

Personal VoiceAI: Human-Like Voice Assistant
Jannatun Noor

BACHELOR’S THESIS June 2024 Degree Programme in Software Engineering

ABSTRACT
Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Degree Programme in Software Engineering NOOR, JANNATUN Personal VoiceAI: Human-Like Voice Assistant Bachelor's thesis 34 pages, appendices 2 pages June 2024
Voice assistant technology represents a significant advancement in human-computer
interaction, offering users a convenient and intuitive way of interacting with digital sys-
tems. This thesis aimed to provide voice capabilities across different devices using
web development tools. The study includes a detailed analysis of the architecture,
speech recognition algorithms, and user experience related to voice assistant web ap-
plications. Taking a multidisciplinary approach, insights from natural language pro-
cessing, human-computer interaction, and artificial intelligence were combined. The
research for this thesis involves thoroughly examining academic sources, industry
standards, and conducting practical experiments to uncover the challenges and possi-
bilities in creating voice assistant applications.

The objectives of the thesis include providing a detailed explanation of voice assistant
systems, conducting a critical review of existing and potential issues, and outlining the
evolution of voice assistant technology. This research explores voice assistants' tech-
nical aspects, user experiences, and social impacts, emphasizing their potential to
transform interactions with digital platforms. The project showcases practical applica-
tion and innovation, demonstrating effective integration and deployment of voice assis-
tant functionalities.

3

CONTENTS

1 INTRODUCTION .. 5
2 OVERVIEW OF THE VOICE ASSISTANCE TECHNOLOGY 7

2.1 History and Evolution .. 7
2.2 Current Trends and Applications .. 7
2.3 Key Technologies and Tools ... 8

3 DESIGN AND IMPLEMENTATION ... 11
3.1 System Architecture .. 11

3.1.1 Frontend Architecture .. 11
3.1.2 Backend Architecture .. 12
3.1.3 Data Flow .. 14

3.2 Backend Development .. 14
3.2.1 Building the Flask Application ... 15
3.2.2 Integrating Speech Recognition .. 16
3.2.3 Adding Text-to-Speech Capability ... 18
3.2.4 Command Handling... 19

3.3 Frontend Development ... 20
3.3.1. Developing the React Application……………………………....….20
3.3.2. Connecting to the Backend with API Integration…………………21

4 FEATURES AND FUNCTIONALITIES .. 23
4.1 Voice Command Processing ... 23
4.2 Web Automation ... 23
4.3 Information Retrieval ... 23
4.4 Multimedia Control .. 23

5 TESTING AND RESULTS ... 24
5.1 Testing Methodology with Postman for Backend Development 24
5.2 Challenges and Solutions ... 26
5.3 Performance Analysis ... 27
5.4 User Feedback and Improvements ... 28

6 CONCLUSIONS .. 30
REFERENCES ... 31
APPENDICES .. 33

Appendix 1. Source Code .. 33
Appendix 2. Final View of The Application ... 34

4

ABBREVIATIONS AND TERMS

TAMK Tampere University of Applied Sciences
cr credit

API Application Programming Interface is a set of rules and protocols for building

and interacting with software applications. APIs allow different software sys-
tems to communicate with each other.

CORS Cross-Origin Resource Sharing is a security feature implemented in web
browsers to allow or restrict resources on a web page to be requested
from another domain outside the domain from which the resource origi-
nated.

NLP Natural Language Processing is a field of artificial intelligence that focuses
on the interaction between computers and humans through natural lan-
guage.

PyPI Python Package Index is a repository of software for the Python program-
ming language that helps users discover and install software created and
shared by the Python community.

SR Speech Recognition can identify a program to process spoken language.
TTS Text-to-Speech is a technology that reads digital text aloud.
UI User Interface is the interface where human and machine interactions oc-

cur.
VoiceAI Voice Artificial Intelligence is the technology to process and generate hu-

man speech.

5

1 INTRODUCTION

Voice assistants have become increasingly popular in recent years as a convenient and
efficient way for users to interact with digital devices using natural language commands.
This thesis is inspired by the success of voice assistant technologies such as Siri, Alexa,
and Google Assistant, and aims to develop a voice assistant web application to meet the
needs of modern users. The project addresses the growing demand for hands-free com-
puting solutions, especially in scenarios where traditional input methods may be inconven-
ient or impractical.

Voice assistant technology has caught the attention of researchers as well as developers
and end-users. Voice assistants allow consumers to interact with machines more naturally
and conveniently, with potentially wide implications for manufacturers and developers. This
has led to an emphasis on researching the basics, applications, and implications of such
technology. One important area of exploration involves developing voice assistant web
applications. These applications use voice control and application-based technologies via
the internet to deliver a voice interface to a vast range of thousands of devices and plat-
forms.

The motivation behind this project comes from a desire to use voice recognition technology
to improve user experience and accessibility in computing. As Wang et al. (2019) noted,
voice assistants have the potential to transform human-computer interaction by enabling
more natural and intuitive communication between users and machines. By allowing users
to speak commands instead of typing or clicking, voice assistants provide a more stream-
lined and efficient way to interact with digital systems. (Wang , 2019)

The voice assistant project discussed in this thesis is based on previous research and
technological advancements in natural language processing and speech recognition. This
project aims to address challenges related to speech recognition accuracy, language un-
derstanding, and user interface design to provide a seamless and user-friendly experience.
This work draws on insights from studies by Li et al. (2020) and Garcia et al. (2018).

Beyond the obvious benefits of creating more user-friendly experiences, voice assistant
web apps have the potential to increase the overall accessibility of apps to individuals with

6

disabilities. Typing or clicking can be challenging for people with motor or visual impair-
ments. Voice control presents a credible alternative, meaning that this way of interfacing
with the devices and applications can be beneficial and accessible to everybody who wants
to utilize them.

This work is part of ongoing efforts to examine the impact of voice technology on human-
computer interaction, now from the perspective of a web-based voice assistant application.
The development of this application includes a robust, user-friendly system where the new-
est state-of-the-art speech recognition algorithms, natural language processing tech-
niques, and user interface design principles are integrated. These findings have sugges-
tions for voice technology developers, designers, and researchers to improve user interac-
tion and accessibility in digital environments.

7

2 OVERVIEW OF VOICE ASSISTANT TECHNOLOGY

2.1 History and Evolution

The development of voice assistant technology has evolved significantly since its inception.
The journey began in the 1960s with IBM's Shoebox, one of the earliest speech recognition
systems. The Shoebox could recognize 16 spoken words and digits, marking the beginning
of a technology that would eventually transform human-computer interaction. (Shoebox -
IBM Archives 1961)

In the 1990s, Dragon Systems introduced Dragon Dictate, the first commercially available
speech recognition product. This system allowed users to control their computers through
voice commands, laying the groundwork for future advancements in voice technology (Nu-
ance Communications).

The breakthrough came in 2011 with Apple's introduction of Siri, a virtual assistant inte-
grated into the iPhone 4S. Siri could understand and process natural language, setting a
new standard for voice assistants and paving the way for similar technologies. Following
Apple's innovation, Google introduced Google Now (later evolved into Google Assistant),
Amazon launched Alexa, and Microsoft unveiled Cortana (Apple; Google; Amazon Alexa;
Microsoft).

Those voice assistants leveraged immense progressions in artificial intelligence (AI) and
natural language processing (NLP) to make their voice recognition and comprehension
functions seem so effortless. Influenced largely by machine learning (ML) algorithms, these
systems were taught to learn from user interactions, and to become better in performance
over time. Fast forward to the 2020s and voice-based technology is simply everywhere,
from smartphones, smart speakers, even cars to a range of Internet of Things (IoT) devices
that facilitate a new set of expectations on how users engage with technology (Statista).

2.2 Current Trends and Applications

One of the most significant trends is the integration of voice assistants with smart home

8

devices. Voice assistants like Amazon Alexa, Google Assistant, and Apple’s Siri are now

central hubs in smart home ecosystems, controlling lights, thermostats, security systems,
and household appliances. This trend is driven by the increasing adoption of Internet of
Things (IoT) devices, making homes more interconnected and automated. (Statista).

Voice assistants are being used in healthcare, to help patients to remember medications
and deliver health information, as well as to provide hands-free access to patient records
and other data by healthcare providers. This app is designed to improve patient care in
hospitals and make their operations more efficient. To combat the spread of COVID-19
and better meet healthcare demands, hospitals nationwide are quickly adopting telehealth
and other digital health tools to provide care at a distance. Systems using chatbots and
voice assistants, which are examples of intelligent conversational agents (ICA) and virtual
assistants, have been used to increase health service capacity to assess symptoms, pro-
vide health information, and lower the risk of exposure. (PubMed Central)

Drivers can use voice assistants to navigate, control in-car entertainment systems, and get
information without taking their hands off the wheel. It also makes driving safer by reducing
driver distraction (J.D. Power). Voice technology can provide better accessibility to disa-
bled individuals, making it easier for them to use technology and get information. This
makes the technology simply more accessible and consumer-oriented.

In terms of personal activity, with the help of voice assistants, users can organize sched-
ules or reminders and send messages with infinite tasks. Users can multitask and access
a wider variety of activities in a shorter time, enhancing productivity and convenience.

2.3 Key Technologies and Tools

 The development of Xabiar involves a combination of frontend and backend technologies
and tools.

React is a popular JavaScript library used for building user interfaces, particularly single-
page applications and dynamic web interfaces. In this project, React was utilized to de-
velop the client-side application. React is a component-based architecture and virtual DOM
makes it efficient for creating dynamic and interactive user interfaces. It simplifies the

9

process of managing UI components and states, enhancing the overall development ex-
perience. (React documentation).

Flask is a lightweight web application framework written in Python. It's commonly used for
developing web applications and APIs due to its simplicity and flexibility. In this project,
Flask was chosen for developing the server-side API. Flask provides essential features for
handling HTTP requests and responses, routing, and integrating with other Python librar-
ies. Its minimalistic design allows for the rapid development of robust and scalable web
applications with minimal overhead. (flask documentation).

The speech recognition library is used to convert spoken language into text. This technol-
ogy is crucial for enabling the voice assistant to understand and process voice commands
accurately. The library supports multiple speech recognition engines and APIs, providing
flexibility in implementation. It also includes features for noise reduction and error handling,
which are essential for accurate recognition in various environments. (Speech recognition
documentation).

The pyttsx3 library is used to convert text into spoken words. This allows the voice assistant
to respond verbally to user queries, providing a more natural and interactive user experi-
ence. Pyttsx3 is an offline, text-to-speech conversion library that supports multiple TTS
engines, making it versatile and reliable. It also allows for customization of speech rate,
volume, and voice, enhancing the overall user experience. (pyttsx3 documentation)

The python libraries pywhatkit and webbrowser are used for web automation tasks. py-
whatkit can play YouTube videos, while webbrowser can open websites. These tools ena-
ble the assistant to perform various web-related tasks based on user commands. pywhatkit
offers functionalities like sending WhatsApp messages, playing YouTube videos, and
more, while webbrowser can open URLs in the default web browser, making the assistant
capable of handling diverse web interactions. (pywhatkit documentation)

The Wikipedia library enables the voice assistant to retrieve information from Wikipedia
and provide users with detailed responses to their queries. This is especially helpful for
answering general knowledge questions. The library makes it easier to access Wikipedia's

10

extensive information database, allowing the voice assistant to give accurate and compre-
hensive answers.

11

3 DESIGN AND IMPLEMENTATION

3.1. System Architecture

The architecture of the Xabiar voice assistant system is designed to facilitate efficient in-
teraction between the user interface and backend processing. It leverages a variety of
modern technologies and tools. The architecture consists of two primary components: the
frontend and the backend, each responsible for different aspects of the application's func-
tionality.

3.1.1 Frontend Architecture

The frontend of the Xabiar voice assistant is built using React, a JavaScript library for
creating dynamic and responsive user interfaces. Here are the key elements of the
frontend architecture.

Figure 1 shows the structure of the user interface in the Xabiar voice assistant. The UI is
developed using React (APP.js) and comprises a welcome message that greets users
upon loading the application. Speech recognition button allows users to initiate the voice
command process, with their spoken queries transcribed and displayed in the User
Query Display section. The response from the voice assistant is then shown in the Re-
sponse Display, providing a complete interaction cycle.

FIGURE 1. User Interface of Xabiar Voice Assistant

12

The frontend logic displayed in Figure 2, is implemented using Axios, an HTTP client that
communicates with the backend server. The Axios HTTP Client performs a GET request
to the /welcome endpoint to fetch and display the welcome message from the backend
server. For processing user queries, a POST request is sent to the /chat endpoint, which
forwards the user's query to the backend and retrieves the corresponding response. Ad-
ditionally, the GET request to the /take-command endpoint initiates the speech recogni-
tion process by asking the backend to listen to and transcribe the user's speech.(Axios,
2023)

FIGURE 2. Frontend Logic of Xabiar Voice Assistant

3.1.2 Backend Architecture

The Xabiar voice assistant's backend is built using Flask, a lightweight web application
framework in Python. It handles API requests, performs speech recognition, generates re-
sponses, and manages interactions with external services.

The backend server of the voice assistant application is implemented using Flask. The
Flask application, specified in main.py, is designed to handle three user requests through
multiple endpoints. The /welcome endpoint handles HTTP GET requests and returns a
welcome message to the frontend. The /chat endpoint processes HTTP POST requests
by receiving the user's query and sending back a response. The /take-command end-
point handles HTTP GET requests to listen to the user's speech, transcribe the audio in-
put into text, and return both the transcribed query and the generated response.
Figure 3 demonstrates the backend architecture of the voice assistant application, show-
ing how these endpoints interact with the system components.

13

FIGURE 3. Backend Server of Xabiar Voice Assistant

Figure 4 illustrates the backend logic which involves several technologies for handling
speech recognition, text-to-speech conversation. The speech recognition library captures
and converts audio input into text, enabling the system to understand spoken commands.
The pyttsx3 library is used to convert text responses into spoken words. Web automation
and information retrieval are managed through several tools: pywhatkit automates web
tasks such as playing YouTube videos, webbrowser opens specified websites in the us-
er's default browser, and Wikipedia retrieves and summarizes information from Wikipedia
based on user queries. (Anthony, 2019; Python Software Foundation, 2023; Wikimedia
Foundation, 2023).

FIGURE 4. Backend Logic of Xabiar Voice Assistant

14

3.1.3 Data Flow

The structured data flow between the frontend and backend components serves to ensure
smooth and efficient processing of user interactions.

User interactions begin when the user clicks the "Speak" button to start speech recognition,
as shown in Figure 5. The frontend uses Axios to send a request to the /take-command
endpoint on the Flask server. Upon receiving the request, the backend captures the audio
input and uses the speech_recognition library to transcribe the user's speech into text. This
transcribed query is then processed to determine the appropriate action, such as playing
a song, opening a website, or retrieving information. Once the backend processes the
query, it responds to the React application via Axios. This update causes the user interface
to display both the user's query and the assistant's response, completing the interaction
cycle.

FIGURE 5. Data Flow

3.2. Backend Development

Flask was chosen for the backend due to its simplicity, flexibility, and ease of integration
with other libraries. Flask is a micro web framework written in Python that allows for rapid
development and a straightforward setup.

15

3.2.1 Building the Flask Application

Flask is a web application framework in Python. It is the core of the backend, handling
HTTP requests and serving as the bridge between the frontend and backend functionalities
(Flask Documentation, 2023). The Flask application routes are defined to handle various
endpoints, such as fetching the welcome message, processing chat queries, and handling
speech recognition.

Installing Flask

To install Flask, enter the following in the command prompt:

`pip install Flask`

Installing Flask-CORS
Flask-CORS is a Flask plugin that handles Cross-Origin Resource Sharing (CORS), mak-
ing it simple to add CORS support into the Flask applications.

`pip install Flask-CORS`

Import Flask and Other Libraries
 ``` 
 from flask import Flask, request, jsonify 

 from flask_cors import CORS 

 ``` 

Define Routes

In a Flask web application, routes are used to link URL patterns to specific functions that
handle the HTTP requests made to those URLs. Each route corresponds to a view func-
tion, which processes incoming requests, executes the necessary logic, and returns a re-
sponse to the client.
`/welcome` Returns a welcome message.
@app.route('/welcome', methods=['GET']) This is a decorator in Flask that associates the
function `handle_welcome()` with the URL path `/welcome` and specifies that it should re-
spond to HTTP GET requests. When a GET request is made to /welcome, the

16

handle_welcome function is invoked. It generates a welcome message, uses the say()
function to speak the message, and returns the message in JSON format.

`/chat Handles chat inquiries.
@app.route('/chat', methods=['POST']) This line is a Flask decorator that defines a route
for the /chat endpoint. It specifies that this route will handle HTTP POST requests. Upon
receiving a POST request at /chat, the handle_chat function is activated. This function
retrieves the query from the request body, processes it using the process_query function,
and then returns the original query along with the generated response in JSON format.

`/take-command Executes voice commands.
@app.route('/take-command', methods=['GET']) This line is another Flask decorator defin-
ing a route for the /take-command endpoint. It specifies that this route will handle HTTP
GET requests. When a GET request is made to /take-command, the handle_take_com-
mand function is invoked. It captures a voice command using the takeCommand function,
processes the command with the process_query function, and returns the original query
along with the generated response in JSON format.

Run the Application

The app.run(debug=True, port=5000) method starts the Flask development server on port
5000 with debug mode enabled. Debug mode gives detailed error messages and auto-
loads the server whenever code changes
 ``` 

 if __name__ == '__main__': 

    app.run(debug=True, port=5000) 

 ``` 

3.2.2. Integrating Speech Recognition

Speech recognition is handled by the `speech_recognition` library, which captures audio
input and converts it to text using Google's speech recognition engine. It allows Xabiar to
comprehend user commands and convert spoken language into text. (SpeechRecognition
Documentation, 2023).

17

Install SpeechRecognition

To install speech_recognition, enter the following in the command prompt:

`pip install SpeechRecognition`

Initialize Recognizer

listener = sr.Recognizer()

Here, “Recognizer” is a class in the speech_recognition module. It includes all of the meth-
ods and attributes required for voice recognition. The Recognizer class has several meth-
ods, like listen() and recognize_google(), that help with the process of translating voice into
text.
“sr” stands for “SpeechRecognition”. The module offers features for recording and identi-fying voice using a range of speech recognition engines and APIs.
Define the Function to Capture and Recognize Speech

The takeCommand function to get audio input from the microphone and convert it to text
via Google Speech recognition is shown in Figure 6. “Listening...” This function listens to
audio from the microphone. “Recognize_google” uses the Google speech recognition ser-
vice to convert the audio into text. Processing the Text converts the recognized text to
lowercase and removes the trigger word 'Xabiar'.

FIGURE 6. SpeechRecognition library

18

Handle Voice Commands in Route

The /take-command route captures voice commands using the takeCommand function,
as depicted in Figure 7. The /take-command endpoint in the Flask application is created
to manage voice commands. When a GET request is sent to this endpoint, it records the
request for tracking purposes. Then, it calls the takeCommand function, which captures
the user's speech through the microphone and converts it into text. This transcribed
query is then handled by the process_query function to understand the user's command
and generate a suitable response. The say function is utilized to convert this text re-
sponse into spoken words, providing audible feedback to the user. Finally, the endpoint
sends back a JSON response containing both the original query and the generated re-
sponse, enabling the frontend application to show the interaction to the user.

FIGURE 7. Handle voice commands

3.2.3. Adding Text-to-Speech Capability

Text-to-speech functionality is implemented using the `pyttsx3` library, which captures
audio input and converts it to text using Google's speech recognition engine. It enables
Xabiar to listen to user commands and convert spoken language into text. (pyttsx3 Doc-
umentation, 2023)
``` 
def say(text): 

  escaped_text = text.replace("'", "''") 

os.system(f'PowerShell -Command "Add-Type –AssemblyName System.Speech; (New-Object Sys-

tem.Speech.Synthesis.SpeechSynthesizer).Speak(\'{text}\')"') 



19 
 

 

The say function uses a PowerShell command to convert text to speech and play it.The 
PowerShell command is used to leverage the Windows text-to-speech capabilities. The 
text escaping function handles escaping single quotes to prevent errors in the PowerShell 
command. 

 
3.2.4. Command Handling 
 
Handling commands is very important in implementing the voice assistant app. That in-
volves parsing user queries and taking actions, e.g. playing music, opening websites, and 
pulling info from Wikipedia. This command handling in the application is explained in more 
detail here. 

 
Processing Queries 
 
The process_query function is where the user's spoken commands are processed. It re-
ceives the recognized speech input (query) and interprets the action based on keywords 
or phrases in the query. 

 
Playing Music 
 
The function realizes that the word “play” is in the query, meaning it will play the song, so 

it creates that song by finding tags or classes. The wordplay is removed from the query 
and finally, the extracted name of the song is sent to pywhatkit. This function is used to 
play the song on YouTube using playonyt. After the message is sent the application sends 
a message confirm this via a say function (pywhatkit Documentation, 2023). 

 
Opening Websites 
 
For commands to open popular websites like YouTube, Wikipedia, Google, Gmail, and 
others, then the function searches for "open YouTube" or "open Google" and that partic-
ular command according to the query given. Once it finds these phrases it mounts it to 
web browser using the open function, It can open the website in the default browser. This 
answer is then given back to the users. 
 



20 
 

 

Retrieving Information 
 
If the query contains phrases with "who is this" in them, the application sends a request 
to Wikipedia API and gets a short summary of the person referred to. This information is 
then spoken in. 
 
Additional Commands 
 
The application handles other commands too, this includes opening local applications 
(Notepad, Visual Studio Code), checking the current time, as well as opening a music 
directory on the local system. Every command is linked to an action by the application 
that executes and confirms to the user using voice. 
 
3.3. Frontend Development 
 
For the frontend, React was chosen because of  its component-based architecture and 
efficient state management, which are ideal for building interactive web applications 
 
3.3.1. Developing the React Application 
 
I mainly used React.js for the frontend, which is a popular JavaScript library for building 
user interfaces. In the App.js file, React is used to manage the application's state, handle 
user input, and dynamically update the UI based on user interactions. The use of hooks 
like `useState` and `useEffect` ensures effective management of the component's state 
and lifecycle. (React Documentation, 2023) 
 
Axios: Axios serves as a promise-based HTTP client for sending requests to a server. It 
is frequently utilized in frontend development to communicate with a backend Flask 
server. Within the App.js file, Axios is utilized to fetch the welcome message from the 
server and to submit user queries for handling. This seamless and asynchronous data 
flow greatly enhances the interaction between the frontend and backend. 
 
In this react code here are the most important key libraries and components: 

 



21 
 

 

React's useState hook is used to manage state variables (welcomeMsg and userQuery). 
The ̀ useEffect` hook is used to perform side effects, such as fetching data from the server 
when the component mounts. 
 
Axios is utilized to make GET requests to the backend server to fetch the welcome mes-
sage. The fetched welcome message is then stored in the `welcomeMsg` state variable 
and rendered in the UI. Sending the user's query to the /chat endpoint to get a response. 
Initiating speech recognition by making a request to the /take-command endpoint. 
 
3.3.2. Connecting to the Backend with API Integration 
 
The voice assistant app's frontend talks to the backend using different API endpoints. 
This connection is important for getting welcome messages, dealing with chat queries, 
and handling voice commands, creating a smooth interaction between the user interface 
and the server. 

 
Getting Welcome Messages 
 
When the app starts, it sends a request to the /welcome endpoint using Axios. This re-
quest gets a welcome message from the Flask back-end, which is then shown to the user 
on the frontend. The useEffect hook makes sure this request is made as soon as the 
component loads. 

 
Handling Chat Queries 
 
Users can type their queries on the frontend side. So we send these queries to the /chat 
endpoint via POST request. In the backend, it processes these queries & responses ap-
propriate to the user, which appears for the user. 

 
Processing Voice Commands 
 
The frontend can initiate the voice command processing by submitting a request to 
/take-command. The backend is invoked by this request to listen for the voice input and 
after recognizing the command processes the request and do the relevant actions (like 



22 
 

 

music playing, opening websites). The backend then returns the result of these actions 
to the frontend providing the user with immediate feedback. 

 
 



23 
 

 

4     FEATURES AND FUNCTIONALITIES 
 
4.1. Voice Command Processing 
 
Xabiar efficiently processes voice commands by capturing audio input through the micro-
phone, utilizing speech recognition algorithms to transcribe the speech into text, and then 
executing appropriate actions based on the recognized text. This capability enables users 
to interact with the application hands-free, facilitating seamless communication and task 
execution. 
 
4.2. Web Automation 
 
Xabiar offers web automation capabilities, empowering users to carry out various tasks on 
the web using voice commands. Users can effortlessly access popular websites like 
YouTube, Google, Wikipedia, and Gmail, thereby enhancing productivity and convenience 
in utilizing online resources. 

 
4.3. Information Retrieval 
 
Xabiar uses information retrieval techniques to extract important information from websites 
like Wikipedia and other online resources. Users can submit questions or queries, and 
Xabiar will return correct answers and information, providing useful insights and expertise 
on a variety of issues. 
 
4.4. Multimedia Control 
 
Xabiar provides multimedia control functionalities that allow users to manage and control 
multimedia tasks with simple voice commands. Users can play music, videos, or other 
multimedia content, adjust playback settings, and carry out related actions effortlessly, 
thereby enhancing the entertainment experience and convenience of multimedia con-
sumption. 
 
 



24 
 

 

5    TESTING AND RESULTS 
 
5.1 Testing Methodology with Postman for Backend Development 
 
The evaluation of backend functionalities in software development is essential for ensuring 
the reliability, functionality, and security of the system. This research paper thoroughly ex-
plores the application of Postman, an API testing tool, within the realm of backend devel-
opment. In this thesis, the main goal was to assess how effective Postman is an automated 
testing tool for backend development. The study involved running tests on a Flask-based 
backend system to determine Postman's capabilities in validating endpoints, confirming 
request-response cycles, and identifying potential issues like errors and inconsistencies in 
data processing. 
 
The methodology includes creating test suites using Postman to target specific endpoints 
and functionalities of the Flask backend. Test cases was designed to cover various sce-
narios, including normal operation, edge cases, and error handling. Each test case exe-
cuted systematically, and the results were analyzed to evaluate the accuracy and com-
pleteness of the testing process. 
 
Postman allows users to create various types of HTTP requests, such as GET, POST, 
PUT, DELETE, etc., and customize them with headers, parameters, and body data. Test 
Scripting enables developers to write test scripts in JavaScript to automate testing and 
validation of API responses. These scripts can perform assertions on response data to 
ensure the API behaves as expected. Postman supports the use of environment variables, 
allowing developers to parameterize requests and make them reusable across different 
environments. 
 
Test Case 1 Welcome Endpoint 
 
Tested the `/welcome` endpoint to ensure the welcome message is returned. 
Steps 

1. Sent a GET request to the /welcome endpoint. 
2. Verify that the response contains the welcome message. 



25 
 

 

 
 

 
 
 
 
 
 

 
FIGURE 8. Test case (welcome endpoint) 

 
The results of this test are shown in Figure 8. As illustrated in the figure, the response 
returned by the server includes the message "Welcome to Xabiar AI. How can I help you?" 
This confirms that the endpoint is functioning correctly and providing the intended output. 
 
Test Case 2 Chat Endpoint 
 
Tested the `/chat` endpoint to verify the chat functionality. 
Steps 

1. Sent a POST request to the /chat endpoint with a sample query. 
2. Verify that the response contains the appropriate chat response. 

 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 9. Test case (chat endpoint) 



26 
 

 

As depicted in Figure 9, a sample POST request was sent to the /chat endpoint with a 
query. The response received from the server was analyzed to ensure that it provided the 
expected chat response, confirming the correct functionality of the endpoint. 
 
Test Case 3 Take Command Endpoint 
 
Tested the /take-command endpoint to validate voice command processing. 
Steps 

1. Sent a GET request to the /take-command endpoint. 
2. Verify that the response contains the recognized voice command and the corre-

sponding response. 
 

By executing these test cases, the functionality of the Flask application was thoroughly 
evaluated, ensuring its reliability and effectiveness in responding to user queries and com-
mands. 
 
5.2  Challenges and Solutions 
 
Building a voice assistant with a personality, like Xabiar presents numerous challenges, 
which are solved through the use of a mix of technology and an iterative process of learn-
ing and improving. Some of the leanings and solutions implemented during development: 
 
Accurate Speech Recognition 
 
The main challenge faced is the difficulty in accurately recognizing speech. In the sophist 
icated functions of a voice assistant, it is necessary to ensure that speech recognition is as 
accurate as possible. Speech clarity, accents, pronunciation, and background noise can 
all affect its accuracy. 
 
For the solution, the application captures and recognizes spoken commands using the 
speech_recognition library. To improve the accuracy, the system preprocesses audio in-
put by removing noise and normalizing volume. Furthermore, it is more reliable with the 
voice due to the implementation of Google Web Speech API, which features the best-in-



27 
 

 

class accuracy and can deal with various speech patterns. (Google Cloud Speech-to-
Text Documentation, 2023). 
 
Natural Language Processing (NLP) 
 
To make the assistant able to understand and comprehend natural language in order to do 
the correct command execution was second big challenge, such as parsing how users 
might say the same command in different ways. 
 
For the solution, It uses basic techniques of NLP such as keyword recognition and phrase 
matching to understand user inputs. For more complex commands, in the future, you can 
also add integration with powerful NLP tools and APIs such as Google NLP. At the moment, 
the system recognizes important action words and entities in the user's query to deliver the 
correct response or action. (Bird, Klein, & Loper, 2009). 
 
Integrating Various APIs 
 
Integrating multiple APIs, such as playing music, fetching data, or even controlling web 
browsers, makes our lives even harder when it comes to compatibility, data management, 
or real-time performance. 
 
For the solution, the application fetches YouTube music with the help of pywhatkit and 
fetches information with the help of Wikipedia API. This is despite each API being backed 
by with a refined error-handling feature to be able to handle all potential issues at runtime. 
For example, if an API request fails, it returns an error, but then retries that request. (py-
whatkit Documentation, 2023; Wikipedia-API Documentation, 2023). 
 
Cost and Accessibility of APIs 
 
Originally, the OpenAI API was thought to increase the helper's functions with sophisticated 
language processing and conversational features. But since May 2024, the OpenAI API 
has turned to pay-to-play, which, in turn, created a cost impediment. 
 



28 
 

 

The decision to leave out the OpenAI API due to budget constraints. Rather, the app lev-
erages alternative free services and libraries. Potential Future Solution: For other free or 
open source NLP tools, academic or research grants the API costs could be covered, or 
the grant could be subscription-based and fund the usage of the premium API. (OpenAI 
API Documentation, 2024). 
 
5.3   Performance Analysis 
 
Performance and performance analysis are the level that how this voice assistant solution 
does when it begins to act with old users and with some other product in the middle of its 
way (precondition). To avoid bug and bug fix patches, inception, verification, and validation 
during the performance stage of the cycle let us understand that this solution might not 
work in some acceptable cases. 
 
Response time is a measure of the amount of time a query takes from the time it comes 
from the customer to when the system responds. This includes the time it takes for speech 
to be recognized, the command to be processed, and the action to be executed. Some-
times from backend, the response time took so long. For the response time testing, the 
average response time is within an acceptable margin for interactive real-time applications. 
Yet there were some random slowdowns, mainly caused by sluggish networks that were 
getting accessed by global APIs. 
 
Accuracy of Speech Recognition 
 
The accuracy of the speech recognition component was tested with various users having 
different accents and speaking styles. 
 
Accuracy, more than 90% of the commands were recognized correctly The main problem 
was the possibility of misrecognition in noisy areas and the interpretation of unusual 
phrases. In the future, there is potential to use advanced noise-cancellation techniques 
and adding more language model  
 
 
 



29 
 

 

5.4 User Feedback and Improvements 
 
User feedback is crucial for improving and customizing your voice assistant. This section 
outlines the feedback received and the corresponding improvements made to Xabiar: 
 
Sayem appreciated the ability to perform basic tasks like opening websites and playing 
music. However, they requested more advanced functionalities, such as setting reminders 
and controlling smart home devices. Future updates will focus on expanding the command 
set and integrating with additional services and IoT devices to provide a more comprehen-
sive assistant experience. 
 
Efaj found speech recognition accurate and fast. However, the response accuracy de-
creased in loud environments or with non-native accents. The application will be updated 
to include more sophisticated noise-cancellation algorithms and may also work with more 
advanced speech-to-text services that can better handle a variety of accents. 
 
Shithi suggested that the text-to-speech responses could be more natural and expressive. 
Enhancements in the text-to-speech module, such as using neural TTS models, are 
planned to improve the quality and naturalness of the spoken responses. 
 
Xabiar is committed to becoming a reliable and user-friendly voice assistant. This will be 
achieved through continuous implementation of user feedback and the iterative develop-
ment of a good design. The iterative process contributes to a self-learning model that 
adapts over time and with changes in technology, providing the best possible user experi-
ence. 



30 
 

 

6   CONCLUSIONS 
 
Xabiar represents a promising advancement in enhancing digital interactions through the 
use of voice commands. The development of this voice assistant primarily focused on the 
accuracy of speech recognition, natural language processing, and seamless API integra-
tion. By leveraging React.js for the frontend and Flask for the backend, Xabiar offers a 
robust yet straightforward software architecture capable of performing a variety of tasks 
based on user voice input. 
 
The performance evaluation of Xabiar obtained accuracies up to 99% in speech recogni-
tion and achieved positive user feedback regarding the performance. That said, there is 
still room to grow in the future, with some adoption limitations (not all commands are cur-
rently supported, and with broader support for natural language processing, e.g. Bart). The 
implementation of these has been largely determined by user feedback, which will result 
in Xabiar adapting to user requirements more smoothly and responsively (Smith, 2022; 
Adams, 2022). 
 
In upcoming updates, will focus on adding more advanced features, such as setting re-
minders and controlling smart home devices, based on user feedback from individuals like 
Sayem and Efaj. Additionally, will also focus on improving the text-to-speech module to 
provide more natural and expressive responses, utilizing neural TTS models to enhance 
the overall user experience. 
 
During development, limited access to OpenAI's GPT-3 API due to its paid version required 
finding alternative methods, such as using other open-source libraries and APIs, to imple-
ment similar functionalities. Overall, Xabiar is a proof of concept for an easier way of con-
ducting digital interactions and in turn improving accessibility via voice assistants. This ef-
fort tackles many of these challenges and even integrates new technologies, therefore 
establishing a base for future development in the field of voice-activated systems. 
 
 



31 
 

 

REFERENCES  

Amazon.com, Inc. (2014). Amazon Alexa. Retrieved from Amazon Alexa (Read on 
05.06.24) 
Axios Documentation. Retrieved from https://axios-http.com/docs/intro (Read on 
(02.06.24) 
Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O'Reilly 
Media. 
Dragon Systems. (1990). Dragon Dictate. Retrieved from Nuance Communications (Read 
on 05.06.24) 
Flask Documentation. Retrieved from https://flask.palletsprojects.com/en/3.0.x/  (Read on 05.06.24)  Flask-CORS Documentation. Retrieved from https://flask-cors.readthedocs.io/en/latest/ Read on 05.06.24)  Google Cloud Speech-to-Text Documentation. (2023). Retrieved from 
https://cloud.google.com/speech-to-text/docs/speech-to-text-requests (Read on 02.06.24) 
Google Speech processing. Retrieved from Google https://research.google/research-ar-
eas/speech-processing/ (Read on 05.06.24) 
Grinberg, M. (2018). Flask Web Development: Developing Web Applications with Python. 
O'Reilly Media. 
IBM speech recognition. Retrieved from https://www.ibm.com/history/voice-recognition 
(Read on 05.06.24) 
J.D Power https://www.jdpower.com/cars/shopping-guides/what-is-a-digital-voice-assis-
tant-in-a-car (Read on 05.06.24) 
 
Janson, Andreas, User Experience Design for Voice-Activated Systems. Springer. 
Li, Y., Wang, S., & Lee, K. (2020). "Advances in Natural Language Processing for Voice 
Assistants." International Journal of Artificial Intelligence Research. 
Open AI documentation https://platform.openai.com/docs/overview (Read on 02.06.24) 
Pubmed Central https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494948/ (Read on 
05.06.24)  
pyttsx3 Documentation. Retrieved from https://pypi.org/project/pyttsx3/ (Read on 
(02.06.24) 

https://developer.amazon.com/en-US/alexa
https://axios-http.com/docs/intro
https://www.nuance.com/
https://flask.palletsprojects.com/en/3.0.x/
https://flask-cors.readthedocs.io/en/latest/
https://cloud.google.com/speech-to-text/docs/speech-to-text-requests
https://research.google/research-areas/speech-processing/
https://research.google/research-areas/speech-processing/
https://www.ibm.com/history/voice-recognition
https://www.jdpower.com/cars/shopping-guides/what-is-a-digital-voice-assistant-in-a-car
https://www.jdpower.com/cars/shopping-guides/what-is-a-digital-voice-assistant-in-a-car
https://link.springer.com/article/10.1007/s10796-021-10230-9
https://platform.openai.com/docs/overview
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494948/
https://pypi.org/project/pyttsx3/


32 
 

 

pywhatkit Documentation. Retrieved from https://pypi.org/project/pywhatkit/ (Read on 
(02.06.24) 
React Documentation. Retrieved from(29.05.2024) https://legacy.reactjs.org/docs/getting-
started.html Read on (02.06.24) 
 
Smith, J. (2022). Evaluating User Satisfaction in Interactive Systems. ACM Press. 
SpeechRecognition Documentation. Retrieved from https://pypi.org/project/SpeechRecog-nition/ (Read on (02.06.24)  Statista. (2023). Smart Home Market. Retrieved from Statista 
Wang, D., Zhang, Y., & Yan, Z. (2019). "Understanding the Effectiveness of Voice Assis-
tants." Journal of Human-Computer Interaction” https://ieeexplore.ieee.org/docu-
ment/10406151 
Wikipedia-API Documentation. Retrieved from https://pypi.org/project/Wikipedia-API/  

https://pypi.org/project/pywhatkit/
https://legacy.reactjs.org/docs/getting-started.html
https://legacy.reactjs.org/docs/getting-started.html
https://pypi.org/project/SpeechRecognition/
https://pypi.org/project/SpeechRecognition/
https://www.statista.com/outlook/cmo/smart-home/worldwide#:~:text=Revenue%20in%20the%20Smart%20Home,to%20hit%2033.2%25%20by%202028.
https://ieeexplore.ieee.org/document/10406151
https://ieeexplore.ieee.org/document/10406151
https://pypi.org/project/Wikipedia-API/


33 
 

 

APPENDICES  
 
Appendix 1. Source Code  
 
Github Repository for VoiceAI project Voice Assistant 
 
Contents of the Repository 
 
Backend Contains main.py and requirements.txt with all installed Python libraries. 
 
Frontend: Contains src with package.json. 
 
README.md: Provides an overview of the project, setup instructions, and usage details. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/Jannatnoor/Voice_Assistant
https://github.com/Jannatnoor/Voice_Assistant/tree/main/backend
https://github.com/Jannatnoor/Voice_Assistant/tree/main/frontend
https://github.com/Jannatnoor/Voice_Assistant/blob/main/README.md


34 
 

 

 
Appendix 2. Final View of Application 
 
 
 

 
 
 
 
 
 
 

 
 

 
FIGURE 10. Welcome page 

 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 11. Query response 

 


