

Samuel Silvola

Environmental Monitoring System For

Greenhouses

Technology and Communication
2024

2

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Samuel Silvola
Title Environmental Monitoring System for Greenhouses
Year 2024
Language English
Pages 43
Name of Supervisor Smail Menani

This project addresses the need for sustainable gardening by developing an inte-
grated wireless environmental monitoring system for greenhouses. The aim is to
optimize plant growth through real-time monitoring of temperature, humidity,
and soil moisture levels.

The system incorporates a temperature and humidity sensor for measuring the
air and a soil moisture sensor for plant hydration monitoring. The STM32 micro-
controller board serves as the core component for connecting with the sensors.
Additionally, the Raspberry Pi is utilized for data storage, visualization, and re-
mote accessibility. The implementation uses USART for communication between
the STM32 microcontroller and Raspberry Pi. Then the data is transmitted to a
mobile device via Wi-Fi.

The results demonstrate the successful capture and transmission of real-time en-
vironmental data, providing a full view of greenhouse conditions. This integrated
system offers a practical and efficient solution for informed decision making in
greenhouse management.

Keywords Embedded C, Microcontroller, Raspberry Pi

3

CONTENTS

ABSTRACT

1 INTRODUCTION .. 9

2 THEORY AND BACKGROUND INFORMATION ... 10

2.1 Requirements .. 10

 2.2 Hardware .. 10

2.3 Application Theory .. 11

2.3.1 Measurements .. 11

2.3.2 Measurement Format ... 12

3 USED TECHNOLOGY .. 13

3.1 Software Tools .. 13

3.2 Hardware Components ... 14

4 SPECIFICATIONS AND DESIGN .. 20

4.1 Functional and Non-Functional Specifications 20

4.3 Detailed Design ... 21

4.4 Preliminary Design .. 22

5 THE IMPLEMENTATION OF THE PROJECT .. 23

5.1 Hardware Design Implementation.. 23

5.2 Application Implementation ... 27

5.2.1 Main Function ... 28

5.2.2 USART ... 29

5.2.3 ADC .. 31

5.2.4 Delay .. 32

5.2.5 DHT2233

5.2.6 Soil Moisture Sensor ... 36

6 RESULTS AND TESTING ... 38

6.1 Preparations .. 38

6.2 Testing Phase .. 39

6.3 Reliability and Usability ... 41

4

6.5 Aims Reached .. 41

7 CONCLUSION AND THE FUTURE WORK ... 42

8 REFERENCES .. 43

5

LIST OF ABBREVIATIONS

APB2ENR Advanced Peripheral Bus 2 Enable Register

ADC Analog-To-Digital Converter

ARR Auto-Reload Register

CDT C/C++ Development Toolkit

CR Control Register

DR Data Register

EOC End of Conversion

GCC GNU Compiler Collector

GDB GNU Project Debugger

GND Ground

GPIO General Purpose Input/Output

IC Integrated Circuit

IDE Integrated Development Environment

IOT Internet Of Things

MCU Micro Controller Unit

MSB Most Significant Bit

NTC Negative Temperature Coefficient

OS Operating System

PCB Printed Circuit Board

RCC Reset and Clock Control

6

RX Receive

SWSTART Software Start

TX Transmit

TXE Transmit Data Register Empty

UI User Interface

USART Universal Synchronous and Asynchronous Receiver-Transmitter

7

LIST OF FIGURES AND TABLES

Figure 1. System Architecture Diagram p.14

Figure 2. STM32L152RE Circuit Diagram p.15

Figure 3. DHT22 Sensor p.16

Figure 4. SparkFun Soil Moisture Sensor p.18

Figure 5. Raspberry Pi p.19

Figure 6. DHT22 connection schematic p.24

Figure 7. Soil moisture calibration p.26
Figure 8. Device prototype schematic p.27

Figure 9. USART initialization function p.29

Figure 10. USART write function p.30

Figure 11. ADC initialization function p.31

Figure 12. Delay function p.32

Figure 13. Read DHT22 function p.34

Figure 14. Read soil function p.36

Figure 15. Prototype testing configuration p.38

Figure 16. Values on a PC using Putty p.39

Figure 17. Screen data during final testing p.40

8

Table 1. DHT22 Technical Specifications p.17

Table 2. DHT pin function definition p.25

9

1 INTRODUCTION

Environmental monitoring systems are essential in modern agriculture, particu-

larly in greenhouses where precise control over environmental parameters is es-

sential. This thesis aims to develop an automated greenhouse monitoring system

to monitor key environmental factors such as soil moisture, air temperature, and

air humidity, ensuring optimal plant growth.

By integrating sensors and developing the required software, the system will pro-

vide real-time data to improve greenhouse management. The goal is to enhance

plant health and productivity by maintaining ideal environmental conditions. Man-

ual monitoring of environmental parameters is labor-intensive and error-prone,

leading to suboptimal growing conditions. This thesis addresses the problem by

developing an automated system for continuous monitoring and access to accu-

rate real-time data.

This project focuses strictly on monitoring environmental conditions within a

greenhouse, without including automated control mechanisms like irrigation or

ventilation systems. The scope is limited to sensor integration, data acquisition,

and data communication.

10

2 THEORY AND BACKGROUND INFORMATION

In this chapter, the theory and background information are introduced.

2.1 Requirements

The greenhouse monitoring system must track the status of the greenhouse in real

time, continuously collecting data on soil moisture, temperature, and humidity. It

needs to accurately read sensor data from sensors and process this data for real-

time monitoring. The system must also transmit the collected data to a central

monitoring unit or display it on a user interface. A user-friendly interface is re-

quired for displaying the current environmental conditions.

The system must operate reliably under various environmental conditions, ensur-

ing continuous monitoring without frequent failures. Sensor readings must be ac-

curate and precise. The system must be easy to install, configure, and use, with

minimal technical knowledge required. It should be scalable, allowing additional

sensors or components to be added as needed. Additionally, the system must be

power-efficient, suitable for long-term.

Input data for the system includes soil moisture levels from soil moisture sensors,

temperature readings from temperature sensor, and humidity readings from hu-

midity sensor. Output data includes the real-time display of soil moisture, temper-

ature, and humidity on a user interface.

2.2 Hardware

The hardware design of the project consists of the following parts: the microcon-

troller board, a humidity and temperature sensor, a soil moisture sensor, a Rasp-

berry Pi, and a 10K Ohm resistor to keep the data line high to enable the connec-

tion between the sensor and the board.

11

The STM32 microcontroller facilitated seamless interfacing with sensors, ensuring

accurate data collection. The communication link between the microcontroller

and Raspberry Pi enables real-time data transfer and remote accessibility. By es-

tablishing this connection, the system allowed monitoring the greenhouse envi-

ronment from a mobile device, eliminating the need for physical presence in the

garden.

2.3 Application Theory

This section includes theory of the measurements and the approach of obtaining

them.

2.3.1 Measurements

The goal behind measurements is to collect relevant data from different sensors

to analyze living conditions of the plants inside the greenhouse.

For measuring humidity, the DHT22 sensor uses a humidity sensing component

which has two electrodes with moisture holding substrate between them. So, as

the humidity changes, the conductivity of the substrate changes or the resistance

between changes in these electrodes. This change in resistance is measured and

processed by the IC which makes it ready to be read by the microcontroller. /1/

For measuring temperature, the DHT22 uses a NTC temperature sensor or a ther-

mistor. A thermistor is a variable resistor that changes its resistance with the

change of the temperature. The sensor is made by sintering of semiconductive

materials such as ceramics or polymers to provide larger changes in the resistance

with just small changes in temperature.

The SparkFun Soil Moisture Sensor is a simple breakout for measuring the mois-

ture in soil and similar materials. It offers a reliable and cost-effective solution for

monitoring soil moisture levels in this project.

12

2.3.3 Measurement Format

The DHT22 sensor provides temperature and humidity measurements in a digital

format. Specifically, the sensor communicates with the microcontroller using a sin-

gle-wire digital interface protocol. When MCU finishes sending the start signal,

DHT22 will send response signal of 40-bit data that reflect the relative humidity

and temperature information to MCU.

For temperature measurements, the DHT22 sensor outputs the temperature in

degrees Celsius with a resolution of 0.1°C. The temperature data is represented as

a 16-bit unsigned integer, where the MSB indicates the sign (positive or negative),

and the remaining bits represent the temperature value.

For humidity measurements, the DHT22 sensor outputs the relative humidity as a

percentage with a resolution of 0.1%. Like temperature, the humidity data is also

represented as a 16-bit unsigned integer.

The SparkFun soil moisture sensor provides analog output based on the moisture

level detected in the soil. The ADC converts the analog voltage into a digital value

that can be processed and interpreted by the microcontroller.

The sensor measures the electrical conductivity or resistance of the soil, which

varies with its moisture content. The output from the sensor is an analog voltage

signal that corresponds to the soil moisture level. The voltage output varies pro-

portionally with the moisture level in the soil: higher moisture levels result in

higher analog voltage readings, while lower moisture levels outputs lower voltage

readings.

Once the application is running, it begins measuring the output from the sensors.

The data is stored inside the buffer structure of the STM32 microcontroller, and it

can be viewed by the user through a terminal software running on the Raspberry

Pi.

13

3 USED TECHNOLOGY

In this chapter, the software tools and the hardware components of the project

are described.

3.1 Software Tools

The project was created using STM32CubeIDE. It is an all-in-one multi-OS develop-

ment tool, which is part of the STM32Cube software eco-system. STM32CubeIDE

is an advanced C/C++ development platform with peripheral configuration, code

generation, code compilation, and debug features for STM32 microcontrollers and

microprocessors. It is based on the Eclipse®/CDT™ framework and GCC toolchain

for the development, and GDB for the debugging. It allows the integration of the

hundreds of existing plugins that complete the features of the Eclipse® IDE. /2/

Raspberry Pi OS was chosen as the operating system for the project for its versa-

tility and for its user-friendly interface for the end user. It is a Debian-based Linux

distribution tailored specifically for the Raspberry Pi hardware. Raspberry Pi OS

serves as a versatile platform for a wide range of projects, including home auto-

mation, media centers, retro gaming consoles, IoT devices, and educational appli-

cations. It is the official operating system for the Raspberry Pi.

Screen was used as the terminal window software. With Screen temperature mon-

itoring code can run in the background even if disconnected from the terminal.

This ensures continuous monitoring of temperature levels without interruptions.

RealVNC Viewer was used in the project to check the data from the Raspberry Pi

over the home network. RealVNC Viewer is a remote desktop software that allows

users to access and control a computer from another device over a network con-

nection.

14

3.2 Hardware Components

In this section of the thesis, the list of components with description will be pre-

sented. In selecting the hardware components for the project, careful considera-

tion was given to factors such as functionality, compatibility, and reliability. Each

component was chosen to contribute to the project's objectives. Key criteria in-

cluded availability, sensor accuracy, communication protocols, and ease of inter-

facing with the microcontroller.

Figure 1. System Architecture Diagram

The STM32L152RE devices offer key features essential for low-power applications.

They incorporate a high-performance Arm Cortex-M3 32-bit RISC core operating

at 32 MHz, facilitating efficient processing. It includes a 12-bit ADC for analog-to-

digital conversion, three USARTs for communication, and a variety of timers, in-

cluding a general-purpose 32-bit timer and six 16-bit timers. They also feature a

15

real-time clock for timekeeping. With Flash memory up to 512 Kbytes, these de-

vices provide ample storage for program code and data. Operating within a volt-

age range of 1.8 to 3.6 V, they offer flexibility in power supply requirements and

can operate in temperature ranges from -40 to +85 °C and -40 to +105 °C, making

them suitable for diverse environmental conditions. /3/

STM32L152RE is the core of this thesis project.

Figure 2. STM32L152RE Circuit Diagram /4/

A crystal oscillator is an electronic oscillator circuit which is often used to keep

track of time to provide a stable clock signal for digital integrated circuits and to

stabilize frequencies. The most common type of piezoelectric resonator used is a

quartz crystal, so oscillator circuits incorporating them became known as crystal

oscillators. A crystal is a solid in which the constituent atoms, molecules, or ions

16

are packed in a regularly ordered, repeating pattern extending in all three spatial

dimensions. /5/

A 32 MHz crystal oscillator is embedded into the STM32-L152RE microcontroller

board, which was used as the system clock in this thesis.

To measure the temperature and humidity of the air inside the greenhouse a

DHT22 sensor was chosen for its combination of accuracy, affordability, reliability,

and availability.

DHT22 output is calibrated digital signal. It utilizes digital-signal-collecting-tech-

nique and humidity sensing technology assuring its reliability and stability. Its sens-

ing elements are connected with an 8-bit single-chip computer. /6/

The communication between the MCU and this device occurs with the help of

USART.

Figure 3. DHT22 Sensor

17

For the DHT22 sensor a pull-up resistor is required on the data line to reduce signal

noise. For this purpose, a 10k Ohm resistor was used in this thesis for measure-

ment accuracy.

Table 1. DHT22 Technical Specifications /6/

For soil moisture sensor the SparkFun soil moisture sensor was chosen. It offers a

reliable and cost-effective solution for monitoring soil moisture.

The two large, exposed pads function as probes for the sensor, together acting as

a variable resistor. The more water that is in the soil means the better the conduc-

tivity between the pads will be, resulting in a lower resistance and a higher signal

output. /7/

18

Figure 4. SparkFun Soil Moisture Sensor

For this project a UI was required for the user to be able to access the data effort-

lessly. Raspberry Pi can visualize sensor data, set thresholds, configure system set-

tings, and view historical data making it smooth to monitor and manage the green-

house environment. It also allows an easy way to connect to a Wi-Fi network and

to power the STM32 making it a convenient solution for the project.

19

Figure 5. Raspberry Pi

20

4 SPECIFICATIONS AND DESIGN

The Specification and Design chapter provides a detailed and precise description

of the requirements for the greenhouse monitoring system from the developer’s

perspective. This chapter translates the user-oriented requirements into technical

specifications that guide the design and testing of the system. The specifications

define the functional and non-functional requirements in measurable terms, en-

suring that they can be designed to and tested for.

4.1 Functional and Non-Functional Specifications

The system must continuously monitor soil moisture, temperature, and humidity

levels in the greenhouse. The sensors will provide real-time data input to the

STM32 microcontroller. The STM32 microcontroller must process the raw data

from the sensors and store it in an internal buffer for further analysis. The data

processing includes filtering noise and converting analog signals to digital values.

The system must provide a user interface that displays the monitored parameters

in real-time. This interface should be accessible via USART to a connected device,

such as a computer.

The system must operate continuously without failure, ensuring constant moni-

toring and data accuracy. The system architecture must support the addition of

more sensors without significant changes to the existing design. The system must

be energy-efficient to ensure long-term operation, particularly if powered by bat-

teries or renewable energy sources. The sensors and hardware components must

be robust and capable of withstanding the greenhouse environment, including hu-

midity and temperature variations.

21

4.3 Detailed Design

The detailed design translates the specifications into a concrete implementation

plan, outlining the hardware and software components, their interactions, and the

overall system architecture.

The system consists of the STM32 microcontroller at the core, responsible for data

acquisition, processing, and communication. The soil moisture sensor measures

the volumetric content of water in the soil, outputting an analog signal propor-

tional to soil moisture levels, which is then read by the STM32 ADC. The DHT22

Temperature and Humidity Sensor provides digital output for both temperature

and humidity, directly interfacing with the STM32 GPIO pins. The USART Commu-

nication Module enables serial communication between the STM32 MCU and the

user interface, ensuring data is reliably transmitted to a connected device for real-

time monitoring.

The software components include sensor drivers, which are software modules to

interface with the soil moisture and DHT22 sensors, handling data acquisition and

initial processing. Data Processing Algorithms implemented on the STM32 filter

noise and convert raw sensor data into meaningful values, including analog-to-

digital conversion and temperature and humidity calculations. User Interface Soft-

ware runs on a connected Raspberry Pi that communicates with the STM32 via

USART, displaying real-time data.

The system's operation starts with initialization, where the STM32 peripherals, in-

cluding ADC, GPIO, and USART, are configured. The system then continuously

reads data from the soil moisture sensor (analog) and DHT22 sensor (digital), stor-

ing raw data in the internal buffer. This raw sensor data is filtered and processed,

converting analog signals to digital values and applying necessary calculations for

temperature and humidity. The processed data is then sent to the user interface

via USART.

22

4.4 Preliminary Design

Before implementing the greenhouse monitoring system, a preliminary design

outlines how the specifications will be fulfilled. This includes a list of circuits and

methods to be used, major inputs, a list of major functions, their relations, and the

steps to develop the greenhouse solution.

The major circuits include the soil moisture sensor circuit, the DHT22 temperature

and humidity sensor circuit, the STM32 microcontroller circuit, and the USART

communication circuit. The methods involve data acquisition from sensors, data

processing algorithms, and USART communication protocols.

The major inputs are the analog signal from the soil moisture sensor and the digital

signals from the DHT22 sensor. The major functions include initializing the system,

reading sensor data, processing data, and transmitting data to the user interface.

These functions are in interrelationship, where the sensor data is read and pro-

cessed before being transmitted to the user interface.

The development steps include designing and testing each circuit, implementing

the sensor drivers and data processing algorithms, developing the user interface

software, integrating all components, and testing the entire system for reliability

and accuracy.

23

5 THE IMPLEMENTATION OF THE PROJECT

In this chapter the implementation of the hardware and software parts of the pro-

ject are explained.

5.1 Hardware Design Implementation

This chapter describes the hardware implementation of the prototype of this pro-

ject. The prototype is built of several components: STM32-L152RE MCU board,

DHT22 humidity and temperature sensor, SparkFun soil moisture sensor, resistor,

and Raspberry Pi.

STM32-L152RE board is the core of the project. It can be programmed to control

all the connected modules, which are essential for this project, as well as to store

data obtained from the sensors.

The used features of the STM32-L152RE board are:

• USART

• ADC

• GPIO

• Timers

• RCC

DHT22 was chosen as the temperature and humidity sensor for this project. It is a

essential element of the greenhouse monitoring system, used to measure both

temperature and humidity within the greenhouse. This sensor offers reliable and

precise data on environmental conditions, ensuring that the greenhouse main-

tains the optimal climate for plant growth. The useful features for this project are:

• Digital output signal via single bus

24

• Temperature range from -40 to +80 Celsius

• Power supply range from 3.3 V to 6 V

• Resolution of 0.1% RH and 0.1 ℃

• Small size

Figure 6. DHT22 connection schematic

25

Table 2. DHT pin function definition

SparkFun soil moisture sensor was chosen to measure the soil moisture of the

plants. It is a key component of the greenhouse monitoring system, designed to

measure soil moisture levels accurately. This sensor detects the volumetric water

content in the soil, providing essential data for maintaining optimal plant hydra-

tion. Its notable features include:

• Analog output

• PCB coated in Gold Finishing for corrosion resistance

• Power supply range from 3.3 V to 5 V

• Affordability

Different types of soil can affect the sensor, and the resulting readings can be dif-

ferent from one composition to the next. To measure the soil moisture the sensor

must first be calibrated to get useful data for the user. The values when the sensor

is completely dry and when it is submerged in water must be acclaimed for cali-

bration.

26

Figure 7. Soil moisture calibration
To convert the analog value from the sensor to a percentage of moisture in the

soil the following formula was used. First the sensor was held above water and

then it was sunk underneath to calibrate the system.

𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 % = 100 ∗
Analog value

3200

27

Figure 8. Device prototype schematic

The device prototype schematic provides a comprehensive visual representation

of the hardware configuration and interconnections within the greenhouse moni-

toring system, detailing the integration of sensors, the STM32 microcontroller, and

additional components.

5.2 Application Implementation

This chapter represents the implementation of the system application.

The application was built using STM32CubeIDE. First, all the predefined pinouts

were cleared. After the project was built, most of the source code was deleted.

Only the system_stm32l1xx.c file was left for the project. Inside the include folder

the main.h and stm32l1xx_it.h files, were also deleted since own new code was

written for the project without using the HAL libraries provided by the CubeIDE.

28

The main functionality of the application consists of several different parts, which

are:

• System initialization

• Serial communication

• Sensor applications

• Continuous operation

The application consists of a main function, which initializes hardware and starts

the system by launching the task with system initialization. Afterwards the sensor

subfunctions are initiated. These will be described later in this work.

5.2.1 Main Function

The main function serves as the entry point and central control loop for the appli-

cation. Its purpose is to initialize the system, configure peripherals, and manage

the overall behavior of the system.

The main function initializes the system clock and updates the system core clock

to ensure proper timing and operation of the microcontroller. It then calls func-

tions to initialize USART communication USART2_Init() and the ADC for reading

soil sensor data ADC_Init(). These initializations configure the hardware periph-

erals.

Inside the main loop sensor data is read periodically, formatted, and transmitted

over USART for display. The main function includes a delay using the usDelay()

function to control the frequency of the user display output. This ensures that sen-

sor readings occur at regular intervals preventing data overload. Then the main

function calls functions to read soil moisture read_soil() and DHT22 temperature

29

and humidity read_dht22() sensor data. Once the data is obtained, it is formatted

into strings and transmitted over USART to the Raspberry Pi using the

USART2_write() function.

5.2.2 USART

The provided function, USART2_Init, encapsulates the initialization process for

USART2 on an STM32 microcontroller. By executing this function, USART2 is con-

figured for communication utilizing pins PA2 and PA3 for TX and RX, respectively.

Figure 9. USART initialization function

This initialization routine prepares the microcontroller for USART2 communica-

tion.

Before configuring any peripheral, it is essential to ensure its clock is enabled. In

this function, the first two lines enable the clocks required for USART2 and GPIO

Port A. The RCC peripheral manages clock configuration in STM32 microcontrol-

lers.

USART2 requires GPIO pins for communication. The next few lines configure pins

PA2 and PA3 to function as USART2's TX and RX pins, respectively. Alternate func-

tion mode is set for these pins, allowing them to function as USART2 interface pins.

30

The line USART2->BRR = 0xD05; sets the Baud Rate Register of USART2 to achieve

a baud rate of 9600 bits per second. Baud rate determines the speed of data trans-

mission.

Configuring USART CR1: USART control registers control various aspects of com-

munication, including enabling the transmitter, receiver, and USART itself.

• USART2->CR1 = 0x8; enables the transmitter.

• USART2->CR1 |= 0x4; enables the receiver.

• USART2->CR1 |= 0x2000; enables USART2.

The function USART2_write covers the process of transmitting a single character

via USART2. This function ensures that the transmission occurs only when the

USART is ready to accept new data.

Figure 10. USART write function

Before sending data, it is crucial to ensure that the USART is ready to transmit. The

code implements a busy-wait loop that continuously checks the TXE flag in the

status register (USART2->SR). This loop waits until the TXE flag is set, indicating

that the transmit DR is empty and ready to receive new data for transmission.

Once the USART is ready for transmission, the next line writes the character (ch)

to the data register (USART2->DR) of USART2. The character is then transmitted

serially via the USART communication interface.

31

5.2.3 ADC

The function ADC_Init initializes the process for configuring the ADC1 module on

the STM32 microcontroller. The module is configured to accept analog input sig-

nal, convert it to digital value with a resolution of 12 bits, and sample it at a pre-

defined rate.

Figure 11. ADC initialization function

Before configuring peripherals, the clock is enabled. The first and last lines of the

function enable the clock for the GPIO Port A and ADC1 module respectively. The

RCC peripheral is responsible for managing clock configurations.

ADC1 requires GPIO pins to be properly configured for analog input. The following

lines adjust the GPIO pins connected to the ADC input channel.

• GPIOA->MODER &= ~0xC00 clears bits 11 and 12 in the GPIOA

mode register, ensuring that the corresponding pins are in input

mode.

• GPIOA->MODER |= 0xC sets bits 1 and 0 in the GPIOA mode regis-

ter, configuring the pins for analog mode.

Enabling ADC Peripheral Clock and Configuration.

• RCC->APB2ENR |= 0x200; enables the clock for ADC1 by setting the

corresponding bit in the APB2ENR.

32

• ADC1->CR2 = 0; clears the control register 2 of ADC1, ensuring that

the ADC is in its default state.

Configuring Sampling Rate and Resolution; ADC1->SMPR3 = 7 sets the sampling

time for the ADC1 channel. The specific value of 7 indicates a sampling time of 384

ADC clock cycles.

Setting ADC Control Register 1; ADC1->CR1 &= ~0x3000000 clears bits 24 and 25

in the control register of ADC1. That sets the resolution of the ADC to 12 bits.

5.2.4 Delay

The following function usDelay implements a microsecond delay using Timer 11

(TIM11) on the microcontroller.

Figure 12. Delay function

Before utilizing Timer 11, its clock must be enabled. The line RCC->APB2ENR |=

0x10; enables the clock for Timer 11 by setting the corresponding bit in the APB2

peripheral clock enable register (RCC->APB2ENR).

Timer 11 is configured to operate in a basic mode to create a microsecond delay.

33

• TIM11->PSC = 1: The prescaler is set to 1, meaning the timer will

increment every clock cycle of its input clock.

• TIM11->ARR = 1: The ARR is set to 1, configuring Timer 11 to gen-

erate an interrupt after 1 count.

• TIM11->CNT = 0: The counter register is initialized to 0.

• TIM11->CR1 = 1: Timer 11 is enabled by setting the counter enable

bit in the control register.

The function enters a while loop that creates a delay of approximately 1 microsec-

ond.

• while(i<delay): This loop ensures that the total delay matches the

specified duration.

• while(!((TIM11->SR) & 1)){}: Within each loop, the code waits until

the update event flag of Timer 11 is set, indicating that the timer

has reached its maximum value.

• TIM11->SR &= ~1: Upon reaching the maximum value, the update

event flag is cleared by writing 0 to the corresponding bit in the

status register (TIM11->SR).

• TIM11->CNT = 0: The counter is reset to 0 to prepare for the next

repetition.

After the delay loop completes, Timer 11 is disabled to conserve power and re-

sources by resetting the counter enable bit in the control register.

5.2.5 DHT22

The function read_dht22 reads the data from the temperature and humidity sen-

sor connected to the controller.

34

Figure 13. Read DHT22 function

Configuring GPIO Pins:

• RCC->AHBENR |= 1; Enables the clock for GPIO Port A.

• GPIOA->MODER |= 0x1; Configures pin PA0 as output. It connects

to DHT22.

• GPIOA->ODR |= 0x1; Sets pin PA0 high.

35

• usDelay(10000); Delays for 10 milliseconds to ensure the sensor

stabilizes.

• GPIOA->ODR &=~ 0x1; Sets pin PA0 low to initiate communication.

• usDelay(1000); Delays for 1 millisecond.

• GPIOA->ODR |= 0x1; Sets pin PA0 high again.

• GPIOA->MODER &=~ 0x3; Configures pin PA0 as input.

Sensor Response:

• The code waits for the DHT22 sensor to respond. It expects a re-

sponse signal from the sensor by monitoring the state of pin PA0.

• The loop waits for the pin to go low, then high, and finally low again,

indicating the start of data transmission from the sensor.

Reading Data:

• The function reads 32 bits of data from the sensor, which consists

of both temperature and humidity values.

• The mask variable is a shifting bitmask used to selectively set or

clear individual bits in the temperature and humidity variables

based on the sensor's output, simplifying the process of construct-

ing 32-bit values from the received binary data stream.

• It goes through each bit and reads its value by observing the

changes on pin PA0.

• For each bit, it waits for the pin to go high, then delays for 35 mi-

croseconds, and checks the pin's state again to determine the bit's

value.

• The received bits are combined to form the temperature and hu-

midity values.

36

Converting Values:

• The received temperature and humidity data are stored in temper-

ature and humidity variables, respectively.

• To obtain the actual temperature and humidity values, the received

data is divided by ten and assigned to the variables pointed to by

the hum and temp pointers.

5.2.6 Soil Moisture Sensor

The function read_soil is designed to retrieve data from the SparkFun soil moisture

sensor connected to the microcontroller. It facilitates the acquisition of soil mois-

ture data by utilizing the ADC of the microcontroller and converts the analog sen-

sor output into a meaningful percentage value.

Figure 14. Read soil function

Setting up ADC:

• ADC1->SQR5 = 1; Configures the ADC to sample from channel 1.

• ADC1->CR2 |= 1; Enables the ADC to start the conversion process.

• ADC1->CR2 |= 0x40000000; Starts the conversion process by set-

ting the SWSTART bit in the control register.

The function enters a while loop to wait for the conversion to be complete.

while(!(ADC1->SR & 2)){}; Waits until the EOC flag is set in the status register, indi-

cating that the conversion process has finished.

37

Upon completion of the conversion, the analog value representing soil moisture is

retrieved from the data register (analog = ADC1->DR;).

The analog value is converted to an user friendly percentage value with *moist =

(100 * (analog / 3200)); by dividing the analog value by the maximum value and

scaling it to a percentage scale.

38

6 RESULTS AND TESTING

This chapter describes the testing phase of the project. The point of this chapter

is to show how the testing was done as well as show the results.

6.1 Preparations

First the necessary equipment was prepared for testing. The equipment used for

this were:

• STM32-L152RE microcontroller board with a micro-USB cable connected

to the PC

• PC with STM32CubeIDE and Putty

• DHT22 sensor

• SparkFun soil moisture sensor

• A breadboard

• Resistor, wires

Figure 15. Prototype testing configuration

39

The components were connected to the microcontroller board as seen in the pic-

ture. The temperature and humidity sensor were connected to pin PA0 and the

soil moisture sensor was connected to pin PA1. Each of the sensors were con-

nected to the common ground and to the common voltage source (GND and 3.3V

board pins). For the DHT22 sensor a pull-up resistor was required on the data line,

so a 10k Ohm resistor was connected there for voltage stability.

Using STM32CubeIDE the program was loaded on the microprocessor. After all the

connections were made and the program was loaded on board, the program was

launched. Then the program was checked on the working PC using Putty to see if

it runs correctly.

Figure 16. Values on a PC using Putty

6.2 Testing phase

Once the application was receiving data from the sensors on the Raspberry Pi, us-

ing screen the RVNC application was turned on. Then it was possible to connect to

the Raspberry remotely using a mobile phone. Next, the temperature, humidity,

40

and moisture level were changed around the sensors to see if they were function-

ing properly. The values on the application seemed to follow changes made during

testing quite rationally.

Figure 17. Screen data during final testing

The sensors started measuring necessary data, and the data was visible through

screen application using RVNC viewer on a mobile phone through home Wi-Fi. The

prototype works as intended on the Raspberry Pi. The testing went successfully,

and the project was made to operate as desired without flaws: the sensor data

was gathered, stored, and sent over as designed.

41

6.3 Reliability and Usability

The system’s reliability was demonstrated through continuous operation without

failures over an extended testing period. The sensors-maintained accuracy, and

the mic

The system interface was evaluated for its ease of use and accessibility. The lack

of complexity in the interface design allows quick data visualization and compre-

hension. The simplicity and clarity of the system contributed to its overall usability,

allowing it to easily monitor greenhouse conditions.

6.4 Aims reached

The testing phase confirmed that the developed solution achieved its primary

aims. The system provided reliable and accurate monitoring of soil moisture, tem-

perature, and humidity levels. It also offered a user-friendly interface for real-time

data visualization.

The greenhouse monitoring system developed for this thesis project demon-

strated high reliability and usability. The system met all specified requirements

and achieved the project's objectives, providing an effective solution for monitor-

ing and maintaining environmental conditions in a greenhouse setting.

42

7 CONCLUSION AND FUTURE WORK

The focus of this thesis project was the development of a greenhouse monitoring

system aimed at improving agricultural practices and greenhouse management.

The objective was to create a comprehensive system capable of monitoring critical

environmental parameters such as temperature, humidity, and soil moisture lev-

els in real-time. The system was constructed using the STM32 microcontroller

board, which interfaced with sensors including the DHT22 for temperature and

humidity measurement within the greenhouse, and the SparkFun soil moisture

sensor for detecting soil moisture levels in plants. Additionally, the Raspberry Pi

facilitated visualization and remote accessibility.

The primary goal of the system is to provide a reliable solution for greenhouse

monitoring, empowering users to monitor environmental conditions, identify

needs, and make informed decisions regarding greenhouse management prac-

tices.

There is significant potential for the greenhouse monitoring system, driven by

technological advancements. It can serve as a valuable tool for farmers, research-

ers, and greenhouse hobbyists, offering insights into environmental conditions

and enabling proactive strategies. Furthermore, the scalability of the system al-

lows for the integration of additional sensors and functionalities, such as multiple

soil moisture sensors for monitoring multiple plants simultaneously or automating

plant watering based on sensor readings.

As with any project, there are areas for further study and improvement. Future

research could focus on enhancing the capabilities of the system by incorporating

additional sensors to monitor additional environmental parameters. Additionally,

exploring advanced data analytics techniques could provide deeper insights into

environmental trends and further optimize greenhouse management practices.

43

REFERENCES

/1/ Dejan. DHT11 & DHT22 Sensors Temperature and Humidity Tutorial using
Arduino. Accessed 13.3.2024.
https://howtomechatronics.com/tutorials/arduino/dht11-dht22-sensors-tem-

perature-and-humidity-tutorial-using-arduino/

/2/ ST life augmented. Integrated Development Environment for STM32.

Accessed 13.3.2024. https://www.st.com/en/development-

tools/stm32cubeide.html

/3/ - STM32-L152RE. Accessed 14.3.2024. https://www.st.com/en/microcontrol-

lers-microprocessors/stm32l152re.html

/4/ - RM0038 Reference manual. 2023. Accessed 15.3.2024.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja

&uact=8&ved=2ahUKEwiP9IK4iM6EAxWBKBAIHUQQBTAQFnoECBE-

QAQ&url=https%3A%2F%2Fwww.st.com%2Fresource%2Fen%2Freference_man-

ual%2Fcd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-

advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf&usg=AOv-

Vaw2oSqP_jDnBPI2cKI8cPC4h&opi=89978449

/5/ Crystal oscillator. Wikipedia. Accessed 14.3.2024. https://en.wikipe-

dia.org/wiki/Crystal_oscillator

/6/ Spark Fun. SparkFun Soil Moisture Sensor. Accessed 13.3.2024.

https://www.sparkfun.com/products/13637

/7/ Liu, Thomas. Digital-output relative humidity & temperature sen-

sor/module DHT22. Accessed 15.3.2024. https://www.spark-

fun.com/datasheets/Sensors/Temperature/DHT22.pdf

https://howtomechatronics.com/tutorials/arduino/dht11-dht22-sensors-temperature-and-humidity-tutorial-using-arduino/
https://howtomechatronics.com/tutorials/arduino/dht11-dht22-sensors-temperature-and-humidity-tutorial-using-arduino/
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l152re.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l152re.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiP9IK4iM6EAxWBKBAIHUQQBTAQFnoECBEQAQ&url=https%3A%2F%2Fwww.st.com%2Fresource%2Fen%2Freference_manual%2Fcd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf&usg=AOvVaw2oSqP_jDnBPI2cKI8cPC4h&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiP9IK4iM6EAxWBKBAIHUQQBTAQFnoECBEQAQ&url=https%3A%2F%2Fwww.st.com%2Fresource%2Fen%2Freference_manual%2Fcd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf&usg=AOvVaw2oSqP_jDnBPI2cKI8cPC4h&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiP9IK4iM6EAxWBKBAIHUQQBTAQFnoECBEQAQ&url=https%3A%2F%2Fwww.st.com%2Fresource%2Fen%2Freference_manual%2Fcd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf&usg=AOvVaw2oSqP_jDnBPI2cKI8cPC4h&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiP9IK4iM6EAxWBKBAIHUQQBTAQFnoECBEQAQ&url=https%3A%2F%2Fwww.st.com%2Fresource%2Fen%2Freference_manual%2Fcd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf&usg=AOvVaw2oSqP_jDnBPI2cKI8cPC4h&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiP9IK4iM6EAxWBKBAIHUQQBTAQFnoECBEQAQ&url=https%3A%2F%2Fwww.st.com%2Fresource%2Fen%2Freference_manual%2Fcd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf&usg=AOvVaw2oSqP_jDnBPI2cKI8cPC4h&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiP9IK4iM6EAxWBKBAIHUQQBTAQFnoECBEQAQ&url=https%3A%2F%2Fwww.st.com%2Fresource%2Fen%2Freference_manual%2Fcd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf&usg=AOvVaw2oSqP_jDnBPI2cKI8cPC4h&opi=89978449
https://en.wikipedia.org/wiki/Crystal_oscillator
https://en.wikipedia.org/wiki/Crystal_oscillator
https://www.sparkfun.com/products/13637
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf

