

Version Control of PLC Blocks and Code

Jesper Nikander

Degree Thesis

Thesis for a Bachelor of Engineering Degree

Electrical Engineering and Automation

Vaasa 2024

BACHELOR’S THESIS

Author: Jesper Nikander

Degree Electrical Engineering and Automation, Vaasa

Specialization: Automation Engineering

Supervisor: Mats Warg, Mikko Valli, VEO

 Jan Berglund, Novia University of Applied Sciences

Title: Version Control of PLC Blocks and Code

Date: 01.05.2024 Number of pages 31

Abstract

This thesis is conducted for VEO OY in Vaasa as a groundwork for their plans to improve the

backup and version control infrastructure for their Programmable Logic Controller (PLC)

software. The goal of the thesis is to evaluate different version control systems and

implement solutions that are tailored to meet the specific needs of VEO’s PLC programming

environment.

While different version control systems have been used for traditional text-based coding

for decades, the advancement of effective version control systems for PLCs has not kept

pace. The development of such a system to version control PLC code and blocks is

recognized as an important step to guaranteeing the reliability and longevity of their

automation solutions.

This project addresses the different challenges VEO faces in managing and troubleshooting

changes to PLC code in their final applications, focusing on the extraction of historical

function block data in a standardized form. Additionally, conducting detailed research and

testing of both proprietary and open-source solutions with the cost-effectiveness and

practicality of different systems in mind.

Language: English

Key words: version control, PLC, function block, backup

EXAMENSARBETE

Författare: Jesper Nikander

Utbildning och ort: El- och automationsteknik, Vasa

Inriktning: Automation

Handledare: Mats Warg, Mikko Valli, VEO

 Jan Berglund, Yrkeshögskolan Novia

Titel: Versionshantering av PLC-block och Kod

Datum: 1.05.2024 Sidantal: 31

Abstrakt

Detta examensarbete genomförs för VEO OY i Vasa som en grund för deras planer på att

förbättra infrastrukturen för säkerhetskopieringen och versionshantering för deras

mjukvara för programmerbara logiska styrsystem (PLC). Målet med arbetet var att

utvärdera olika versionshanteringssystem och implementera lösningar som är

skräddarsydda för att möta de specifika behoven hos VEO:s PLC-programmeringsmiljö.

Medan olika versionshanteringar har använts för traditionell textbaserad kodning i

årtionden har utvecklingen av effektiva versionshanteringssystem för PLC:er inte hållit

samma takt. Utvecklingen av ett sådant system för PLC-kod och block anses vara ett

nödvändigt steg för att säkerställa tillförlitligheten och livslängden hos deras

automationslösningar.

Detta projekt tar upp de olika utmaningarna som VEO står inför när det gäller att hantera

ändringar och felsöka PLC-kod i deras slutliga applikationer. Detta har gjorts med fokus på

utvinning av historiska funktionsblocksdata i standardiserad form. Samtidigt har detaljerad

forskning och testning av både licenserade och öppna källkodslösningar med

kostnadseffektiviteten och funktionalitet för olika system varit i åtanke.

Språk: svenska

Nyckelord: versionshantering, funktions block, säkerhetskopiering, PLC

OPINNÄYTETYÖ

Tekijä: Jesper Nikander

Koulutus ja paikkakunta: Sähkö- ja automaatiotekniikka, Vaasa

Suuntautumisvaihtoehto: Automaatiotekniikka

Ohjaaja: Mats Warg, Mikko Valli, VEO

 Jan Berglund, Yrkeshögskolan Novia

Nimike: PLC-lohkojen ja koodin versionhallinta

Päivämäärä: 1.05.2024 Sivumäärä: 31

Tiivistelmä

Tämä opinnäytetyö on tehty VEO OY:lle Vaasassa pohjana heidän suunnitelmilleen

kehittää ohjelmoitavien logiikkasäädinten (PLC) varmuuskopiointi- ja

versiohallintainfrastruktuuria. Opinnäytetyön tavoitteena oli arvioida erilaisia

versionhallintajärjestelmiä ja toteuttaa ratkaisuja, jotka on räätälöity vastaamaan VEO:n

PLC-ohjelmointiympäristön erityistarpeita.

Vaikka erilaisia versionhallintajärjestelmiä on käytetty perinteiseen tekstipohjaiseen

koodaukseen jo vuosikymmeniä, PLC-ohjelmointiin tarkoitettujen

versiohallintajärjestelmien kehitys ei ole pysynyt samassa tahdissa. Tällaisen järjestelmän

kehittäminen PLC-koodin ja lohkojen versiohallintaan on todettu tärkeäksi askeleeksi

heidän automaatioratkaisujen luotettavuuden sekä pitkäikäisyyden takaamiseen

Tämä projekti käsittelee erilaisia haasteita, joita VEO kohtaa PLC-ohjelmiston muutoksissa

ja vianmäärityksessä heidän lopullisissa sovelluksissaan. Painopisteenä on historiallisten

lohkotietojen manipulointi ja poimiminen standardoidussa muodossa, sekä lisensoitujen

että avoimen lähdekoodin ratkaisujen tutkimus ja testaus eri järjestelmien

kustannustehokkuutta ja käytännöllisyyttä ajatellen.

Kieli: suomi
Avainsanat: versionhallinta, lohko, varmuuskopiointi, PLC

Table of contents

1 Introduction .. 1

1.1 Purpose and challenges .. 1

2 PLC .. 2

2.1 Programming languages ... 2

2.2 Function blocks .. 4

3 Version control ... 5

3.1 Version control tools.. 5

3.2 Terms ... 6

3.3 Repositories .. 7

4 GIT and SVN... 8

5 Octoplant and Copia .. 9

6 GIT - setup..11

6.1 Client side...11

6.2 Server side ...14

7 Database or a VEO Library ...15

7.1 Database selection and usage ..15

7.2 RDBMS ..16

7.3 NoSQL ..16

8 Binary file ...17

9 XML file and automation ..18

9.1 Schneider Control expert ...18

9.2 Siemens TIA PORTAL ..19

10 File comparison tools..21

11 Problems ...22

12 Custom XML parsing tool ..23

12.1 XML parsing libraries ...24

12.2 CSV output...25

12.3 Block Comparison: ..26

12.4 Integration of Blocklist for version controlling ...27

13 Conclusion ..28

14 Discussion ...29

15 Referenser ..30

Table of figures

Figure 1 Combination of simple function blocks to make a basic function block diagram
(Peter, 2018). ..4
Figure 2 Centralized version control (CVC) (Ernst, 2012). ...7
Figure 3 Distributed version control (DVC) (Ernst, 2012). ...8
Figure 4 Octoplant DEMO. ... 10
Figure 5 GIT GUI interface. ... 12
Figure 6 File explorer view of GIT repository... 13
Figure 7 GIT GUI repository changes view. .. 14
Figure 8 Table of function blocks in Microsoft SQL server. ... 15
Figure 9 Schneider .XBD extraction. .. 18
Figure 10 Schneider file formats (Schneider Electric India, 2022)...................................... 19
Figure 11 Export/import addin. .. 20
Figure 12 Git – changes to .CSV file shown in Gits diff tool... 21
Figure 13 Winmerge location panel .. 22
Figure 14 Custom XML parsing tool .. 24
Figure 15 Blocklist in .CSV format ... 25
Figure 16 Excel view of the .CSV file. ... 26
Figure 17 Block comparison. .. 26
Figure 18 GIT diff tool - changes done to an .CSV file... 27

List of abbreviations

PLC - Programmable logic controller

DVC - Distributed version control

CVC - Centralized version control

XML - Extensible Markup Language

XBD - XBus Device

CSV - Comma-separated value

SVN - Subversion

SSH - Secure shell protocol

IEC - International Electrotechnical Commission

GUI - Graphical user interface

TIA - (siemens) Totally integrated Automation

API - Application programming interface

 1

1 Introduction

Programmable Logic Controllers (PLCs) are essential for the operation of modern industrial

processes. As industrial automation projects grow more complex, the need for a powerful

version control system becomes crucial to ensure the smooth development and

maintenance of PLC programs. The effectiveness and reliability of PLC-based systems

depend significantly on proper management of their programming code. Version control

systems (VCS) have been a crucial part of software development for decades. Adapting

these systems for PLC programming proves quite a challenge with its unique needs and

graphic elements.

1.1 Purpose and challenges

The primary goal of this bachelor’s thesis is to explore and implement methods to enhance

the traceability of modifications made to final PLC projects. This will be achieved by

comparing these projects with VEO’s backups. This study will assess how the adoption of

version control systems such as GIT, SVN, or other PLC-specific solutions can improve

troubleshooting efforts for problems that arise during the operational runtime of the PLC.

The focus will be specifically on projects that use Siemens and Schneiders PLCs but methods

that work with all PLC brands are seen as advantageous.

The main challenges stem from the PLC programming languages and environments. Unlike

traditional software development that uses text-based coding languages. PLCs are

programmed with specialized languages with graphical elements and binary files. This

complicates access to historical versions of code in a format that is human-readable and

meaningful. Another complexity that is introduced is the physical processes that PLC

programs are tightly integrated with. This demands documentation of not only code

changes but also their impact on the overall system.

Maintaining a detailed version history not only helps development but also provides legal

documentation. Especially in industries with tight regulations where the need for correct

documentation and detailed records is mandatory. Detailed documentation ensures that

version histories of software and hardware components provide a complete audit trail,

fulfilling regulatory requirements.

 2

2 PLC

Since the focus of this thesis revolves around version control systems tailored for PLCs, this

section provides a brief overview of programmable logic controllers (PLCs) . A PLC is a

specialized type of microprocessor-based controller that utilizes programmable memory to

execute instructions controlling different machines and processes. PLCs are engineered for

simplicity and longevity which allows easy accessibility to engineers with varying levels of

expertise.

The operation of a PLC can be broken down into three fundamental components: inputs,

program execution, and outputs. PLCs interact with processes by gathering data from

interconnected devices, monitoring inputs, and subsequently comparing this data against

the programmed instructions. Following this comparison, the PLC adjusts the outputs

accordingly to regulate the connected devices' operation. A special feature of PLCs is their

ability to connect a single device such as a valve position sensor to both inputs and outputs

of the same controller. This configuration enables the PLC to capture the real-time status

of the device through inputs and make control adjustments based on programmed

instructions through outputs, thereby guaranteeing undisturbed process regulation

(inductiveautomation.com, 2020).

Compared to conventional computers, PLCs are more expensive relative to their processing

power and flexibility. While conventional computers might cost less and are more versatile.

PLCs offer several advantages that make them essential within industrial automation

settings. Including reliability, real-time control, safety features, and low maintenance. They

are designed to work in harsh environments and withstand extreme temperatures,

vibrations, and electrical interference. These attributes contribute to the widespread

adoption and reliance on PLCs across several industrial sectors (plctable, 2024).

2.1 Programming languages

There are five types of programming languages for PLCs that comply with the IEC 61131-3

standard. This standard works both as a rulebook and a guide for automation and control

systems. Each language caters to different programming needs and preferences. This

presents unique features and challenges when it comes to version control.

 3

Graphical Languages:

• Ladder logic (LAD): Evolved from electrical wiring diagrams ladder logic’s graphical

nature represents circuits and logic in a format familiar to electrical engineers.

However, this will complicate version control as changes in diagrams may not be as

straightforward to track as text-based modifications.

• Function Block Diagram (FBD): Utilizes blocks to represent functions such as logic

operations and data processing. The graphical interface allows for the visual

assembly of complex logic but like ladder logic its graphical basis complicates the

version control.

• Sequential Function Charts (SFC): is a visual programming language that organizes

program execution flow in a graphical format. It excels in outlining the overall

structure of the program by providing a high-level view of the operational

sequences. Although, it is often used in conjunction with other languages, which

introduces its complications with version controlling combined with the graphical

nature.

Text Languages:

• Structured text (ST) : Resembles high-level languages like Pascal and C. It enables

Complex data processing and algorithm implementation. While structured text is

more compatible with conventional version control systems. The complexity can

make tracking changes and understanding the program’s flow more difficult

without proper documentation.

• Instruction List (IL): Resembles low-level languages like assembly. It offers fine-

dialed control over PLC operations at the cost of increased complexity and difficulty

of the language. Its text-based code is version control friendly, but the lower-level

operations can be challenging to manage and understand over time.

Version control for PLC programming compliant with IEC61131-3, demands a diversified

but standardized approach to accommodate all the different PLC languages. Managing

different revisions effectively in this context often requires different tools and practices

that can handle both graphical and textual elements, while also supporting customary file

formats that integrate closely with PLC programming environments (Lamb, 2023).

 4

2.2 Function blocks

Function blocks are defined by the IEC61131-3 standard and encapsulate specific functions

ranging from simple mathematical operations to custom complex control algorithms. These

become crucial in the automation of industrial tasks. These blocks are mostly used with

FBD (Function Block Diagram) programming language. They are an important part of the

entire PLC programming environment due to their modularity and reusability. Their

graphical nature allows for clear visualization of inputs and outputs, which makes them

user-friendly and straightforward to integrate into larger systems.

The popularity of function blocks stems from their flexibility in being able to be

programmed to do whatever the user desires, along with the ability to be used in different

PLC systems and brands without compatibility issues. Thanks to the IEC61131-3 standard’s

requirements, these blocks can operate with other programming languages in the same

environment and expect to perform identically in another environment regardless of the

manufacturing brand differences (Peter, 2018).

Given their crucial role in PLC programming as a whole and especially in VEO’s practices of

coding PLC projects. Custom-made function blocks are being used modularly in the projects

at hand. These function blocks become a focus point when it comes to version control.

Figure 1 Combination of simple function blocks to make a basic function block diagram

(Peter, 2018).

 5

Managing different versions of function blocks efficiently becomes important as it impacts

the ability to update, debug, and maintain a clear history of modifications. Which is

invaluable for troubleshooting and refining system performance over time.

3 Version control

Version control systems are essential tools in software development for tracking and

managing changes to source code throughout the software development lifecycle. These

systems record every change including details like the author's name, time of when the

change was made, and other important information. This documentation becomes

especially useful for solving conflicts that happen when team members make changes at

the same time. With version control, developers can revert to earlier revisions to fix errors

with little trouble.

The transition from centralized version control systems (CVCS), which rely on a single

repository to distributed version control systems (DVCS) represents a noteworthy

advancement. DVCS allows for a more collaborative and flexible approach as each copy of

the project is a complete repository. This structure supports better collaboration and

allows teams to work on different parts of the project simultaneously without

compromising the code's integrity. This also enables branching and merging strategies

which let teams develop new features, fix bugs, and make enhancements all at once

(BasuMallick, 2022).

3.1 Version control tools

With several options available, the selection of a version control tool typically depends on

the specific needs and preferences of the development team. Most GNU General Public

License (GPL) tools are designed for handling text-based files and code. Meanwhile,

proprietary version control software developed by specialized companies in the field often

offers advantages in the management of a wider range of file formats and code along with

better user interfaces.

Among well-known version control tools are Git, IBM Configuration Management Version

Control (CMVC), and Apache Subversion (SVN). Git is regarded as one of the most powerful

distributed version control systems. It is known for its flexibility in managing various file

 6

formats and accommodating diverse automation needs. In contrast, SVN represents a

centralized version control tool. While it is compatible with binary files like PLC code it

primarily operates with text file formats. Both GIT and SVN can integrate with different

programming environments simplifying the versioning process without requiring users to

open a separate program to commit changes (BasuMallick, 2022).

3.2 Terms

Version control, which is also known as "source control" or "revision control," includes

various terms that enable collaboration by coordinating changes among multiple users.

This encourages independent work while guaranteeing a united result. For effective

versioning in day-to-day use only a few key terms are essential. These include commit,

repo, clone, pull, and branch (Wright, 2020).

Important Version control terms:

Repo (repository): Storage space for files and tracks changes made to a project. Allowing

navigation through the project’s history.

Commit: The action of adding changes to the repository with a commit message explaining

the modifications.

Diff (difference): A tool for comparing changes between commits. Meant to visually track

modifications over time.

Conflict: A situation that happens when two parties modify the same file and manual

resolution is needed.

Clone: The process of creating a local copy of a remote repository by duplicating its

contents at the time of cloning.

Push: The action of Updating the remote repository with changes made in the local

repository.

Pull: the action of updating the local copy with changes made by others in the remote

repository.

Forking: Creation of a new repository from an existing one. Often on platforms like GitHub

or a virtual network to start a new development.

Branch: Creation of an alternate version of the project to work on new features or ideas

without affecting the main development.

Check out: The action of moving between branches to work on specific parts of the project.

 7

3.3 Repositories

Centralized version control systems (CVCS) represent an older yet simpler approach to

version control methodology. These systems centralize all version control activities within

a single repository. This singular repository model simplifies setup and usage which makes

it an appealing choice for teams seeking straightforward version management solutions.

The linear progression of file revisions in CVCS allows for direct and uncomplicated

collaboration among team members. The latest version of the project is always accessible

on the central server. However, this centralized approach ties the efficiency and availability

of version control operations to the server’s reliability, potentially becoming a critical point

of failure (Ernst, 2012).

On the other hand, distributed version control systems (DVCS) represent a more modern

approach to version control defined by its use of multiple repositories. This setup allows

each contributor to have a complete copy of the repository including the full history of

changes on their workstation. This decentralized model offers several advantages including

faster operations, reduced sensitivity to errors, and a broader set of features. The ability to

commit changes, branch, and merge locally. Without immediate reliance on a central

server supports a more dynamic and resilient workflow. However, the complexity of

managing multiple repositories and understanding distributed histories introduces a

steeper learning curve. Making DVCS somewhat more challenging to learn and understand

(Ernst, 2012).

Figure 2 Centralized version control (CVC) (Ernst, 2012).

 8

4 GIT and SVN

The major difference between GIT and other version control systems lies in the way GIT

understands its data. Most VCSs such as Concurrent Version System (CVS), Subversion,

Perforce, and others store information as a list of file-based changes (delta-based). Git

operates differently. GIT views its data as a series of snapshots of a miniature filesystem.

With each commit or saved state of the project GIT captures a snapshot of what all the files

look like at that moment and stores a reference to that snapshot (Henry, 2022).

Apache Subversion (SVN) came into being in 2000 by CollabNet to replace the Concurrent

versions system (CVS) due to its design flaws, such as not accepting atomic commits which

are a set of modifications that may be constituted by several lines of code as a single

operation. SVN became self-hosting in August 2001 with the entire CVS team migrating to

SVN. Adopting the centralized architecture SVN allows a single server to store all project

data. Allowing programmers to interact with the data on their local machines.

A noteworthy feature of SVN is the use of Skip-deltas which optimizes data storage.

Commits in SVN require thorough review before they reach the repository and become

Figure 3 Distributed version control (DVC) (Ernst, 2012).

 9

visible to all users. This guarantees that most activities remain invisible in case of a

committed failure. The server reverts to the last confirmed good state and allows the

programmer to resolve conflicts in their files without affecting others (Varela, 2022).

5 Octoplant and Copia

Octoplant and Copia are proprietary version control systems specifically designed for

managing PLC code. These systems offer features that align well with the requirements of

VEO. Especially for comparing PLC code between projects and extraction of data or code.

However, the integration of these systems with VEOs network of PLCs and projects means

that the cost of these proprietary licenses quickly adds, making them a hefty investment.

Given the scale of VEO’s operations and the potential rapid escalation in licensing costs, a

thorough evaluation of the cost-to-benefit ratio of implementing these version control

solutions is necessary. Accurate pricing information requires direct discussions between

VEO’s personnel and representatives from proprietary version control providers. The

pricing of these systems is known to vary significantly depending on several factors such as

scale of operations, features included, and number of projects that need to be managed.

Understandably these system providers are cautious about disclosing pricing details to

students conducting research to prevent misrepresentation. However, discussions on

various forums and articles can provide a rough estimate of such systems. Unofficial

sources suggest that proprietary systems with basic PLC version control functionality are

estimated to cost around ten thousand dollars per year. Enterprise systems with substantial

amounts of features for larger operations can start from twenty thousand dollars or more.

It should be noted that these figures are indicative and should not be taken at face value.

 10

Octoplant as a proprietary version control system is widely recognized across various

industries such as Automotive, pharmaceuticals, chemical manufacturing, and energy.

Several well-known corporations have incorporated Octoplant into their operations and is

also suitable for smaller businesses. This extensive software combines AUVESY’s

versiondog and MDT’s autosave into a single system, which emerged when AUVESY and

MDT Software unified in 2021. Most PLC brands and programming environments can be

directly implemented into the system and support easy comparison between revisions of

the PLC code on both Schneider and Siemens systems. Octoplant also supports the

extraction and analysis of specific project components. Including the listing of all function

blocks used in the project to enable swapping blocks between both the backup and current

version of the project (Ayvesy-mdt, 2024).

If testing of proprietary version control systems is desired before discussing pricing and full-

scale demonstrations by these providers, Octoplant offers a free 30-day trial for a demo

environment with all of the features. This way the user is able to understand better what

to expect from such systems when starting the discussion process.

Figure 4 Octoplant DEMO.

 11

6 GIT - setup

For this thesis, GIT is chosen as the main version control system to test the implementation.

It is the most popular open-source solution and is very modifiable to meet all requirements

set by both developers and users. Depending on VEO’s preferences for features and

workflow either “GIT extensions” or “GIT Gui” as the graphical user interface can be used

for this system. Although GITs configurations and operations can be managed without a

graphical user interface by using tools like Windows Terminal or GIT BASH, this thesis

employs a GUI for its simplicity in teaching new users the workflow. Especially in the

development of new PLC projects. (Scott Chacon, 2014)

The best way to get started with GIT is by consulting the official guidebook “Pro Git”

available at https://git-scm.com. This comprehensive resource covers all aspects of GIT.

But for a quick start, a brief overview of the setup process is provided here.

6.1 Client side

Installation

For Windows and macOS there are a few ways to install git. The most official build is

available for download on GIT’s own website. https://git-scm.com/download/win

Simply following the installation instructions provided sets the user up with the basic tools

necessary for everyday use.

For Linux users, the basic tools can be installed using the package manager specific to the

user’s distribution. This method guarantees that git integrates smoothly with the user’s

system.

On Red Hat/Fedora-based systems dnf can be used:

§ sudo dnf install git-all

On Debian/Ubuntu-based systems apt can be used:

§ sudo apt install git-all

Configuration:

When using GIT for the first time some settings need to be configured that will stick around

between upgrades and updates. This can be done through the Windows terminal or GIT’s

https://git-scm.com/
https://git-scm.com/download/win

 12

own command line tool “GIT BASH”. Username and email address are configured to know

logging who committed certain changes with the time of modifications. Alternatively, this

can be done on the chosen Graphical user interfaces if the command line approach is not

preferred.

§ git config –- global user.name USERNAME

§ git config –- global user.email THESIS.TEST@EMAIL.COM

New repository

To initialize a new repository using the command line the user will need to navigate to the

desired directory. For example, a folder located on the user’s desktop called “REPOSITORY”

desired to be used as a GIT repository. The following steps need to be taken.

1. Navigation to the folder: § cd ~/desktop/”REPOSITORY”

2. Initializing the repository: § git init

For a simpler approach the graphical user interface can be used since is included with the

installation of GIT. The use of the included GUI simplifies the creation of new repositories

by selecting the folder directly in the GUI and configuring it to the users’ requirements

before choosing the primary GUI for the development workflow.

Figure 5 GIT GUI interface.

mailto:THESIS.TEST@EMAIL.COM

 13

Add and commit

When navigating within the repository a hidden ‘.git’ file is present. This folder contains all

the information and data that Git uses to manage the repository’s version control system

and should be left alone.

Files can be added to the repository by first navigating to the repository’s directory and

using the ‘git add’ command to stage files for the next commit.

1. Navigation to directory: § cd ~/desktop/”REPOSITORY”

2. Adding specific file: § .add ‘SPECIFIC_FILE’

Another way of adding files to the repository is simply by dragging and dropping the files

into the repository.

The files enter a staged area where they must be committed before they are officially under

version control. This step records a snapshot of the current state of the repository. If the

command line is used the user is most certainly already located inside the repository since

the commit often takes place directly after adding the file. Using the command line tool the

command ‘git commit’ accompanied by a brief explanation of changes is used.

1. Committing changes: § git commit -m “brief explanation”

GUIs provide an alternative simpler method where the changes are first staged

accompanied by a brief explanation of changes before, they are finally committed to the

repository. This gives the user a better visualization of what changes are about to be made

to the repository.

Figure 6 File explorer view of GIT repository.

 14

6.2 Server side

Both the server and client sides utilize the same underlying Git software. Which results in

many of the configurations being similar. The server side of Git is designed for hosting

remote repositories that enable collaboration between users. This setup allows the

Individual users to interact with the remote repositories by “pushing” their local changes

to the server.

Git provides direct integration with GitHub through SSH keys for cloud service-based

hosting of remote repositories. This solution works flawlessly with excellent security that

suits smaller teams or independent developers well. However, opting for an on-site hosting

approach is possible and preferred by VEO to meet strict security requirements. This

solution avoids storing data on external cloud servers like GitHub to better control access

to the data.

Internal server setup guarantees that access to and manipulation of the repository content

is strictly governed by correct security credentials. By hosting GIT repositories internally

organizations can implement additional layers of security such as network firewalls and

encrypted data transfers and automate certain tasks easier (Scott Chacon, 2014).

Figure 7 GIT GUI repository changes view.

 15

7 Database or a VEO Library

When comparing and swapping function blocks is the primary requirement without all the

version control features, a database or library environment can be a practical alternative.

By storing blocks and code in database-friendly formats like comma-separated value,

querying and data manipulation capabilities offered by modern database systems can be

utilized.

7.1 Database selection and usage

Databases like PostgreSQL and Microsoft SQL Server both support XML format for handling

structured data. Which is ideal for managing different attributes of function blocks directly

from XML data. However, querying through XML requires deep knowledge of every

element and attribute. The names of attributes do not match between different plc brands

and the user would need to learn exactly how each plc brand structures their XML code.

This becomes counterproductive and time-consuming, which would defeat the whole

purpose of utilizing a database.

This can be mitigated by using XML parsing tools that can generate a list of function blocks

with comma-separated values. A standardized structure for data extraction and analysis is

Figure 8 Table of function blocks in Microsoft SQL server.

 16

simplified over every PLC brand. Full Utilization and benefits of these tools will be discussed

in more detail in Chapter 12.

7.2 RDBMS

Relational database management systems (RDBMS) like Microsoft SQL are especially good

for storing and providing access to data points that are related to one another. Making

utilization of these databases to manage PLC function blocks and code is surprisingly

advantageous. Structuring the storage of function blocks to include attributes such as

version number, file of origin and associated metadata allows users to perform thorough

queries and analyses. This approach also supports tracking block usage, detection of

changes, and management of versions through the database.

These databases can be deployed locally on-site If cloud service storage of sensitive data is

not preferred. This local deployment enables the management of the database on its own

physical servers or within a private cloud for powerful data security. By utilizing all the

advanced features provided by RDBMS, organizations can even eliminate the need for

separate version control software in certain situations (Rahul Awati, 2024).

7.3 NoSQL

NoSQL databases differ from other RDBMS by not relying on standard tabular schema of

rows and columns. These databases can store data in various formats such as documents

like JSON, key-value pairs, Wide columns, or graphs. Making them especially suitable for

large sets of unstructured data. This design offers better scalability and faster access to

data. RDBMS struggles with horizontal scaling due to the tabular database structure.

Meanwhile, NoSQL allows for new data types and fields to be added without disturbing the

existing database structure (IBM, 2024).

PLC-projects with complex and differing data structures may not always fit into a functional

schema of traditional RDBMS. While NoSQL databases will not be necessarily useful in the

use case of this thesis. The management of function blocks as documents may be more

beneficial if large amounts of non-standardized PLC projects are developed. Due to the

flexibility of NoSQL a whole restructuring and maintenance of the database is not required.

 17

8 Binary file

In version control systems like Git the handling of binary and graphical files requires specific

configurations to accommodate their unique properties. Graphical files in particular

present challenges due to the way they are generated and stored. Each time a modification

is made the entire file gets restructured rather than only updating the altered sections,

leading to redundancy and inefficiency in version control. Since traditional version control

systems lack the ability to track and manage these files efficiently, they resort to creating

duplicate copies for each version.

Even if the PLC program's configuration is stored in XML format for manipulation and

comparison. The original files must still be managed within the version control

environment. To address this limitation specialized tools or extensions such as Git Large

File Storage (Git LFS) are necessary. Git LFS allows large binary files such as Schneider's

encrypted file compression formats like '.sta' and '.stu' to be stored externally from the Git

repository. Instead of storing the actual files. GIT LFS stores a pointer in the repository that

references the actual binary file stored on the LFS server. This approach supports efficient

version control without compromising on storage or performance.

In practice, setting up GIT LFS involves installing the extension and configuring the

repository to track specific file formats such as '.sta' and '.stu'. This guarantees that these

files are managed efficiently using Git LFS thus preventing unnecessary duplication and

ensuring smooth version control of PLC program files."

Command line tool:

1. Installation of GIT LFS: § git lfs install

2. Navigation to repository: § cd ~/desktop/”REPOSITORY”

3. Track desired file format: § git lfs track “*.stu”

4. Track desired file format: § git lfs track “*.sta”

 18

9 XML file and automation

PLC projects are stored in a format specific to their original programming environment.

That is why different file formats need to be used for the manipulation of project data

outside the original programming environment. Exporting XML files from PLC projects

offers advantages for managing and documenting specific elements such as function blocks

and other graphical coding outside their original programming environment. While

proprietary version control systems may not require this process, it remains advantageous

for all open-source systems and database solutions. This section details the manual process

of exporting XML files and discusses potential automation approaches for both Siemens

and Schneider Electric platforms.

9.1 Schneider Control expert

Schneider Electric's Control Expert is a programming environment for developing Schneider

PLC applications. Regarding version control, it presents certain challenges due to the

absence of an end-user-accessible API for task automation. This requires a manual

approach to exporting XML files for version control and project archiving.

In terms of versioning function blocks, which is the highlight of this thesis. Developers can

export the .XBD format, which compiles data from all the project's blocks into an XML

structure. While this method is functional, the .XEF file is often the preferred choice. It not

only contains the complete source code but is also executable . Which allows for the direct

opening of the PLC program within Schneider's Control Expert.

Figure 9 Schneider .XBD extraction.

 19

However, as Control Expert continues to advance. The latest versions have shifted towards

generating the .ZEF file as the standard export option. This format acts as a container that

includes the desired .XEF file within it. Developers are now tasked with an additional step

extracting the .XEF file from its container. Which introduces more intricacies to their

process. Adapting to this change requires developers to navigate the added complexity ,

striking a balance between leveraging the advanced features of the environment and

managing an increased workload. With the implementation of a version control system to

the workflow we want to automate as much as possible and the manual labor should be as

simple as possible (Schneider Electric India, 2022).

9.2 Siemens TIA PORTAL

Siemens TIA portal includes a built-in feature known as Version Control Interface (VCI),

which offers a solid way to integrate projects and function blocks with external version

control systems such as GIT. This integration allows versioning and management of all

project files directly within the TIA Portal environment without the need to switch between

different software tools during development or troubleshooting.

Figure 10 Schneider file formats (Schneider Electric India, 2022).

 20

A unified solution to version control or extract XML code would be preferable and VCI

supports extraction of various project components to XML files such as program blocks,

PLC tag tables, and data types. Which would be more than enough for the purpose of

version control in the context of this thesis. By standardizing the version control process,

all PLC brands can be managed by the same VCS. Therefore, simplifying version control of

PLC code and encouraging the use of different PLC brands as the version control process

stays relatively the same across brands (Smith, 2022).

Siemens API allows for the automation of various tasks within the VCI and the broader

project environment through TIA Portal’s Openness. This includes scripting repetitive

actions or automating processes like extracting XML code and committing changes to a GIT

repository, thereby smoothing the version control process and minimizes the chance of

human errors occurring (Siemens, 2021).

By exporting the program blocks as “SIMATIC Markup Language” either with API or

manually, we get an XML-based format that is tailored to SIMATIC programming

environments. With the SimaticML format users can manipulate and extract configurations

and components outside the TIA portal. This can then be imported to other projects or TIA

Portal instances. And can be especially useful with Veos practices in a “common way of

programming" where standardization across multiple systems is required.

Figure 11 Export/import addin.

 21

10 File comparison tools

In fulfilling one of Veo’s requirements for rapid comparison between a backup project and

the finalized project, file comparison tools become essential. While version control systems

often include built-in DIFF tools for text-based code, the use of XML necessitates a distinct

comparator capable of handling XML formats and filtering irrelevant data. Especially with

the focus on extracting function blocks and their respective versions.

GIT’s own diff tool is good for comparing changes between commits in text-based files and

offers a quick overview of changes. More detailed comparison requires the use of a third-

party file comparison tool that supports more file formats and has more features. Extensive

testing on both proprietary and open-source tools reveals that most proprietary tools can

compare XML files based on attributes and elements rather than performing a simple line-

by-line comparison. This would simplify and enable the process of extracting relevant

function block data from the exported XML files.

Open-source comparison tools often operate on a line-by-line basis. This approach makes

comparison of XML files challenging, as it does not consider the hierarchical attribute

nature of XML data. Despite its line-by-line comparison limitation Winmerge was chosen

for testing as a viable option due to its compatibility to integrate with version control

systems. Challenges arose instantly during the comparison of exported XML files from PLC

Figure 12 Git – changes to .CSV file shown in Gits diff tool.

 22

programs. Highlighting the need for further investigation and potential solutions with the

use of open-source file comparison tools.

11 Problems

The problems arise when comparing exported XML files due to the significant restructuring

that occurs with minor changes. Even with these complications, XML is chosen as the

preferred file format for version control because it can be manipulated more smoothly by

tools like GIT and XML parsers. This becomes especially essential when dealing with

Programmable Logic Controller (PLC) code which is graphical or binary and cannot be easily

manipulated outside the specialized programming environments that both Siemens and

Schneider use.

The figure below presents the changes when comparing two plc project files where only a

couple of function blocks were changed in some minor way. The whole XML code gets

restructured which traditional line-by-line comparison tools struggle to handle.

Figure 13 Winmerge location panel

 23

To address these limitations a practical solution involves using the exported XML as a

common format and using specialized XML comparison tools that can compare elements

and attributes by their name and code instead of line-by-line. There are proprietary

licensed tools that can parse XML code based on attributes and elements like XMLspy,

OxygenXMLdiff, and BeyondCompare.

A specialized XML parsing tool is also developed for testing purposes that can create a

comprehensive table list from the parsed XML code. This list is aimed to be used for easy

visual comparison and manual manipulation of function block attributes. Integration with

databases and version control systems becomes easier with a text-based list of blocks.

12 Custom XML parsing tool

Traditional file comparison tools struggle to effectively handle XML code generated from a

PLC program. due to their line-by-line approach. This limitation becomes apparent when

minor changes in the PLC code like moving an FBD by a small amount result in significant

restructuring in the exported XML format.

To address this issue and to prove the concept of this solution, a custom XML parsing tool

has been developed using C++. This tool is specifically designed to compare PLC blocks and

code. Capable of parsing the XML code and extracting the specific elements and attributes.

Mitigating the limitations and enabling tracking of modifications at the function block level.

Offering an easier visualization of changes and improved importing capabilities of the

blocklists. The resulting list is presented in .csv format which allows for easy integration

with software like Excel or databases for future applications.

The development of this tool was significantly aided by solutions and insights found on

websites like Stack Overflow and GitHub forums. These platforms have been invaluable in

offering an overabundant amount of code snippets, tips, and troubleshooting advice. The

tool is pieced together with solutions and tips found on these forums. However, due to the

vast collection of contributions and the iterative nature of coding. Referring to individual

pieces of code within this thesis becomes impractical.

 24

It is important to note that this tool has been developed primarily as a proof of concept.

The aim was to demonstrate the feasibility of a more intuitive approach to comparing PLC

code changes by focusing on function blocks within XML files.

.

12.1 XML parsing libraries

The use of custom XML parsing tools offers a range of functionalities aimed at enhancing

PLC code version control and enabling other data manipulation tasks. Especially when

exporting and managing configurations in XML from different environments like Schneider

and Siemens. There are many XML parsing libraries available, and the choice of a library

often depends on the programming environment and language used for the specific

project.

Among all the libraries available for parsing XML code tinyXML2 is chosen for its

compatibility with C++ and simplicity. It requires minimal overhead for quick and easy

integration into existing systems without sacrificing performance.

The primary function of this tool involves parsing XML formats of PLC code to extract all

relevant types of blocks. By including all attributes connected to these blocks such as

version, PLC brand, and origin, all critical information gets captured and maintained

throughout the version control process. This becomes essential for maintaining the

Figure 14 Custom XML parsing tool

 25

integrity of PLC programs when manipulating data outside their own programming

environment.

12.2 CSV output

The tool generates a .CSV file listing all function blocks and other block types with the help

of the TinyXML2 library. By iterating through all attributes and elements we can extract the

relevant data for version controlling the function blocks. This simplifies the manipulation

and automation with databases or version control systems straightforward.

By Leveraging the .CSV list of function blocks, the user can implement them in Excel and

databases for rapid information extraction. This also makes the automation of library

environments easier, allowing for quick identification and extraction of XML code for

specific function blocks along with their versions. Therefore, smoothing the updating

process of outdated PLC projects or troubleshooting the PLC code by comparing it to the

backups.

Figure 15 Blocklist in .CSV format

 26

12.3 Block Comparison

An additional feature of the tool is the ability to compare two XML files directly,

highlighting differences at the function block level. It detects changes such as additions,

deletions, and modifications, including alterations in comments or version numbers

associated with function blocks. A small demonstration file was created where versions of

the function blocks were changed, and a couple of blocks were deleted and added from the

base file.

Figure 16 Excel view of the .CSV file.

Figure 17 Block comparison.

 27

The primary objective of this comparison functionality is to aid in the troubleshooting of

customer code by comparing the finalized product against Veos archived backups. Through

this comparison, changes are documented in a .txt format. Providing a clear and immediate

understanding of any manipulations or modifications to function blocks. Preventing the

need to check every function block individually and compare what has changed.

12.4 Integration of Blocklist for version controlling

In the pursuit of a powerful version control system for PLC code with open-source solution

or the use of a database for storing and versioning blocks, the integration of a blocklist

derived from a custom XML parsing tool proves effective. The generated .CSV file storing

comprehensive information about function blocks and other block types serves as an

important component for effective versioning.

While open-source version control systems can handle PLC code in one way or another, the

ability to manipulate or extract data from the PLC files is not possible without their own

programming environment. By generating a blocklist in .CSV format, the user can directly

integrate the list with databases or libraries for easy querying and importing. This

integration allows diff tools in GIT and other version control systems to quickly show

changes visually to the user without the need for a third-party file comparator, while XML

code can also be compared directly. The .CSV provides quicker visualization thanks to its

compatibility with built-in diff tools that work with line-by-line comparison.

Figure 18 GIT diff tool - changes done to an .CSV file.

 28

13 Conclusion

A combination of GIT as version controlling system and a database for managing function

blocks proves the most optimal solution in the thesis. While a database would suffice for

the purposes of handling and manipulating function blocks between different projects,

integrating GIT guarantees correct versioning and easier troubleshooting processes. By

utilizing XML code both systems can manipulate the PLC data without the need for the

respective PLC brands‘ own programming environment.

Despite all PLCS brands adhering to the IEC61131-3 standard. The way exported XML code

is structured varies significantly between manufacturers and programming environments.

Even if databases and GIT can handle XML formats from the get-go. A blocklist in .CSV

format that is generated by a proprietary or self-developed XML parsing tool provides a

standardized structure for easy comparison and swapping of blocks between projects.

GIT provides an accessible entry point into version control with substantial scalability

benefits. Even though full-scale project version control may not be mandated by industry

standards or explicitly required by VEO. Considering the crucial role of PLCs in managing

essential infrastructure critical to human safety. It is important to anticipate potential

future legal requirements for firm version control. This provides verifiable documentation

that could be vital in legal scenarios.

Proprietary licensed systems such as Copia and Octoplant prove best suited for version

control and management of PLC components outside PLC brands’ own programming

environment. However, when the focus narrows down specifically to function blocks then

the extensive features offered by these systems become unnecessary and may not justify

the cost. The advantages of using these systems do not outweigh their expenses in this

case. Making GIT with database management a more cost-effective option in this situation

even with some unconventional solution needed for manipulation of PLC code .

 29

14 Discussion

Proprietary version control systems like Copia and Octoplant had impressive feature sets

that align closely with the functional requirements for function block version comparison

and other data integrations with libraries. However, the escalating licensing costs

associated with the inclusion of multiple developers and PLCs present a significant

problem. Prompting a shift towards more cost-effective, albeit less conventional solutions

utilizing open-source tools. While these open-source alternatives significantly mitigate the

financial burden by offering low to no-cost options. They introduce complexities in terms

of setup and integration. The trade-off here lies in balancing the financial advantages

against the potential reduction in system simplicity and flexibility.

This proves a broader issue that development for PLC systems is lagging compared to

traditional computers, especially in version control. Traditional software development

benefits from the mature ecosystem of version control tools such as GIT which are user-

friendly, mostly free, and well-integrated. Meanwhile, specialized, and effective version

control for PLC systems depends on expensive proprietary software that smaller teams and

hobbyists may find costly. This discourages smaller entities from adopting correct version

control practices and often resort to rudimentary methods like manually saving project

versions with new dates and storing them in folders on a computer. This not only increases

the risk of error but also discourages collaboration, traceability, and scalability.

While versioning of PLC code is possible with open-source solutions Like GIT, direct

manipulation and visualization become impractical outside the PLC programming

environments. Unconventional solutions need to be implemented when comparing files

which includes exporting and importing different formats back and forth. While these

solutions work it does not mean manipulation of plc code for versioning needs to be this

tedious and time-consuming.

The integration of the blocklist into version control systems and the use of XML circumvents

the limitations of versioning plc code by providing a human-readable representation. While

this surrogate representation enables version control operations within both open-source

and proprietary environments, multiple steps and liabilities are introduced. Version control

of PLC code should be as straightforward and simple as possible.

 30

15 List of references

Ayvesy-mdt. (3 3 2024). Full control for production plants and industrial automation
with octoplant. Retrieved from https://auvesy-mdt.com/en/octoplant

BasuMallick, C. (6 10 2022). What Is Version Control? Meaning, Tools, and Advantages .
Retrieved from https://www.spiceworks.com/tech/devops/articles/what-is-
version-control/

Dietrich, S. (13 10 2022). Managing Multi-user PLC Programming: Git Version Control .
Retrieved from https://control.com/technical-articles/managing-multi-user-
plc-programming-git-version-control/

Ernst, M. (1 9 2012). Version control concepts and best practices . Retrieved from
https://homes.cs.washington.edu/~mernst/advice/version-control.html

Henry, D. (12 7 2022). Understanding Git-Based Version Control for Industrial
Automation. Retrieved from https://www.automation.com/en-
us/articles/july-2022/git-based-version-control-industial-automation

IBM. (1 5 2024). What is a NoSQL database? Retrieved from
https://www.ibm.com/topics/nosql-databases

inductiveautomation.com. (24 02 2020). Retrieved from
https://inductiveautomation.com/resources/article/what-is-a-PLC

Lamb, F. (7 2023). ControlEngineering. Retrieved from
https://www.controleng.com/articles/plc-programming-language-
fundamentals-for-improved-operations-maintenance/

N Deepa, K. L. (2020). An Analysis on Version Control Systems. International
conference on emerging trends in information Technology (s. 9). Researchgate.

Peter. (13 3 2018). plcacademy.com. Retrieved from
https://www.plcacademy.com/function-block-diagram-programming/

plctable. (4 3 2024). PLC vs. PC. Retrieved from https://www.plctable.com/plc-vs-pc/

Rahul Awati, A. H. (3 2024). Microsoft SQL Server. Retrieved from
https://www.techtarget.com/searchdatamanagement/definition/SQL-Server

Schneider Electric India. (21 7 2022). www.se.com. Retrieved from
https://www.se.com/in/en/faqs/FA225557/

Scott Chacon, B. S. (2014). Pro Git. USA: Apress. Retrieved from https://git-
scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Siemens. (05 2021). Industry Support Siemens. Retrieved from
https://cache.industry.siemens.com/dl/files/533/109798533/att_1069908/v
1/TIAPortalOpennessenUS_en-US.pdf

Smith, P. (11 10 2022). Using the Version Control Interface (VCI) in TIA Portal V16.
Retrieved from https://www.dmcinfo.com/latest-
thinking/blog/id/10380/using-the-version-control-interface-vci-in-tia-portal-
v16

 31

Varela, L. R. (1 2022). A Study of Version Control System in Software Development
Management Concerning PLC Environments. Portugal: Researchgate.net.

Wright, M. (7 October 2020). Bloom Institute of Technology. Retrieved from
https://www.bloomtech.com/article/version-control-vocabulary

