

Chapal Shaik

Robotics Lab Management System

A Web-Based Platform for Managing and Organizing a Robotics Lab

Robotics Lab Management System

A Web-Based Platform for Managing and Organizing a Robotics Lab

Chapal Shaik
Bachelor’s Thesis
Spring 2024
Information Technology
Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree programme in Information Technology

Author: Chapal Shaik
Title of the thesis: Robotics Lab Management System
Thesis examiner(s): Meija Lohiniva
Term and year of thesis completion: Spring 2024 Pages: 46

This thesis focused on developing a web-based demonstration of a concept user interface for
robotics lab operations aimed at simplifying administrative and student workflows and improving
resource management. The primary goals were to enhance the system's usability and security,
streamline the tracking of lab instruments, and assist the lab administrator in performing tasks
efficiently. Inspiration was drawn from the Oulu University of Applied Sciences robotics lab, which
was used as the basis for designing this system. The existing system kept all records manually in
an Excel sheet for equipment borrowing and returning, which was time-consuming. Developing a
new system with increased functionality was necessary to address these challenges and provide
a seamless and efficient interface.

The theoretical framework analyzed the system utilized in the OAMK robotics lab and its difficul-
ties in managing lab operations, particularly its proneness to errors and lack of collaboration fea-
tures. The framework explored the development of a web-based system to effectively manage lab
operations and keep them updated with the latest technology. It integrated concepts from web-
based systems, database management, user-centered design, and agile development approach-
es to tackle these difficulties, providing a more efficient and secure solution. Using these princi-
ples, the study aimed to show the advantages of a web-based robotics lab management system
(RLMS) in improving resource management and operational efficiency.

The document covered the background, objectives, methodology, and implementation of the
RLMS system application, which involved role-based access control, inventory management
modules, lab resource tracking features, and communication tools.

The thesis concluded by analyzing the project's achievements, practical expertise, and future
development and expansion directions. This research contributed to the field by demonstrating
the potential of a web-based UI built with ASP.NET API, React UI, and an MSSQL database to
enhance robotics lab operations and develop a more efficient and innovative research environ-
ment.

Keywords: Robotics Lab Management, Resource Management, Web development, Database

4

CONTENTS

LIST OF ABBREVIATIONS.. 6

1 INTRODUCTION ... 7

2 OBJECTIVES .. 9

3 SYSTEM ANALYSIS ... 10

3.1 User Management Module ... 11

3.2 Inventory Management Module .. 11

3.3 Lab Resource Management Module .. 12

3.4 Communication and Collaboration Module ... 13

4 TECHNICAL INTRODUCTION .. 14

4.1 Backend Development ... 15

4.1.1 ASP.NET Web API .. 15

4.1.2 Microsoft SQL Server (MSSQL) ... 16

4.1.3 Clean Architecture Design ... 16

4.2 Frontend Development ... 17

4.2.1 React.js .. 17

4.2.2 Benefits of this Technical Stack ... 19

5 IMPLEMENTATION ... 20

5.1 Front Page Layout .. 20

5.1.1 Login/Signup Button ... 21

5.1.2 Slider .. 22

5.1.3 Main Modules ... 22

5.1.4 University News ... 22

5.1.5 Latest Research ... 22

5.1.6 Featured Content ... 23

5.2 User Management Module ... 23

5.3 Inventory Management Module .. 24

5.3.1 Equipment Management .. 24

5.3.2 Purchase Order .. 26

5.3.3 Low-Stock Alerts .. 26

5.3.4 Inventory Control .. 27

5.4 Lab Resource Module .. 28

5

5.4.1 Equipment Request System ... 28

5.4.2 Resource Allocation ... 29

5.4.3 Result Sharing ... 30

5.5 Communication and Collaboration Module ... 31

5.6 Backend ... 32

6 TESTING ... 35

6.1 Testing Methodologies ... 36

7 SECURITY .. 38

7.1 Security Measures .. 38

7.2 Vulnerability Assessment ... 39

8 DEPLOYMENT .. 40

8.1 Configuring ASP.NET Core Project .. 40

8.2 Deployment Steps .. 41

9 CONCLUSION ... 42

REFERENCES .. 43

6

LIST OF ABBREVIATIONS

RLEMS Robotics Laboratory Equipment Management System
RLMS Robotics Lab Management System
SQL Relational database language
HTTP Application protocol for distributed, collaborative, hyperme-

dia information systems
XML Extensible Markup Language
UI User interface
UX User Experience Design
API Application Programming Interface
DOM Document Object Model
CORS Cross-Origin Resource Sharing
IIS Internet Information Services
XSS Cross-Site Scripting

7

1 INTRODUCTION

Integrating automation into robotics laboratories is essential for efficient and effective work man-

agement. Researchers and students can allocate more time to crucial components of their re-

search projects by automating repetitive processes like data collecting, analysis, and equipment

management. This tool aims to simplify laboratory activities, ultimately improving efficiency and

productivity in research.

Practical robotics courses have become increasingly popular, requiring more extensive labs with

more instruments (1). The ongoing challenges in effectively controlling equipment usage, storage,

and documentation lead to confusion and inefficiency. In addition, unofficial lending activities put

equipment security at risk. The integration of equipment data, maintenance logs, and borrowing

processes into a single platform is lacking in the current systems.

Implementing a comprehensive system that monitors equipment usage, ensures availability for

research and instructional purposes, classifies items into specific categories for effective retrieval,

and facilitates prompt reporting and repair to reduce downtime and malfunction rates is impera-

tive to address these issues. Therefore, building a laboratory equipment management system for

business process innovation is essential to improving laboratory management (2).

 Automating lab procedures enables us to gather information on the frequency and type of

equipment usage. This data is invaluable for determining future equipment requirements and

scheduling maintenance tasks. By leveraging this information, we can enhance lab productivity

and reduce costs.

This project suggests creating and implementing a special robotics laboratory equipment man-

agement system (RLEMS) that uses automation to solve the difficulties associated with oversee-

ing intricate robotics labs. The RLEMS seeks to optimize lab operations to free up researchers

and students for their primary research tasks.

The Robotics Lab Management System (RLMS) is being developed, utilizing real-world applica-

tions and recent research in laboratory management systems. This initial part examines the litera-

ture to pinpoint approaches and prospective fields for future innovation. Robotics Lab Specific

8

Systems, Equipment Management Systems, and Laboratory Management Systems (LMS) are

essential areas of study. Research on Laboratory Management Systems (LMS) offers important

insights into system features, problems, and user needs. Creating an efficient RLMS requires

understanding how LMS handles issues like resource allocation, user access control, and data

management (3).

Additionally, studies on equipment management systems illuminate features, including automatic

low-stock alerts, maintenance scheduling, and inventory tracking. Investigating specialized

equipment management systems can improve RLMS effectiveness (4). This will be accomplished

by offering a consolidated system for maintenance logs and equipment data and utilizing policies.

This thesis investigates methods to establish a more structured and influential future for robotics

research projects by implementing such a system.

9

2 OBJECTIVES

Creating an innovative Robotics Lab Management System (RLMS) that tackles the main issues

facing modern robotics labs is the goal of this project. The objective is to provide a smooth, effec-

tive atmosphere that benefits scholars and learners. The following are the main goals.

Maximize Efficiency and Reduce Mistakes: The RLMS will simplify operations by automating

equipment usage, borrowing, and maintenance procedures. This will reduce human labor and

mistakes.

Boost equipment availability and tracking: The RLMS will offer real-time insight into equip-

ment's position and data through a centralized platform, guaranteeing the best possible resource

allocation for research initiatives.

User Management and Borrowing Equipment: Formal requesting procedures and organized

user access restrictions will reduce confusion, improve equipment management, and reduce se-

curity threats related to the informal sharing of equipment.

Data-Driven Decision Making: The RLMS will facilitate well-informed decisions on resource

allocation and future equipment purchases by gathering and evaluating equipment usage and

maintenance data.

Workflow Coordination and Collaboration: The RLMS's features, such as discussion forums

and announcement boards, will facilitate communication in the lab setting and encourage team-

work.

Increasing Lab Output: The RLMS aims to dramatically boost lab productivity through automa-

tion and effective resource use, leading to higher research output and possibly lower costs.

10

3 SYSTEM ANALYSIS

The System Analyst bridges the gap between researcher demands and technology capabilities to

produce a streamlined Robotics Lab Management System (RLMS) by automating lab procedures

and designing a user-friendly system. This section delves into the design of each module within

the RLMS. While any software inherently has a structure, sound design principles lead to a sys-

tem with simplicity, consistency, and a clear underlying logic. Conversely, poorly designed sys-

tems can be cluttered and inefficient (5; 6).

FIGURE 1. System Analysis User Case Diagram (7).

The use case figure 1 graphic shows how staff members may add, delete, and update objects.

Administrators are responsible for issuing purchase orders, maintaining inventory, and managing

stock; they depend on staff to generate suppliers. Here, "supplier" refers to the equipment the

laboratory procures. When the laboratory purchases products or equipment from suppliers, it

typically involves issuing purchase orders to formalize the transaction. Once the purchase orders

are sent to suppliers, they fulfill the orders by delivering the equipment to the laboratory. Students

use staff-created logins to access the system and request equipment depending on stock availa-

bility. Similarly, teachers use credentials given by staff to organize activities according to de-

11

mands and supply availability. An understandable overview of RLMS features and user interac-

tions is presented in figure 1.

Using user-centric design and automation, the system analyst may make the Robotics Lab Man-

agement System (RLMS) more efficient. The logical structure, consistency, and simplicity of de-

sign are the cornerstones of every RLMS module, guaranteeing maximum use and functionality

(8). Staff, administrators, students, and teachers have different responsibilities and interactions

within the system, ranging from activity organizing to equipment management, as shown in the

use case graphic. This thorough overview directs the design process, making it easier to create

an RLMS that is user-friendly and efficient and that maximizes lab operations while empowering

users.

3.1 User Management Module

This module focuses on managing user data in the laboratory setting. Administrators can add,

remove, edit, and query user data. However, once logged in, students' access is restricted mainly

to reading designated data and completing prescribed data input activities.

3.2 Inventory Management Module

This module tracks lab equipment. Administrators can add, edit, remove, and search equipment

data. It will also facilitate supplier management, purchase order creation, and inventory control.

Low-stock alerts and reporting features can also be integrated into this module. Robotics labs

manage a unique inventory of equipment and supplies. Businesses use techniques like EOQ

(ordering the right amount) and safety stock (having extra supplies) to avoid delays. Unlike facto-

ries, however, they may not use Just-in-Time methods because specialized equipment needs to

be readily available for research. Analyzing equipment usage data helps them predict future

needs and keep research running smoothly (9).

Figure 1 depicts the user experience within the Robotics Lab Management System (RLMS). Ad-

ministrators establish user accounts and define access privileges. Staff and teachers primarily

interact with the Inventory Management module, where they manage equipment data, identify

shortages through low-stock alerts and quantity checks, initiate purchase orders, and analyze

12

usage patterns. Students utilize the Student Portal to view lab schedules, book available slots for

research, and submit their work upon completion. The flowchart highlights the LMS's role-based

functionalities and decision points, illustrating how user actions navigate the system for efficient

lab operations.

FIGURE 2. User Management with Inventory Management (10).

The Inventory Management module becomes a central hub for optimizing resource allocation and

research continuity in the robotics lab. The figure 2, visually reinforces this concept, demonstrat-

ing how administrators, staff, and teachers seamlessly interact with the system to manage

equipment, identify and address stock issues, and ensure research projects have the resources

to thrive. This user-centric design empowers lab personnel to focus on their core tasks while the

RLMS handles the administrative burden, fostering a more efficient and streamlined research

environment.

3.3 Lab Resource Management Module

This module aims to expedite the permissions-granting procedure for staff and make it easier for

students to register for equipment use. Students can keep papers related to their studies or lab

13

activity and establish lab profiles using them. The module also makes it possible to track resource

availability in real-time.

FIGURE 3. Lab Module System (11).

The sequence diagram depicted in figure 3, illustrates how teachers, students, and the system

interact. While teachers carry out a comparable login process and verify that equipment is availa-

ble, students start the login process and make equipment requests. Teachers start research pro-

jects and share their findings on the site if the necessary equipment is accessible. This succinct

graphic illustrates the smooth progression of events, from equipment distribution and research

start-up to login authentication, underscoring the effectiveness of RLMS in supporting lab activi-

ties.

3.4 Communication and Collaboration Module

This section focuses on improving teamwork and communication in the lab. It entails creating a

scheduling module for lab equipment and resource reservations, an announcement board for

exchanging important information, and, if desired, incorporating a message system to help staff

and students communicate.

14

4 TECHNICAL INTRODUCTION

This project uses modern web technologies to create a reliable and accessible robotics lab man-

agement system (RLMS). The system uses a clean architectural methodology to guarantee the

code's testability, scalability, and maintainability. Architects bridge communication gaps by acting

as boundary objects and keeping projects adaptable to evolving technologies and customer re-

quirements. Their efforts are essential for the successful design and implementation of large-

scale systems. (12.)

FIGURE 4. System Architecture (13).

The System Architecture figure 4, depicts a software architecture where a React.js frontend

communicates with an ASP.NET API, which interacts with a Microsoft SQL Server (MSSQL) da-

tabase. Users can access the system from various devices, such as mobile phones, tablets, lap-

tops, and desktop computers, thanks to the responsive design of the React.js frontend. React.js

serves as the frontend framework, offering dynamic and interactive user interfaces. Complement-

ing this, the ASP.NET API orchestrates backend functionalities, enabling seamless communica-

tion between the frontend and the underlying Microsoft SQL Server (MSSQL) database.

15

4.1 Backend Development

Backend refers to the server side of a web application, where the core logic and data manage-

ment processes reside. It bridges the frontend user interface and the database, handling re-

quests, processing data, and generating responses. The backend is essential for executing tasks

that cannot be performed on the client side, such as interacting with databases, implementing

business logic, and managing user authentication.

4.1.1 ASP.NET Web API

ASP.NET Web API is a framework for building HTTP services that can reach many clients, in-

cluding browsers and mobile devices. It allows developers to create RESTful APIs, enabling effi-

cient communication between the frontend and backend layers of an application. With ASP.NET

Web API, developers can implement endpoints to handle HTTP requests, define routes, and seri-

alize and deserialize data in various formats like JSON or XML (12). Several libraries were used

in the creation of the ASP.NET Web API project.

1. Entity Framework: Entity Framework is utilized for data access and persistence within

the ASP.NET Web API project. This Object-Relational Mapping (ORM) framework simpli-

fies interactions with the underlying database by abstracting database operations into ob-

ject-oriented code (14). With Entity Framework, developers can work with domain-

specific objects and queries rather than directly interacting with database tables and SQL

queries. This enhances productivity, code maintainability, and database portability across

different providers.

2. Identity Framework: The Identity Framework manages authentication and authorization

within the ASP.NET Web API application. This framework provides robust features for

user authentication, including user registration, login, password management, and role-

based access control. By integrating the Identity Framework, the API can ensure secure

access to resources and enforce permissions based on user roles (15).

3. Swagger: Integration of Swagger automates the generation of interactive API documen-

tation. This inclusion allows developers to explore conveniently and test API endpoints di-

16

rectly from the browser, thereby enhancing understanding and utilization of the API by

both internal teams and external clients (16).

4. Serilog: Serilog is integrated to manage logging within the ASP.NET Web API applica-

tion (17). Serilog configuration captures pertinent logs for monitoring, troubleshooting,

and performance analysis. Leveraging Serilog's structured logging capabilities, crucial

events, errors, and diagnostic information are logged in a format conducive to easy

search and analysis (18).

5. Automapper: Automapper integration streamlines object mapping between Data Trans-

fer Objects (DTOs) and domain models within the ASP.NET Web API project. Data trans-

fer between different application layers is automated by defining mapping profiles, reduc-

ing redundant code, and enhancing code readability. Automapper also contributes to

maintaining the separation of concerns and fostering cleaner code architecture (19).

4.1.2 Microsoft SQL Server (MSSQL)

MSSQL is a relational database management system (RDBMS) developed by Microsoft. It serves

as the backend database solution for storing and managing application data, including user in-

formation, equipment details, booking records, and communication logs. MSSQL offers features

such as ACID compliance, scalability, security, and robust query optimization capabilities, making

it suitable for enterprise-level applications (20).

4.1.3 Clean Architecture Design

The idea of "clean architecture" in software design emphasizes the independence of components

and the division of responsibilities inside an application. It advocates for a layered architectural

approach where the core application logic (domain layer) is isolated from infrastructure concerns

such as persistence (database access) and presentation (user interface) (21). By decoupling

these layers, clean architecture promotes maintainability, testability, and flexibility, allowing de-

velopers to change one layer without affecting the others. This design principle enables develop-

ers to create scalable and maintainable applications that are easier to understand and evolve.

17

4.2 Frontend Development

The goal of front-end development is to create the user interface (UI) and user experience (UX)

elements of a web application that users would directly interact with. It entails creating and exe-

cuting the program's interface design, layout, and functionality.

4.2.1 React.js

React.js is a widely used JavaScript library for building interactive user interfaces (22). It utilizes a

component-based architecture, encapsulating UI elements into reusable and modular compo-

nents. React.js enables developers to manage the UI state, update the DOM (Document Object

Model), and create dynamic and interactive web applications. Its declarative approach simplifies

building complex UIs by breaking them into smaller, manageable components, enhancing code

reusability, and improving maintainability. Additionally, React.js provides excellent performance

optimizations, such as virtual DOM rendering, which results in faster and smoother user experi-

ences. Overall, React.js is an ideal choice for frontend development in the RLMS, enabling the

creation of a modern, responsive, and intuitive user interface. The frontend React project uses a

specific library, as mentioned below.

1. Chakra-UI: A UI library for React applications that provides a set of accessible and cus-

tomizable components to build user interfaces quickly. Chakra UI is a more robust, lay-

out-focused library that also provides developers with UI components similar to those that

Material UI provides but has a greater focus on the creation of flexible, composable, and

scalable code (23). This React library prioritizes modern development practices. It lever-

ages React hooks for component functionality, utilizes CSS-in-JS for streamlined styling,

and boasts exceptional customizability for crafting unique themes. Furthermore, its com-

prehensive documentation and exclusive TypeScript implementation ensure a smooth

development experience with type safety (24).

2. Axios: The project's dependency on a web API for all data retrieval and posting makes

Axios an ideal choice. Axios, a popular promise-based HTTP client for React applica-

tions, simplifies network requests with its ease of use and comprehensive feature set. It

offers advantages such as excellent browser support, automatic response parsing, and

18

built-in functionalities for handling common scenarios like authorization, request cancella-

tion, error handling, and CSRF protection. These features make Axios a valuable tool for

building robust and efficient React applications, ensuring smooth communication with the

web API while maintaining code simplicity and reliability (25).

3. Redux: Redux is a well-liked JavaScript state management library. Intricate React apps

with several state management requirements may find it beneficial, though more straight-

forward applications may become more sophisticated as a result. This post offers a de-

tailed how-to for integrating Redux into a React application, which includes setting up a

store, actions, reducers, and components. Given how much state our React application

handles, Redux is an excellent option for effective state management (26).

4. DOM: React Router DOM is crucial for crafting dynamic single-page applications (SPAs)

in React. It streamlines navigation between application views, pages, or components

without requiring full page reloads. This feature enhances user experience by delivering

faster and smoother interactions. React Router DOM organizes routing functionality into

a hierarchical structure.

• Browser Router: Serves as the parent component, managing all routing capabilities

within the application.

• Routes: Nested within Browser Router, Routes specify the navigation paths availa-

ble in the SPA.

• Route components: These components match the current URL to defined paths

and render the corresponding component when a match occurs.

• Link components: Generate user-friendly route navigation elements, facilitating

seamless navigation between different views.

React Router DOM simplifies React SPA development by utilizing this centralized routing

system, giving application users a more effective and convenient experience. (27.)

19

4.2.2 Benefits of this Technical Stack

The RLMS leverages a modern technology stack, promoting efficiency throughout the develop-

ment lifecycle. ASP.NET Web API facilitates the creation of a robust and scalable RESTful API,

guaranteeing effective communication between the backend services and the user interface.

Microsoft SQL Server (MSSQL) provides a secure and reliable foundation for storing and manag-

ing all application data. Furthermore, the system adheres to clean architecture principles, sepa-

rating concerns and promoting modularity. This approach fosters code maintainability, allowing

more accessible updates and adaptations as the lab's needs evolve. Additionally, the user inter-

face is built with React.js. This popular JavaScript library enables a responsive and interactive

user experience for researchers and students and allows for efficient component-based develop-

ment, further contributing to code maintainability (28; 29).

20

5 IMPLEMENTATION

Each module and feature of the RLMS was meticulously implemented to align with the specifica-

tions outlined during the system analysis and design phases. Below is a detailed description of

how each module and feature was developed.

5.1 Front Page Layout

The Robotics Lab Management System (RLMS) front page is the platform's gateway, providing

easy access to crucial functionalities and information. The layout is designed to feature a log-

in/signup button, a slider showcasing essential updates, and quick access to the five main mod-

ules of the system. Additionally, body sections highlight University News, Latest Research, and

Featured Content to engage users and provide valuable insights.

FIGURE 5. Front Page 1

On the front page, figure 5, presents the Robotics Lab Management System (RLMS), designed

to offer users easy access to crucial functionalities and information. It prominently features mod-

ule buttons for quick navigation to essential system modules, a login/signup button for user au-

thentication, and a dynamic slider showcasing essential updates. This user-centric layout aims to

engage users and provide valuable insights while facilitating efficient navigation within the RLMS

platform.

21

5.1.1 Login/Signup Button

Description: A prominent button is displayed at the top right corner of the page. It allows users to

log in to their accounts if they have existing credentials or sign up for a new account if they are

new users.

FIGURE 6. Login Page

On the login page, figure 6, serves as the point of entry for authorized users. It features slots for

entering a username and password, providing a straightforward and user-friendly interface for

secure login. Authentication and access control measures ensure the protection of private data

and uphold system security.

Implementation: The visual design of the button uses React, and JavaScript handles the

backend functionality to facilitate user authentication and registration processes.

5.1.2 Slider

Description: A dynamic slider positioned prominently on the front page, featuring slides that

showcase essential updates, announcements, or events related to the robotics lab or university.

22

Implementation: The slider uses JavaScript for interactivity and transitions between slides. Con-

tent for the slider is dynamically fetched from the backend database to ensure timely updates.

5.1.3 Main Modules

Description: The RLMS's five main modules are prominently displayed on the front page, provid-

ing quick access to essential functionalities: Communication and Collaboration, Lab Resource

Management, Inventory Management, and User Management.

Implementation: Each module is represented by a visually appealing card or icon, with clickabil-

ity implemented using HTML/CSS and JavaScript to navigate users to the corresponding module

pages within the RLMS.

5.1.4 University News

Description: A section dedicated to displaying the top two news articles or announcements from

the university, highlighting important events, achievements, or updates relevant to the academic

community.

Implementation: News articles are fetched from a designated data source, such as an RSS feed

or a custom database table and displayed dynamically on the front page. Clickable links allow

users to read the full articles.

5.1.5 Latest Research

Description: Another section showcases the top two latest research findings or publications from

the robotics lab or related academic departments, providing insights into ongoing research activi-

ties and contributions to the field.

Implementation: Research findings are retrieved from a database or external data source and

presented in a visually appealing format on the front page. Links to all research papers or articles

are provided for users to explore further.

23

5.1.6 Featured Content

Description: A section featuring the top two pieces of featured content, such as blog posts and

articles curated to engage users and provide valuable insights into robotics and related topics.

This section is accessible to guests without requiring login.

Implementation: Featured content is selected and displayed dynamically on the front page, with

content retrieved from a designated data source. Clickable links are provided for users to read or

view the full content.

5.2 User Management Module

Description: The User Management Module enables administrators to perform essential tasks

related to user data management. Administrators have enhanced privileges to add, remove, edit,

and query user data. On the other hand, regular users, such as students, have restricted access

upon logging in, primarily limited to viewing designated data and completing prescribed input

activities.

FIGURE 7. Create Student

Figure 7, illustrates the interface where staff or administrative personnel can input all necessary

student data. This includes fields for First Name, Last Name, Email, Department, Current Ad-

dress, Additional Information, Phone Number, Session, ID Number, Join Date, and Password.

24

Implementation: The module used ASP.NET Identity Framework for user authentication and

authorization. Customized views and controllers were developed for user registration, login, and

profile management functionalities. Role-based access control (RBAC) was enforced to ensure

users only have access to functionalities appropriate for their roles. The Student List Access Con-

trol feature empowers administrators with comprehensive control over student data within the

Robotics Lab Management System (RLMS). Administrators can efficiently manage student infor-

mation, including editing, terminating, or granting access rights. This functionality ensures strict

adherence to data integrity and access policies, fostering a secure and well-maintained student

database.

5.3 Inventory Management Module

Implementing the Lab Resource Management Module involves developing robust features and

functionalities to manage lab resources effectively. Below are the key aspects of the implementa-

tion.

5.3.1 Equipment Management

Description: The module allows administrators to track equipment data, including adding, edit-

ing, removing, and searching for equipment records. This ensures that the inventory database

remains comprehensive and up to date.

FIGURE 8. Equipment Management Add Module

25

Figure 8, showcases the Equipment Management Add Module, providing users a streamlined

interface for adding new equipment to the system.

Implementation: User interfaces are developed to facilitate seamless interaction with equipment

records, enabling administrators to perform CRUD (Create, Read, Update, Delete) operations

efficiently. Backend APIs handle data processing and validation, ensuring data integrity and con-

sistency.

FIGURE 9. Equipment Management List

Figure 9, displays the Equipment Management List, showcasing the functionalities for updating or

deleting equipment by administrators or staff members.

5.3.2 Purchase Order

Description: The module enables administrators to create purchase orders to acquire necessary

equipment and supplies from suppliers. Purchase orders include item quantities, delivery dates,

and supplier information.

Implementation: User interfaces are developed to facilitate purchase order creation, allowing

administrators to specify order details and submit purchase requests. Backend processes handle

order validation, submission, and tracking, ensuring timely resource procurement.

26

FIGURE 10. Create Equipment Page

Figure 10,iIllustrates the Create Equipment Page, where users can input details such as quantity,

price, and instructions for usage upon successful purchase order and receipt of the equipment.

5.3.3 Low-Stock Alerts

Description: The module includes functionalities to generate alerts when equipment or supplies

reach predefined low-stock thresholds, prompting administrators to take necessary actions such

as initiating purchase orders or adjusting inventory levels.

Implementation: Backend processes monitor inventory levels and trigger notifications when

stock levels fall below specified thresholds. Administrators receive alerts via email, SMS, or within

the RLMS interface, enabling proactive management of low-stock situations.

 Low-stock alerts and reporting features were integrated to facilitate proactive management of

equipment stock.

27

FIGURE 11. Low-stock alerts page

Figure 11, showcases the Low-stock Alerts Page module, which incorporates functionalities de-

signed to generate alerts when equipment or supplies reach predefined low-stock thresholds.

This prompts administrators to take necessary actions, such as initiating purchase orders or ad-

justing inventory levels.

5.3.4 Inventory Control

Description: Inventory control functionalities allow administrators to monitor stock levels and

manage inventory effectively. This includes tracking the quantity of items in stock, updating inven-

tory records, and facilitating inventory adjustments.

Implementation: User interfaces provide access to inventory management features, allowing

administrators to view real-time inventory data, perform stock updates, and manage inventory

levels. Backend processes handle inventory tracking, stock adjustments, and notifications for low-

stock levels.

28

FIGURE 12. Inventory Tracking Page

Figure 12, presents the Inventory Tracking Page, featuring inventory control functionalities em-

powering administrators to monitor stock levels and manage inventory effectively.

5.4 Lab Resource Module

 The Lab Resource module is crucial in managing equipment requests, approvals, and allocations

within the robotics lab environment. It consists of several key components to streamline resource

management and enhance collaboration among staff and students.

5.4.1 Equipment Request System

Description: The equipment request system allows students to request specific equipment re-

quired for their studies or lab activities. It includes a user-friendly form where students can upload

their research findings, providing detailed information such as the topic, result, and description of

the research.

Implementation: Implemented as a user interface component within the RLMS frontend, the

equipment request system facilitates seamless interaction between students and the system. The

form allows students to input relevant details and submit their requests, which are processed by

the backend for further review and approval.

29

FIGURE 13. Equipment Request System

Figure 13, introduces the Equipment Request System, designed to enable students to request

specific equipment for their studies or lab activities.

5.4.2 Resource Allocation

Description: This component enables teachers to allocate equipment to specific projects based

on their requirements. Teachers can assign equipment resources strategically to ensure that

projects have access to the necessary tools and resources for successful completion.

FIGURE 14. Resource Allocation

30

Figure 14, introduces the Resource Allocation component, empowering teachers to allocate

equipment to specific projects based on their unique requirements.

Implementation: Integrated into the RLMS backend, the resource allocation feature provides

teachers with tools to manage equipment assignments efficiently. Teachers can view project de-

tails, assess resource availability, and allocate equipment accordingly, ensuring optimal utilization

and project success.

5.4.3 Result Sharing

Description: The Result Sharing component allows students to share their research findings on

the platform. It provides input fields for the topic, result, and description of the research. This

component proves particularly valuable for projects requiring long-term, day-to-day data collec-

tion, such as student long-term projects. In such scenarios, the Result Sharing component be-

comes instrumental for efficient data storage and sharing.

FIGURE 15. Result Sharing

Figure 15, depicts the Result Sharing component, a critical functionality on the platform that fa-

cilitates the dissemination of student research findings. The "Upload" button is disabled until all

required fields are filled, ensuring that users provide the necessary information before uploading

their research findings.

31

Implementation: The component utilizes React state hooks to manage the input values for the

topic, result, and description. The handle upload function is triggered when the user clicks the

"Upload" button. It logs the uploaded data to the console and clears the input fields afterward.

The button is disabled if any required fields are empty, ensuring data completeness before sub-

mission.

5.5 Communication and Collaboration Module

Description: The Communication and Collaboration Module focuses on improving teamwork and

communication within the lab. It includes features such as a scheduling module for lab equipment

and resource reservations, an announcement board for sharing important information, and a

messaging system for staff and students to communicate.

FIGURE 16. Scheduling Module

Figure 16, showcases a Scheduling Module designed to enhance teamwork and communication

within the lab environment. This module offers several key features to streamline lab operations

and facilitate collaboration.

Implementation: This module included developing functionalities for creating and managing lab

schedules, posting announcements, and facilitating communication between lab members. Cus-

tomized views and controllers were designed to provide an intuitive and user-friendly interface.

32

Integration with real-time messaging services or email systems may be utilized for communication

features.

5.6 Backend

The Swagger UI provides an interactive interface for exploring and testing the Robotics Lab Man-

agement System API Server's endpoints. It allows users to visualize the API's structure, view

detailed documentation for each endpoint, and execute requests to interact with the server in real

time.

FIGURE 17. Swaggar UI

Figure 17, displays a list of controllers that provide Swagger UI, which offers several API devel-

opment and documentation benefits. Swagger, now known as the Open API Specification, is a

powerful tool for describing, producing, consuming, and visualizing RESTful APIs.

The Swagger UI offers a user-friendly experience that presents the API endpoints in a hierar-

chical manner, organized by resource categories such as Equipment, Purchase Order, Research,

Student, and University. Each endpoint is accompanied by detailed descriptions of its purpose,

parameters, request/response schemas, and possible status codes. Additionally, the Swagger UI

provides input fields for specifying request parameters and headers, making it easy for users to

customize and execute API requests.

33

Description: The Robotics Lab Management System API Server (RLMS API Server) serves as

the backend infrastructure for the Robotics Lab Management System. It provides a set of end-

points and functionalities to facilitate communication between the frontend user interface and the

underlying database. The API server follows the Open API Specification (OAS3) standard, offer-

ing a standardized interface for accessing resources and performing operations within the sys-

tem. It handles various aspects of lab management, including equipment management, purchase

orders, research data, student information, and more. Additionally, the API server integrates with

authentication mechanisms to ensure secure access to protected resources.

Implementation: The RLMS API Server uses modern web technologies, including Asp.net, to

build the server-side logic and handle HTTP requests. The server is designed to follow RESTful

principles, with each endpoint corresponding to a specific resource or action within the system.

Data persistence is achieved through integration with a relational database management system

(e.g., MS SQL) using an ORM (Entity Framework) library such as Sequelize. The API server uti-

lizes middleware for request parsing, authentication, and error handling to enhance reliability and

security.

FIGURE 18. Controller List

Figure 18, displays a list of controllers providing Swagger UI, showcasing all the controllers the

backend manages.

34

Endpoints are organized into logical categories such as Equipment, Purchase Order, Research,

Student, and University, each corresponding to a specific module or feature of the RLMS. These

endpoints accept various HTTP methods (GET, POST, PUT, DELETE) to perform CRUD (Cre-

ate, Read, Update, Delete) operations on corresponding resources. Additionally, the API server

incorporates authorization mechanisms to restrict access to specific endpoints based on user

roles and permissions. Documentation for the API endpoints is provided as an Open API Specifi-

cation (OAS3) file, accessible at the "/swagger/v1/swagger.json" endpoint, enabling developers to

explore and understand the available functionalities. Overall, the RLMS API Server is a robust

backend infrastructure, enabling seamless communication and data management within the Ro-

botics Lab Management System.

35

6 TESTING

Testing is an integral component of the development lifecycle for the Robotics Lab Management

System (RLMS). These phases ensure that the system meets its objectives, adheres to quality

standards, and delivers a seamless user experience. This chapter thoroughly summarizes the

procedures, standards, and outcomes used in the RLMS project's testing.

FIGURE 19. Research Controller Unit Test Result

Figure 19, contains unit test results for the ResearchController in the Robotics Lab Management

System project. These tests are written using the NUnit framework and Moq library to mock the

iResearchService dependency. The Setup method initializes the mock service and creates an

instance of the ResearchController, ensuring that each test starts with a clean state. Each test

method focuses on a specific action of the ResearchController and follows an Arrange-Act-Assert

pattern. The Arrange section sets up the necessary dependencies and defines the expected be-

havior of the mocked service. By running these tests, the correctness of the ResearchController

is verified, and ensuring the code behaves as expected under various conditions promotes relia-

bility, early issue detection, and overall software quality.

36

6.1 Testing Methodologies

This chapter provides a comprehensive overview of the methods and procedures used in the

testing RLMS project.

Unit Testing: Unit testing involves the verification of individual components or units of code in

isolation. By isolating each unit, developers could assess its functionality independently, ensuring

that it performed as expected and identifying any defects or errors early in the development pro-

cess (30).

FIGURE 20. Unit Test Code

Figure 20, presents a unit test that verifies the behavior of the GetResearches method within the

controller. This test ensures that when no research data is available, the process returns an emp-

ty list. It accomplishes this by configuring a mock research service to return an empty list of Re-

search objects. Upon invoking the controller's GetResearches method, the test examines the

result to confirm it is an OkObjectResult. Subsequently, it verifies that the value of the result, a

non-null list, is indeed empty. This rigorous testing guarantees that the controller adeptly handles

scenarios without research entries to return.

This test verifies that the controller method behaves correctly when no research is available with-

out involving the actual implementation of the iResearchService. It focuses solely on the behavior

of the GetResearches method in isolation, making it a unit test.

Unit testing plays a crucial role in software development by allowing developers to verify the cor-

rectness of individual units or components of a software system. By isolating code sections and

37

testing them in isolation, developers can identify and fix bugs early in the development cycle,

saving time and costs associated with later-stage testing. Additionally, unit testing facilitates code

reuse, helps developers understand the code base, and enables them to make changes quickly

(31).

Integration Testing: Integration testing ensures that it focuses on small pieces of code because

it examines how multiple parts of the system collaborate to achieve specific tasks. Integration

tests examine everything that relies on, like databases and networks, and how it handles re-

quests and responses. Integration tests provide a higher level of confidence in the correctness

and functionality of the entire system, as they test the interactions between components in a more

realistic environment.

Unit tests verify the correctness of individual units or components in isolation and integration tests

validate the collaboration and compatibility of different system elements when integrated. The

System Under Test (SUT) is a common term used in integration testing discussions to refer to the

tested project, usually an ASP.NET Core app (32).

System Testing: System testing is a type of software testing in which the entire integrated soft-

ware product is assessed to ensure it satisfies the requirements and performs as intended in the

intended setting. In system testing, the entire software application, including all its components,

modules, and interfaces, is tested to verify that they work together seamlessly and fulfill the de-

sired functionality.

The primary objective of system testing is to validate the software system's behavior against its

requirements, functional specifications, and user expectations. This testing phase typically occurs

after integration testing and before acceptance testing. System testing is conducted in an envi-

ronment that resembles the production environment to simulate real-world usage conditions as

closely as possible.

38

7 SECURITY

Security is critical to ensuring the integrity and confidentiality of data and resources within the

Robotics Lab Management System (RLMS). This section outlines the security measures, vulner-

abilities, and recommendations for enhancing the RLMS's security posture, mainly focusing on

web API security.

7.1 Security Measures

Robust security measures are implemented to safeguard against potential threats.

Encryption Protocols: Data encryption techniques protect sensitive information from unauthor-

ized access. Encryption technology is utilized to store passwords, ensuring the privacy of users

information (33).

Access Controls: Role-Based Access Control (RBAC) mechanisms restrict user access based

on predefined roles and permissions, ensuring that users only have access to relevant resources

and functionalities. The Identity framework technology is utilized to manage authentication for

different user roles, including Admins, staff, and teachers.

Authentication Mechanisms: Token-based authentication using JSON Web Tokens (JWT) en-

sures secure user authentication and authorization (34).

Cross-Origin Resource Sharing (CORS): CORS policies are implemented to thwart unauthor-

ized access to APIs from other domains. This restricts the domains that can access our RLMS

APIs, reducing the risk of unauthorized data access and manipulation (35).

FIGURE 21. Implement CORS

39

Figure 21, provides further configuration for CORS in the ASP.NET Core application.

 Rate limiting is implemented using ASP.NET Core rate limiting middleware to limit the number of

calls to API endpoints within a given time frame. This helps protect against brute-force attacks

and ensures the stability and availability of the API. This helps protect against brute-force attacks

and ensures the stability and availability of our API.

7.2 Vulnerability Assessment

Despite robust security measures, the RLMS may be susceptible to various vulnerabilities.

SQL Injection: Improperly sanitized user inputs may lead to SQL injection attacks, compromising

database integrity. Proper input validation and parameterized queries are essential to mitigate

this risk (36).

Cross-Site Scripting (XSS): Vulnerabilities in web application inputs may allow malicious scripts

to be injected, potentially compromising user data (37). Input validation and output encoding

techniques are employed to prevent XSS attacks.

40

8 DEPLOYMENT

An application must be deployed for users to use its features and functions and be available. In

addition to accessibility, deployment allows scalability to meet growing user demand, testing in

real-world settings, and the application of security controls to safeguard confidential information. It

also makes continuous integration deployment and performance optimization easier, guarantee-

ing the smooth delivery of updates and new features. Ultimately, deployment improves user hap-

piness by giving consumers a dependable and effective platform to engage with the program,

enhancing their entire experience.

This chapter delves into deploying ASP.NET Core applications to Internet Information Services

(IIS). ASP.NET Core hosting differs significantly from traditional ASP.NET hosting, necessitating

a nuanced understanding for successful deployment. IIS, as a web server operating within the

Windows OS, plays a pivotal role in hosting applications built on ASP.NET Core. The steps in

configuring ASP.NET Core applications for IIS hosting will be explored, and the advantages of

utilizing IIS for ASP.NET Core hosting will be discussed. Deploying an ASP.NET Core app to IIS

may appear complex initially, but it becomes a manageable task with proper guidance. Deploying

ASP.NET Core applications to Internet Information Services (IIS) requires careful consideration

and correct configuration. By understanding the nuances of ASP.NET Core hosting and configur-

ing the project accordingly, the application can be successfully deployed to an IIS server. Lever-

aging the capabilities of IIS offers numerous advantages, including increased performance,

scalability, and management capabilities.

8.1 Configuring ASP.NET Core Project

Before proceeding with deployment, ensuring that our ASP.NET Core project is configured cor-

rectly is imperative. This involves evaluating the server environment to ascertain its compatibility

and adequacy for hosting the application. Considerations include hardware specifications, soft-

ware dependencies, and operating system compatibility. Additionally, compiling the developed

application into a deployable format is crucial. This encompasses packaging all necessary files,

libraries, and configurations for execution into a coherent and portable unit.

41

8.2 Deployment Steps

Project Publishing: Visual Studio is used to publish the application. This process generates

optimized files for deployment.

IIS Configuration:

• Application Pool Creation: Create a dedicated application pool in IIS Manager for the

specified application. This isolates it from other applications, improving security and re-

source management.

• Website Setup: Create a new website or virtual directory pointing to the published appli-

cation folder. Configure bindings (domain name/IP address) and port assignments for

user access.

• UseIISIntegration(): In Program.cs file, configure the WebHostBuilder to use IIS Integra-

tion with the UseIISIntegration() method. This enables seamless communication between

the application and IIS.

Utilizing Internet Information Services (IIS) for hosting applications, particularly ASP.NET Core,

offers several advantages. With optimized performance, scalable architecture, robust security

features, streamlined management tools, seamless integration with the Windows ecosystem, and

dedicated support for ASP.NET Core, IIS provides a reliable and efficient platform for deploying

web applications. Its comprehensive feature set ensures high availability, performance, and secu-

rity, enabling organizations to deliver seamless user experiences while maximizing productivity

and minimizing operational complexities (38).

42

9 CONCLUSION

Automation in the lab management system is essential for reducing errors and decreasing the

time required to manage lab operations. Additionally, it simplifies the administrators' tasks, en-

hancing overall efficiency and effectiveness in laboratory management.

The thesis was inspired by OAMK's need to create a web-based Robotics Lab Management Sys-

tem (RLMS). It was essential to move away from outdated lab management methods. Manage-

ment tasks were done using Excel spreadsheets and files stored in the cloud or the administra-

tor's computer. Completing the Robotics Lab Management System (RLMS) represents a signifi-

cant milestone in advancing robotics labs, offering an innovative solution to address various op-

erational challenges.

Robotics Lab Management System transforms equipment management by providing real-time

tracking capabilities that improve resource allocation and support well-informed decision-making.

Using centralized monitoring, lab administrators can make data-driven choices that optimize effi-

ciency and resource use, providing crucial insights into equipment availability and consumption

trends.

The RLMS's robust user control and equipment borrowing features are vital components. These

features encourage responsible use and strengthen lab security. The solution ensures smooth

communication and protects lab resources from misuse or illegal access by enforcing strict ac-

cess rules and simplifying request procedures.

Moreover, the RLMS gives managers practical insights from extensive data collection on equip-

ment use and upkeep. Utilizing this abundance of data, lab managers may optimize lab opera-

tions and boost efficiency by making well-informed decisions about resource allocation, future

acquisitions, and strategic planning.

43

REFERENCES

1. Johnson, Anna 2024. Reasons to study Robotics. Search date

29.5.2024.https://www.robotlab.com/blog/reasons-to-study-robotics

2. BO, Gao 2009. Design and implement multimedia equipment management system based on

.Net and three-tier architecture. Journal of Chongqing Institute of Technology. Search date

3.5.2024.

3. BOYAR, Kyle, PHAM, Andrew, SWANTEK, Shannon, WARD, Gary and HERMAN, Gary 2021.

Laboratory Information Management Systems (LIMS). In: Springer eBooks. Search date

3.5.2024.

4. LI, Dongqi, LIU, Peng, HUANG, Guotai, MA, Yuan, XIE, Zheyu, LI, Yunfeng and HUANG, Xin

2021. Design and application of intelligent equipment management platform. Search date

3.5.2024. https://doi.org/10.1088/1742-6596/1983/1/012098

5. Grinter, Systems Architecture: Product Designing and Social Engineering, Bell Labs, Lucent

Technologies. Search date 3.5.2024.

6. Waldo, Jim 2006. On System Design, Sun Microsystems Laboratories, of Sun Microsystems,

Inc., pp. 1-5. Search date 3.5.2024. https://scholar.harvard.edu/files/waldo/files/ps-2006-6.pdf

7. Creately,2022. Use Case Diagram Tutorial (Guide with Examples). Search date 3.5.2024.

https://creately.com/guides/use-case-diagram-tutorial/

8. Zheng, Boli 2017. Design and Implement a Laboratory Management System based on Web

ResearchGate. Search date 3.5.2024.

https://www.researchgate.net/publication/312865492_Design_and_Implement_of_Laboratory_Ma

nagement_System_based_Web

9. Snow, John. Laboratory Logistics Handbook. Search date 3.5.2024.

https://pdf.usaid.gov/pdf_docs/Pnadp082.pdf

https://www.robotlab.com/blog/reasons-to-study-robotics
https://doi.org/10.1088/1742-6596/1983/1/012098
https://scholar.harvard.edu/files/waldo/files/ps-2006-6.pdf
https://creately.com/guides/use-case-diagram-tutorial/
https://www.researchgate.net/publication/312865492_Design_and_Implement_of_Laboratory_Management_System_based_Web
https://www.researchgate.net/publication/312865492_Design_and_Implement_of_Laboratory_Management_System_based_Web
https://pdf.usaid.gov/pdf_docs/Pnadp082.pdf

44

 10. Creately,2022. Ultimate Flowchart Tutorial | Learn What a Flowchart is and How to Create a

Flowchart. Search date 10.5.2024. https://creately.com/guides/flowchart-guide-flowchart-tutorial/

11. Creately,2022. Sequence Diagram Tuto. Search date 10.5.2024.

https://creately.com/guides/sequence-diagram-tutorial/

12. Wadepickett,2022. Create a web API with ASP.NET Core. Search date 11.5.2024.

https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-

8.0&tabs=visual-studio

13. InfoQ, 2020. A Seven-Step Guide to API-First Integration. Search date 11.5.2024.

https://www.infoq.com/articles/api-first-integration/

14. Ajcvickers,2021. Overview of Entity Framework Core - EF Core. Search date 11.5.2024.

https://learn.microsoft.com/en-us/ef/core/

15. Anderson, Rick 2024. Introduction to identity on ASP.NET core. Search date 12.5.2024.

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-

8.0&tabs=visual-studio

16. Zuckerthoben,2024. Get started with Swashbuckle and ASP.NET Core. Search date

13.5.2024. https://learn.microsoft.com/en-us/aspnet/core/tutorials/getting-started-with-

swashbuckle?view=aspnetcore-8.0&tabs=visual-studio

17. Serilog,2022. Serilog — simple .NET logging with fully structured events. Search date

13.5.2024. https://serilog.net/

18. Centeio, Brucy 2023. Adding SeriLog to ASP.NET Core .NET 7 & 8. Search date 14.5.2024.

https://medium.com/@brucycenteio/adding-serilog-to-asp-net-core-net-7-8-5cba1d0dea2

19. Chinta, Merwan 2024. Auto Mapper in C# .NET Core with Unit tests. Search date 14.5.2024.

https://medium.com/codenx/automapper-in-net-core-778f9c874164

https://creately.com/guides/flowchart-guide-flowchart-tutorial/
https://creately.com/guides/sequence-diagram-tutorial/
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-8.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-8.0&tabs=visual-studio
https://www.infoq.com/articles/api-first-integration/
https://learn.microsoft.com/en-us/ef/core/
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/tutorials/getting-started-with-swashbuckle?view=aspnetcore-8.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/tutorials/getting-started-with-swashbuckle?view=aspnetcore-8.0&tabs=visual-studio
https://serilog.net/
https://medium.com/@brucycenteio/adding-serilog-to-asp-net-core-net-7-8-5cba1d0dea2
https://medium.com/codenx/automapper-in-net-core-778f9c874164

45

20. SQL Server tutorial,2021. SQL Server tutorial – The practical SQL Server tutorial. Search

date 15.5.2024. https://www.sqlservertutorial.net/

21. Celep, Beyza 2022. Sequence. Introduction to Clean Architecture. date 15.5.2024.

https://celepbeyza.medium.com/introduction-to-clean-architecture-acf25ffe0310

22. React,2023. Getting started – react. Search date 15.5.2024.

https://legacy.reactjs.org/docs/getting-started.html

23. Chakra Ui,2022. Chakra UI - A simple, modular and accessible component library that gives

you the building blocks you need to build your React applications. Search date 3.5.2024.

https://v2.chakra-ui.com/

24. Yotam, Bloom 2023. Why we chose Chakra-UI for our design system. Search date 16.5.2024.

https://medium.com/meliopayments/why-we-chose-chakra-ui-for-our-design-system-part-1-

a9f988127dab

25. Da, Naveen 2022. A detailed guide to using Axios in your React App - JavaScript in plain

English. Search date 16.5.2024. https://javascript.plainenglish.io/a-detailed-guide-to-using-axios-

in-your-react-app-7396f79fb4c2

26. Thenuka, Thisura 2022. Add Redux to your React app in 6 Simple Steps. Search date

3.5.2024. https://dev.to/thisurathenuka/add-redux-to-your-react-app-in-6-simple-steps-43bb

27. GeeksforGeeks,2024. What is react-router-dom? Search date 3.5.2024.

https://www.geeksforgeeks.org/what-is-react-router-dom/

28. Llp,2022. Building Responsive User Interfaces with ReactJS and CSS. Search date 3.5.2024.

https://taglineinfotechus.medium.com/building-responsive-user-interfaces-with-reactjs-and-css-

d21ed1b99da4

29. Machado, Breno 2023. Building a Project Management Tool with ASP.NET 7 and React.

Search date 17.5.2024. https://medium.com/@brenobm/building-a-project-management-tool-with-

asp-net-f5f40cd84a04

https://www.sqlservertutorial.net/
https://celepbeyza.medium.com/introduction-to-clean-architecture-acf25ffe0310
https://legacy.reactjs.org/docs/getting-started.html
https://v2.chakra-ui.com/
https://medium.com/meliopayments/why-we-chose-chakra-ui-for-our-design-system-part-1-a9f988127dab
https://medium.com/meliopayments/why-we-chose-chakra-ui-for-our-design-system-part-1-a9f988127dab
https://javascript.plainenglish.io/a-detailed-guide-to-using-axios-in-your-react-app-7396f79fb4c2
https://javascript.plainenglish.io/a-detailed-guide-to-using-axios-in-your-react-app-7396f79fb4c2
https://dev.to/thisurathenuka/add-redux-to-your-react-app-in-6-simple-steps-43bb
https://www.geeksforgeeks.org/what-is-react-router-dom/
https://taglineinfotechus.medium.com/building-responsive-user-interfaces-with-reactjs-and-css-d21ed1b99da4
https://taglineinfotechus.medium.com/building-responsive-user-interfaces-with-reactjs-and-css-d21ed1b99da4
https://medium.com/@brenobm/building-a-project-management-tool-with-asp-net-f5f40cd84a04
https://medium.com/@brenobm/building-a-project-management-tool-with-asp-net-f5f40cd84a04

46

30. Pritomsarkar, 2022. Unit testing in ASP.NET Core Web API - C# Programming. Search date

17.5.2024.https://medium.com/c-sharp-progarmming/unit-testing-in-asp-net-core-web-api-

b2e6f7bdb860

31. GeeksforGeeks,2024. Unit testing software testing. Search date 17.5.2024.

https://www.geeksforgeeks.org/unit-testing-software-testing/

32. Rick, Anderson 2024. Integration tests in ASP.NET Core. Search date 17.5.2024.

https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests?view=aspnetcore-8.0

33. Chen, Stephen 2023. What is Data Encryption, and Why Is It Important? Search date

18.5.2024. https://www.titanfile.com/blog/what-is-data-encryption-and-why-is-it-important/

34. Okta,2022. What is Token-Based Authentication? Search date 18.5.2024.

https://www.okta.com/identity-101/what-is-token-based-authentication/

35. Wikipedia,2024. Cross-origin resource sharing. Search date 19.5.2024.

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

36. Cloudflare,2020. What is SQL injection? Search date 19.5.2024.

https://www.cloudflare.com/learning/security/threats/sql-injection/

37. Portswigger,2022. What is cross-site scripting (XSS) and how can it be prevented? Search

date 20.5.2024. https://portswigger.net/web-security/cross-site-scripting

38. Anderson, Rick,2024. Installing and configuring Web deployment on IIS 8.0 or later. Search

date 20.5.2024. https://learn.microsoft.com/en-us/iis/install/installing-publishing-

technologies/installing-and-configuring-web-deploy-on-iis-80-or-later

https://medium.com/c-sharp-progarmming/unit-testing-in-asp-net-core-web-api-b2e6f7bdb860
https://medium.com/c-sharp-progarmming/unit-testing-in-asp-net-core-web-api-b2e6f7bdb860
https://www.geeksforgeeks.org/unit-testing-software-testing/
https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests?view=aspnetcore-8.0
https://www.titanfile.com/blog/what-is-data-encryption-and-why-is-it-important/
https://www.okta.com/identity-101/what-is-token-based-authentication/
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://www.cloudflare.com/learning/security/threats/sql-injection/
https://portswigger.net/web-security/cross-site-scripting/
https://portswigger.net/web-security/cross-site-scripting/
https://learn.microsoft.com/en-us/iis/install/installing-publishing-technologies/installing-and-configuring-web-deploy-on-iis-80-or-later
https://learn.microsoft.com/en-us/iis/install/installing-publishing-technologies/installing-and-configuring-web-deploy-on-iis-80-or-later

	CONTENTS
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	2 Objectives
	3 System Analysis
	3.1 User Management Module
	3.2 Inventory Management Module
	3.3 Lab Resource Management Module
	3.4 Communication and Collaboration Module

	4 Technical Introduction
	4.1 Backend Development
	4.1.1 ASP.NET Web API
	4.1.2 Microsoft SQL Server (MSSQL)
	4.1.3 Clean Architecture Design

	4.2 Frontend Development
	4.2.1 React.js
	4.2.2 Benefits of this Technical Stack

	5 Implementation
	5.1 Front Page Layout
	5.1.1 Login/Signup Button
	5.1.2 Slider
	5.1.3 Main Modules
	5.1.4 University News
	5.1.5 Latest Research
	5.1.6 Featured Content

	5.2 User Management Module
	5.3 Inventory Management Module
	5.3.1 Equipment Management
	5.3.2 Purchase Order
	5.3.3 Low-Stock Alerts
	5.3.4 Inventory Control

	5.4 Lab Resource Module
	5.4.1 Equipment Request System
	5.4.2 Resource Allocation
	5.4.3 Result Sharing

	5.5 Communication and Collaboration Module
	5.6 Backend

	6 Testing
	6.1 Testing Methodologies

	7 Security
	7.1 Security Measures
	7.2 Vulnerability Assessment

	8 Deployment
	8.1 Configuring ASP.NET Core Project
	8.2 Deployment Steps

	9 Conclusion
	References

