Pattern of getting value from cursor

AlarmContract.COLUMN_NAME_REMINDER_TIME is a static final string used to store

name of the column for reminder time. Every column has a unique name and its own

data type (for example, TEXT or INTEGER). SyncAdapter is configured to update all

records automatically every six hours (to maintain service integrity). Manual synchroni-

zation is triggered when application is started for the first time, on Push Notification (sin-

gle resource database insertion) and when new ”quik” is created (client -> server syn-

chronization). Fragments, which hold list views in application Activity, register Cursor

Loader callbacks. When data in the database is changed (records inserted / modified /

deleted), fragment is notified about changes and ListView updates with new data.

// loader is initialized in onCreate method of Frag-

ment

getActivity().getSupportLoaderManager().initLoader

(LOADER_ID, null,this);

@Override

public Loader<Cursor> onCreateLoader

(int id, Bundle args) {

// create the Cursor that will take care of the data

being displayed

Uri uri = QuikooContentProvider.CONTENT_URI_INCOMING;

return new CursorLoader(getActivity(), uri, null,

null, null, null);

}

@Override

public void onLoadFinished(Loader<Cursor> arg0, final

Cursor cursor) {

incomingCursorAdapter.swapCursor(cursor);

}

@Override

44

public void onLoaderReset(Loader<Cursor> arg0) {

incomingCursorAdapter.changeCursor(null);

}

Listing 32. Using cursor loader inside Activity

Every single change in content provider triggers immediate change in cursor loader (list-

ing 32), so it is possible to see even how records are sequentially inserted into database.

5.5 New API: Challenges and Solutions

After several months of development, it was decided to build company own API and

host PHP server (Yii Framework) on Azure Cloud Hosting. That happened because

BaasBox solution was not improved fast enough as it was intended in the beginning of

the project and certain limitations were met, which did not allow placing all necessary

logic on the server side. Moreover, due to the server-side limitations client code had

become cumbersome already and made it impossible to adopt further significant im-

provements and new features. Development of the server side code was dedicated to

the team from the partner company. After a few weeks of collaboration, a working API

and documentation were received and implementation of changes in the client applica-

tion began. Latest version of the product built in March 2015 is illustrated in screen-

shots, in figure 6.

Figure 6. Application screens (left to right): “Incoming reminders”, “new reminder” dialog

not filled with data and “new reminder” dialog with data attached

45

Initially was decided to drop BaasBox library from the project (it works only with

BaasBox API) and search for an appropriate replacement. The research done in chap-

ter 3 and 4 led to the conclusion that the best solution could be a pair of Retrofit [14]

and Realm [19]. Codes listed below demonstrate that it is possible to build complex

persistence solution in the most efficient way using these libraries.

Realm key feature is an ability to assign object received in response from Retrofit into

RealmObject. Retrofit itself helps to build simple lightweight backend class integrated

with API methods. An API is represented as an interface with several methods. API in-

terface is illustrated in listing 33.

public interface API {

@FormUrlEncoded

@POST("/getMyQuicks")

GetAllQuiksResult getAllQuiks(@Field("user_id") String

userId, @Field("token") String token);

@FormUrlEncoded

@POST("/assignedQuick")

GetAllQuiksResult getAssignedQuiks(@Field("user_id")

String userId, @Field("token") String token);

Listing 33. Implementing API interface

Retrofit uses annotations to build request configuration. @POST annotation is required,

because illustrated methods are documented as HTTP POST in API. The built-in Ret-

rofit methods are GET, PUT, POST, HEAD, and DELETE. @FormUrlEncoded means

that the request body will use form URL encoding and fields should be declared as pa-

rameters with @Field annotations.

Gson gson = new GsonBuilder()

.setExclusionStrategies(new ExclusionStrategy() {

@Override

public boolean shouldSkipField(FieldAttributes f) {

return f.getDeclaringClass()

.equals(RealmObject.class);

}

46

})

.create();

Listing 34. Configuring exclusion strategy for GSON

In order to bind objects received in response automatically, exclusion strategies should

be set for GSON (listing 34) and proper GsonConverter must be defined for Retrofit

adapter as shown in listing 35.

// Configure Retrofit to use the proper GSON converter

restAdapter = new RestAdapter.Builder()

.setEndpoint(API_URL)

.setConverter(new GsonConverter(gson))

// Setting LogLevel to FULL allows to catch bugs

.setLogLevel(RestAdapter.LogLevel.FULL)

.setLog(new RestAdapter.Log() {

@Override

public void log(String msg) {

// Log tag name is defined here

Log.e("RETROFIT", msg);

}

})

.build();

Listing 35. Creating an instance of Retrofit adapter

Finally, instance of API interface should be created (listing 36) in order to execute re-

mote REST methods. All methods of an API interface run on the same thread (blocking

behavior) and the best place for the code related to backend is SyncAdapter [9] (in this

project it was left for compatibility) or Service running on background thread (for exam-

ple, IntentService). However, there is a possibility to use callback for asynchronous

method execution. In that particular case, callback object should be specified in param-

eters additionally [14].

// Create an instance of our API interface.

api = restAdapter.create(API.class);

Listing 36. Creating an instance of API interface

47

Persistence is achieved via Realm library as shown in listing 37. Changes are saved

with commitTransaction method.

Realm realm = Realm.getInstance(context);

// Quick is a type of RealmObject

List<Quick> quiks = api.getQuiksForUser();

// Incoming quiks from remote database

List<Quick> quiksSent = api.getAssignedQuicks();

realm.beginTransaction();

List<Quick> realmQuicksIncoming =

realm.copyToRealm(quiks);

List<Quick> realmQuicksSent =

realm.copyToRealm(quiksSent);

realm.commitTransaction();

realm.close();

Listing 37. Handling persistence with Realm

Realm perfectly accepts an object, received from Retrofit and converted by GSON, li-

brary component included with Retrofit. No extra action is required. Developer gets full

benefits from Retrofit + Realm pair: code is concise; there is no need to write compli-

cated structures (as it was with pure SQLite + BaasBox). If extra methods need to be

added later, that could be done in a few minutes. This approach saves time and really

helps to focus on other important issues such as UI and new features. Modularity of an

application raises and that makes possible to modify behavior in future releases without

the need to rewrite huge blocks of code.

48

6 Conclusions

Several months have gone since work on the thesis began. The project work has passed

through several stages of development, and underwent a huge number of improvements

and optimizations. It was beneficial to learn about existing technologies used for net-

working and persistence; that made it possible to achieve the necessary skills to build

an implementation of REST client for production. Essential knowledge was gathered

about RESTful Web services, which allowed building a better, more responsive REST

client. There are many ways to do the same task in Android and that is applicable also

to interaction with RESTful Web service. Google provided the suggested implementation

patterns, although the last choice belongs to the developer.

Project specifications should be studied and discussed beforehand to clearly understand

the drawbacks and advantages in each particular case. The most important issue in de-

velopment of a mobile REST client is to build an application as modular as possible. That

simplifies development process, makes future API upgrades less time-consuming and

the code cleaner (garbage code is taken away). Libraries described in the thesis will

continue to be tested thoroughly and used in the following projects. New development

components required for networking and persistence are continuously tracked and are

subject to research in later work.

49

References

1. Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-

ware Architectures. Irvine, CA: University of California; 2000.

2. Rodriguez Alex. RESTful Web services: The basics [online]. IBM; February 2015,

URL: http://www.ibm.com/developerworks/library/ws-restful/

3. Fielding & Reschke. RFC 7231 [online]. Internet Engineering Task Force (IETF);

June 2014,

URL: https://tools.ietf.org/html/rfc7231

4. Fielding & Reschke. RFC 7230 [online]. Internet Engineering Task Force (IETF);

June 2014,

URL: https://tools.ietf.org/html/rfc7230

5. Richardson L., Ruby S. Restful Web Services. Sebastopol, CA: O’Reilly; 2012.

6. Virgil Dobjanschi. Developing Android REST Client Applications. Presentation at

Google I/O 2010 [online]. San Francisco, CA: Google; 2010.

URL: https://dl.google.com/googleio/2010/

android-developing-RESTful-android-apps.pdf

Accessed 27 March 2015.

7. Mednieks Z., Dornin L., Meike B., Nakamura M. Programming Android. 2nd ed. Se-

bastopol, CA: O’Reilly; 2012.

8. Android Developer API Documentation: Content Providers [documentation online].

Mountain View, CA: Google; 2015.

URL: http://developer.android.com/guide/topics/providers/content-providers.html

Accessed 27 March 2015.

9. Android Developer API Documentation: Running a Sync Adapter [documentation

online]. Mountain View, CA: Google; 2015.

URL: http://developer.android.com/training/sync-adapters/running-sync-adapter.html

Accessed 27 March 2015.

50

10. Android Developer API Documentation: HttpURLConnection class [documentation

online]. Mountain View, CA: Google; 2015.

URL: http://developer.android.com/reference/java/net/HttpURLConnection.html

Accessed 27 March 2015.

11. Repository of the Open Source Android library: RoboSpice [software component].

Version 1.4.14. Source codes. Paris, France: Octo Technology; 2014.

URL: https://github.com/stephanenicolas/robospice

Accessed 27 March 2015.

12. Resource oriented REST client for Android: Datadroid [software component]. Com-

mit 0553cada0d. San Francisco, CA: Nicolas Klein; 2014.

URL: https://github.com/foxykeep/DataDroid

Accessed 27 March 2015.

13. Resource oriented REST client for Android: RESTdroid [software component]. Ver-

sion 0.8.2. Paris, France: PCréations; 2014.

URL: https://github.com/PCreations/RESTDroid

Accessed 27 March 2015.

14. Retrofit: A type-safe REST client for Android and Java [documentation online]. San

Francisco, CA: Square Inc; 2014.

URL: http://square.github.io/retrofit/

Accessed 27 March 2015.

15. Android Developer API Documentation: Storage Options [documentation online].

Mountain View, CA: Google; 2015.

URL: http://developer.android.com/guide/topics/data/data-storage.html

Accessed 27 March 2015.

16. Wei J. Android Database Programming. Birmingham, UK: Packt publishing; 2012

17. Datatypes In SQLite Version 3 [documentation online]. Charlotte, NC: Hwaci; 2015.

URL: https://www.sqlite.org/datatype3.html

Accessed 27 March 2015.

51

18. Android Developer API Documentation: SQLiteOpenHelper class [documentation

online]. Mountain View, CA: Google; 2015.

URL: http://developer.android.com/reference/android/database/sqlite/

SQLiteOpenHelper.html

Accessed 27 March 2015.

19. Realm: Mobile database [software component online]. Mountain View, CA: Y com-

binator, 2015.

URL: http://realm.io/

Accessed 27 March 2015.

20. OrmLite - Lightweight Object Relational Mapping (ORM) Java Package [software

component]. Open-Source community; 2015.

URL: http://ormlite.com/

Accessed 27 March 2015.

21. GreenDAO – Android ORM for SQLite [software component]. München, Germany:

Greenrobot; 2015.

URL: http://greendao-orm.com/

Accessed 27 March 2015.

22. Realm performance comparison tests. Open-Source project. [online]. Mountain

View, CA: Y combinator; 2015.

URL: https://github.com/realm/realm-java/tree/rw-performance-comparison/tests

Accessed 27 March 2015.

23. http://www.appbrain.com/stats/libraries/details/greendao/greendao

24. Baasbox: the open source backend [online]. Rome, Italy: BaasBox S.R.L.; 2015

URL: http://baasbox.com

Accessed 27 March 2015.

25. Realm for Android [online]. Mountain View, CA: Y combinator, 2014.

URL: http://realm.io/news/realm-for-android/#realm-for-android

Accessed 27 March 2015.

52

Appendix 1. SQLite Example

// INIT SQLITE HELPER

SQLiteHelper sqh = new SQLiteHelper(this);

// RETRIEVE A READABLE AND WRITEABLE DATABASE

SQLiteDatabase sqdb = sqh.getWritableDatabase();

// METHOD #1: INSERT USING CONTENTVALUES CLASS

ContentValues cv = new ContentValues();

cv.put(SQLiteHelper.NAME, "User Name");

// CALL INSERT METHOD

sqdb.insert(SQLiteHelper.TABLE_NAME, SQLiteHelper.NAME, cv);

// METHOD #2: INSERT USING SQL QUERY

String insertQuery = "INSERT INTO " + SQLiteHelper.TABLE_NAME + "

(" + SQLiteHelper.NAME + ") VALUES ('User Name')";

sqdb.execSQL(insertQuery);

// METHOD #1: QUERY USING WRAPPER METHOD

Cursor c = sqdb.query(SQLiteHelper.TABLE_NAME, new String[] {

SQLiteHelper.UID, SQLiteHelper.NAME

}, null, null, null, null, null);

while (c.moveToNext()) {

// GET COLUMN INDICES + VALUES OF THOSE COLUMNS

int id = c.getInt(c.getColumnIndex(SQLiteHelper.UID));

String name = c.getString(c.getColumnIndex(SQLiteHelper.NAME));

Log.i("LOG_TAG", "ROW " + id + " HAS NAME " + name);

}

c.close();

// METHOD #2: QUERY USING SQL SELECT QUERY

String query = "SELECT " + SQLiteHelper.UID + ", " +

SQLiteHelper.NAME + " FROM " + SQLiteHelper.TABLE_NAME;

Cursor c2 = sqdb.rawQuery(query, null);

while (c2.moveToNext()) {

int id = c2.getInt(c2.getColumnIndex(SQLiteHelper.UID));

String name = c2.getString(c2.getColumnIndex(SQLite-

Helper.NAME));

Log.i("LOG_TAG", "ROW " + id + " HAS NAME " + name);

}

c2.close();

// CLOSE DATABASE CONNECTIONS

53

sqdb.close();

sqh.close();

}

Appendix 2. Android SQLite ORMs and Realm Comparison Graphs

Tests run on an Galaxy S3, using the latest available version of each library as of Sept

28, 2014 (figure 7).

54

Figure 7. ORM, SQLite and Realm comparison [25]

Appendix 3. Source Code (Quikoo Project Based on BaasBox)

Sample method to send a reminder to the serve with a push notification:

public HashMap<String, Boolean> sendQuik(Context context, Quik quik, ArrayList<String> numbers) {
 BaasDocument note = new BaasDocument("Quiks");

 note.put("creator", BaasUser.current().getName());
 note.put("reminderText", quik.shortDescription);
 if (quik.latitude!=null)
 note.put("latitude",quik.latitude);
 if (quik.longitude!=null)
 note.put("longitude",quik.longitude);

 note.put("Quik_type", 2); //invitation = 0, request = 1, reminder = 2, contest = 4
 if (quik.reminderTime!=null)
 note.put("reminderTime", quik.reminderTime);

 String QuikId = null;
 Log.d("QuikAsyncTask", "1");
 PhoneNumberUtil phoneUtil = PhoneNumberUtil.getInstance();
 TelephonyManager t = (TelephonyManager) context.getSystemService(Context.TELEPHONY_SER-
VICE);
 String country = t.getNetworkCountryIso();
 if (country != null)
 country = country.toUpperCase();

 String QuikDocId = null;

 JsonArray attached_photos = new JsonArray();
 for (Map.Entry<ImageToUploadObject, RequestToken> entry : AppClass.requestTokens.entrySet()) {
 ImageToUploadObject key = entry.getKey();
 RequestToken value = entry.getValue();
 if (key.fileIdOnServer != null) {
 attached_photos.add(key.fileIdOnServer);
 }
 }

55

 note.put("attached_photos", attached_photos);

 if (QuikId == null) {
 // Let's save Quik first
 BaasResult<BaasDocument> QuikDocResult = note.saveSync(SaveMode.IGNORE_VERSION);
 //ArrayList<String> QuikIdList = new ArrayList<String>();
 Log.d("QuikAsyncTask", "2");
 try {
 if (QuikDocResult.isSuccess()) {
 QuikDocId = QuikDocResult.get().getId().toString();
 //QuikIdList.add(QuikDocId);
 //Allow all registered users to see this Quik
 BaasResult<BaasDocument> QuikDocFetchedResult = BaasDocument.fetchSync("Quiks",
QuikDocId);

 if (QuikDocFetchedResult.isSuccess()) {
 BaasDocument QuikDocFetched = QuikDocFetchedResult.value();

 BaasResult<Void> grantResult = QuikDocFetched.grantAllSync(Grant.ALL, Role.REGIS-
TERED);

 if (grantResult.isSuccess()) {

 } else if (grantResult.isFailed()) {

 }
 } else if (QuikDocFetchedResult.isFailed()) {

 }
 } else if (QuikDocResult.isFailed()) {

 }

 } catch (BaasException e) {
 e.printStackTrace();
 }
 } else {
 QuikDocId = QuikId;
 }

 Log.d("QuikAsyncTask", "3");

 ArrayList<BaasDocument> receivers = new ArrayList<BaasDocument>();

 HashMap<String, Boolean> results = new HashMap<String, Boolean>();

 //ArrayList<BaasUser> users = new ArrayList<BaasUser>();
 BaasUser[] users = new BaasUser[numbers.size()];
 int i = 0;
 for (String number : numbers) {

 String phoneNumberString = number.replaceAll("[\\D]", "");

 users[i] = BaasUser.withUserName(phoneNumberString);

 BaasDocument receiver = new BaasDocument("receivers");
 receiver.put("QuikId", QuikDocId);
 receiver.put("rcv", phoneNumberString);
 receiver.put("acc", 1);
 receiver.put("Quik_type", quik.Quik_type);
 receivers.add(receiver);

 i++;
 }

56

 Log.d("QuikAsyncTask", "4");
 ArrayList<QuikReceiverObject> receiverObjects = new ArrayList<QuikReceiverObject>();

 // Save all Quik receivers one by one
 for (BaasDocument receiver : receivers) {
 BaasResult<BaasDocument> rcvDocResult = receiver.saveSync(SaveMode.IGNORE_VERSION);
 try {
 if (rcvDocResult.isSuccess()) {
 String rcvDocId = rcvDocResult.get().getId().toString();
 receiverObjects.add(new QuikReceiverObject(rcvDocId, receiver.getString("QuikId"), re-
ceiver.getString("rcv"), 1, 1));
 //Allow all registered users to see this Quik
 BaasResult<BaasDocument> rcvDocFetchedResult = BaasDocument.fetchSync("receivers",
rcvDocId);

 if (rcvDocFetchedResult.isSuccess()) {
 BaasDocument rcvDocFetched = rcvDocFetchedResult.value();
 BaasResult<Void> grantResult = rcvDocFetched.grantAllSync(Grant.ALL, Role.REGIS-
TERED);
 if (grantResult.isSuccess()) {

 } else if (grantResult.isFailed()) {

 }
 } else if (rcvDocFetchedResult.isFailed()) {

 }
 } else if (rcvDocResult.isFailed()) {

 }

 } catch (BaasException e) {
 e.printStackTrace();
 }
 }

 for (QuikReceiverObject receiver : receiverObjects) {
 final JsonObject mess = new JsonObject()
 .put("Quik_type", quik.Quik_type)
 .put("QuikId", QuikDocId)
 .put("reminderText", quik.shortDescription)
 .put("sender", BaasUser.current().getName())
 .put("currentQuikUserDocId", receiver.id)
 .put("version", 1)
 .put("version_receiver", receiver.version);
 if (quik.reminderTime != null)
 mess.put("reminderTime", quik.reminderTime);

 if ((quik.latitude != null) && (quik.longitude != null)) {
 mess
 .put("latitude", quik.latitude)
 .put("longitude", quik.longitude);
 }

 Log.e("Size of attached_photos array: ", attached_photos.size() + " " + attached_photos.toString());

 if (attached_photos.size() != 0)
 mess.put("attached_photos", attached_photos);

 BaasBox.messagingService()
 .newMessage()
 .profiles(BaasCloudMessagingService.DEFAULT_PROFILE)
 //.extra(mess)
 .text(mess.toString())//mess.getString("reminderText"))
 .to(users)
 .send(new BaasHandler<Void>() {

57

 @Override
 public void handle(BaasResult<Void> result) {
 // handle the result
 if (result.isSuccess())
 Log.e("SendQuikHugeAsyncTask", "Push sent successfully");
 else
 Log.e("SendQuikHugeAsyncTask push error: ", result.error().toString());
 }
 });
 }

 return results;
 }

58

Update method of application ContentProvider class:
 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {

 int uriType = sURIMatcher.match(uri);
 SQLiteDatabase sqlDB = database.getWritableDatabase();
 int rowsUpdated = 0;
 switch (uriType) {
 case REMINDERS_INCOMING:
 rowsUpdated = sqlDB.update(TABLE_REMINDERS_INCOMING,
 values,
 selection,
 selectionArgs);
 break;
 case REMINDERS_SENT:
 rowsUpdated = sqlDB.update(TABLE_REMINDERS_SENT,
 values,
 selection,
 selectionArgs);
 break;
 case REMINDER_ID_INCOMING:
 String id = uri.getLastPathSegment();
 if (TextUtils.isEmpty(selection)) {
 String where = AlarmContract.Alarm.COLUMN_NAME_RIR_ID + "=?";
 String[] whereArgs = new String[] {String.valueOf(id)};
 rowsUpdated = sqlDB.update(TABLE_REMINDERS_INCOMING,
 values,
 AlarmContract.Alarm.COLUMN_NAME_RIR_ID + "=" + where,
 whereArgs);
 } else {
 rowsUpdated = sqlDB.update(TABLE_REMINDERS_INCOMING,
 values,
 AlarmContract.Alarm.COLUMN_NAME_RIR_ID + "=" + id
 + " and "
 + selection,
 selectionArgs);
 }
 break;
 case REMINDER_ID_SENT:
 String id2 = uri.getLastPathSegment();
 if (TextUtils.isEmpty(selection)) {
 String where = AlarmContract.Alarm.COLUMN_NAME_RIR_ID + "=?";
 String[] whereArgs = new String[] {String.valueOf(id2)};
 rowsUpdated = sqlDB.update(TABLE_REMINDERS_SENT,
 values,
 AlarmContract.Alarm.COLUMN_NAME_RIR_ID + "=" + where,
 whereArgs);
 } else {
 rowsUpdated = sqlDB.update(AlarmContract.Alarm.TABLE_REMINDERS_SENT,
 values,
 AlarmContract.Alarm.COLUMN_NAME_RIR_ID + "=" + id2
 + " and "
 + selection,
 selectionArgs);
 }
 break;

 default:
 throw new IllegalArgumentException("Unknown URI: " + uri);
 }
 getContext().getContentResolver().notifyChange(uri, null);
 return rowsUpdated;
 }

