

Bachelor’s thesis

Information and Communications Technology

2024

Tuomas Vuorinen

Animated sequence rendering

performance comparison: Unity

and Unreal Engine

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2024 | 64 pages

Tuomas Vuorinen

Animated Sequence rendering performance

comparison: Unity and Unreal Engine

This thesis compares two high-profile game engines, Unity and Unreal Engine, in

terms of the impact their 3D rendering capabilities have on computer system

performance and describes the procedures required to achieve fair testing. The

aim was to establish which application is more suitable for efficiently recording

and rendering an animated sequence in a pre-built environment, as well as to

explore the differences in the overall workflow.

This aim was achieved through practical experimentation by rendering 18

individual 24-second animated sequences in real time using both Unity and

Unreal Engine on three different computers, each running different hardware

combinations. An equal starting point was ensured by recording all sequences in

NVIDIA’s USD Attic sample scene.

Unreal Engine produced animated sequences of significantly higher quality than

Unity, though this superiority came at the cost of higher computer resource usage

and slower rendering times. Despite these shortcomings, the conclusion is that

Unreal Engine is the winner, especially from a technological standpoint: its more

sophisticated lighting features and its ability to support more detailed assets

through add-ons makes it more suitable for this kind of rendering work. Still,

Unity’s more modest system requirements make it a viable alternative, and if

sufficient time is invested in refining the editor’s visual effects, its results can be

brought on par with those of Unreal Engine.

Keywords:

3D rendering, animation, animated sequence, Unity, Unreal Engine

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja viestintätekniikka

2024 | 64 sivua

Tuomas Vuorinen

Animoidun kohtauksen kuvantamissuorituskyvyn

vertailu Unitylla ja Unreal Enginellä

Opinnäytetyössä verrataan kahden suositun pelimoottorin, Unityn ja Unreal

Enginen, 3D-kuvantamisominaisuuksien vaikutusta tietokoneiden suorituskykyyn

sekä kuvataan tasapuolisessa testauksessa vaadittavia menettelyjä.

Tarkoituksena oli selvittää, kumpi sovellus sopii paremmin animoidun kohtauksen

tehokkaaseen tallennukseen ja kuvantamiseen valmiissa ympäristössä, sekä

tutkia yleisen työnkulun eroja.

Tavoite saavutettiin käytännön testein kuvantamalla 18 yksittäistä animoitua 24

sekunnin kohtausta reaaliajassa sekä Unitylla että Unreal Enginellä.

Kuvantamisessa käytettiin kolmea eri tietokonetta, joissa jokaisessa oli eri

komponentit. Kaikissa kuvantamis- ja tallennusprosesseissa käytettiin tasa-

arvoisena perustana NVIDIA:n USD Attic -mallia.

Unreal Enginen animaatioiden laatu oli selkeästi parempi kuin Unityn, vaikkakin

tämä laadullinen ero vaati enemmän tietokoneiden resurssien käyttöä ja hidasti

kuvantamista. Unreal Engine todettiinkin vertailun voittajaksi etenkin

teknologiselta kannalta: sen kehittyneemmät valaistusominaisuudet ja -asetukset

sekä kyky käsitellä yksityiskohtaisempia malleja editorin lisäosien kautta tekevät

siitä paremman pelimoottorin tässä työssä tehdyn kuvantamisen kaltaiseen

työhön. Unity on kuitenkin pienempien järjestelmävaatimustensa ansiosta

varteenotettava vaihtoehto, ja jos enemmän aikaa käytetään valaistuksen

parantamiseen, sillä saadut tulokset voidaan tuoda Unreal Enginen tasolle.

Asiasanat:

3D-kuvantaminen, animaatio, animoitu kohtaus, Unity, Unreal Engine

Contents

List of abbreviations 8

Glossary 9

1 Introduction 10

2 Literature review 12

2.1 Game engines 12

2.2 Unity vs Unreal Engine 12

3 3D Rendering 15

4 Methodology 17

4.1 Aims and objectives 17

4.2 Testing setup and add-ons 18

4.3 Testing environment 20

4.4 Workflow 22

5 Results 29

5.1 Metrics 29

5.2 Rendering results 29

5.2.1 General measurements 30

5.2.2 PC1 results 31

5.2.3 PC2 results 39

5.2.4 PC3 results 47

6 Discussion 54

6.1 Relevance of results 54

6.2 General findings 54

6.3 Rendering time and frame creation rate 55

6.4 Physical memory usage 56

6.5 Total CPU usage 56

6.6 GPU core load 57

6.7 Anomalies 58

6.8 Hypotheses 58

7 Conclusions and recommendations 60

References 62

Figures

Figure 1. Breakdown of the testing setup. 19

Figure 2. The USD Stage interface in Unreal Engine 5. (Unreal Engine 5.1

Documentation 2022) 23

Figure 3. The camera path overlaid onto a 3D view of the attic space. 24

Figure 4. Detailed output settings for the 4K render in Unreal Engine's Movie

Render Queue. 25

Figure 5. The Timeline window in Unity, displaying timed transitions between

individual points on the camera's motion path. 26

Figure 6. Comparison between the first frames of the animated sequence in the

two game engines. 27

Figure 7. Time taken to finish each rendering task. 30

Figure 8. Average number of frames created per second of rendering time. 31

Figure 9. PC1: Physical memory usage over the duration of the 1080p/24 FPS

rendering task. 33

Figure 10. PC1: Physical memory usage over the duration of the 2K/30 FPS

rendering task. 33

Figure 11. PC1: Physical memory usage over the duration of the 4K/60 FPS

rendering task. 34

Figure 12. PC1: Total CPU usage over the duration of the 1080p/24 FPS

rendering task. 35

Figure 13. PC1: Total CPU usage over the duration of the 2K/30 FPS rendering

task. 36

Figure 14. PC1: Total CPU usage over the duration of the 4K/60 FPS rendering

task. 36

Figure 15. PC1: GPU core load over the duration of the 1080p/24 FPS

rendering task. 38

Figure 16. PC1: GPU core load over the duration of the 2K/30 FPS rendering

task. 38

Figure 17. PC1: GPU core load over the duration of the 4K/60 FPS rendering

task. 39

Figure 18. PC2: Physical memory usage over the duration of the 1080p/24 FPS

rendering task. 41

Figure 19. PC2: Physical memory usage over the duration of the 2K/30 FPS

rendering task. 41

Figure 20. PC2: Physical memory usage over the duration of the 4K/60 FPS

rendering task. 42

Figure 21. PC2: Total CPU usage over the duration of the 1080p/24 FPS

rendering task. 43

Figure 22. PC2: Total CPU usage over the duration of the 2K/30 FPS rendering

task. 44

Figure 23. PC2: Total CPU usage over the duration of the 4K/60 FPS rendering

task. 44

Figure 24. PC2: GPU core load over the duration of the 1080p/24 FPS

rendering task. 46

Figure 25. PC2: GPU core load over the duration of the 2K/30 FPS rendering

task. 46

Figure 26. PC2: GPU core load over the duration of the 4K/60 FPS rendering

task. 47

Figure 27. PC3: Total CPU usage over the duration of the 1080p/24 FPS

rendering task. 49

Figure 28. PC3: Total CPU usage over the duration of the 2K/30 FPS rendering

task. 49

Figure 29. PC3: Total CPU usage over the duration of the 4K/60 FPS rendering

task. 50

Figure 30. PC3: GPU core load over the duration of the 1080p/24 FPS

rendering task. 51

Figure 31. PC3: GPU core load over the duration of the 2K/30 FPS rendering

task. 52

Figure 32. PC3: GPU core load over the duration of the 4K/60 FPS rendering

task. 52

Tables

Table 1. Computers used in the testing process: Detailed specifications. 21

Table 2. PC1: Rendering time statistics per each setting pre-set. 32

Table 3. PC1: Average physical memory usage in all test cases. 34

Table 4. PC1: Average total CPU usage in all test cases. 37

Table 5. PC1: Average GPU core load in all test cases. 39

Table 6. PC2: Rendering time statistics per each setting pre-set. 40

Table 7. PC2: Average physical memory usage in all test cases. 42

Table 8. PC2: Average total CPU usage in all test cases. 45

Table 9. PC2: Average GPU core load in all test cases. 47

Table 10. PC3: Rendering time statistics per each setting pre-set. 48

Table 11. PC3: Average total CPU usage in all test cases. 50

Table 12. PC3: Average GPU core load in all test cases. 53

List of abbreviations

API Application Programming Interface

AR Augmented Reality

CAGR Compound Annual Growth Rate

CPU Central Processing Unit

FPS Frames Per Second

GPU Graphics Processing Unit

HDRP High-Definition Render Pipeline

LTS Long Term Support

RAM Random-Access Memory

UI User Interface

URP Universal Render Pipeline

USD Universal Scene Description

VFX Visual Effects

VR Virtual Reality

Glossary

Add-on A third-party program or script that gives additional

features to a program (Computer Hope, 2024.)

Child object A digital object that is hierarchically dependent on

another (see Parent)

Frame rate The speed at which images (“frames”) are shown on a

screen

GameObject Fundamental objects in Unity that represent characters,

props and scenery (Unity Technologies, 2017a.)

Graphics card A hardware component responsible for rendering and

displaying images, videos and animations on a

computer monitor (Lenovo US, n.d.-b)

Inbetweening Generating images between frames to make an

animation flow more smoothly (Adobe, n.d.)

Plugin A software add-on installed on a program to enhance its

capabilities (Computer Hope, 2021.)

Parent object A digital object that child objects inherit data from

Post-processing The process of applying full-screen filters and effects

onto a rendered image before it is displayed on a

screen (Unity documentation, 2017b.)

Render Pipeline A series of calculations that displays the contents of a

scene on a screen (Unity documentation, 2017.)

Shader A short program run by graphics hardware that renders

graphics data

10

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

1 Introduction

The ongoing rapid growth of the global video game industry is projected to lead

to a market size of $583.69 billion by 2030 (Grand View Research, 2023). The

corresponding Compound Annual Growth Rate (CAGR) between 2022 and 2030

is estimated at 12.81%. This growth is helped by advancements in technology,

such as the adoption of Augmented Reality (AR) and Virtual Reality (VR) in an

increasing number of released products across the industry. A significant

contributor to the recent development in the video game field has been the

COVID-19 pandemic, which prompted an influx of new players as people began

to seek new forms of entertainment during their time indoors.

As new games become more and more complex, so do their system

requirements. More capable computers are thus needed to run increasingly

impressive games for entertainment, educational and other applications. This

contributes to a continuous cycle of innovation to cater for the expanding supply

and demand. Such innovation is most often centred on new hardware developed

by companies such as NVIDIA, Intel and AMD, but advancements in game

development software have also played an important part in bringing new

technologies to the mass market. In particular, Unity and Unreal Engine have

risen to prominence as freely available game engines and development

platforms.

In recent years, these two game engines have been used in the creation of an

ever-increasing array of applications. According to a blog published by Cubix in

January 2022, Unity Technologies claims that its cross-platform development

framework forms the basis for over 50% of all mobile games currently on the

market. At the same time, the approach chosen by Epic Games, the developer of

Unreal Engine has led to its game engine being employed beyond its initial scope

as a game development tool: notable examples of such use include the TV series

The Mandalorian and Westworld. Similarly, Unity was first used in filmmaking with

the 2016 release of Adam, a short film created by the company’s demo team and

rendered entirely in real time using the engine, as well as its two sequels. In 2017,

11

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Unity introduced its Cinemachine tool which was used in the creation of the

animated sequence analysed in this thesis.

In 2009, Unity became the first game engine company to offer a free licence to

developers. This allowed emergent indie developers and hobbyists to use it to

build applications for Apple’s App Store and Google’s Play Store. Subsequent

monetisation schemes implemented by Unity Technologies in the wake of this

widespread success resulted in the company’s game engine capturing

approximately 35 billion (25%) of the $137.9 billion game industry by 2018.

(Young 2021; Wijman 2018.)

The ongoing Unity vs Unreal Engine user discussion covers every comparable

technology offered by the two game engines. Due to the importance of high-

fidelity graphics in modern video games and constant competition within the

industry, the rendering characteristics of the two engines have become one of the

most common topics in the debate. This thesis will focus on comparing the

system performance impact of Unity and Unreal Engine when recording and

rendering a pre-defined animated sequence in a static environment with lighting.

In order to avoid an outcome influenced by the performance capabilities of an

individual computer system, the testing was conducted on three different

computers and in-application rendering setting pre-sets. Additionally, a pre-built

Universal Scene Description (USD) asset was externally sourced to act as the

space in which the animated sequences took place, ensuring that the testing

environments in the game engines constituted a level playing field with as few

deviations from one another as possible.

12

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

2 Literature review

2.1 Game engines

Šmíd (2017) describes game engines as complex, multipurpose tools for the

creation of games and multimedia content. They are most commonly divided into

several individual components, each of which provides unique sets of

functionalities to the software. Alongside the game content itself, the engines also

usually incorporate rendering, audio, physics, animation, scripting and artificial

intelligence (AI) components. The render engine is the most important part of the

ensemble as, apart from the gameplay, a game’s graphics are typically under

particular scrutiny by players and critics alike. From a technical standpoint, render

engines thus need to be highly optimised as well as adaptable in order to provide

efficient functionality both in anticipation of future requirements and to ensure that

lower-end machines are still capable of running games developed with this

technology.

2.2 Unity vs Unreal Engine

Extensive comparisons between nearly all aspects of Unity and Unreal Engine

have been made ever since the former was first released in June 2005. A

comparative analysis conducted by Christopoulou and Xinogalos (2017), which

included Unity and Unreal Engine among other popular game engines, found that

the capabilities of the two applications show considerable overlap. The study

compared the engines with respect to their audiovisual and functional fidelity,

composability, accessibility, developer toolkits, networking models, development

features and deployment platforms. For the purposes of this thesis, more focus

will be put on the visual features of both Unity and Unreal Engine as they influence

the most relevant analysed metrics.

Research made in preparation for this thesis showed, however, that hardly any

in-depth studies have been conducted to compare game engines such as Unity

13

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

and Unreal Engine in terms of their impact on specific system resources while

rendering a predefined animated sequence.

A 2023 article written by Rahel Demant for XR Bootcamp lays out commonly

considered similarities and differences between Unity and Unreal Engine.

Reflecting the engines’ status as current market leaders, special attention is given

to scripting, rendering and visual effects (VFX) interfaces, target platforms, usage

requirements, and developer support. Multiple examples of popular games of

various genres developed with both engines are also provided. In the section

detailing the applications’ rendering systems, Unity is presented as being more

modular than Unreal Engine thanks to its incorporation of both Shader Graph, a

visual node-based editor, and the option to write shader code directly. Post-

processing effect pre-sets are also readily available, reducing the time and effort

needed to achieve the desired extent of VFX details in the final product. A limiting

factor in Unity’s rendering process is the need to choose a render pipeline with

which visual effects are processed: the Universal Render Pipeline (URP) is more

suited for cross-platform compatibility as it balances performance and quality, and

the High-Definition Render Pipeline (HDRP) targets high-end hardware capable

of handling higher-fidelity visuals (Sacco, 2023). Unreal Engine does not natively

support writing shaders directly; instead, it employs a node-based material editor

to provide a vast range of customisation with fewer technical hurdles. Post-

processing in Unreal Engine offers a greater choice of options for each effect than

provided by Unity without add-ons.

The general consensus in the industry appears to be that, in general terms,

neither game engine is inherently better than the other. A 2024 blog post by

Davoxel outlines that developers should consider the specific needs of their

project when choosing between Unity and Unreal Engine, including targeted

platforms, graphical requirements, and the team’s programming expertise. For

projects prioritising cross-platform compatibility and development speed, Unity is

often the preferred choice. It is highly efficient for small to medium-scale projects

where performance constraints are particularly significant; its ability to create and

support lightweight applications ensures smooth performance across a wide

14

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

range of devices. In contrast, Unreal Engine is more suited for projects in which

graphical fidelity is a priority, such as AAA titles, high-end simulations, and

architectural visualisations. Its advanced rendering capabilities and ability to

handle complex simulations mean that it is optimised for more demanding PC

and console games, where delivering high-quality visuals without compromising

performance is crucial.

As a result of the recent increased use of their game engines, Unity Technologies

and Epic Games have taken the initiative to cater for a more simulation-based

approach. In particular, Unreal Engine developers have been investing heavily in

simulation to make the application easier to use, as well as to provide models

and VFX to be used in simulation. Game engines provide a strong foundation for

the development of new simulation systems, benefiting from decades of

evolution, as they allow companies to make use of their technologies: rather than

further developing pre-existing systems such as physics, AI and high-fidelity

visual systems, time and money can be saved by utilising technologies already

found in game engines. (Garratt et al., 2023.)

An example of simulation-oriented technology is the USD file format. Although it

does not originate from a game engine, its rise to prominence in recent years as

a multifunctional collaboration tool has prompted both Unity and Unreal Engine

to develop add-ons to support it in their editors. The USD format is presented in

a study authored by G.H. Nguyen et al. (2023) as a versatile layered data storage

structure for 3D scenes. Originally invented by Pixar Animation Studios, USD

incorporates a hierarchical system that allows for easy organisation of the scene

and enables properties to be inherited from parent objects to their children. As

reported in a 2023 article on Medium.com by Aaron Luk, Senior Engineering

Manager of the USD ecosystem, the highly scalable format is available to the

public as an open-source suite that uses Application Programming Interfaces

(APIs) to allow users to create, edit, query, render, collaborate and simulate in

virtual worlds. Notable use cases for USD qualities include digital twinning, where

real-world areas such as factory floors are simulated accurately in large high-

fidelity virtual scenes, and applications for autonomous driving.

15

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

3 3D Rendering

In its simplest form, 3D rendering is defined as the production of a two-

dimensional image based on three-dimensional data. This process almost always

includes visual effects of varying complexity, resulting in photorealistic images

complete with lighting and other ambient details. (Unity Technologies, n.d.)

Real-time rendering refers to the production of a scene by calculating 3D images

at very high speeds before displaying them to create the impression that the

environment surrounding the user is fully rendered regardless of the position it is

being viewed from. This rendering technique incorporates the notion of

interactivity, allowing for a more immersive experience if the operating system is

capable of handling the constant high volume of background calculations. Real-

time rendering is most often the technique of choice for video games, as it allows

players to experience the full visual appeal of a 3D scene whilst also being able

to interact with it. The main goal is to achieve the highest possible degree of

photorealism at speeds that the human eye can perceive as natural movement.

The minimum acceptable speed is usually 24 frames per second (FPS) and, the

higher the frame rate goes, the more computer resources it requires to render at

the desired speed. (XR Suite 2021; Unity Technologies, n.d.)

Offline or pre-computed rendering is the term used for high-quality rendering

that does not rely on interactivity as a performance constraint. It allows for highly

detailed and polished final images as a result of the process using more time to

calculate a scene’s lighting and shading. Compared to real-time rendering, where

a frame is generally intended to be rendered in approximately 0.04 seconds (24

FPS) or faster, an individual frame calculated using offline rendering can take

anywhere from minutes to even days to render depending on the complexity of

the scene. Prominent adopters of offline rendering include the film and real estate

industries, which use the technique for e.g., product presentation and as an

alternative to replace live photoshoots. (3DHeven 2023; XR Suite 2021.)

16

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

As real-time rendering is the default rendering method offered by both Unity and

Unreal Engine, offline rendering was not used as part of the practical

implementation of the research described in this thesis.

17

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

4 Methodology

4.1 Aims and objectives

This thesis aims to establish concrete differences between Unity and Unreal

Engine in terms of performance figures when performing real-time rendering

tasks with different computer setups. Particular emphasis will be put on the

behaviour of the two game engines during the rendering process in order to test

the following hypotheses:

• Due to its level of detail and higher-quality results, Unreal Engine uses

considerably more computer resources than Unity.

• Because of Unity’s technological constraints, the computer performance

level is a less significant factor for rendering.

• The rendering process is less taxing with each step up in computer system

performance.

• USD assets are easier to work with in Unreal Engine than in Unity.

The first hypothesis is based on the fact that in various reviews, Unreal Engine

has been praised for its ability to produce good-quality results with high levels of

detail. This may be assumed to have a high cost in terms of computer resource

usage.

Secondly, Unity is purportedly better optimised for lightweight tasks less heavy

on computer systems. Hence the second hypothesis.

The logic of the third hypothesis is that computers with more processing power

should be able to handle rendering tasks more easily regardless of the application

used.

The final hypothesis has to do with the assumably better suitability of Unreal

Engine for simulation-related work. USD assets can have extremely high levels

of detail, which should make Unreal Engine the better option for handling them.

18

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

4.2 Testing setup and add-ons

Figure 1 summarises the elements of the overall testing setup. To ensure the best

possible system performance for the creation of the final animated track as well

as the subsequent rendering stage, version 5.1.1 of Unreal Engine was chosen

due to its status as the most powerful iteration of the software at the time the

practical testing was conducted. For the research carried out in Unity, version

2021.3.3f1 of the editor was used because of its stability as a Long-term Support

(LTS) platform.

Figure 1 also shows the metrics chosen for this study. Each of them is relevant

to the research outcome, as they serve to establish visible differences between

the three computers used at the rendering stage.

Physical memory usage refers to the size of the data stored in the random-

access memory (RAM) module of a computer at any given time. When a program

is started, it is loaded from long-term storage into physical memory. If the

specified file size limit of the physical memory is exceeded, a portion of the

computer’s storage is used to handle the excess data, potentially hindering

system performance. (Lenovo US, n.d.-a)

Total Central Processing Unit (CPU) usage is defined as the percentage of

processing power exhausted to process data and run various programs on a

device. It is influenced by e.g. running background processes, malware and

outdated drivers. (SolarWinds, n.d.)

In the context of this testing process, Graphics Processing Unit (GPU) core

load is the percentage representation of the graphics card’s processing power

used at a particular time. Unlike with metrics such as physical memory usage,

100% GPU load does not mean that a GPU module is being overloaded; it

signifies that the system is making full use of the module and that the component

is performing normally. (MiniTool, 2022; Run:ai, n.d.)

Additional points of comparison are provided in the form of overall rendering

time and frame creation rate, in particular to obtain data on the predicted gap

19

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

between Unity and Unreal Engine in terms of their handling of each individual

rendering task.

Figure 1. Breakdown of the testing setup.

To make the recording and rendering of a cinematic sequence possible, relevant

add-ons were installed in both applications. While Unreal Engine already comes

with a Sequencer interface as a standard feature, animations built with it required

the addition of the Movie Render Queue tool to make it possible to render and

export them as well as to add optional post-processing effects. Stitching the

rendered frames into a playable .MP4 video also necessitated the installation of

FFmpeg, a third-party software suite for recording, converting and streaming a

wide variety of audio and video formats. It should be noted that almost any

20

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

general-purpose video editing software can also be used to combine the

individual frames into a full animated sequence.

HWiNFO, a third-party system monitoring and diagnostics software, was used to

record system performance during the rendering. This application records

statistics such as memory availability, temperatures and power usage across all

of the computer’s different parts. It also produces detailed system information,

such as the items in Table 1.

4.3 Testing environment

Table 1 presents the detailed specifications of the computers used in the testing

process. From the beginning, it was understood that rendering the animated

sequences on one computer only would lead to results inherently aligned with

that specific system’s strengths and weaknesses. To eliminate any such biases,

three different desktop computers were chosen for the testing process in order to

minimise potentially skewed data influenced by an individual system’s

performance.

21

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Table 1. Computers used in the testing process: Detailed specifications.

 PC1 PC2 PC3

CPU Intel Core i9-

9900 @3.10 GHz

Intel Core i7-

11700F @2.50

GHz

AMD Ryzen 5900

Memory size 64 GB 16 GB 64 GB

Memory type DDR4 SDRAM DDR4 SDRAM DDR4 SDRAM

Memory clock 1333 MHz 1600 MHz 1800 MHz

Motherboard

chipset

Intel Z370 (Kaby

Lake)

Intel B560

(Rocket Lake

PCH-H)

AMD X570

(Bixby)

GPU NVIDIA GeForce

RTX 2080 Ti

NVIDIA GeForce

RTX 3070

NVIDIA GeForce

RTX 3090

GPU memory

size

11 GB 8 GB 24 GB

GPU memory

type

GDDR6 SDRAM GDDR6 SDRAM GDDR6X

SDRAM

GPU clock 300 MHz 210 MHz 1925 MHz

Hard drive type NVMe 4x 8.0

GT/s

SATA 6Gb/s NVMe 4x 8.0

GT/s

All testing was conducted using computers running Windows 10 and 11 operating

systems. The machines shown in Table 1 were chosen on the basis of the GPUs

fitted into them so that three levels of graphics processing power would be

represented in the tests. To bridge the gap between the workflow differences of

Unity and Unreal Engine, a ready-made environment was procured from

NVIDIA’s USD sample assets. At the time of writing, neither Unity nor Unreal

Engine natively supported importing USD assets into their base editor

environments. For the usage of USD assets, both applications provide their own

solutions for USD handling via their respective add-on interfaces: an experimental

22

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

USD package can be imported from the Unity Package Manager, and Unreal

Engine’s plugins include the USD Stage interface. The Unity package converts

USD assets into formats supported by the application while the Unreal Engine

plugin works with USD file formats in their unaltered form. Hence, they feature

two different approaches to the workflow.

A common workspace for all measurements done in the context of the study was

needed to ensure a high degree of uniformity in the measurement phase.

NVIDIA’s USD Attic sample scene was chosen as testing environment for both

applications in order to provide identical starting points and to keep avoidable

deviations in system performance to a minimum.

4.4 Workflow

A causal-comparative research approach was deemed necessary for the project,

as the majority of the work involved analysing and drawing conclusions from

measured data pools. The fundamental differences between the game engines’

layouts and integrated technologies meant that, instead of building identical

scenes in both, the static USD environment mentioned in the previous section

first had to be set up in an Unreal Engine workspace so that the animation

sequence could be built into it.

The first step was to import the USD Attic sample scene into the editor. This

necessitated the installation of the USD Stage plugin which allows the user to

view and modify USD assets without changing their file format (see Figure 2).

23

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 2. The USD Stage interface in Unreal Engine 5. (Unreal Engine 5.1

Documentation 2022)

Once the USD asset is loaded in via the USD Stage plugin, it is ready to be used

and modified within the application as the user sees fit. For this workflow, the Attic

sample scene was not modified in any way beyond disabling its built-in camera

component and replacing it with Unreal Engine’s built-in Cinematic Camera

functionality. This camera system is automatically associated with the

application’s Sequencer tool with which the user is able to record a customised

movement path. Changes in the asset position, rotation and scale values can be

recorded with the Sequencer’s timeline, and transitions and inbetweening are

then applied automatically to create a smoothly flowing animation. The final

camera path was laid out in a roughly elliptical shape which featured movement

on all three axes as well as constant rotation.

Lighting in the scene was set up so that the attic scene would be lit by bright

sunlight shining into the environment directly from the windows visible in Figure

3. Post-processing effects were enabled and adjusted to conceal the otherwise

empty workspace outside of the windows in the scene and to make the lighting

as realistic as possible.

24

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 3. The camera path overlaid onto a 3D view of the attic space.

After the animated sequence is completed, it can be rendered via the Movie

Render Queue plugin (see Figure 4). The user is presented with an array of

settings to choose from to determine the final quality and technical parameters of

the output. For the purposes of this thesis, one setting pre-set was created for

each resolution/frame rate pairing:

• 1080p/24 FPS

• 2K/30 FPS

• 4K/60 FPS

The Movie Render Queue’s default behaviour is to export each rendered frame

individually into the desired destination file folder. Therefore, installing FFmpeg

and linking it to Unreal Engine was a necessary step to output a fully rendered

video clip in the desired file format. .MP4 was chosen as the final format due to

its versatility and ability to be streamed on nearly all devices capable of video

playback. Sufficient quality for all of the chosen output settings was determined

with test runs on each computer, after which measurements were collected and

reformatted. The rendering process itself was completed with only the game

25

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

engine and HWiNFO running so that all available computing resources were

directed to simultaneously creating the fully rendered video clip frames and

recording the data that would eventually be used in the analysis phase.

Figure 4. Detailed output settings for the 4K render in Unreal Engine's Movie

Render Queue.

26

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

The workflow in Unity introduced some additional challenges to the process,

starting with importing the USD scene into the editor. Unlike in Unreal Engine, the

plugin needed for bringing the attic scene into the workspace was in an

experimental state, and very little useful documentation could be found from

official sources. Another difference was the way Unity’s USD importing plugin

handled USD assets: rather than bringing an asset directly into the scene, it first

had to be converted into a standard GameObject before it could be handled within

the workspace. When recreating the camera motion path, the position and

rotation values on the editor’s X and Z axes had to be switched around because

Unity and Unreal Engine had different geometrical axis layouts. In addition, the

transitioning motion between the camera’s successive positions could not be

recreated precisely: instead of smooth, non-stop inbetweening, the camera

transitions required all movement to stop at each pre-defined point before it could

be resumed towards the next position. These transitions can be seen in Figure 5,

where each one stops upon reaching the next camera position.

Figure 5. The Timeline window in Unity, displaying timed transitions between

individual points on the camera's motion path.

In addition, Unity’s lighting settings differed considerably from those of Unreal

Engine, requiring further adjustment of the lighting conditions to reach an

27

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

approximately similar appearance. Yet, the results were significantly different, as

can be seen in Figure 6.

Figure 6. Comparison between the first frames of the animated sequence in the

two game engines.

28

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Once each rendering task had been completed successfully, the contents of each

.CSV file were reformatted into a readable form in Microsoft Excel and reviewed

to obtain the necessary data and draw conclusions about the overall performance

of each test computer. The most relevant data points were then isolated from the

raw information and compiled into tables and charts for easier viewing and

analysis.

29

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

5 Results

5.1 Metrics

Due to the abundance of data provided by HWiNFO64, narrowing down the

results was necessary in order to locate and collect useful data points. On

average, a successfully recorded data set contained approximately 345 columns

of raw, unsorted data points, of which the majority held no useful information for

the purposes of this thesis. As explained in section 4.2, the chosen metrics were

the following:

• Overall rendering time

• Frames created per second

• Physical memory used

• Total CPU usage

• GPU core load

The data was collected with only the tested game engine and HWiNFO64 running

during rendering processes. This ensured that the results represented the

computing power of the systems being used solely to render the animated

sequences instead of being distributed between other active programs.

5.2 Rendering results

The final data collection process involved little active work, as the majority of the

time taken to obtain adequate results was spent waiting for the test computers to

complete the rendering tasks and export the finished video clips. Once the

relevant information had been isolated from the raw data, it could be compiled

and organised into easily readable charts from which conclusions could be drawn.

For brevity, the evaluated computers will be referred to as PC1, PC2 and PC3 in

the order of their predicted performance figures from least to most powerful

respectively.

30

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

5.2.1 General measurements

The final overall length of each recorded animated sequence was 24 seconds at

varying frame rates. As seen in Figure 7, the rendering process in Unreal Engine

took considerably longer to be completed on all testing platforms than in Unity. It

can also be noted that the average time needed to run through each rendering

task diminished with each step up in system performance.

Figure 7. Time taken to finish each rendering task.

Figure 8 shows that the rates at which frames were created were much higher in

Unity than in Unreal Engine. This corroborates the data in Figure 7, as less time

required to finish the rendering tasks translates directly into higher frame creation

rates. The rendering pre-sets produced 576 frames at 24 FPS, 720 frames at 30

FPS and 1440 frames at 60 FPS. These were calculated by multiplying the length

of the animated sequences (24 seconds) by the frame rate they were rendered

at.

00:00

05:00

10:00

15:00

20:00

25:00

30:00

35:00

40:00

45:00

50:00

Unreal Unity Unreal Unity Unreal Unity

PC1 (RTX 2080 Ti) PC2 (RTX 3070) PC3 (RTX 3090)

T
im

e
 (

m
m

:s
s
)

1080p/24 FPS 2K/30 FPS 4K/60 FPS

31

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 8. Average number of frames created per second of rendering time.

5.2.2 PC1 results

Table 2 summarises the rendering times and their differences on the PC1 system

with each setting pre-set. All Unity renders on the PC1 system were completed

in less than one minute, while the fastest Unreal Engine render took more than 7

minutes. On average, completing rendering tasks using Unreal Engine on the

PC1 system took approximately 31 times longer than in Unity. The duration of the

4K render was as much as some 52 times longer.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Unreal Unity Unreal Unity Unreal Unity

PC1 (RTX 2080 Ti) PC2 (RTX 3070) PC3 (RTX 3090)

F
ra

m
e

s

1080p/24 FPS 2K/30 FPS 4K/60 FPS

32

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Table 2. PC1: Rendering time statistics per each setting pre-set.

 Unreal

Engine

5.1.1

Time

difference

(%)

Time

difference

(mm:ss)

Unity

2021.3.3f1

1080p/24 FPS 07:13 1274% 06:39 00:34

2K/30 FPS 09:04 1600% 08:30 00:34

4K/60 FPS 48:30 5196% 47:34 00:56

Combined

average

21:35,6 3122% 20:54,1 00:41,5

As shown in Figures 9, 10 and 11 as well as Table 3, average physical memory

usage of the PC1 system in Unreal Engine amounted to approximately 30,800

MB and never exceeded 45,000 MB. Unity processes generally settled on

memory usage between 15,000 and 17,000 MB, with the 4K render exhibiting the

highest consumption. With Unreal Engine, the highest resolution exhibited the

lowest memory usage out of all three test cases. As such, physical memory usage

at any given time remained well below the established maximum of 64 GB (see

Table 1) throughout the rendering tasks even after brief elevated rates at the

beginning of each process. On average, the physical memory usage of Unreal

Engine render processes was approximately twice that of Unity.

33

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 9. PC1: Physical memory usage over the duration of the 1080p/24 FPS

rendering task.

Figure 10. PC1: Physical memory usage over the duration of the 2K/30 FPS

rendering task.

0

5000

10000

15000

20000

25000

30000

35000

40000

P
h

y
s
ic

a
l
M

e
m

o
ry

 U
s
e

d
 (

M
B

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

0

5000

10000

15000

20000

25000

30000

35000

40000

P
h

y
s
ic

a
l
M

e
m

o
ry

 U
s
e

d
 (

M
B

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

34

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 11. PC1: Physical memory usage over the duration of the 4K/60 FPS

rendering task.

Table 3. PC1: Average physical memory usage in all test cases.

 Unreal Engine 5.1.1 Unity 2021.3.3f1

1080p/24 FPS 31360.41 MB 15038.17 MB

2K/30 FPS 31483.97 MB 15360.11 MB

4K/60 FPS 29648.80 MB 16163.38 MB

Combined average 30831.06 MB 15520.55 MB

The total CPU usage figures displayed notable fluctuation in all test cases from

start to finish (see Figures 12, 13 and 14). The most significant example can be

seen in Figure 12, showing the CPU running at 100% capacity during 1080p

rendering in Unreal Engine before returning to sub-40% usage. No other

instances of abnormally high usage were recorded, apart from a few momentary

spikes, also in Unreal Engine, that went up to a maximum of approximately 90%.

Table 4 shows that average CPU usages during 1080p and 2K Unity renders

were some 25 to 19 percentage points lower than during the 4K render. These

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

P
h

y
s
ic

a
l
M

e
m

o
ry

 U
s
e

d
 (

M
B

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

35

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

usage values were reversed in Unreal Engine, with somewhat less drastic

differences.

CPU usage during Unity processes remained below 50% with the 4K render using

the most processing power. The 1080p and 2K renders displayed a spike at the

beginning, after which the numbers stabilised at around 12% and 20%

respectively.

A slight rise in CPU usage was seen towards the end of all Unreal Engine test

cases. Figure 14 illustrates this trend, with average usage ending up between 20

and 30% prior to a final steep spike.

Figure 12. PC1: Total CPU usage over the duration of the 1080p/24 FPS

rendering task.

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l
C

P
U

 U
s
a

g
e

 (
%

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

36

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 13. PC1: Total CPU usage over the duration of the 2K/30 FPS rendering

task.

Figure 14. PC1: Total CPU usage over the duration of the 4K/60 FPS rendering

task.

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l
C

P
U

 U
s
a

g
e

 (
%

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l
C

P
U

 U
s
a

g
e

 (
%

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

37

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Table 4. PC1: Average total CPU usage in all test cases.

 Unreal Engine 5.1.1 Unity 2021.3.3f1

1080p/24 FPS 38.32% 12.26%

2K/30 FPS 24.48% 18.85%

4K/60 FPS 20.10% 37.66%

Combined average 27.63% 22.92%

As illustrated in Figures 15, 16 and 17, GPU core load percentages showed

fluctuating rates that alternated between near-maximum and minimum

throughout the test cases. While the highest loads measured during Unreal

Engine rendering were close to 100%, the momentary dips to sub-50% utilisation

meant that on average, only approximately 55% of the GPU processing power

was reached (see Table 5). In Unreal Engine, the core load during the 1080p and

2K processes did not reach full capacity, but the 4K render touches 100%

processing power several times over its duration. In contrast, as shown in Figures

15 and 16, Unity processes remained below 40% in the first two test cases, and

the 4K render reached around 75% at its peak.

38

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 15. PC1: GPU core load over the duration of the 1080p/24 FPS

rendering task.

Figure 16. PC1: GPU core load over the duration of the 2K/30 FPS rendering

task.

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 C

o
re

 L
o

a
d

 (
%

)

Unreal Engine 5.1.1 Unity 2021.3.3f1

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 C

o
re

 L
o

a
d

 (
%

)

Unreal Engine 5.1.1 Unity 2021.3.3f1

39

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 17. PC1: GPU core load over the duration of the 4K/60 FPS rendering

task.

Table 5. PC1: Average GPU core load in all test cases.

 Unreal Engine 5.1.1 Unity 2021.3.3f1

1080p/24 FPS 42.65% 24.50%

2K/30 FPS 67.71% 27.83%

4K/60 FPS 54.36% 57.52%

Combined average 54.90% 36.62%

5.2.3 PC2 results

Table 6 summarises the rendering times and their differences on the PC2 system

with each setting pre-set. With the PC2 system, the rendering tasks took, on

average, approximately 26 times longer to complete in Unreal Engine than in

Unity. Similar to the PC1 measurements, the 4K render had the largest time

difference, amounting to 32 minutes and 31 seconds (roughly 36 times longer

than in Unity). Overall, every rendering process, except for the 2K task in Unreal

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 C

o
re

 L
o

a
d

 (
%

)

Unreal Engine 5.1.1 Unity 2021.3.3f1

40

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Engine and the 4K task in Unity, took less time to finish than the same processes

carried out using the PC1 system.

Table 6. PC2: Rendering time statistics per each setting pre-set.

 Unreal

Engine

5.1.1

Time

difference

(%)

Time

difference

(mm:ss)

Unity

2021.3.3f1

1080p/24 FPS 06:48 1360% 06:18 00:30

2K/30 FPS 09:46 1953% 09:16 00:30

4K/60 FPS 33:27 3584% 32:31 00:56

Combined

average

16:40,3 2578% 16:01,5 00:38,8

In all test cases, the PC2 system used less memory on average than the PC1

system to complete the rendering processes. Unity processes exhibited a pattern

similar to tests on the PC1 system, with memory usage rising from around 10,000

MB to between 11,000 and 12,000 MB at the highest. The average usage

displayed in Table 7 reflects this, with both 1080p and 2K renders using around

10,600 MB of memory, while usage during the 4K render was approximately

1,000 MB higher.

Unreal Engine’s average physical memory usage was roughly 500 MB lower than

Unity’s, with the combined average amount equating to roughly one third of the

PC1 average. In all three test cases, the chart lines illustrated in Figures 18, 19

and 20 displayed similar usage statistics at set points throughout the testing

processes: At the beginning, two peaks could be observed at which memory

usage momentarily climbed to approximately 16,000 MB and then fell and

stabilised before rising again prior to the endpoint of the recorded data set. Some

differences were observed in the 4K render chart where physical memory usage

decreased further halfway through the rendering process before jumping up

considerably and reaching between 13,000 and 14,000 MB at the end, higher

than in the other two cases.

41

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 18. PC2: Physical memory usage over the duration of the 1080p/24 FPS

rendering task.

Figure 19. PC2: Physical memory usage over the duration of the 2K/30 FPS

rendering task.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

P
h

y
s
ic

a
l
M

e
m

o
ry

 U
s
e

d
 (

M
B

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

P
h

y
s
ic

a
l
M

e
m

o
ry

 U
s
e

d
 (

M
B

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

42

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 20. PC2: Physical memory usage over the duration of the 4K/60 FPS

rendering task.

Table 7. PC2: Average physical memory usage in all test cases.

 Unreal Engine 5.1.1 Unity 2021.3.3f1

1080p/24 FPS 9982.37 MB 10618.50 MB

2K/30 FPS 11362.05 MB 10696.13 MB

4K/60 FPS 10071.19 MB 11604.72 MB

Combined average 10471.87 MB 10973.12 MB

The total CPU usage of the PC2 system was found to be consistently volatile

throughout all test cases, as shown in Figures 21, 22 and 23. This is most

prominently visible in Figure 23, which shows the computing power used by Unity

briefly rising to approximately 80% before returning to around 50% at the end of

the recording. A similar spike can be seen in Figure 22, where CPU usage jumps

to nearly 70% prior to settling at slightly above 30%.

The Unreal Engine results indicate a lower net CPU usage at the beginning of

each rendering process before stabilising between approximately 35% and 50%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

P
h

y
s
ic

a
l
M

e
m

o
ry

 U
s
e

d
 (

M
B

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

43

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

and a new increase to 60-70% towards the end. In the 4K render, this final jump

was less pronounced, only reaching around 55%, except for the very end, where

usage momentarily increased to over 95%. Average CPU usage remained below

30% for both Unity and Unreal Engine rendering tasks (see Table 8).

Figure 21. PC2: Total CPU usage over the duration of the 1080p/24 FPS

rendering task.

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l
C

P
U

 U
s
a

g
e

 (
%

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

44

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 22. PC2: Total CPU usage over the duration of the 2K/30 FPS rendering

task.

Figure 23. PC2: Total CPU usage over the duration of the 4K/60 FPS rendering

task.

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l
C

P
U

 U
s
a

g
e

 (
%

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l
C

P
U

 U
s
a

g
e

 (
%

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

45

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Table 8. PC2: Average total CPU usage in all test cases.

 Unreal Engine 5.1.1 Unity 2021.3.3f1

1080p/24 FPS 38.32% 12.26%

2K/30 FPS 24.48% 18.85%

4K/60 FPS 20.10% 37.66%

Combined average 27.63% 22.92%

Stark differences between Unity and Unreal Engine’s handling of GPU core load

are immediately apparent in Figures 24, 25 and 26. As shown in Table 9, the tests

performed in Unity resulted in an average core load of some 38%, while Unreal

Engine averaged slightly over 65%. In Unity, a momentary maximum between

60% and 70% was visible in the 2K and 4K render graphs. The 1080p rendering

process reached a maximum of approximately 40% at its peak.

By comparison, test results from Unreal Engine show long periods during which

the GPU ran at 100% capacity with little to no deviations. Noteworthy instability

is present at both ends of all three Unreal Engine graphs, as shown especially in

Figures 24 and 25 where the core load drops down to 0% on multiple occasions.

Between these two behaviours, the core load exhibited fluctuation of varying

intensity. Towards the end of each Unreal Engine test case, the GPU core load

only rose to an approximate maximum of 40%, the 1080p rendering task

displaying a momentary jump to almost 60% at the very end of the task.

46

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 24. PC2: GPU core load over the duration of the 1080p/24 FPS

rendering task.

Figure 25. PC2: GPU core load over the duration of the 2K/30 FPS rendering

task.

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 C

o
re

 L
o

a
d

 (
%

)

Unreal Engine 5.1.1 Unity 2021.3.3f1

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 C

o
re

 L
o

a
d

 (
%

)

Unreal Engine 5.1.1 Unity 2021.3.3f1

47

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 26. PC2: GPU core load over the duration of the 4K/60 FPS rendering

task.

Table 9. PC2: Average GPU core load in all test cases.

 Unreal Engine 5.1.1 Unity 2021.3.3f1

1080p/24 FPS 55.84% 26.50%

2K/30 FPS 63.23% 31.50%

4K/60 FPS 77.40% 56.07%

Combined average 65.49% 38.02%

5.2.4 PC3 results

Table 10 summarises the rendering times and their differences on the PC3

system with each setting pre-set. On this computer rendering times follow largely

the same pattern as the times recorded with the PC1 and PC2 systems. On

average, Unreal Engine renders took approximately 16 times longer to complete

than their Unity counterparts. As was the case with the other two computers, the

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 C

o
re

 L
o

a
d

 (
%

)

Unreal Engine 5.1.1 Unity 2021.3.3f1

48

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

4K render presented the most significant difference, with Unreal Engine using

nearly 28 times more time than Unity.

Physical memory measurements were not available for the PC3 system as the

.CSV files containing the data collected from all test cases in both Unity and

Unreal Engine were left incomplete due to unknown reasons. Total CPU usage

and GPU core load statistics were extractable, and are displayed in this section.

Table 10. PC3: Rendering time statistics per each setting pre-set.

 Unreal

Engine

5.1.1

Time

difference

(%)

Time

difference

(mm:ss)

Unity

2021.3.3f1

1080p/24 FPS 03:13 536% 02:37 00:36

2K/30 FPS 05:22 894% 04:46 00:36

4K/60 FPS 22:45 2785% 21:56 00:49

Combined

average

10:26,9 1563% 09:46,8 00:40,1

The measured CPU usage in all tests conducted on the PC3 system generally

remained below 50% for their entire durations, with some erratic spikes at the

beginning and the end of each data set as notable exceptions. The results

displayed a significant degree of instability with a tendency to remain within

certain percentage ranges: For example, as seen in Figures 27 and 28, the total

CPU usage fluctuated between near-zero and 30% for much of the Unreal Engine

test duration. The 4K render also showed similar results, albeit with an upper limit

of approximately 35-50% (see Figure 29). Table 11 shows that the average CPU

usage of Unity rendering processes sat below 20%, while Unreal Engine

processes used approximately 6% more.

As illustrated in Figures 27 and 28, the computing power used for the Unity 1080p

and 2K renderings remained below 20% except for a single brief jump during the

2K render. For the 4K render, Unity’s CPU usage was noticeably higher,

49

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

averaging approximately 33% with a momentary maximum of over 50% on

several occasions. For Unreal Engine, CPU usage in the 4K render varied

between 10 and 50%, with short but frequent drops to 0%.

Figure 27. PC3: Total CPU usage over the duration of the 1080p/24 FPS

rendering task.

Figure 28. PC3: Total CPU usage over the duration of the 2K/30 FPS rendering

task.

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l
C

P
U

 U
s
a

g
e

 (
%

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l
C

P
U

 U
s
a

g
e

 (
%

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

50

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 29. PC3: Total CPU usage over the duration of the 4K/60 FPS rendering

task.

Table 11. PC3: Average total CPU usage in all test cases.

 Unreal Engine 5.1.1 Unity 2021.3.3f1

1080p/24 FPS 20.89% 7.90%

2K/30 FPS 22.16% 10.78%

4K/60 FPS 26.78% 33.36%

Combined average 23.28% 17.34%

As seen in Figures 30, 31 and 32, GPU core load figures for the PC3 system

display a high degree of instability throughout all test cases. While percentages

above 95% were consistently reached in all Unreal Engine tests, the end result

only amounted to a usage average of approximately 63%. Figures 30, 31 and 32

show near-constant fluctuation between optimal (100%) and minimum (0%) GPU

core load in Unreal Engine, with only the 4K render reaching a full 100%. All three

cases exhibit the same behaviour, with a brief low core load at first followed by

hefty jumping from one extreme to the other for the majority of the rendering

process. Towards the end, Unreal Engine’s GPU core load settles between

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l
C

P
U

 U
s
a

g
e

 (
%

)

Unreal Engine 5.1.1

Unity 2021.3.3f1

51

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

approximately 30 and 40% and then has a short sequence of fluctuations before

the end of the data sets.

Unity data sets show more moderate GPU core loads with momentary

percentages reaching approximately 95% during the 1080p and 2K renders (see

Figures 30 and 31). The 4K render produces more consistent variation between

around 40 and 55% over most of its duration. On average, Unreal Engine renders

exhibited an approximately 28% higher GPU core load than their Unity

counterparts (see Table 12).

Figure 30. PC3: GPU core load over the duration of the 1080p/24 FPS

rendering task.

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 C

o
re

 L
o

a
d

 (
%

)

Unreal Engine 5.1.1 Unity 2021.3.3f1

52

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Figure 31. PC3: GPU core load over the duration of the 2K/30 FPS rendering

task.

Figure 32. PC3: GPU core load over the duration of the 4K/60 FPS rendering

task.

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 C

o
re

 L
o

a
d

 (
%

)

Unreal Engine 5.1.1 Unity 2021.3.3f1

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 C

o
re

 L
o

a
d

 (
%

)

Unreal Engine 5.1.1 Unity 2021.3.3f1

53

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Table 12. PC3: Average GPU core load in all test cases.

 Unreal Engine 5.1.1 Unity 2021.3.3f1

1080p/24 FPS 57.58% 34.28%

2K/30 FPS 66.51% 28.30%

4K/60 FPS 63.94% 41.31%

Combined average 62.67% 34.63%

54

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

6 Discussion

6.1 Relevance of results

As noted in Šmíd’s comparison between Unity and Unreal Engine (2017), the

render engine is arguably the most important part of a game engine. Good

graphical quality continues to be an important selling point for games, as one of

the most commonly rated aspects of any game is its presentation. It is not unusual

that over 90% of calculations done during gameplay are related to rendering only,

while the remaining 10% is shared by game logic, scripts, physics and audio.

Consumers’ expectations for better visual quality continue to grow year by year,

and catering for this demand requires developers to take also lower-end

machines into consideration when choosing a game engine for their projects.

Factors such as these contextualise the research done in this thesis, as its aim

is to compare Unity and Unreal Engine in terms of their performance when

rendering animated sequences at various frame rates and resolutions.

6.2 General findings

The overall results of the testing process were largely consistent with the unique

specifications of the different computers used in the practical phase of the project.

In some cases, the features of each system could be quickly recognised from the

numerical data they provided. However, patterns were only found in individual

data sets rather than the assessed metrics as a whole, which meant that they

had to be analysed one by one and compared only to other measurements of the

same kind.

Workflow-wise, neither Unity nor Unreal Engine presented significant challenges

in getting the USD attic scene to show up properly in their workspaces, though

the experimental state of Unity’s USD handling add-on and the lack of official

documentation meant that successful installation of the ready-made environment

into the editor was achieved largely by trial and error. As seen in Figure 2 in

55

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

section 4.4, Unreal Engine provided more tools for the importing process, but

these were ultimately not used in this research project because of the need to

have identical backdrops for recording in both applications. Position and rotation

values of the camera path’s intermediate locations were easier to set and modify

in Unreal Engine thanks to the intuitive design of the Sequencer tool interface.

Moreover, even though Unreal Engine had more user interface (UI) elements to

navigate through in order to produce the animated sequence, the process in its

entirety was less vague and confusing than in Unity.

6.3 Rendering time and frame creation rate

Out of all unique data sets, rendering times and average frame creation rates

were the most readily available since they did not depend on the performance of

each evaluated computer. As seen in Figure 7 in section 5.2.1, the time taken to

finish the rendering task in Unreal Engine diminished considerably with each

upward step in system computing power. Meanwhile, rendering times in Unity did

not exhibit such drastic changes: Tables 2, 6 and 10 show that none of the

rendering tasks performed in that application ever took more than 56 seconds to

finish. This points to much greater consistency in different hardware

environments.

A recurring trend could be distinguished in that Unity required less time to

produce more frames of the entire animated sequence per second with all

individual setting pre-sets. It is likely that the difference is caused by several

factors, including:

• the quality and exact parameters of the lighting settings in the workspace

• the way the rendering task is handled by the engines’ recording tools

• the system performance requirements of the engine itself.

56

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

6.4 Physical memory usage

Physical memory usage trends were the least volatile out of all collected data

sets. Not only did they exhibit very little instability but they were also the easiest

to read and draw conclusions from. The usage data was only available for the

PC1 and PC2 systems, as the .CSV files compiled as part of the rendering

processes on the PC3 system only turned out 11 of the expected average of 345

columns of raw data. The available columns did not include physical memory

usage measurements, which meant that they could not be analysed.

The data that was available from the other two computers showed that the

physical memory usage of the PC1 system during Unreal Engine renders

remained well below the maximum of 64 GB. However, the PC2 system

exceeded its own maximum of 16 GB on multiple occasions, which assumably

resulted in some of the computer’s internal storage being harnessed as makeshift

memory until the usage levels went down again. In the end, such memory

overflows only occurred four times in total: once during the 1080p and 4K renders,

and twice during the 2K render. Memory usage in Unity was both less significant

and more stable, reflecting the application’s more modest resource expenditure.

6.5 Total CPU usage

As no other programs besides Unity and Unreal Engine themselves and HWiNFO

were left running during rendering, the expectation was that the resulting data

would reflect the CPU usage of the game engines as purely as possible. While

this was achieved for the most part, some unexpected behaviour was recorded,

particularly during the 1080p rendering task on the PC1 system: Figure 12 (see

section 5.2.2) shows 100% CPU usage during the initial stages of the Unreal

Engine process. Reasons for this unforeseen reading are not known, as no other

rendering tasks displayed similar occurrences.

Based on the analysis of the total CPU usage data, it can be concluded that the

Unity rendering processes were less predictable than their Unreal Engine

57

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

counterparts. While they were completed much more quickly, their resource

usage generally showed more uneven patterns than the same tests performed

on Unreal Engine. Examples of this can be seen in Figures 27, 28 and 29 (see

section 5.2.4): Unreal Engine results show a consistent pattern of low to medium

CPU usage across all three test cases, whereas Unity results start from around

10% usage during the 1080p render and climb to between 10% and 20% in the

2K render and ultimately to 30-50% during the 4K render.

6.6 GPU core load

As a particular effort was made to dedicate as much as possible of the computing

power of the test computers to the rendering tasks, the GPU core load

percentages were expected to reach optimum levels above 90% either with few

deviations or without them altogether. However, as seen in Tables 5, 9 and 12 (in

sections 5.2.2, 5.2.3 and 5.2.4), the results were not as uniform as initially

anticipated. On the contrary, they displayed considerable instability particularly

throughout the Unreal Engine rendering processes run on the PC1 and PC3

systems. The results on the PC2 system were best in line with the original

expectations, though they, too, showed some fluctuation.

The results obtained from the Unity rendering processes were not as surprising,

given that the entire task was finished in under one minute in all cases. As could

be expected, the combination of fast rendering and the lower output quality result

in overall GPU core loads that did not reach the same heights as the Unreal

Engine equivalent.

58

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

6.7 Anomalies

Several oddities were detected in the charts. For Unreal Engine, the PC2 system

took more time to complete the 2K rendering task than the PC1 system even

though performance and efficiency gains were to be expected with each step up

when moving on to more powerful computers. This unexpected outcome may

stem from the smaller size of the integrated RAM in the PC2 system, meaning

that even if it used a newer and more powerful GPU, it was slowed down by the

16 GB of computer memory it could use to efficiently complete the rendering tasks

as opposed to the 64 GB utilised by the other systems. This theory is supported

by the fact that even with its less powerful GPU, the PC1 system presented no

notable hardware-related issues during or after the rendering processes.

As mentioned in section 6.4, no physical memory usage statistics of the PC3

system were obtained. The reason for the significantly reduced amount of data

that could be extracted from the rendering process could not be determined. The

rendering time and frame creation rate measurements were not affected by this

deficiency and could be used for acceptable analysis and conclusions.

6.8 Hypotheses

Figure 6 (see section 4.4) shows a clear difference in the environmental lighting

applied to the USD attic scene in Unity and Unreal Engine. However, the stark

difference in quality comes with the cost of significantly longer rendering times,

as the average time taken to finish the tasks in Unreal Engine was up to 31 times

longer than in Unity. Additionally, despite some individual deviations, Unreal

Engine’s average computer resource usage was higher in all test cases,

confirming the first of four hypotheses presented in section 4.1.

Both the observed consistency of rendering times in Unity and the generally lower

average system resource usage in all test cases support the second hypothesis.

This, combined with the lesser graphical detail of Unity results, implies that

59

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

rendering with a high frame rate and resolution has less net impact on system

performance in Unity because of its lower hardware requirements.

The third hypothesis could not be confirmed with certainty. While Figures 7 and

8 point to the expected smaller average computer resource usage in higher-

performance systems, other measurements were not as linear: For example, total

CPU usage percentages on the PC2 system did not follow the aforementioned

pattern, with both Unity and Unreal Engine averaging more than 32% usage as

opposed to under 28% in all other cases on the PC1 and PC3 systems.

In section 6.2 above, mention is made of the difficulty with which the USD attic

sample asset could be brought into working order in Unity. This, coupled with

Unreal Engine’s more coherent UI layout as well as a greater choice of options,

confirms the final hypothesis that Unreal Engine is better than Unity in terms of

USD asset handling. Moreover, the greater efficiency with which Unreal Engine

is able to handle large and detailed objects, such as the USD scene used in this

comparison, puts it in a more favourable position in this context.

60

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

7 Conclusions and recommendations

The purpose of this thesis was to compare the performance of two game engines,

Unity and Unreal Engine, during pre-set rendering processes so as to determine

which application is more suited for rendering short animated sequences in real

time. This was achieved by measuring and recording five metrics on three

different computer systems, ensuring that the analysed data was as neutral as

possible. Unreal Engine was expected to emerge as the superior alternative,

particularly in terms of the visual quality of the animated sequences it produced

on each computer using three different setting pre-sets.

The data sets obtained from a total of 18 different rendering processes indicate

that Unreal Engine is indeed more viable for real-time rendering work, though the

higher-quality results come at the cost of elevated computer resource usage and

considerable investment in time needed for completing the rendering tasks. It

should be noted that Unity results are by no means unacceptable and that they

provide a viable alternative to Unreal Engine especially for lower-end machines.

If more work is put into refining the visual details of the recorded environment, as

well as the post-processing effects, the quality of animations produced with Unity

can be brought on par with Unreal Engine’s equivalent. In other words, while

Unreal Engine has a time cost at the rendering stage, with Unity it is incurred at

post-processing.

Additionally, it is advisable to wait for USD asset management to be officially

incorporated into both of the evaluated game engines: The highly experimental

nature of Unity’s USD importing package, as well as its apparent lack of official

documentation, posed significant hindrances during the preparations for data

gathering for this project. Unreal Engine’s USD Stage plugin was much more

user-friendly and coherent. Therefore, until Unity’s USD import package is

developed further, Unreal Engine’s equivalent remains the better option.

Given that this research was conducted on only three computers and that the

length of the animations created using them was only 24 seconds, more research

61

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

is still needed to provide more in-depth points of comparison between the

rendering characteristics of Unity and Unreal Engine.

62

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

References

3DHeven. 2023. Real-time and Offline 3D rendering: What are the Differences?

- 3DHEVEN. Accessed 15.5.2024. Available at:

 https://3dheven.com/real-time-and-offline-3d-rendering-what-are-the-

differences/

Adobe. n.d. Creating animated action with tweening. Accessed 30.4.24.

Available at: https://www.adobe.com/creativecloud/video/discover/tweening.html

Christopoulou, E., Xinogalos, S. 2017. Overview and Comparative Analysis of

Game Engines for Desktop and Mobile Devices. Int. J. Serious Games 4.

Accessed 29.4.2023. Available at:

http://journal.seriousgamessociety.org/index.php/IJSG/article/view/194

Computer Hope. 2021. What is a Plugin? Accessed 30.4.24. Available at:

https://www.computerhope.com/jargon/p/plugin.htm

Computer Hope. 2024. What is an Add-on? Accessed 30.4.2024. Available at:

https://www.computerhope.com/jargon/a/addon.htm

Cubix, 2022. 50% of all Mobile Games are Developed on Cross-Platform

Engine, Unity. Cubix Blogs. Accessed 16.3.2024. Available at:

https://www.cubix.co/blog/50-of-all-mobile-games-are-developed-on-cross-

platform-engine-unity/

Davoxel, n.d. Unity vs. Unreal Engine: Choosing the Right Platform for Your

Game. Accessed 28.4.2024.

Available at: https://www.davoxel.com/blog/unity-vs-unreal-engine-comparison

Demant, R. 2023. Comparing Unity vs Unreal for VR, MR or AR Development

Projects. XR Bootcamp. Accessed 11.4.2024. Available at:

https://medium.com/xrbootcamp/comparing-unity-vs-unreal-for-vr-mr-or-ar-

development-projects-edbc4f93b21c

Garratt, W., Rithviik, S., Wang, F. 2023. Achieving Interoperability Between

Gaming Engines by Utilizing Open Simulation Standards. 2023 Simulation

Innovation Workshop (SIW). Simulation Interoperability Standards Organization

- SISO. Accessed 20.4.2024.

Available at: http://bura.brunel.ac.uk/handle/2438/26270

https://3dheven.com/real-time-and-offline-3d-rendering-what-are-the-differences/
https://3dheven.com/real-time-and-offline-3d-rendering-what-are-the-differences/
https://www.adobe.com/creativecloud/video/discover/tweening.html
http://journal.seriousgamessociety.org/index.php/IJSG/article/view/194
https://www.computerhope.com/jargon/p/plugin.htm
https://www.computerhope.com/jargon/a/addon.htm
https://www.cubix.co/blog/50-of-all-mobile-games-are-developed-on-cross-platform-engine-unity/
https://www.cubix.co/blog/50-of-all-mobile-games-are-developed-on-cross-platform-engine-unity/
https://www.davoxel.com/blog/unity-vs-unreal-engine-comparison
https://medium.com/xrbootcamp/comparing-unity-vs-unreal-for-vr-mr-or-ar-development-projects-edbc4f93b21c
https://medium.com/xrbootcamp/comparing-unity-vs-unreal-for-vr-mr-or-ar-development-projects-edbc4f93b21c
http://bura.brunel.ac.uk/handle/2438/26270

63

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Grand View Research. 2023. Video Game Market Size To Reach $583.69

Billion By 2030. Accessed 16.3.2024. Available at:

https://www.grandviewresearch.com/press-release/global-video-game-market

Lenovo US. n.d.-a. Unlocking the Hidden Power of Physical Memory. Accessed

17.4.2024.

Available at: https://www.lenovo.com/us/en/glossary/physical-memory/

Lenovo US. n.d.-b. What is a Graphics Card? and Why Do I Need One?

Accessed 30.4.24.

Available at: https://www.lenovo.com/us/en/glossary/what-is-graphics-card/

Luk, A. 2023. What You Need to Know About Universal Scene Description —

From One of Its Founding Developers. Medium.com. Accessed 9.4.2024.

Available at: https://medium.com/@nvidiaomniverse/what-you-need-to-know-

about-universal-scene-description-from-one-of-its-founding-developers-

12625e99389a

MiniTool. 2022. Is 100% GPU Usage Bad or Good? How to Fix 100% GPU

When Idle? Accessed 18.4.2024. Available at:

https://www.minitool.com/news/100-gpu-usage.html

Run:ai. n.d. 6 Reasons for Low GPU Utilization and How to Improve It.

Accessed 18.4.2024.

Available at: https://www.run.ai/guides/multi-gpu/low-gpu-utilization

Sacco, M. 2023. Unity: Understanding URP, HDRP, and Built-In Render

Pipeline. Accessed 11.4.2024. Available at:

https://www.occasoftware.com/blog/unity-understanding-urp-hdrp-built-in

Šmíd, A. 2017. Comparison of Unity and Unreal Engine. ČVUT/DCGI.

Accessed 23.4.2024. Available at:

https://dcgi.fel.cvut.cz/en/theses/2017/smidanto/

SolarWinds. n.d. What is CPU Usage? - IT Glossary. Accessed 17.4.2024.

Available at: https://www.solarwinds.com/resources/it-glossary/what-is-cpu

Unity Technologies. 2017a. Unity - Manual: GameObject. Accessed 30.4.2024.

Available at: https://docs.unity3d.com/560/Documentation/Manual/class-

GameObject.html

https://www.grandviewresearch.com/press-release/global-video-game-market
https://www.lenovo.com/us/en/glossary/physical-memory/
https://www.lenovo.com/us/en/glossary/what-is-graphics-card/
https://medium.com/@nvidiaomniverse/what-you-need-to-know-about-universal-scene-description-from-one-of-its-founding-developers-12625e99389a
https://medium.com/@nvidiaomniverse/what-you-need-to-know-about-universal-scene-description-from-one-of-its-founding-developers-12625e99389a
https://medium.com/@nvidiaomniverse/what-you-need-to-know-about-universal-scene-description-from-one-of-its-founding-developers-12625e99389a
https://www.minitool.com/news/100-gpu-usage.html
https://www.run.ai/guides/multi-gpu/low-gpu-utilization
https://www.occasoftware.com/blog/unity-understanding-urp-hdrp-built-in
https://dcgi.fel.cvut.cz/en/theses/2017/smidanto/
https://www.solarwinds.com/resources/it-glossary/what-is-cpu
https://docs.unity3d.com/560/Documentation/Manual/class-GameObject.html
https://docs.unity3d.com/560/Documentation/Manual/class-GameObject.html

64

Turku University of Applied Sciences Thesis | Tuomas Vuorinen

Unity Technologies. 2017b. Unity - Manual: Post-processing overview.

Accessed 30.4.2024. Available at:

https://docs.unity3d.com/560/Documentation/Manual/PostProcessingOverview.

html

Unity Technologies. 2024. Unity - Manual: Render pipelines. Accessed

11.4.2024. Available at: https://docs.unity3d.com/Manual/render-pipelines.html

Unity Technologies. n.d. Understand Real-Time Rendering In Both 3D & 2D

with Unity. Accessed 15.5.2024. Available at:

https://unity.com/how-to/real-time-rendering-3d

Unreal Engine 5.1 Documentation. 2022. USD Stage panel. Accessed

29.4.2024. Available at:

https://d1iv7db44yhgxn.cloudfront.net/documentation/images/f5b95820-5e29-

4acc-8fad-f7b4768dae7a/5-0-010-usd-stage-panel.png

Wijman, T. 2018. Newzoo’s 2018 Report: Insights Into the $137.9 Billion Global

Games Market. Accessed 15.4.2024. Available at:

https://newzoo.com/resources/blog/newzoos-2018-report-insights-into-the-137-

9-billion-global-games-market

XR suite. 2021. Real-time and offline 3D rendering: what are the differences?

XR suite - by L&S. Accessed 15.5.2024. Available at:

https://www.xrsuite.fr/post/real-time-and-offline-3d-rendering-what-are-the-

differences

Young, C. 2021. 7. Unity Production: Capturing the Everyday Game Maker

Market. Sotamaa, O., Svelch, J. (Eds.), Game Production Studies. Amsterdam

University Press, pp. 141–158. Accessed 15.4.2024. Available at:

https://doi.org/10.1515/9789048551736-009

https://docs.unity3d.com/560/Documentation/Manual/PostProcessingOverview.html
https://docs.unity3d.com/560/Documentation/Manual/PostProcessingOverview.html
https://docs.unity3d.com/Manual/render-pipelines.html
https://unity.com/how-to/real-time-rendering-3d
https://d1iv7db44yhgxn.cloudfront.net/documentation/images/f5b95820-5e29-4acc-8fad-f7b4768dae7a/5-0-010-usd-stage-panel.png
https://d1iv7db44yhgxn.cloudfront.net/documentation/images/f5b95820-5e29-4acc-8fad-f7b4768dae7a/5-0-010-usd-stage-panel.png
https://newzoo.com/resources/blog/newzoos-2018-report-insights-into-the-137-9-billion-global-games-market
https://newzoo.com/resources/blog/newzoos-2018-report-insights-into-the-137-9-billion-global-games-market
https://www.xrsuite.fr/post/real-time-and-offline-3d-rendering-what-are-the-differences
https://www.xrsuite.fr/post/real-time-and-offline-3d-rendering-what-are-the-differences
https://doi.org/10.1515/9789048551736-009

	List of abbreviations
	Glossary
	1 Introduction
	2 Literature review
	2.1 Game engines
	2.2 Unity vs Unreal Engine

	3 3D Rendering
	4 Methodology
	4.1 Aims and objectives
	4.2 Testing setup and add-ons
	4.3 Testing environment
	4.4 Workflow

	5 Results
	5.1 Metrics
	5.2 Rendering results
	5.2.1 General measurements
	5.2.2 PC1 results
	5.2.3 PC2 results
	5.2.4 PC3 results

	6 Discussion
	6.1 Relevance of results
	6.2 General findings
	6.3 Rendering time and frame creation rate
	6.4 Physical memory usage
	6.5 Total CPU usage
	6.6 GPU core load
	6.7 Anomalies
	6.8 Hypotheses

	7 Conclusions and recommendations
	References

