

Karelia University of Applied Sciences

Bachelor of Information and Communication Technology

Popular API Technologies

Omer Ali

REST, GraphQL and gRPC

Thesis, June 2024

THESIS
June 2024
Degree Programme in Information and
Communications Technology

Tikkarinne 9
FI 80200
JOENSUU, FINLAND
Tel. +350 13 260 600

Author
Omer Ali

Title
Popular API Technologies: REST, GraphQL, and gRPC

In the rapidly evolving landscape of software development, APIs (Application
Programming Interfaces) are crucial for assembly efficient, scalable, and high-
performance applications. This thesis aims to present a comparative analysis of three
prominent API technologies: REST (Representational State Transfer), GraphQL (Graph
Query Language), and gRPC (Google Remote Procedure Call).

By examining their design principles, use cases, and emerging trends, this study aims to
guide IT developers and IT professionals in making well-informed technology choices.
The analysis covers the simplicity and widespread adoption of REST, the efficient and
flexible data retrieval capabilities of GraphQL, and the high-performance communication
facilitated by gRPC.

Case studies on platforms such as Amazon Web Services, Microsoft Azure, Google
Cloud, GitHub, Facebook, Salesforce, Shopify, and Netflix illustrated the practical
benefits and implementations of these technologies. The findings underscored the
importance of selecting the appropriate API technology to drive digital transformation
and integration across various industries.

Language
English

Pages
42

Keywords
application programming interfaces, representational state transfer, graph query
language, google remote procedure call

Contents

Abbreviations ... 4

1 Introduction ... 6
1.1 API ... 6

2 API Technologies ... 8
2.1 REST ... 9
2.2 GraphQL ... 12
2.3 gRPC ... 17
2.4 Comparison ... 19

3 Case Studies .. 21
3.1 Amazon Web Services ... 22
3.2 Microsoft Azure ... 23
3.3 Google Cloud Platform ... 24
3.4 Salesforce ... 26
3.5 Shopify .. 27
3.6 Facebook .. 28
3.7 GitHub ... 28
3.8 Netflix .. 30
3.9 Analysis ... 32

4 Discussion... 35
5 Conclusion .. 37
References ... 39

4

Abbreviations

API Application Programming Interface.

AWS Amazon Web Services.

AKS Azure Kubernetes Service.

CRM Customer Relationship Management.

CRUD Create, Read, Update, Delete.

FQL Falcon Query Language.

GCP Google Cloud Platform.

GraphQL Graph Query Language.

gRPC Google Remote Procedure Call.

HTML HyperText Markup Language.

HATEOAS Hypermedia As The Engine Of Application State.

HTTP Hypertext Transfer Protocol.

I/O Input/Output.

IT Information Technology.

IaaS Infrastructure as a Service.

JSON JavaScript Object Notation.

PII Personally Identifiable Information.

PaaS Platform as a Service.

RPC Remote Procedure Call.

REST Representational State Transfer.

5

SOAP Simple Object Access Protocols.

SaaS Software as a Service.

TCP/IP Transmission Control Protocol/Internet Protocol.

TLS Transport Layer Security.

URI Uniform Resource Identifier.

UI User Interface.

URI Uniform Resource Identifier.

UDP User Datagram Protocol.

XML eXtensible Markup Language.

6

1 Introduction

In the rapidly evolving software development landscape, the significance of

APIs (Application Programming Interfaces) cannot be overstated. Popular API

technologies like REST (Representational State Transfer), GraphQL (Graph

Query Language), and gRPC (Google Remote Procedure Call) are leading the

way in architectural design, providing diverse strategies for establishing

connectivity and functionality of different applications. This thesis focuses on

conducting a comparative analysis of these technologies to elucidate their roles,

effectiveness, and potential in shaping the future of software development.

By examining the design principles, utilization in different domains, and

emerging trends associated with each API technology, this study seeks to

provide developers, IT engineers, and software architects with the insights

needed to make informed decisions regarding software development. This

analysis not only fosters enhanced collaboration and innovation but also paves

the way for a new era of integration and efficiency in software creation.

1.1 API

An API is a set of rules and protocols that enable software applications to

communicate and exchange data, features, and functions. APIs streamline and

speed up application development by enabling developers to integrate data,

services, and capabilities from other applications instead of building it from

scratch. They offer a straightforward and secure method for application owners

to share their data and functions within their organization and with business

partners or third parties. APIs also enhance security by sharing only necessary

information and keeping other internal system details hidden, enabling the

sharing of small, and relevant data packets for specific requests (Goodwin

2024).

7

According to Biehl (2015) elaborated in his book API Architecture, APIs are a

clean, straightforward way for any software system to connect, integrate, and

extend, especially when developing distributed systems with components very

loosely coupled from each other. Simplicity, clarity, and ease of working with

APIs is their sovereignty: they offer a reusable interface to which different

applications can easily connect, but an end user does not interact with an API

directly. Instead, APIs work behind the scenes and are called directly by other

applications. They make it possible to have machine-to-machine communication

and link various software together.

Granli et al. (2015) point out that APIs have three main parts: the public

interface, a functional execution, and an overlapping layer with extras like error

handling and third-party tools. The interface usually describes what functions

and data structures are available, while the execution makes those descriptions

a reality.

Madden (2020) says that on behalf of users, an API responds to requests from

clients, web browsers, smartphone applications, and internet of things devices.

After processing requests by its internal logic, the API eventually provides the

client with a response. It can be necessary to communicate with additional

"backend" APIs offered by processing or database systems as shown in Figure

1.

Figure 1. Schematic representation of API interactions within a digital

ecosystem (Madden 2020).

8

2 API Technologies

Choosing the right API technology is crucial for building efficient, scalable, high-

performance applications. In thesis I will focus on REST, GraphQL, and gRPC

because of their popularity and upward trend (Weir 2019). Despite originating in

the 2000s and being regarded as old technology, 86% of developers still use it

(Postman 2023). REST is lightweight, independent, scalable, and flexible.

REST APIs, relying on the HTTP standard, are format-agnostic, enabling XML,

JSON, HTML, and more, making them fast and lightweight for mobile apps and

Internet of Things devices. They also allow for independent client-server

operations, letting developers work on different areas separately and use

various environments. Additionally, REST APIs offer crucial scalability and

flexibility, allowing for quick scaling and easy integration (MuleSoft 2024).

GraphQL is used by 29% of developers to be efficient in data retrieval and

flexibility (Postman 2023). This ability allows clients to ask for what they want,

which puts off over-fetching and under-fetching of data. This minimizes

bandwidth usage and improves performance, especially in mobile and complex

environments with variable network conditions (Moronfolu 2024).

GRPC is used by 11% of the developers (Postman 2023). It utilizes HTTP/2 and

protocol buffers for streamlined low-latency communication between servers

and clients. This makes gRPC particularly suitable for microservices

architectures that require quick, real-time interactions across distributed

services. The use of a Protocol buffer for binary serialization enhances the

speed and efficiency of data transmission, making gRPC ideal for environments

where performance and resource optimization are critical (gRPC 2023; Protocol

Buffers 2024).

I conducted a quick research on Google Trends (see Figure 2). Based on the

latest data, REST API continues to show the highest relative search interest,

highlighting its ongoing importance in the tech industry. Meanwhile, GraphQL

and gRPC also display stable trends, which suggests their increasing relevance

9

in specific areas. This trend analysis confirms that these technologies are not

fading but remain essential in modern software development. This supports

previous findings from Weir (2019) that these technologies are crucial for

technological advancement.

Figure 2. Google trends showing the search interest between May 2019 and

May 2024 for REST API, gRPC and GraphQL.

In summary, REST provides simplicity and broad compatibility, GraphQL offers

flexibility and efficient data fetching, and gRPC delivers high performance and

scalability for demanding applications. These technologies collectively offer a

comprehensive solution for various API needs, ensuring that developers can

select the most appropriate technology for their specific requirements.

2.1 REST

REST is an architectural style for distributed hypermedia systems. It specifies

software engineering principles and interaction constraints devised to enforce

these principles. REST is also a hybrid style, which took some of the guidance

from several network-based architectural styles and, on top of it, added further

constraints for characterizing a uniform connector interface. This framework

describes the architectural elements of REST, detailing sample processes,

connectors, and data views typical of prototypical architectures; it has become

one of the most popular methods for designing web-based APIs, promoting

lightweight, scalable, and efficient communication between applications by

10

using standard data formats and already existing web technologies like HTTP.

(Fielding 2000).

The essence of REST APIs lies in leveraging HTTP requests to execute a

range of CRUD operations (Create, Read, Update, and Delete) on resources,

each endpoint uniquely identified. A request comprises four key components:

the endpoint, representing the URL structure (root-endpoint/?); the method,

offering a suite of actions (GET, POST, PUT, PATCH, and DELETE); headers,

serving various purposes like authentication and content information (-H or --

header option); and data, the payload dispatched to a server, facilitated by

option with PUT, PATCH, POST, or DELETE requests as shown in Figure 3.

Together, these elements form the foundation for seamless communication and

interaction with REST APIs, embodying simplicity, versatility, and efficiency

(Husar 2022).

Figure 3. REST API with CRUD Operations (Salom 2023).

Gupta (2022) says that REST is an architecture approach used in networked

hypermedia systems. REST has become a popular and 86% used by API

developers (Postman 2023), and has been shown to work by the fact that it

powers many well-known websites like Salesforce, Shopify, and Microsoft

Azure, etc. REST follows rules that say how resources should be viewed and

given to clients. This makes sure that the development of web services is

consistent and standardized. REST makes web development easier by giving

developers a way to work that is uniform and predictable.

11

REST architecture is based on the fundamental principle of separating the client

and server components, as described by Fielding (2000). This separation

enables the independent development and deployment of client-side user

interfaces and server-side data storage. REST simplifies server implementation

and enhances scalability. Additionally, it allows for greater portability of user

interfaces across different platforms.

Another fundamental principle of REST architecture is stateless. Each client

request should carry all the information; it should be independent and self-

sufficient to be understood and processed by the server. State data pertinent to

requests by a client should be maintained at the client and passed in every

request. This statelessness helps make RESTful APIs entirely scalable and

reliable. REST is an architectural style that provides a set of guiding principles;

RESTful APIs are the practical implementation of the guiding principles (Makau

2023).

Caching is a mechanism employed by RESTful APIs to enhance network

performance, as discussed by Fielding (2000). Through caching, RESTful APIs

optimize performance and efficiency. Efficient caching reduces the need for

repeated client-server interactions, thereby improving application performance.

This caching mechanism is crucial for reducing latency and amplifying the

overall user experience.

The uniform interface is a core principle of REST architecture. It ensures that

RESTful applications consistently utilize standard HTTP methods to interact

with resources. This conformity clarifies the design and implementation of

RESTful systems and allows for the independent evolution of each component.

The four fundamental principles of REST's uniform interface include identifying

resources in requests. It manipulates resources through representations and

self-descriptive messages and HATEOAS (Hypermedia As The Engine Of

Application State), which is a vital part of the REST architectural style. It

enables clients to navigate a web API by using hypermedia links provided in the

API's response. This means that along with the requested data, the API

12

response also includes links to related resources and actions that the client can

perform next (Gupta 2023).

2.2 GraphQL

GraphQL is a query language for APIs and a time that fulfills requests with

existing data. It is an API description that allows the client to provide requests

precisely at the point where it is needed without anymore and without any less.

GraphQL makes APIs evolve over time more straightforward to manage and

comes with robust developer tooling (GraphQL 2024a).

Because GraphQL queries can touch not only the properties of one resource

but also follow references between them, they are more potent by design than

RESTful endpoints. Apps using GraphQL request only the data needed by the

view at that time, which yields much fewer network requests, making content

delivery fast and efficient even under slow mobile network conditions, where

typical REST APIs result in many round trips to load data from different URLs

(GraphQL 2024b).

GraphQL was started internally by Facebook in 2012 to address the growing

need for mobile applications. At the start of the smartphone era, devices had

limited connectivity. Applications needed to make as few requests as possible

to be fast and efficient. However, companies like Facebook, with rich

applications and news feeds, struggled to meet these requirements because

they needed multiple queries to gather all information related to a post.

Facebook decided to create a new query standard that would allow them to

gather all the necessary data in a single query. The need for a more efficient

and flexible data-fetching API, especially for complex, high-performance mobile

applications, led to the creation of GraphQL. GraphQL solves these problems

by allowing customers to precisely specify the data they want (Byron & Schrock,

2015).

According to Byron (2015), Facebook needed an API that was both powerful

enough to explain all of Facebook's data fetching and simple enough for their

13

product developers to learn and use. Facebook's mobile apps were getting

harder to use and would sometimes crash because they were too complicated.

They sent their news feed as HTML, and it was thought that an API data version

would be useful. Facebook attempted to fix its problems with RESTful server

resources and FQL (Falcon Query Language) tables, but they were unhappy

with the fact that the data used in apps and server searches were not the same.

Instead of resource URLs, extra keys, and join tables, they wanted an object

graph with used models like JSON. A lot of code was also there for the client to

understand and for the server to use when getting the data ready.

After rigorous internal use and refinement, Facebook made the technology open

source which allowed developers outside Facebook to utilize and contribute to

this technology. GraphQL’s release marked a significant shift in the way APIs

are designed and focused on giving clients the power to dictate the structure of

the responses they receive (GraphQL 2024c).

Spasev et al. (2020) talk about how GraphQL could change the way

applications are built. They show how GraphQL is different from the popular

REST architecture by sometimes cutting the size of JSON by over 90%, which

is a huge edge in today's API Technologies. In REST, clients get all the data

that goes with an endpoint. GraphQL, on the other hand, only gives the fields

that the client asked for, which saves time and data that would have been

wasted. GraphQL also solves the issue of over- and under-fetching by getting

all the data it needs in a single call, made possible by the ability to nest fields in

the query. The writers do warn, though, that before adopting GraphQL, one

should carefully think about whether it fits the goals and architecture of your

application.

According to Bell (2023a), GraphQL is a way to ask for data from APIs that was

created by Facebook engineers in 2015. It has become popular surrounded by

developers, especially those working on big web applications. GraphQL is seen

as a better option compared to traditional RESTful APIs. It is based on Graph

Theory, which is about how networks of objects (nodes) work together.

GraphQL makes asking for data easier by allowing specific and clear requests.

14

Just like telling a friend exactly what plans you have, developers can tell the API

exactly what data they need using variables and filters, getting just the right

response.

The API's capabilities are defined by the SDL (Schema Definition Language),

which is a key component of the GraphQL design. For defining the types, fields,

queries, mutations, and subscriptions that make up the API, it offers a simple

syntax. With the help of SDL, developers may create a coherent schema that

precisely represents the data model and operations that the API supports

(Cocca 2023; Bell 2023b).

To preserve data integrity and enable efficient communication between clients

and servers, key Points from the Document on GraphQL Schema Types, query,

and mutation types are essential within a GraphQL schema. Scalar types are

basic data types representing leaves of the query, such as Int, Float, String,

Boolean, and ID, and custom scalar types like Date can be defined.

Enumeration types, also called Enums, are restricted to a set of allowed values,

ensuring type validation and communication of finite values. Types can be

modified to be list arrays or non-nullable to ensure data validation, and these

modifiers can be combined for complex validation requirements. Interfaces are

abstract types that include a set of fields to be implemented by other types,

useful for querying fields common to multiple types. Union types, like interfaces

but without shared fields, are useful for returning one of several diverse types in

a query, requiring inline fragments for querying specific fields. Input types allow

passing complex objects as arguments, which is particularly useful for

mutations where entire objects need to be created or modified (GraphQL

2024a).

Queries are the primary method to retrieve data from a GraphQL API. It gives

clients the ability to indicate exactly which fields and their associations they wish

to retrieve. Clients can request layered data structures with GraphQL queries,

reducing the amount of data that is over- and under-fetched. To retrieve data

from underlying data sources, the server uses resolver functions to resolve

each field to its matching value while executing queries. With the help of this

15

method, consumers can obtain the exact data they require in an efficient and

adaptable manner (Cocca 2023; Bell 2023).

Figure 4. Fetching book details with GraphQL query.

Let us consider a simpler example using a GraphQL query to retrieve

information about a book from a library API (see Figure 4). This query requests

the title and author of a specific book, and it has the following components:

• Query name: GetBookDetails – This name helps to identify it during

debugging or in logs.

• Book field: book (id: "1") - This part of the query specifies the ID of the

requested book.

• Information retrieved:

- title - title of the book.

- author {name} - author (only the name is requested).

This example demonstrates how GraphQL enables clients to fetch precisely

what data they require, in this case, just the book’s title and the name of its

author, avoiding unnecessary data retrieval.

Mutations allow clients to make server-side changes to data, like adding,

removing, or altering resources. Mutations, in contrast to queries, can change

the status of the server's data and have unintended consequences. Sequential

execution of GraphQL mutations guarantees atomicity and consistency while

implementing modifications. Clients can communicate with the API to carry out

16

CRUD (Create, Read, Update, and Delete) operations and modify data

according to their needs by using mutations (Cocca 2023; Bell 2023).

Clients can receive updates when events happen thanks to subscriptions, which

allow real-time connections between clients and servers. Clients can subscribe

to events or data changes of interest via GraphQL subscriptions, and they will

get asynchronous notifications when pertinent updates take place. This makes it

possible to create real-time applications where rapid updates are essential for

user engagement and experience, such as chat apps, live dashboards, and

collaborative editing tools. Web sockets or other real-time protocols are

commonly used in subscription implementation to enable bidirectional

communication between clients and servers (Cocca 2023; Bell 2023).

Resolver functions obtain and modify data for every field in the GraphQL

schema. They carry out the logic necessary to resolve field values, serving as a

link between the schema and the underlying data sources. Asynchronous

resolver functions enable data retrieval from several sources, such as

databases, REST APIs, or additional services. Developers can enable

complicated data fetching logic and integration with a variety of data sources by

customizing the data fetching behavior of each field through the definition of

resolver functions.

The runtime element in charge of handling and carrying out GraphQL requests

is the GraphQL execution engine. Incoming queries are parsed and checked

against the schema, and the execution of resolver functions is coordinated to

resolve every field. By grouping queries, storing results in a cache, and

reducing round trips between the client and server, the execution engine

maximizes query execution. It guarantees that requests are carried out

effectively and consistently, offering scalable and responsive API performance.

Furthermore, to safeguard against abusive or malicious requests, the execution

engine implements rate-limiting restrictions and security safeguards, which

improve the GraphQL API's overall dependability and security (Cocca 2023; Bell

2023; GraphQL 2024b).

17

GraphQL can be complex due to its flexibility and ability to specify exact data

needs, reducing over-fetching and under-fetching. It requires defining a

comprehensive schema and understanding query, mutation, and subscription

mechanisms. The learning curve for GraphQL is steeper than REST.

Developers need to learn its syntax, schema definitions, and resolver functions.

However, its powerful querying capabilities and efficiency make the investment

worthwhile for many applications.

2.3 gRPC

GRPC is a modern, open-source RPC framework that can run on all platforms.

This allows client and server applications to communicate seamlessly and

facilitates the creation of connected systems (gPRC 2023).

RPC is a framework that enables high-level communication in operating

systems. It uses lower-level transport protocols such as Transmission Control

TCP/IP (Transmission Control Protocol/Internet Protocol) or UDP (User

Datagram Protocol) to transmit message data between applications. RPC builds

a client-server logical communication framework specifically designed for

network application support (IBM 2023).

Google's variant of RPC is known as gRPC. Google made gRPC, an open-

source RPC technology that makes it easier to make distributed systems that

work well and are safe. It uses HTTP/2 for transport and Protocol Buffers for

serializing messages. It also has features like authentication, load balancing,

bidirectional streaming, and more. Google's internal system needed a safe and

quick way for services to talk to each other over the network, which is where

gRPC got its start. In the past, Google did this with a custom method called

Stubby, which was the basis for gRPC (gRPC 2023).

The study by Hoang (2021) explains that gRPC works like many other RPC

programs; by allowing clients to execute procedures on remote servers,

abstracting the complexities of network communication. It is all about defining a

service, figuring out what methods it has, what inputs it needs, and what it gives

18

back when you call it from far away. On the server side, gRPC sets up the

service and makes sure to know how to handle calls from clients. The client, on

the other hand, has something called a "stub" that knows how to talk to the

server using the same methods. One good thing about gRPC is that it works in

lots of different settings, from big servers at Google to your computer. This

flexibility makes it easy for developers to mix and match languages depending

on what they are comfortable with. Another good feature is that many of

Google's tools and services now use gRPC. This means developers can quickly

add Google's features to their own apps without a lot of extra work.

gRPC utilizes Protocol Buffers, commonly known as its IDL (Interface Definition

Language) protocol buffer is a versatile method of serializing structured data

that can be used in various applications, such as communications protocols and

data storage. Developers can define the structure of their data once and then

utilize generated code to effortlessly read and write structured data from

different data streams and programming languages (Protocol Buffers 2024;

Robvet 2023).

gRPC is enhanced on top of HTTP/2, which was designed to overcome many of

the shortcomings in HTTP/1.1. HTTP/2 introduces significant changes such as

multiplexing (multiple requests in a single connection), server push, header

compression, and more. These features allow gRPC to build a more powerful

and efficient transport layer, which is ideal for the needs of modern applications

demanding high throughput and low latency (Mohan 2021).

In gRPC, services are defined in a .proto file, where you specify named

functions that could be remotely known with their parameter and return type.

This strict schema specification helps in generating client and server code in

various programming languages, ensuring that APIs are robust and type-safe

(gRPC 2022).

GRPC automatically generates client and server stubs for you from .proto files.

These stubs abstract the details of remote communication. The client stub

19

provides the same APIs as the server, which it internally translates into gRPC

calls. This simplifies the development of client-server applications (gRPC 2022).

One of the distinguishing features of gRPC is its built-in support for streaming

data. gRPC supports four kinds of streaming: server streaming, client

streaming, bidirectional streaming, and no streaming (simple RPC call). This

flexibility allows for continuous data transmission, fitting scenarios like real-time

data feeds or other dynamic interactions allying the client and server. gRPC

supports several kinds of streaming:

• Unary RPCs: Single request and response.

• Server streaming RPCs: Single request followed by a stream of

responses.

• Client streaming RPCs: Stream of requests followed by a single

response.

• Bidirectional streaming RPCs: Streams of requests and responses where

both client and server can write and read in any order (gRPC 2022)

Interceptors are a powerful feature in gRPC that allows you to run your code

before and after a request is processed. This is useful for tasks like logging,

authentication, and monitoring. Middleware can manipulate, redirect, or block

calls based on business logic or other rules (gRPC 2022).

GRPC supports strong authentication and encrypted data transmission.

Security mechanisms like SSL/TLS encryption ensure that gRPC messages are

transmitted securely across networks, safeguarding data integrity and privacy in

client-server interactions (gRPC 2022).

2.4 Comparison

To compare, I will refer to a recent summary by Loganathan (2024) (see Table

1). REST is a mature and widely adopted standard studied for its simplicity and

flexibility, making it great for public APIs and simple CRUD operations. It

supports various media types and scales well, but it can struggle with data

inefficiency and versioning challenges. GraphQL offers client-driven data

fetching to reduce over fetching and efficiently manages complex data

20

relationships with real-time updates. While it adds server complexity and has a

steeper learning curve, it is optimal for dynamic single-page applications and

complex data structures. Furthermore, gRPC delivers high performance through

HTTP/2 and Protocol Buffers, excels in streaming and real-time data scenarios,

and maintains strong data integrity. However, its learning curve and less flexible

nature make it best suited for high-performance microservices and data-

intensive operations where efficiency and reliability are paramount.

Feature REST GraphQL gRPC

Maturity High Medium High

Learning Curve Low Medium High

Flexibility High High Low

Performance Medium High High

Real-time Updates Limited Yes Yes

Data Fetching Multiple requests Single request Defined streams

Complexity Low Medium High

Ideal Use Cases
Public APIs,

simple operations

SPAs, complex

data, real-time

Microservices,

streaming, data-

intensive

Table 1. Comparison of REST, GraphQL and gRPC (Loganathan 2024).

Being a mature and straightforward technology, REST is suitable in scenarios

where the essential requirement is for a broad applicability. In contrast,

GraphQL excels in highly dynamic cases, like data retrieval in real time and

achieving efficiency in user interaction to the maximum extent possible on the

client side. For this reason, gRPC provides superior performance, efficient

communication, and strong type safety for microservices architectures, as well

as real-time streaming applications. (Loganathan 2024).

21

3 Case Studies

This thesis explores the use of REST, GraphQL, and gRPC in real-world

applications and provides reasons for their choices. This study will help to

understand the dynamics of API technologies in modern digital environments,

providing insights into how they support business operations.

In my research, I decided to include world-leading products like Salesforce,

GitHub, Shopify, Facebook, and Netflix, etc. I chose products of several types of

CRM (Customer Relationship Management), development platforms, E-

commerce, social networks, streaming services, to see how the API

technologies vary for each of them. I also decided to focus on the top 3 cloud

service providers, to see if the API technologies vary there too, for some other

reasons. Despite the existence of over 100 cloud service providers globally,

AWS (Amazon Web Services) has consistently maintained its market

dominance since its inception in 2004, commanding a 31% market share as

reported by Synergy Research Group in (2024), with Microsoft Azure and

Google Cloud holding 24% and 11%, respectively. These platforms have

significantly shaped the digital landscape, with AWS leading since its early

days, favored by a broad spectrum of users from startups to large enterprises.

Azure and Google Cloud have also cemented their positions with increasing

adoption over the years. Salesforce continues to lead as a global CRM provider,

offering advanced, customizable tools that enhance user engagement and

improve operational efficiencies (Andrei et al. 2024). Shopify dominates the e-

commerce sector with a 26% market share, illustrating its extensive reach and

influence (Haywood 2024). Facebook is the world's most popular social media

platform with 3.1 billion users worldwide (Bernhardt 2024). Furthermore, GitHub

serves as the premier platform for version control and collaborative

development, essential for projects of any scale with features like pull requests

and code review (GeeksforGeeks 2024). In the streaming sector, Netflix is

celebrated for its superior user interface and experience, commanding the

loyalty of 36% of streaming service users and boasting 269.6 million

subscribers worldwide a significant growth from previous years (Durrani 2024).

22

These selections provide a comprehensive view of current technological

impacts and future trends in API usage across multiple sectors.

3.1 Amazon Web Services

Amazon Web Services (AWS) is globally recognized as the most extensive and

widely utilized cloud platform, hosting over 200 comprehensive services from

numerous data centers worldwide. A vast range of customers, from rapidly

growing startups to large enterprises and government bodies, turn to AWS for

its ability to reduce costs, increase agility, and speed up innovation. AWS

stands out on the market due to the variety of services offered, with a higher

number of features for each one of these services. This includes fundamental

infrastructure technologies, such as computing, storage, and databases, from

forefront domains spanning machine learning, artificial intelligence, data lakes,

and analytics to the internet of things. These offerings simplify, speed up, and

result in a much lower cost of transitioning existing applications to the cloud and

developing any innovative application (Amazon 2024).

Moreover, AWS is much more functionally broad than others. For example, it

contains the broadest choice of purpose-built databases ever created for the

best performance in making applications, which allows choosing the most

suitable tools to save on expenses and optimize cost and performance

(Amazon 2024).

AWS (Amazon Web Services) utilizes various API technologies, including REST

and GraphQL, each selected to optimize performance, flexibility, and developer

productivity across different applications and workloads. REST APIs form the

backbone of many AWS services like Amazon S3 and EC2, chosen for their

statelessness which ensures scalability within dynamic cloud environments, and

their uniform interface simplifies client-server interactions. This makes REST

ideal for public-facing services where broad compatibility and scalability are

essential. Conversely, AWS employs GraphQL through AWS AppSync, which

offers efficient data loading in a single request, essential for mobile apps where

minimizing data transfer is critical. GraphQL's real-time update capability

23

through subscriptions enhances dynamic user experiences, while its strong

typing reduces bugs, boosting developer productivity (AWS 2024a; b).

3.2 Microsoft Azure

Microsoft Azure is a cloud computing platform focused on the development,

testing, launching, and management of its applications and services through the

Microsoft data center. The platform is based on integrating SaaS (Software as a

Service), PaaS (Platform as a Service), and IaaS (Infrastructure as a Service).

Compatibility with different development languages, tools, and frameworks

developed by Microsoft and those created by third-party companies has also

been considered. The efficiency of running Microsoft Azure lies in using

virtualization technology. In its simplest form, virtualization is creating a

separation of hardware from software by emulating hardware function into

software, thereby creating a virtual machine. This cloud environment involves a

vast array of servers and hardware such that they support the deployment and

management of these virtual services (Ekuan, 2023).

Microsoft Azure utilizes REST to manage cloud resources like computing

instances, storage units, and networking elements. The APIs are critical for

automating tasks such as deploying and scaling applications, monitoring

resources, and managing security settings. This automation capability is

essential for enterprises that leverage cloud computing to enhance their

scalability and flexibility in IT operations (Lamos et al. 2024).

Azure’s REST is designed to handle complex, scalable operations that are

typical in cloud environments. They support the seamless integration of

numerous services, regardless of the underlying technology, making it easier for

developers to connect services and orchestrate operations across different

platforms. The use of standard HTTP methods also simplifies the development

and maintenance of applications that interact with the cloud, ensuring that

secure, reliable, and efficient communication is maintained (Lamos et al. 2024).

24

Microsoft incorporates gRPC in its AKS (Azure Kubernetes Service) to enhance

pod-to-pod communications, which is essential in the microservices architecture

of AKS. gRPC facilitates efficient, language-agnostic communication among

microservices, streamlining deployment, management, and operation within

AKS.

Microsoft Azure utilizes gRPC in AKS to improve service efficiency. gRPC's

adoption of HTTP/2 features such as header compression and multiplexing

multiple requests over single TCP connections optimizes network use and

reduces latency. This is critical in a microservices environment where reliable,

frequent inter-service communication is necessary. The gRPC’s support for

Protocol Buffers ensures consistent and reliable API interactions, bolstering the

robustness of Microsoft’s cloud applications (Newton-King et al. 2022).

For a user-centric architecture, Microsoft Azure continues leveraging REST for

its versatility and wide adoption, which is crucial for user-driven interactions

across numerous services. The gRPC was added to improve real-time

communication capabilities in user-facing applications, ensuring fast and

efficient data exchanges that are critical for user satisfaction in cloud-based

services. This combination allows Azure to offer responsive, scalable, and

secure cloud services that meet the needs of diverse user bases, from

developers deploying applications to businesses managing vast data across

global infrastructures (Newton-King et al. 2022; Lamos et al. 2024; Microsoft

2024).

3.3 Google Cloud Platform

GCP (Google Cloud Platform) is a collection of cloud computing services by

Google. It enables scalable, reliable, high-performance infrastructure and

platform solutions specifically designed for businesses and developers. These

can make it feasible for one to build, scale, and manage applications and

services on a cloud. GCP offers myriad services, including computing, storage,

databases, networking, big data, and machine learning, among others. These

services make it easier for organizations to innovate and accelerate their digital

25

transformation goals. Services like infrastructure as a service, platform as a

service, and serverless computing are offered on GCP, whereby users harness

the advanced technologies and infrastructures of Google to scale applications

and services efficiently (Google 2024a).

Google Cloud extensively uses gRPC across its Google cloud services like

Bigtable, Spanner, and Pub/Sub, to manage large-scale, distributed computing

efficiently. This choice is driven by gRPC's ability to offer low latency and high

throughput, essential for handling vast amounts of data across Google's service

infrastructure.

Google Cloud uses REST APIs to facilitate interactions between clients and

servers by following the REST architectural style. REST APIs use standard

HTTP methods like GET, POST, PUT, and DELETE to enable performance on

resources identified by URLs. This design provides simplicity and flexibility,

making it easier for developers to integrate Google Cloud services into their

applications, ensuring compatibility and ease of use across various platforms

and devices (Google 2024b).

Google's preference for gRPC is based on its performance-enhancing features

from HTTP/2, such as header compression and multiplexing, which significantly

reduce latency. Additionally, gRPC's use of Protocol Buffers enhances data

transmission speeds and resource efficiency. The framework's support for

multiple programming languages and its ability to handle millions of concurrent

calls ensure seamless integration and scalability across Google's diverse and

extensive operations (Nally 2020).

Google’s use of gRPC in its services is ideal for creating a user-centric

architecture that requires fast, efficient, and reliable communication across

numerous services. To further enhance this, Google integrates user-focused

features like caching and smarter data syncing across devices, ensuring that

users have quick and seamless interactions (Google 2024a; Google 2023).

26

3.4 Salesforce

Salesforce is a suite of cloud-based solutions primarily centered on CRM

(Customer Relationship Management). It integrates various functionalities

across sales, service, marketing, and IT departments into a unified platform,

enabling businesses to enhance their customer engagement strategies.

Salesforce's platform utilizes AI to automate and optimize processes, thereby

improving team collaboration and productivity across business functions. This

dynamic approach helps organizations streamline their operations, increase

efficiencies, and foster closer connections with customers by providing a 360-

degree view of customer interactions (Salesforce 2024a).

Salesforce integrates REST to allow external systems to connect with its CRM

(Customer Relationship Management) functionalities. This includes accessing

Salesforce data like customer information, sales records, and custom reports,

as well as manipulating these data (creating, updating, and deleting records)

directly from third-party applications. This integration capability is vital for

organizations looking to synchronize their customer relationship activities

across multiple platforms without manual intervention. REST is primarily due to

its ease of use and ability to seamlessly integrate disparate systems. These

APIs support various data formats and are known for their straightforward,

resource-oriented approach, which aligns well with Salesforce's need for an

interactive, flexible CRM solution that can be tailored to specific user needs

(Salesforce 2024c).

Salesforce’s architecture benefits from the simplicity and effectiveness of REST

to seamlessly integrate various CRM functionalities, enhancing user interactions

by providing a cohesive experience. Tailoring the CRM system to be more

responsive to user actions through real-time data updates and seamless third-

party integrations can significantly improve the user experience, making the

platform more intuitive and adaptive to individual business needs (Salesforce

2024b).

27

3.5 Shopify

Shopify is an e-commerce platform that allows anyone to start, manage, and

grow a business. The platform allows users to create online stores, manage

sales across various channels, market to customers, and accept payments both

online and in actual locations. Shopify is designed to support businesses of all

sizes, from solo entrepreneurs to global enterprises, offering a range of tools

and features to streamline the selling process and enhance business

management. This includes customizable templates, integrated payment

processing, and multi-channel sales capabilities. Shopify's cloud-based

infrastructure ensures that business owners can operate their stores from

anywhere while maintaining high security and reliability (Shopify 2024).

Shopify uses REST to empower developers and merchants to extend the

functionalities of the Shopify platform or their online stores. These APIs handle

tasks like inventory management, order processing, and customer engagement

through third-party apps. The APIs are utilized to generate personalized

shopping experiences through the utilization of data analytics and customer

insights. Shopify values REST for its straightforward integration capabilities and

scalability, which are essential in the e-commerce sector where customer

demands and data volumes can fluctuate significantly. The APIs allow for

efficient data handling and provide the flexibility needed to customize and

expand e-commerce operations and it supports a vast ecosystem of developers

and merchants who rely on these APIs to manage their stores efficiently and

adapt their offerings to meet the evolving needs of their customers (Shopify

2024b).

Shopify is focused on enhancing its REST usage to support the dynamic

requirements of e-commerce platforms. Enhancing API responses and

streamlining processes like inventory checks and order updates can

significantly improve the user experience. Incorporating real-time capabilities to

instantly reflect changes in product availability and order status to provide

immediate feedback to users, is an essential feature in e-commerce operations

(Shopify 2024b).

28

3.6 Facebook

Facebook is a social networking website known to everyone, where people

share information and connect with other family and friends over the internet. All

these were the thoughts of Mark Zuckerberg when studying at Harvard

University in the year 2004. Designed first for individuals aged 13 and over, the

email address, users soon became addicted to the networking site, which has

now resulted in it becoming the world's most extensive network, with over 1

billion users (Facebook 2024).

Facebook, the creator of GraphQL, initially developed this technology to

manage the complexities of its vast data needs across multiple platforms

efficiently. It allows their developers to request exactly what is needed from the

backend, reducing unnecessary data transfer, and improving loading times,

particularly on mobile devices with limited bandwidth. The key reason for

Facebook's adoption of GraphQL was to enhance the performance of their

applications by eliminating redundant data fetch operations, thus optimizing the

user experience across diverse network conditions and devices. Facebook,

optimizing GraphQL to manage complex data efficiently across platforms

enhances user experience by minimizing response times and data over-

fetching. This approach is particularly effective in a social network environment

where speed and efficiency are crucial for user engagement. Facebook is

improving its architecture by continuously updating GraphQL to handle new

kinds of data and interactions, ensuring the platform remains responsive and

tailored to user needs (GraphQL 2024b; GraphQL 2015).

3.7 GitHub

GitHub is a platform tailored for developers, providing tools that facilitate coding,

collaboration, and software deployment. The software provides various features

such as version control using Git, issue tracking, continuous integration, and

more, allowing teams to manage and enhance their software development

29

projects effectively. GitHub supports both private and open-source projects,

serving a wide community from individual developers to large enterprises

(Carpenter 2020).

GitHub employs REST to automate and enhance workflows related to code

management and collaborative software development. These APIs allow

developers to programmatically create, merge, and close pull requests; manage

issues; and conduct code reviews. Such automation is particularly valuable in

environments that require continuous integration and deployment processes,

where manual oversight can introduce delays and become a significant

bottleneck. The choice of REST by GitHub stems from its adaptability and

developer-friendly nature, which are ideal for a platform serving a large

community of developers. REST facilitates quick integrations and real-time data

exchange, which are essential in the dynamic, collaborative environment of

software development. These APIs support the automation of GitHub's core

functionalities, enhancing developer productivity and operational efficiency

(GitHub 2022).

In addition to REST, GitHub also leverages GraphQL to increase the flexibility

and efficiency of its APIs. This adoption allows developers to specify exactly

what data users need, significantly reducing the amount of data transmitted

over the network, for example 2. This capability is crucial for improving the

performance of integrations and services that depend on GitHub’s data,

particularly in reducing bandwidth consumption and enhancing responsiveness.

GitHub adopted GraphQL to address the inefficiencies inherent in their previous

REST API implementations, which often required multiple round trips to fetch

complete data sets for Example 2. GraphQL has enabled GitHub to streamline

client-server interactions significantly, allowing for a more efficient data-fetching

process that tailors requests to the precise needs of the user. This optimization

helps to minimize latency and improve the overall user experience by ensuring

that only necessary data is retrieved and processed (GitHub 2024).

GitHub optimizes its user-centric architecture by combining REST for general

API interactions and GraphQL for complex queries that enhance the user

30

experience. By using GraphQL, GitHub allows developers to precisely fetch

what they need, reducing overhead and improving the speed of the interface.

This is especially beneficial in reducing the load times and improving the

responsiveness of GitHub’s web and mobile interfaces, directly impacting user

satisfaction (GitHub 2022; GitHub 2024).

GitHub initially adopted the REST due to its alignment with familiar web

standards and its use of standard HTTP methods, which simplified common

tasks such as creating, retrieving, updating, or deleting data linked to GitHub

functionalities like pull requests and issue tracking. However, as GitHub grew,

the limitations of REST in handling large data sets became apparent, often

requiring multiple requests that led to inefficiencies. To overcome these issues,

GitHub introduced GraphQL in 2016, Enabling developers to specify exactly

what data users want in a single request, reducing bandwidth usage and

enhancing performance in complex scenarios. This shift marked a significant

move towards optimizing data retrieval processes at GitHub (2016).

3.8 Netflix

Netflix is a subscription-based streaming service that gives users access to a

diverse range of documentaries, movies, and TV shows, which can be

streamed on various internet-connected devices. The service offers different

subscription plans, each determining the number of devices that can access

Netflix simultaneously and the video quality, which spans from standard

definition to ultra-high definition. Members enjoy ad-free viewing and have the

flexibility to download titles for offline viewing on select devices (Netflix 2024).

Netflix utilizes GraphQL to provide personalized content to millions of customers

worldwide. This API technology allows the streaming service to adapt queries

based on user preferences and viewing history, optimizing data delivery with

minimal overhead. This capability is crucial for providing a seamless streaming

experience, as it ensures that users receive content tailored to their tastes

without unnecessary data transfer. The primary reason for adopting GraphQL at

Netflix is its ability to handle scalable solutions required for vast data requests

31

efficiently. This feature reduces bandwidth usage and server load, critical for

maintaining performance during peak viewing times (Netflix TechBlog 2020a, b;

Shtatnov 2018).

In addition to GraphQL, Netflix also uses gRPC for robust internal microservice

communication within its content distribution network. This technology is pivotal

in managing complex data flows and streaming high-quality video to a global

audience. Netflix’s use of gRPC is driven by the need for a high-performance

framework capable of handling intense loads, which gRPC provides through

efficient binary serialization and support for bidirectional streaming. These

capabilities optimize both speed and resource usage, crucial for the streaming

giant’s operations. The framework’s ability to support multiple programming

languages and handle millions of concurrent calls enhances its integration and

scalability within Netflix’s architecture (Borysov & Gardiner 2021a; b).

Netflix’s combination of GraphQL for front-end operations and gRPC for

backend services provides a robust architecture for streaming services.

Enhancing GraphQL implementations to better predict user preferences and

tailor content recommendations, alongside optimizing gRPC for smoother video

delivery, can significantly improve user experience. Ensuring minimal buffering

and quick access to content are critical for user satisfaction in media streaming

platforms (Netflix TechBlog 2024).

Netflix adopted GraphQL to improve the performance of its digital interfaces,

particularly its user interfaces on mobile devices where network conditions can

vary significantly. Introduced around 2017, GraphQL allowed Netflix to

efficiently manage data transfers between its clients and servers. With

GraphQL, Netflix could tailor requests to exact client needs, significantly

reducing the unnecessary load and enhancing user experience by speeding up

response times and reducing latency (Shtatnov 2018).

The transition to gRPC As Netflix continued to evolve, the company began

adopting gRPC to further optimize its backend services, especially for new

microservices architectures where high-performance bidirectional streaming is

32

crucial. gRPC, which uses HTTP/2 and protocol buffers, offers significant

improvements over traditional REST-based interfaces by reducing latency and

enhancing the speed of internal service communications. This was particularly

beneficial for Netflix’s complex workflows and vast data requirements across its

global content delivery networks (Borysov & Gardiner 2021a; b).

3.9 Analysis

I summarize these findings in Table 2.

 API Technology

Product REST GraphQL gRPC

Amazon Web Services ✔ ✔

Microsoft Azure ✔ ✔

Google Cloud ✔ ✔

Salesforce ✔

Shopify ✔

Facebook ✔

GitHub ✔ ✔

Netflix ✔ ✔

Table 2. Which API technologies REST, GraphQL, and gRPC are utilized by

various prominent companies or products to enhance their digital platforms.

Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform

(GCP) demonstrate the critical role of REST APIs in managing scalable and

public-facing services, while GraphQL and gRPC enhance performance by

enabling efficient, real-time data loading and low-latency communication. These

technologies are vital for handling diverse and extensive functionalities, from

computing and storage to machine learning and big data.

33

Salesforce’s use of REST APIs underscores the importance of seamless

integration and real-time data updates in customer relationship management

(CRM), ensuring enhanced productivity and system responsiveness. Shopify’s

reliance on REST APIs for inventory management and customer engagement

highlights the necessity of reliable and secure e-commerce operations.

Facebook uses GraphQL to efficiently manage its vast data needs across

multiple platforms. This technology enables developers to request specific data

from the backend, reducing unnecessary data transfer and improving loading

times, especially on mobile devices with limited bandwidth. By using GraphQL,

Facebook enhances application performance, minimizes response times, and

optimizes user experience across various network conditions and devices.

GitHub uses REST APIs to automate workflows, manage pull requests, issues,

and code reviews, enhancing productivity in continuous integration and

deployment environments. To address inefficiencies with REST, GitHub

adopted GraphQL, which allows developers to request precise data, reducing

data transfer and improving performance. This combination of REST for general

interactions and GraphQL for complex queries optimizes GitHub’s operations,

enhancing the user experience and efficiency in data handling.

To understand the benefits GraphQL brings when querying data from GitHub let

us look at the following examples (see Figure 5 and Figure 6).

Figure 5. Using GraphQL API to get a user's details and top 3 starred

repositories.

34

Figure 6. Pseudocode using GitHub’s REST API to get a user's details and top

3 starred repositories.

We observe how in Figure 5, the GraphQL query defines the username (line 2)

and the data to retrieve: the name of the user (line 3), the repository names and

star counts (lines 6 and 7), limiting to the top 3 (line 4). This is done in a single

request to the server.

Using the REST API (see Figure 6) we first have to GET all repositories of the

user (line 1), and then loop (line 3) and do separate GET requests for each

repository (line 3.1). This demanding step is followed by sorting the results on

the client (line 4) and returning the top 3 results (line 5).

Netflix's implementation of both GraphQL and gRPC illustrates the need for a

dual approach to optimize user experience and internal communication. This

combination ensures personalized content delivery with minimal latency and

robust support for concurrent user calls, demonstrating how tailored data

requests and efficient microservice communication can enhance streaming

services.

Overall, the integration of REST APIs, GraphQL, and gRPC across these

platforms highlights a strategic focus on scalability, efficiency, and user

experience, highlighting best practices in cloud computing, CRM, e-commerce,

social networking, software development, and streaming services. These

learnings emphasize the importance of choosing the right API technologies to

meet specific operational needs and improve service delivery.

35

4 Discussion

In this research, we have undertaken a comparative analysis of three pivotal

API technologies: REST, GraphQL, and gRPC, each significantly influencing

modern software architecture and connectivity. The choice of API technology

profoundly impacts the efficiency, performance, and scalability of software

applications. Therefore, understanding the strengths and limitations of each

technology is crucial for developers, IT engineers, and software architects.

REST remains a cornerstone of web services due to its simplicity, scalability,

and wide adoption. It utilizes standard HTTP request methods (GET, POST,

PUT, and DELETE) to perform CRUD operations on resources identified by

endpoint. REST’s stateless nature contributes to its scalability and reliability.

Additionally, REST APIs support multiple data formats, making them

appropriate for a broad range of applications, including mobile and IoT devices.

However, REST can become cumbersome with complex queries and

relationships, heading to over-fetching or under-fetching of data, affecting

performance, especially in mobile applications with limited bandwidth.

GraphQL, developed by Facebook, addresses certain limitations of REST by

allowing users to specify exactly what data they require. This optimizes

bandwidth usage and improves performance, particularly in mobile and complex

environments. GraphQL's schema-based approach facilitates better data

validation, documentation, and introspection. Despite its advantages, GraphQL

can introduce complexity in implementation and might require more effort to set

up compared to REST. Its flexibility can sometimes lead to performance issues

if not carefully managed, as clients can inadvertently create overly complex and

resource-intensive queries.

gRPC, an open-source RPC framework developed by Google, is designed for

high-performance communication using HTTP/2 and protocol buffers. It best

works in situations involving low-latency and high-throughput communication,

36

ideal for microservices architectures and real-time applications. gRPC’s support

for bidirectional streaming allows for continuous data transmission between

client and server, useful for applications like real-time messaging and video

streaming. However, gRPC has a steeper learning curve and can be more

complex to implement than REST or GraphQL. Its reliance on HTTP/2 and

protocol buffers means it might not be as broadly compatible with existing

infrastructure and tools designed primarily for REST and JSON.

Case studies of leading technology companies like Amazon Web Services,

Microsoft Azure, Google Cloud, Salesforce, GitHub, Shopify, Facebook, and

Netflix demonstrate the practical applications of REST, GraphQL, and gRPC in

various digital environments. These companies use multiple technologies to

leverage their respective strengths: Amazon Web Services uses both REST

and GraphQL, REST for simplicity and stateless interactions, and GraphQL for

efficient data loading in mobile applications. Microsoft Azure utilizes both REST

and gRPC, with REST managing cloud resources and gRPC enhancing pod-to-

pod communications in Azure Kubernetes Service. Google Cloud employs both

REST and gRPC extensively, using REST for client-server interactions and

gRPC for low latency, high throughput tasks in services like Bigtable and

Spanner. GitHub uses both REST and GraphQL to enhance workflow

automation related to code management and collaborative software

development. Shopify uses REST to manage inventory, orders, and customer

interactions. Facebook utilizes GraphQL to handle vast amounts of data

efficiently across multiple platforms. Netflix leverages GraphQL for personalized

content delivery and gRPC for high-performance internal microservice

communication.

Supporting multiple API technologies allows companies to ensure flexibility,

performance, and efficiency across different application scenarios. This study,

however, focused on selecting popular products of big companies. This might

not be possible (cost-wise) for small companies; therefore, more research could

be done in this direction.

37

5 Conclusion

This thesis provided a comprehensive comparative analysis of three popular

API technologies: REST, GraphQL, and gRPC. The purpose was to guide

developers and IT professionals in determining the appropriate API technology

to use based on their specific needs.

The study examined the design principles, use cases, and emerging trends

associated with each technology. REST was highlighted for its simplicity and

widespread adoption, making it suitable for many applications due to its

statelessness and reliance on standard HTTP methods. However, it can

become inefficient when dealing with complex queries and enormous amounts

of data.

GraphQL was praised for its ability to provide customers with precise data,

reducing over-fetching and under-fetching issues. This makes GraphQL highly

efficient in mobile and complex environments but introduces complexity in its

implementation and potential performance management challenges.

gRPC was recognized for its high-performance communication capabilities,

particularly suited for microservices architectures and real-time applications. Its

use of HTTP/2 and protocol buffers allows for effective, low-latency

communication, although it has a steeper learning curve and may not be as

compatible with existing REST-based infrastructures.

Case studies from industry leaders such as Amazon Web Services, Microsoft

Azure, Google Cloud Platform, Salesforce, Shopify, Facebook, GitHub, and

Netflix showed the practical applications of these technologies. AWS employs

both REST and GraphQL, Azure uses REST and gRPC, Google Cloud

leverages REST and gRPC extensively, Salesforce relies on REST, Shopify

uses REST for e-commerce operations, Facebook utilizes GraphQL, GitHub

combines REST and GraphQL, and Netflix integrates GraphQL and gRPC.

38

The analysis stated that API technology application should be based on the

project requirements. REST is recommended for its simplicity and broad

compatibility, GraphQL for its efficiency in data retrieval and handling complex

data structures, and gRPC for high-performance and real-time applications.

Future research could include broader case studies, performance benchmarks,

security considerations, and a deeper analysis of developer experiences.

Additionally, recent breakthroughs in artificial intelligence may play a significant

role in the future.

39

References

Amazon. 2024. What are AWS? Amazon Web Services, Inc.

https://aws.amazon.com/what-is-aws. 06.06.2024.
Andrei, I., Ballard, B., Choudhary, U., & Williams, O. 2024. Best CRM software

of 2024. TechRadar. https://www.techradar.com/best/the-best-crm-
software. 23.05.2024.

AWS. 2024a. What is GraphQL?. Amazon Web Services, Inc.
https://aws.amazon.com/graphql. 06.06.2024.

AWS. 2024b. Amazon API Gateway - AWS. Amazon Web Services, Inc.
https://aws.amazon.com/api-gateway. 06.06.2024.

Bernhardt, G. 2024. Top 10 most popular social media platforms. Shopify.
https://www.shopify.com/blog/most-popular-social-media-platforms.
30.05.2024.

Bell, H. 2023a. What is GraphQL: Definition & Uses | Noname Security.
https://nonamesecurity.com/learn/what-is-graphql. 02.05.2024.

Bell, H. 2023b. GraphQL Tutorials.
https://www.apollographql.com/tutorials/intro-strawberry/02-graphql-
basics. 02.05.2024.

Biehl, M. 2015. API architecture (Vol. 2). API-University Press. 01.05.2024.
Borysov, A., Gardiner, R. 2021a. Practical API design at Netflix, Part 1: Using

ProtobufFieldMask. https://netflixtechblog.com/practical-api-design-
at-netflix-part-1-using-protobuf-fieldmask-35cfdc606518. 20.05.2024.

Borysov, A., Gardiner, R. 2021b. Practical API Design at Netflix, Part 2:
ProtobufFieldMask for mutation operations.
https://netflixtechblog.com/practical-api-design-at-netflix-part-2-
protobuf-fieldmask-for-mutation-operations-2e75e1d230e4.
20.05.2024.

Byron, L. 2015. GraphQL: A data query language. Facebook Engineering, Core
Data, Developer Tools. 04.05.2024.

Byron, L. & Schrock, N. 2015. GraphQL: A data query language, GraphQL.org,
GraphQL Introduction. 04.05.2024.

Carpenter, M. 2020. An introduction to GitHub. United States government
https://digital.gov/resources/an-introduction-github. 03.06.2024.

Cocca, G. 2023. The GraphQL API Handbook – How to build, test, consume
and document GraphQL APIs. freeCodeCamp.org.
https://www.freecodecamp.org/news/building-consuming-and-
documenting-a-graphql-api. 26.05.2024.

Durrani, A. 2024. Top streaming statistics in 2024. Forbes Home.
https://www.forbes.com/home-improvement/internet/streaming-stats.
30.05.2024.

Ekuan, M. 2023. How does Azure work? Cloud Adoption Framework. Microsoft
Learn. https://learn.microsoft.com/en-us/azure/cloud-adoption-
framework/get-started/what-is-azure. 21.05.2024.

Facebook. 2024. What is Facebook? GCFGlobal.org.
https://edu.gcfglobal.org/en/facebook101/what-is-facebook/1/#.
15.05.2024.

Fielding, R.T. 2000. Architectural styles and the design of network-based
software architectures. University of California, Irvine. 28.04.2024.

https://aws.amazon.com/what-is-aws
https://www.techradar.com/best/the-best-crm-software.
https://www.techradar.com/best/the-best-crm-software.
https://aws.amazon.com/graphql
https://aws.amazon.com/api-gateway
https://www.shopify.com/blog/most-popular-social-media-platforms.
https://nonamesecurity.com/learn/what-is-graphql
https://www.apollographql.com/tutorials/intro-strawberry/02-graphql-basics
https://www.apollographql.com/tutorials/intro-strawberry/02-graphql-basics
https://netflixtechblog.com/practical-api-design-at-netflix-part-1-using-protobuf-fieldmask-35cfdc606518.
https://netflixtechblog.com/practical-api-design-at-netflix-part-1-using-protobuf-fieldmask-35cfdc606518.
https://netflixtechblog.com/practical-api-design-at-netflix-part-2-protobuf-fieldmask-for-mutation-operations-2e75e1d230e4.
https://netflixtechblog.com/practical-api-design-at-netflix-part-2-protobuf-fieldmask-for-mutation-operations-2e75e1d230e4.
https://digital.gov/resources/an-introduction-github.
https://www.freecodecamp.org/news/building-consuming-and-documenting-a-graphql-api
https://www.freecodecamp.org/news/building-consuming-and-documenting-a-graphql-api
https://www.forbes.com/home-improvement/internet/streaming-stats
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/get-started/what-is-azure
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/get-started/what-is-azure
https://edu.gcfglobal.org/en/facebook101/what-is-facebook/1/

40

GeeksforGeeks. 2024. 8 Best collaboration tools for software development.
GeeksforGeeks. https://www.geeksforgeeks.org/best-collaboration-
tools-for-software-development. 31.05.2024.

GitHub. 2016. The GitHub GraphQL API. The GitHub Blog.
https://github.blog/2016-09-14-the-github-graphql-api. 17.05.2024.

GitHub. 2022. GitHub REST API documentation
https://docs.github.com/en/rest?apiVersion=2022-11-28. 26.05.2024.

GitHub. 2024. GitHub GraphQL API documentation.
https://docs.github.com/en/graphql. 26.05.2024.

Google Cloud. 2024a. Google Cloud overview.
https://cloud.google.com/docs/overview. 23.05.2024.

Google Cloud. 2024b. Cloud APIs HTTP.
https://cloud.google.com/apis/docs/http. 23.05.2024.

Google Cloud. 2024c. Cloud Architecture Center.
https://cloud.google.com/architecture. 23.05.2024.

Google Cloud. 2023. Google Cloud Architecture.
https://cloud.google.com/architecture/framework. 23.05.2024.

Goodwin, M. 2024. What is an API? IBM Newsletter.
https://www.ibm.com/topics/api. 26.04.2024.

Granli, W., Burchell, J., Hammouda, I. & Knauss, E. 2015. The driving forces of
API evolution. In Proceedings of the 14th International Workshop on
Principles of Software Evolution (p. 28-37). 23.04.2024.

GraphQL. 2024a. Schemas and Types. https://graphql.org/learn/schema.
19.05.2024.

GraphQL. 2024b. Getting Started. https://graphql.org/faq/getting-started.
19.05.2024.

GraphQL. 2024c. GraphQL Specification. https://spec.graphql.org. 19.05.2024.
gRPC. 2022. Core concepts, architecture, and lifecycle.

https://grpc.io/docs/what-is-grpc/core-concepts. 23.05.2024.
gRPC. 2023. Introduction to gRPC. Online. https://grpc.io/docs/what-is-

grpc/introduction. 23.05.2024.
gRPC. 2024 A high-performance, open-source universal RPC framework.

Retrieved from https://grpc.io. 23.05.2024.
Gupta, L. 2023. HATEOAS driven REST APIs. REST API Tutorial.

https://restfulapi.net/hateoas. 27.04.2024.
Gupta, L. 2022. REST API Tutorial. Retrieved from https://restfulapi.net.

27.04.2024.
Haywood, P. 2024. Most Popular Ecommerce Platforms (2023 Stats) -

EcommerceGold. EcommerceGold. https://www.ecommerce-
gold.com/most-popular-ecommerce-platforms. 30.05.2024.

Hoang, V. 2021. Applying microservice architecture with modern gRPC API to
scale up large and complex applications, Metropolia University of
Applied Sciences, Engineering Information Technology Bachelor’s
Thesis https://urn.fi/URN:NBN:fi:amk-2021060314024. 12.05.2024.

Husar, A. 2022, How to Use REST APIs – A Complete Beginner's Guide.
Retrieved from www.freecodecamp.org:
https://www.freecodecamp.org/news/how-to-use-rest-api.
03.05.2024.

IBM. 2023. Remote Procedure Call.
https://www.ibm.com/docs/en/aix/7.3?topic=concepts-remote-
procedure-call. 24.06.2024.

https://www.geeksforgeeks.org/best-collaboration-tools-for-software-development
https://www.geeksforgeeks.org/best-collaboration-tools-for-software-development
https://github.blog/2016-09-14-the-github-graphql-api
https://docs.github.com/en/rest?apiVersion=2022-11-28.
https://docs.github.com/en/graphql
https://cloud.google.com/docs/overview
https://cloud.google.com/apis/docs/http.
https://cloud.google.com/architecture.
https://cloud.google.com/architecture/framework
https://www.ibm.com/topics/api
https://graphql.org/learn/schema
https://graphql.org/faq/getting-started
https://spec.graphql.org/
https://grpc.io/docs/what-is-grpc/core-concepts
https://grpc.io/docs/what-is-grpc/introduction.
https://grpc.io/docs/what-is-grpc/introduction.
https://grpc.io/
https://restfulapi.net/hateoas
https://restfulapi.net/
https://www.ecommerce-gold.com/most-popular-ecommerce-platforms
https://www.ecommerce-gold.com/most-popular-ecommerce-platforms
https://urn.fi/URN:NBN:fi:amk-2021060314024
https://www.freecodecamp.org/news/how-to-use-rest-api
https://www.ibm.com/docs/en/aix/7.3?topic=concepts-remote-procedure-call
https://www.ibm.com/docs/en/aix/7.3?topic=concepts-remote-procedure-call

41

Lamos, B., Addie, S., Klaas. & Dietzel, D. 2024. Azure REST API reference
documentation. Microsoft Learn. https://learn.microsoft.com/en-
us/rest/api/azure. 22.05.2024.

Loganathan, P. 2024. API architecture showdown - Rest vs graphQL vs gRPC.
Pradeep Loganathan’s Blog. https://pradeepl.com/blog/api/rest-vs-
graphql-vs-grpc/#graphql---the-dynamic-orchestrator. 31.05.2024.

Madden, N. 2020. API security in action. Simon & Schuster Book. 22.04.2024
Makau, L. 2023.Understanding the Distinction: REST vs. RESTful APIs.

https://www.linkedin.com/pulse/understanding-distinction-rest-vs-
restful-apis-lucky-makau. 23.05.2024.

Microsoft. 2024. Azure documentation. Microsoft Learn.
https://learn.microsoft.com/en-us/azure/?product=popular.
23.05.2024.

MuleSoft, 2024. Top 3 benefits of REST APIs 2024 | MuleSoft.
https://www.mulesoft.com/resources/api/top-3-benefits-of-rest-apis.
28.05.2024.

Mohan, N. 2021. Think gRPC, when you are architecting modern microservices.
https://www.cncf.io/blog/2021/07/19/think-grpc-when-you-are-
architecting-modern-microservices. 20.05.2024.

Moronfolu, M. 2024. Top advantages and disadvantages of GraphQL. Hygraph.
https://hygraph.com/blog/graphql-advantages. 29.05.2024.

Nally, M. 2020. Google Cloud Blog. https://cloud.google.com/blog/products/api-
management/understanding-grpc-openapi-and-rest-and-when-to-
use-them%20. 24.05.2024.

Netflix. 2024. What is Netflix? Help Center. https://help.netflix.com/en/node/412.
26.05.2024.

Netflix TechBlog. 2020a. How Netflix scales its API with GraphQL Federation.
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-
federation-part-1-ae3557c187e2. 26.05.2024.

Netflix TechBlog. 2020b. Scaling Netflix’s API via GraphQL Federation (#2).
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-
federation-part-2-bbe71aaec44a. 26.05.2024.

Netflix TechBlog. 2024. The Netflix TechBlog. https://netflixtechblog.com.
26.05.2024.

Newton-King, J. 2022. Overview for GRPC on .NET. Microsoft Learn.
https://learn.microsoft.com/en-
us/aspnet/core/grpc/?view=aspnetcore-6.0. 11.05.2024.

Postman. 2023. State of the API Report, 2023 API Technologies. Postman API
Platform. https://www.postman.com/state-of-api/api-technologies.
30.05.2024.

Protocol Buffers. 2024. https://protobuf.dev/overview. 29.05.2024.
Robvet. 2023. GRPC - .NET. Microsoft Learn. https://learn.microsoft.com/en-

us/dotnet/architecture/cloud-native/grpc#protocol-buffers.
13.05.2024.

Salesforce. 2024a. What does Salesforce do?
https://www.salesforce.com/products/what-is-salesforce. 25.05.2024.

Salesforce. 2024b. Salesforce Developers.
https://developer.salesforce.com/docs/atlas.en-
us.api_rest.meta/api_rest/intro_rest_architecture.htm. 25.05.2024.

https://learn.microsoft.com/en-us/rest/api/azure
https://learn.microsoft.com/en-us/rest/api/azure
https://pradeepl.com/blog/api/rest-vs-graphql-vs-grpc/#graphql---the-dynamic-orchestrator
https://pradeepl.com/blog/api/rest-vs-graphql-vs-grpc/#graphql---the-dynamic-orchestrator
https://www.linkedin.com/pulse/understanding-distinction-rest-vs-restful-apis-lucky-makau
https://www.linkedin.com/pulse/understanding-distinction-rest-vs-restful-apis-lucky-makau
https://learn.microsoft.com/en-us/azure/?product=popular.
https://www.mulesoft.com/resources/api/top-3-benefits-of-rest-apis.
https://www.cncf.io/blog/2021/07/19/think-grpc-when-you-are-architecting-modern-microservices
https://www.cncf.io/blog/2021/07/19/think-grpc-when-you-are-architecting-modern-microservices
https://hygraph.com/blog/graphql-advantages
https://cloud.google.com/blog/products/api-management/understanding-grpc-openapi-and-rest-and-when-to-use-them
https://cloud.google.com/blog/products/api-management/understanding-grpc-openapi-and-rest-and-when-to-use-them
https://cloud.google.com/blog/products/api-management/understanding-grpc-openapi-and-rest-and-when-to-use-them
https://help.netflix.com/en/node/412
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2.
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2.
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-2-bbe71aaec44a
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-2-bbe71aaec44a
https://netflixtechblog.com./
https://learn.microsoft.com/en-us/aspnet/core/grpc/?view=aspnetcore-6.0.
https://learn.microsoft.com/en-us/aspnet/core/grpc/?view=aspnetcore-6.0.
https://www.postman.com/state-of-api/api-technologies
https://protobuf.dev/overview
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/grpc#protocol-buffers
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/grpc#protocol-buffers
https://www.salesforce.com/products/what-is-salesforce
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_rest_architecture.htm.
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_rest_architecture.htm.

42

Salesforce. 2024c. Introduction to REST API. Salesforce Developers.
https://developer.salesforce.com/docs/atlas.en-
us.api_rest.meta/api_rest/intro_rest.htm. 25.05.2024.

Salom, E. 2023. Designing REST APIs with CRUD Operations.
https://medium.com/@eliassalom/designing-apis-with-crud-
operations-29d4a51fcfde. 02.06.2024.

Shopify. 2024a. Shopify Help Center. https://help.shopify.com/en/manual/intro-
to-shopify/overview. 20.05.2024.

Shopify. 2024b. REST Admin API reference. https://shopify.dev/docs/api/admin-
rest. 20.05.2024.

Shtatnov, A 2018. Our learnings from adopting GraphQL | Medium.
https://netflixtechblog.com/our-learnings-from-adopting-graphql-
f099de39ae5f. 19.04.2024.

Spasev, V. Dimitrovski, I. & Kitanovski, I. 2020. An Overview of GraphQL: Core
Features and Architecture. 10.04.2024.

Synergy Research Group. 2024. Cloud Market Gets its Mojo Back; AI Helps
Push Q4 Increase in Cloud Spending to New Highs.
https://www.srgresearch.com/articles/cloud-market-gets-its-mojo-
back-q4-increase-in-cloud-spending-reaches-new-highs. 01.06.2024.

Weir, L. A. 2019. A brief look at the evolution of interface protocols leading to
modern APIs. A brief look at the evolution of interface protocols
leading to modern APIs https://www.soa4u.co.uk/2019/02/a-brief-
look-at-evolution-of-interface.html. 29.05.2024.

https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_rest.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_rest.htm
https://medium.com/@eliassalom/designing-apis-with-crud-operations-29d4a51fcfde.
https://medium.com/@eliassalom/designing-apis-with-crud-operations-29d4a51fcfde.
https://help.shopify.com/en/manual/intro-to-shopify/overview.
https://help.shopify.com/en/manual/intro-to-shopify/overview.
https://shopify.dev/docs/api/admin-rest
https://shopify.dev/docs/api/admin-rest
https://netflixtechblog.com/our-learnings-from-adopting-graphql-f099de39ae5f.
https://netflixtechblog.com/our-learnings-from-adopting-graphql-f099de39ae5f.
https://www.srgresearch.com/articles/cloud-market-gets-its-mojo-back-q4-increase-in-cloud-spending-reaches-new-highs
https://www.srgresearch.com/articles/cloud-market-gets-its-mojo-back-q4-increase-in-cloud-spending-reaches-new-highs
https://www.soa4u.co.uk/2019/02/a-brief-look-at-evolution-of-interface.html.
https://www.soa4u.co.uk/2019/02/a-brief-look-at-evolution-of-interface.html.

	1 Introduction
	1.1 API

	2 API Technologies
	2.1 REST
	2.2 GraphQL
	2.3 gRPC
	2.4 Comparison

	3 Case Studies
	3.1 Amazon Web Services
	3.2 Microsoft Azure
	3.3 Google Cloud Platform
	3.4 Salesforce
	3.5 Shopify
	3.6 Facebook
	3.7 GitHub
	3.8 Netflix
	3.9 Analysis

	4 Discussion
	5 Conclusion
	References

