

Bachelor’s thesis

Information and Communications Technology

2024

Emilia Heinonen

Developing a Help Centre with a

Retrieval-Augmented

Conversational AI System

Bachelor’s thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2024 | 54 pages

Emilia Heinonen

Developing a Help Centre with a Retrieval-

Augmented Conversational AI System

This thesis aimed to improve the user support experience in the commissioner’s

archival software by developing an online platform for essential software

instructions, allowing users to troubleshoot common issues, and freeing up

support and development teams' time. This thesis's final products were a help

centre site and a retrieval-augmented conversational AI system. The main

technologies used were Laravel and Tailwind CSS. One of the main goals was to

explore AI implementation possibilities in a data-privacy-sensitive application.

The AI system was built on top of the base site, leveraging LlamaIndex as the

retrieval-augmented generation framework, OpenAI's GPT-3.5 Turbo model, and

Ada text embedding model for natural language processing tasks.

Compared to the more conventional help centre, the AI system's main

disadvantage was a lack of adequate open-source large language models that

supported Finnish and inconsistent answers. It offered more possibilities for

tailored support and easier upkeep. The testing results imply that the AI system

would not work well on its own, but when combined with the traditional Help

Centre, it shows potential for quick, personalised assistance. More development

and research are required for a production-ready system.

Keywords:

Customer Support System, Artificial Intelligence, Large Language Models,

Retrieval-Augmented Generation

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja viestintätekniikka

2024 | 54 sivua

Emilia Heinonen

Ohjekeskuksen kehittäminen RAG-pohjaisella

keskustelullisella tekoälyjärjestelmällä

Tämä opinnäytetyö pyrki parantamaan käyttäjätukea toimeksiantajan

arkistointiohjelmistossa kehittämällä sivuston, joka tarjoaa olennaiset ohjelmisto-

ohjeet. Sivusto auttaa käyttäjiä ratkaisemaan yleisiä ongelmia itsenäisesti

vapauttaen samalla tukitiimin ja kehittäjien aikaa muille tehtäville.

Lopputuloksena syntyi ohjekeskus-sivusto ja retrieval-augmented generation-

tekniikkaa hyödyntävä keskustelutekoälyjärjestelmä. Pääasiallisesti käytetyt

teknologiat olivat Laravel ja Tailwind CSS. Yksi tärkeimmistä tavoitteista oli

selvittää tekoälyn käyttöönottomahdollisuuksia sovelluksessa, jolle on tiukat

tietosuojavaatimukset. Tekoälyjärjestelmä rakentui perussivuston päälle

hyödyntäen LlamaIndexiä retrieval-augmented generation -ohjelmistokehyksenä

ja OpenAI:n GPT-3.5 Turbo-mallia sekä Ada-tekstiupotusmallia luonnollisen

kielen käsittelytehtäviin.

Verrattaessa ohjekeskukseen, tekoälyjärjestelmän heikkoudeksi nousi suomen

kieltä tukevien avoimen lähdekoodin kielimallien puute sekä vastausten

vaihtelevaisuus. Se tarjosi enemmän mahdollisuuksia yksilöllisen avun ja helpon

ylläpidon suhteen. Testaus osoitti, että tekoälyjärjestelmä ei toimisi hyvin

itsenäisenä järjestelmänä, mutta yhdistettynä perinteiseen ohjekeskukseen se

osoittaa potentiaalia nopeaan ja personoituun asiakastukeen. Tuotantovalmis

järjestelmä vaatii lisää kehitystä ja tutkimusta.

Asiasanat:

asiakastukikeskus, tekoäly, suuret kielimallit, retrieval-augmented generation

Contents

List of abbreviations 6

1 Introduction 7

1.1 Final Product 8

1.2 Objectives and Limitations 8

1.2.1 Objectives 8

1.2.2 Limitations 9

2 Technologies 10

2.1 Artificial Intelligence 10

2.1.1 Brief History 10

2.1.2 Machine learning and deep learning 12

2.2 Retrieval-augmented Generation 15

2.3 Application Core 17

2.3.1 Laravel 17

2.3.2 Tailwind CSS & UI 19

2.4 Databases 20

2.4.1 Relational Database 20

2.4.2 Vector Database 21

3 Development 22

3.1 Help Centre 22

3.1.1 Project Setup 22

3.1.2 Frontend 23

3.1.3 Backend 30

3.2 Retrieval-Augmented Conversational AI System 35

3.2.1 Frontend 35

3.2.2 Backend 37

4 Discussion 45

4.1 Evaluating the Help Centre 45

4.2 Evaluating the conversational AI system 45

4.3 Limitations and Future Work 47

5 Conclusion 48

References 50

Figures

Figure 1. A brief history of AI. 11

Figure 2. Artificial intelligence subsets in relation to one another. 13

Figure 3. Model-View-Controller architecture chart. 18

Figure 4. Help centre - Homepage by Valentin Salmon on Dribbble.com. 24

Figure 5. Top of the homepage, light variant. 25

Figure 6. Top of the homepage, dark variant. 25

Figure 7. Bottom of the homepage, light variant. 26

Figure 8. Article collection page base layout. 27

Figure 9. Article collection page, category selection. 27

Figure 10. Category selection colours. 28

Figure 11. Hover over the listed article. 29

Figure 12. Article specific page. 30

Figure 13. Database schema 32

Figure 14. Article specific page 34

Figure 15. Chatting screen. 36

Figure 16. Chat widget on the homepage. 37

Figure 17. Simplified process flow 42

List of abbreviations

Abbreviation Explanation of abbreviation

AI Artificial Intelligence

API Application Programming Interface

CSS Cascading Style Sheets

CSRF Cross-Site Request Forgery

FAQ Frequently Asked Questions

HTML Hypertext Markup Language

LLM Large Language Model

NPM Node Package Manager

PDF Portable Document Format

PHP PHP: Hypertext Preprocessor

RAG Retrieval-augmented Generation

SQL Structured Query Language

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

7

Turku University of Applied Sciences Thesis | Emilia Heinonen

1 Introduction

This thesis is a commissioned project for Arcista, a cloud software designed to

streamline information management and storage for businesses, owned by

Älyarkisto Oy. This thesis refers to Arcista's version 2.2.0703. The issues and

findings presented in this thesis may not apply to future versions of Arcista. The

commissioner of this project is Taika Group Oy, the parent company of Älyarkisto

Oy.

The primary motivation for the project stems from Arcista's lack of a dedicated

help centre. Some of Arcista's user companies have expressed interest in

integrating AI features into Arcista, prompting this thesis as a first step towards

exploring the feasibility of doing so.

With Arcista version 2.2.0703, the Arcista Support Team handles all inquiries,

and users receive guidelines via email in PDFs. It is a complicated system,

especially since the Arcista development team is constantly developing and

adding new features to the software. The PDFs users receive can become

outdated quickly.

A dedicated help centre would significantly improve the user experience by

providing a site where users can easily access essential software usage

information. It would also improve communication and provide a centralised

source for frequently asked questions and guides that could be regularly updated

with the software. This would enable users to troubleshoot common issues

without having to contact support. This reduction in inquiries would free up the

support team's time to address more complex problems and enhance overall

efficiency. Additionally, it would decrease the volume of requests forwarded to

the development team concerning the more complex module functions prone to

usage errors. The development team could focus better on improving the

software rather than addressing minor difficulties that could be resolved using

guides and tutorials provided in a help centre.

8

Turku University of Applied Sciences Thesis | Emilia Heinonen

1.1 Final Product

The final products of this thesis include a knowledge base-type help centre with

a focus on providing a conceptual site for guide articles already existing as PDFs.

As a proof-of-concept case, an alternate version of the base help centre was

developed, integrating a retrieval-augmented conversational AI system into the

help centre to explore the potential for future implementations. One of the

purposes was to showcase the potential advantages and drawbacks of

implementing this new technology for user support in applications with strict data

privacy needs, like Arcista.

Both the help centre and the AI system were developed solely in Finnish, as

Arcista is primarily targeted at Finnish companies, and the current version of

Arcista 2.2.0703 does not support any other languages.

1.2 Objectives and Limitations

1.2.1 Objectives

This project has five main objectives.

1. Identifying the current situation and the solution

2. Developing a base help centre

• developed to provide users with a centralised location to find all

important information about Arcista software, as well as a baseline

to compare the AI system to.

3. Developing a retrieval-augmented conversational AI system

• Serves as a proof-of-concept case for research into using new

technologies to improve the user support experience and internal

processes.

4. Comparing the AI system with the base help centre

9

Turku University of Applied Sciences Thesis | Emilia Heinonen

• This is done to provide information on the possible drawbacks and

advantages of the AI system and how it compares to the more

traditional base help centre.

5. Documenting the results for future reference.

1.2.2 Limitations

Because of the way Arcista is structured as software, there are some limitations

set for this project. Specifically, these limitations have an impact on the

component selections for the AI system.

1. All data must stay inside Finland.

• Each component used needs to be local or self-hostable.

• Avoid any components that rely on cloud services.

2. Prefer open-source solutions with an MIT license.

• Ideally, there are no additional costs associated with licensing or

service fees.

• This is not a hard limit, but rather a preference.

• Due to a lack of suitable large language models, this has to be

overlooked to develop a functioning proof-of-concept system.

10

Turku University of Applied Sciences Thesis | Emilia Heinonen

2 Technologies

2.1 Artificial Intelligence

Artificial intelligence (AI) refers to technologies that enable computers, machines,

and systems to simulate human intelligence and problem-solving capabilities. [1],

[2], [3]

2.1.1 Brief History

The idea of "a machine that thinks" has been around for centuries. Alan Turing,

known as the "father of computer science" and a "pioneer of artificial intelligence,"

published his paper Computing Machinery and Intelligence in 1950, marking the

first appearances of AI. In his paper, Turing proposed a criterion that later became

known as the Turing test to determine whether an artificial computer can think.

[2], [4]

In 1956, the term artificial intelligence was coined at the first-ever AI conference

at Dartmouth College, and the Logic Theorist, the first-ever running AI software

program, was created.

Advances in neural networks gained popularity during 1960–1980 as a way to

simulate human brain functions in computers. This era also saw advancements

in natural language processing and expert systems. [5], [6], [7], [8]

Figure 1 summarises some of the important points of AI's history in a timeline.

11

Turku University of Applied Sciences Thesis | Emilia Heinonen

Figure 1. A brief history of AI.

Types of AI

Narrow AI, also known as weak AI or artificial narrow intelligence. Many modern

AI applications use this type of AI, trained and focused on specific tasks. These

include AI for enhancing graphics in video games [9], virtual assistants like

Apple's Siri and Amazon's Alexa, and autonomous vehicles. [3]

Strong AI comprises of artificial general intelligence (AGI) and artificial

superintelligence (ASI). AGI, or general AI, is a theoretical form of AI where a

machine would possess human-level intelligence. It would be self-aware, able to

solve problems, learn, and plan for the future. ASI would exceed the intelligence

and capabilities of the human brain. Although strong AI is currently only a

theoretical concept without practical applications, AI researchers are actively

investigating its advancement. [2]

12

Turku University of Applied Sciences Thesis | Emilia Heinonen

2.1.2 Machine learning and deep learning

Machine learning (ML) is a sub-discipline of AI that focuses on developing

algorithms that allow the incorporation of intelligence into machines by learning

from data and making predictions or decisions without explicit programming. [10],

[11]

Deep Learning

Deep learning is a class of ML algorithms that use neural networks to solve

complex problems. Neural networks are a type of ML model inspired by the

function and structure of human brains. Similarly to human brains, neural

networks are composed of interconnected layers of artificial neurons called

nodes.

After initial training with labelled or structured datasets, deep learning models can

process unstructured data in its unprocessed form. They are used to detect

patterns or data groupings from unlabelled datasets, without human intervention.

This is also known as unsupervised learning. Unsupervised learning models work

independently to find the intrinsic structure of unlabelled data. They still require

human interaction to validate the output variables. For example, an unsupervised

deep learning model can detect that online buyers frequently purchase many

things at the same time. The data analyst must still verify the logic of the

recommendation based on the purchases. [12], [13]

These algorithms are especially beneficial for fields like computer vision and

natural language processing, where the volume of labelled training data required

to train models can be enormously large. [13], [14]

Classical, or "non-deep," machine learning algorithms rely more on structured

datasets to learn using supervised learning. Supervised learning uses labelled

training sets to teach models to get the desired results. Training datasets contain

both inputs and correct outputs, allowing the model to learn over time. The

13

Turku University of Applied Sciences Thesis | Emilia Heinonen

algorithm employs the loss function to gauge its accuracy, adjusting until it

effectively reduces the error. [13], [14], [15], [16]

Figure 2 illustrates the relationship between the AI subsets.

Figure 2. Artificial intelligence subsets in relation to one another.

14

Turku University of Applied Sciences Thesis | Emilia Heinonen

Large Language Models

Large Language Models (LLMs) are machine learning systems that process and

analyse large amounts of natural language data and respond to user prompts.

[17]

LLMs are generative AI, meaning they are designed to generate, in this case,

human-like language. LLMs can also perform other natural language processing

(NLP) tasks, such as translation and summarization. They are frequently utilised

in applications such as chatbots, sentiment analysis, and question-answering.

[18], [19]

LLMs primarily belong to a category of deep learning systems called transformer

networks. A transformer model is a neural network type that learns context by

recognising patterns in sequential input, like the words in a sentence. A

transformer usually consists of several transformer blocks, commonly referred to

as layers. It has self-attention layers, feed-forward layers, and normalisation

layers that all work together to parse input and forecast streams of output during

inference. The layers can be stacked to create more complex transformers and

sophisticated language models. Vaswani et al. at Google Brain and Google

Research first introduced transformers in their 2017 paper, "Attention Is All You

Need." [4], [20], [21]

Like any technology, LLMs are not without flaws. The most notable flaw that

appears in almost all LLM models is hallucinations. When asked a question, to

which the LLM can’t formulate a direct answer, the LLM may "hallucinate" or give

inaccurate answers. These misinterpretations occur for a variety of reasons,

including overfitting, training data bias, inaccuracy, and high model complexity. A

noteworthy example of hallucinations occurred when Google's Bard chatbot

falsely stated that the James Webb Space Telescope captured the world's first

photographs of a planet outside our solar system. [22] Hallucinations can lead to

the propagation of misinformation and should be considered when employing

LLMs for fields requiring accurate responses based on data. [18], [22], [23]

15

Turku University of Applied Sciences Thesis | Emilia Heinonen

When employing LLMs for consumer-facing products or research, a few potential

risks must be considered. LLMs can be biased in their responses, generating

stereotypical or discriminatory information. This occurs because the models are

trained on enormous datasets, which may contain biased data or the data

amounts to a biased pattern. Despite the safeguards in place to avoid this, LLMs

can still occasionally generate harmful stereotypical or discriminatory information

either on their own or because a user has been able to manipulate the LLM into

producing such content. This is commonly referred to as prompt hacking, and it

can be used to trick the LLM into creating improper or malicious content. It is

critical to be aware of these potential risks while employing LLMs, particularly in

consumer-facing applications. [18], [23]

2.2 Retrieval-augmented Generation

Retrieval-augmented Generation (RAG) is an architectural approach to improve

the accuracy and dependability of generative large language models by

leveraging resources that were not in the original trained dataset. [24]

LLMs, particularly open-source ones, are commonly trained on large datasets

with publicly available information. They are not trained on company-specific and

confidential data, which is often distinctive to the problem the company is

attempting to address. This can lead to issues when trying to use LLMs for tasks

that require an understanding of company-specific nuances and language. The

LLM may not understand and handle the requests effectively, providing

inaccurate responses, or hallucinations or it may not provide answers at all.

Often, the solution to this is to fine-tune the language model based on the

company's specific data. But fine-tuning creates its own set of challenges, such

as requiring large amounts of labelled data and expertise in machine learning.

Unsupervised fine-tuning and training can lead to unexpected and unwanted

results such as biased models. Fine-tuning also does not address the issues of

hallucinations and untraceable reasoning very effectively. [24], [25]

16

Turku University of Applied Sciences Thesis | Emilia Heinonen

Retrieval-augmented Generation is a simpler, more popular way to reduce

hallucinations and use company-specific data, providing it as part of the prompt

that you query the LLM model with. Instead of relying primarily on knowledge

obtained from training data, an RAG pipeline extracts useful information from

external sources and combines static LLMs with real-time data retrieval. This

allows the model to access a wider range of specialised information, which can

be easily updated later. This approach results in more accurate and relevant

responses to user queries. [24], [26], [27]

A typical RAG pipeline can be divided into five key stages [24]:

Loading: the process of bringing data into your pipeline from where it currently

resides, such as text files, PDFs, another website, a database, or an API.

Indexing: the process of constructing a data structure that allows the data to be

queried. For LLMs, this almost invariably entails developing vector embeddings,

numerical representations of the meaning of your data, and a variety of other

metadata tactics to make it simple to identify contextually relevant material.

Storing: Once the data is indexed, it is important to store the index and metadata

to prevent the unnecessary re-indexing.

Querying: At its most basic, querying is simply a direct call to an LLM: it can be

a question and an answer, a request for summarization, or a much more

complicated instruction. More complicated questioning may employ

repeated/chained prompts and LLM calls, or a reasoning loop spanning across

numerous components.

Evaluation: An important phase in any pipeline is determining how effective it is

in comparison to other tactics or when making changes. Evaluation provides

objective metrics for how accurate, dependable, and timely the responses to

inquiries are.

17

Turku University of Applied Sciences Thesis | Emilia Heinonen

2.3 Application Core

This section provides basic information on the frameworks and technologies used

to develop the application core.

2.3.1 Laravel

Laravel is an open-source PHP-based web application framework that includes

a variety of pre-built solutions for more complicated concepts like authentication

and authorization. Laravel advertises itself as a “progressive” framework that

grows with the developer’s skillset. Although Laravel is inherently more of a

backend framework, it allows developers to make full-stack applications by either

leveraging PHP and Laravel’s built-in Blade templating engine or JavaScript

frameworks such as Vue and React.

Laravel follows the MVC architecture, meaning the basic structure of applications

is divided into three elements: models, views, and controllers.

Models are responsible for managing the data of the application and fetching it

from the database. For this Laravel offers helpers like query builder and Eloquent

ORM (Object-Relational Mapping). It is Laravel's built-in ORM implementation

that provides a simple ActiveRecord implementation for working with the

application database. Each database table has a corresponding "Model" that is

used to interact with that table. Laravel also offers migrations that are like version

control inside the application for the database, allowing development teams to

modify and share the application's database schema.

Views are responsible for presenting the data to the user in a readable format.

For creating views Laravel comes with Blade, a simple yet powerful templating

engine. Blade is an extremely lightweight templating engine with its Blade syntax

that provides a convenient, short syntax for displaying data, iterating over data,

and more. Blade makes web development in Laravel easier by allowing the

creation of dynamic and reusable HTML structures and combines the versatility

of PHP with the readability of HTML, by supporting a variety of features such as

18

Turku University of Applied Sciences Thesis | Emilia Heinonen

embedding PHP code, conditional expressions, and loops directly in the HTML

code. Additionally, it supports and encourages the creation of reusable view

components. It is easy to divide the web pages into smaller Blade templates that

can be combined to create whole layouts. [28]

Controllers are responsible for handling user input and interactions. They are the

middleman between models and views, processing user requests and updating

the model as needed.

The MVC architecture chart in figure 3 illustrates the basic operation style of

software developed with MVC architecture. [29]

Figure 3. Model-View-Controller architecture chart.

Even though it is not explicitly stated, routing is an essential part of the MVC

approach. Routing is a mechanism where an HTTP request is linked with a

certain logic, typically a controller action. When a request comes into Laravel, it

is dispatched to a route that then decides which controller action to call. The

19

Turku University of Applied Sciences Thesis | Emilia Heinonen

controller action then interacts with the necessary models and data and loads a

view to send as the HTTP response. So, in a sense, routing is the first step in

handling a request and deciding which controller and subsequently, which view

should be used.

Most of Laravel's built-in features interact using Artisan Console, a command-line

interface that includes numerous useful functions for basic operations like model

creation, migrations, testing, and more. The Artisan console also includes support

for task scheduling and custom commands for any application-specific

commands.

Laravel also provides several ways to secure your application, including a simple

way of organising authorisation logic and controlling access to resources. [28]

2.3.2 Tailwind CSS & UI

Tailwind CSS is a free, open-source, utility-first CSS framework packed with

multiple classes that can be composed to build any design, without ever leaving

the HTML code. Tailwind CSS takes pride in its ability to be very responsive,

performant, and low-level “API for your design system”. [30]

Tailwind UI, on the other hand, is a commercial collection of responsive UI

components created with Tailwind CSS. It consists of a library of UI components,

such as forms, cards, navigation, and more, that were developed and coded by

the creators of Tailwind CSS. These components are fully responsive and

customisable, and they can be copied right into your project. They also support

JavaScript frameworks such as React and Vue.

It's important to note that, while Tailwind CSS is open source and free to use,

Tailwind UI is a paid proprietary product. The license supplied by Taika Group

allows for its use in this project. [30]

20

Turku University of Applied Sciences Thesis | Emilia Heinonen

2.4 Databases

A database is a collection of organised data that is stored in a computer system.

It is designed to store, manage and manipulate large amounts of data in a

structured framework.

2.4.1 Relational Database

One of the core components of the Help Centre is a relational database.

A relational database stores data in tabular format, with rows and columns

reflecting different data attributes and the relationships between them. Relational

databases use Structured Query Language (SQL) programming language for

storing and processing information. SQL statements can be used to store,

update, remove, search, and retrieve information from the database. They can

also be used to maintain and optimise database performance. [31]

This project relies on the MariaDB Server and HeidiSQL.

MariaDB Server is one of the most widely used open-source relational databases.

It was created by the original developers of MySQL and is promised to remain

open source. Most cloud providers include it, and Linux distributions make it the

default. It is founded on the principles of performance, stability, and openness,

and the MariaDB Foundation assures that contributions are approved based on

technical merit. [32]

The Windows version of MariaDB installation includes HeidiSQL, a free Windows

client that allows users to view and edit data and structures from computers

running one of the following database systems: MariaDB, MySQL, Microsoft SQL,

PostgreSQL, and SQLite. HeidiSQL, invented by Ansgar in 2002, is one of the

world's most popular MariaDB and MySQL utilities. [32], [33]

21

Turku University of Applied Sciences Thesis | Emilia Heinonen

2.4.2 Vector Database

A Vector Database or a vector store is a collection of data stored as mathematical

representations. Vector databases are utilised mostly with machine learning

models, making it easier for machine learning models to remember previous

inputs, allowing it to be used to power search, recommendations, and text

generation use cases. Data can be identified using similarity measures rather

than precise matches, allowing a computer model to interpret data contextually.

Vector databases function by presenting each object or item as a vector, whether

it's an image, a video, a phrase, a document, or any other data type. These

vectors are likely to be extensive and complex, describing each object's location

across dozens, if not hundreds, of dimensions. [34]

The vector database used in this project is LlamaIndex’s in-memory

SimpleVectorStore, which is initialised as a part of the default storage context.

LlamaIndex uses this by default, as it is great for quick experimentation. For

actual production-grade applications, a more robust, external vector store might

be a better solution. LlamaIndex has over 20 different integrations for vector

stores. [24]

22

Turku University of Applied Sciences Thesis | Emilia Heinonen

3 Development

3.1 Help Centre

3.1.1 Project Setup

The first step to begin development, was to install the main framework Laravel.

As Laravel is made with a popular general-purpose scripting language PHP [35],

it is essential to have a correct version of PHP installed on the development

environment. To manage and update all the package dependencies, Laravel

requires Composer to be installed. Composer helps with declaring, managing,

and installing dependencies on PHP projects. A new Laravel project can be

created using Composer's "create-project" command, or by globally installing the

Laravel installer, as was done in this project.

In the Laravel documentation, it is also recommended that Node.js and Node

Package Manager (npm) be installed. Node.js is an open-source, cross-platform

JavaScript runtime environment. [36]

Npm is similar to Composer as it is a package manager but for Node.js packages.

Node.js and npm are especially important to this project as some of the core

frontend technologies, like Tailwind CSS and Tailwind UI depend on it. Tailwind

CSS is a Utility-First CSS framework for creating modern websites with varying

designs. Tailwind UI is a collection of ready-made components created by

Tailwind CSS’s authors and made with Tailwind CSS classes.

Tailwind CSS is installed through npm alongside a PostCSS Autoprefixer.

PostCSS is a tool for transforming styles with JavaScript plugins and Autoprefixer

is a plugin for it that parses the CSS and adds vendor prefixes to the CSS rules.

Vendor prefixes are special prefixes added to CSS rules to make them render

correctly in each type of browser rendering engine. For example, Google Chrome

uses the Chromium engine, Firefox has the Gecko engine and Apple’s Safari has

23

Turku University of Applied Sciences Thesis | Emilia Heinonen

the WebKit engine. Each of these engines handles and renders CSS with a little

bit different names so they need their prefixes to work correctly.

Tailwind UI does not need to be installed to function as it is a component library.

However, some of the components used required the installation of Tailwind

CSS's official plugins, such as Typography and Forms. These plugins were

installed through npm and added to the “tailwind.config.js”- file as a plugin so that

the base Tailwind CSS installation can recognize it.

For a localhost development server, this project requires two development

servers running simultaneously. To get the site up and running, a PHP artisan

development server is required. To get the site to render properly, especially with

Tailwind CSS, it is important to have a npm server running as well, as it compiles

the CSS and runs a series of scripts related to the development server setup. By

default, Laravel uses Vite to compile the application's CSS and JavaScript into

production-ready components and that too relies on Node.js and the npm server.

3.1.2 Frontend

To build the required views, new Blade files were created to the

"resources/views/"-folder with the file ending “. blade.php". These files will include

the HTML, with Tailwind CSS classes in the markup and ready-made

components from the Tailwind UI library.

This project uses Blade, Laravel's built-in templating engine, to create the views

for the user interface. Blade files or Blade views, albeit containing HTML, are

inherently PHP and compiled into plain PHP. This enables really useful shortcuts

for standard PHP control structures such as if statements, loops, and displaying

data supplied to the view by simply wrapping it between two curly braces making

it a Blade echo statement. Any PHP function results can be echoed using the

Blade echo statement and they are automatically sent through PHP’s functions

to prevent cross-site scripting (XSS) attacks. Using Blade for views also allows

developers to define sections, template inheritance and components. Defining a

layout or section is useful when working with larger applications as it allows

24

Turku University of Applied Sciences Thesis | Emilia Heinonen

developers to create child views that inherit a section or layout mitigating

repetition.

This site's design language is loosely based on the design of Arcista and its

website, as well as the Tailwind UI component's design style. Before starting the

actual creation of the pages, some layout inspiration research was made from

Dribbble.com. [37] It is a community platform where creatives and designers can

share their designs, connect, grow, and find work. The main layout inspiration

leaned into the most was this simple Help Centre homepage design shown in

figure 4 created by Valentin Salmon.

Figure 4. Help centre - Homepage by Valentin Salmon on Dribbble.com.

The homepage of the site is a simple welcome page with a little message, a quick

search bar with the possibility to delimit to only certain categories and quick links

to things like starter guide articles, FAQs, and support contacts. The figure 5

25

Turku University of Applied Sciences Thesis | Emilia Heinonen

illustrates the final layout and design of the Help Centre's homepage in the light

theme variant.

Figure 5. Top of the homepage, light variant.

Each page was designed to work with a light and dark theme variant, changed

by a button toggle in the upper right corner. The figure 6 demonstrates the upper

half of the homepage in the dark theme variant.

Figure 6. Top of the homepage, dark variant.

Continuing ahead in the bottom part of the homepage displayed in figure 7, the

category-specific buttons are presented with a footer including important

26

Turku University of Applied Sciences Thesis | Emilia Heinonen

information links such as about, privacy policy, licencing, and contact, as well as

the required copyright information.

Figure 7. Bottom of the homepage, light variant.

The article collection pages make use of the Blade views the ability to define

layouts that can be extended through multiple views. The collection page base

consists of two sections: the sidebar on the left and the search bar with the theme

toggle area on the top. This was constructed as its own Blade view that has a

separate @yield(‘content’)-tag in the spot where the additional child views will be

placed when rendered. The figure 8 demonstrates the article collection page

layout without any child-view rendered content.

27

Turku University of Applied Sciences Thesis | Emilia Heinonen

Figure 8. Article collection page base layout.

This way no matter which category the user selects, the sidebar and the top

sections always remain the same. The figure 9 demonstrates the article collection

page and category selection with child view content with guide articles from the

document management category.

Figure 9. Article collection page, category selection.

28

Turku University of Applied Sciences Thesis | Emilia Heinonen

Each of the sidebar’s category buttons has its own hover and active state colours

corresponding to the actual Arcista module colours. Because of their universality,

the home, and all guides category buttons are the same purple. The home button

directs the user back to the landing page. The figure 10 demonstrates the

selection of colours in action.

Figure 10. Category selection colours.

Arcista's current version has three modules: financial management, document

management, and contract management. These modules are stand-alone and

can be purchased separately. The guide articles are organised into categories

based on their subject module. Guide articles that discuss user-related subjects,

such as login, are also divided into separate categories for ease of use.

29

Turku University of Applied Sciences Thesis | Emilia Heinonen

When a user hovers over a listed guide article, it is separated from others by

slightly changing its colour. Figure 11 demonstrates this state before a user has

clicked on any of the guide articles.

Figure 11. Hover over the listed article.

When a user clicks on any of the listed articles on the collection page, the article-

specific page is opened. The article-specific page displays the article's contents,

including a back button, article category, and article title. Everything on this page

is fetched from the database when the page loads. Figure 12 demonstrates the

article-specific page with a guide article open from the document management

category.

30

Turku University of Applied Sciences Thesis | Emilia Heinonen

Figure 12. Article specific page.

3.1.3 Backend

Routing

For the server to be able to point to the right view, for example when entering the

site, it needs to understand how to interpret incoming URLs and map them to the

appropriate functionalities within the application. In Laravel, this is achieved

through a routing system. By defining routes, we establish a set of instructions

that translate URLs into specific actions responsible for handling user requests

and generating the corresponding responses. This structured approach to routing

streamlines application development promotes code maintainability and

facilitates the separation of concerns between the presentation layer (views) and

the functional logic (controllers).

Routes are defined in the “routes/web.php”-file. This file defines routes for the

web interface that are then assigned to the web middleware group, which

includes features such as session state and Cross-Site Request Forgery

31

Turku University of Applied Sciences Thesis | Emilia Heinonen

protection. In its most basic variant, a route takes a URI, the user request and a

closure, which is typically a function. The routes defined in the "routes/web.php"

file can be accessed by typing the defined route's URL into a browser. Route

functions can be defined directly in the "routes/web.php" file or a separate

controller. [28], [38]

For the simplest routes, such as the landing page, the route functions were

defined directly in the "routes/web.php" file, as they only return a Blade view with

no need for additional data. For routes with more complex structures, such as the

guide category route, separate controllers were established to handle the request

functions.

Guide Storage

The guide articles need to be accessible, thus stored somewhere so they may be

efficiently queried when needed. An SQL relational database powered by

MariaDB Server was the solution in this project because it can be easily adjusted

to fit Arcista’s underlying architecture. Relational databases excel in storing

information with inherent relationships, making them excellent for situations in

which articles are connected based on topic, category, or other relevant criteria.

This structured method helps to organise the article information in a way that

makes it easier to search and retrieve. MariaDB Server is an open-source

relational database system to create databases. HeidiSQL provides a user-

friendly interface to manage the created database schema and to insert, update,

and query the stored information.

The database has two main tables: guides and categories. The guides table

stores the information about the guide article snippets in 6 columns with the g_id

column being the unique auto-incremented primary key. The title column saves

the title of the article snippet, making it easier to use in various locations on the

page. The content column stores the actual guide content formatted in Markdown

format, which can then be converted to HTML after being obtained from the

database. Markdown is a lightweight markup language for text formatting. The

32

Turku University of Applied Sciences Thesis | Emilia Heinonen

main idea behind Markdown is that it’s easy to read and write. The markdown

can easily be converted into valid HTML. This enables quick styling with Tailwind

CSS's Typography plugin.

The “category_id” column stores the category’s number to which the article

snippet belongs. This column is linked to the categories table id column with a

foreign key relationship. The columns created_at and updated_at offer useful

additional data about the articles. They are completely optional and hold more

value in future versions with administrative toolsets.

The categories table contains two columns: id and name. The id column reflects

each category's unique number, which also serves as the table's primary key.

The name column contains the written name of each category. This is mostly

used on the article collection and article-specific pages to always indicate which

category's article the user is reading.

The figure 13 represents the database schema to visualise the database structure

more clearly.

Figure 13. Database schema

Retrieval

When a user enters one of the pages with dynamically rendered content, such as

the articles, the data needs to be retrieved from the database. This especially

33

Turku University of Applied Sciences Thesis | Emilia Heinonen

takes advantage of Laravel's ability to name routes. Named routes enable the

convenient recognition and generation of URLs or redirects for specific routes by

their assigned name. It is essentially like giving the route a nickname, defined in

the “routes/web.php”-file. The route can later be referred to with said nickname

for example, inside a Blade view for a button link. In this particular case, the route

name is used to match and select which category guides are obtained from the

database with an if-else structure.

The routing done in the web.php file is instructed to hand off specific URL

functions such as the categories, to the Guide controller to handle. The Guide

Controller has a function, named index, that takes the received request and

checks if the requested route matches any of the specified category route names

with the “routeIs()”-method. If it matches one of the specific named routes, such

as document management, Laravel’s Eloquent ORM is used to query the

database for the specific articles in that category based on the category’s id.

Once the data has been correctly obtained from the database, the user is

redirected to the correct view, and the retrieved articles are submitted alongside

the view as an associative object array, that can then be used to access the data

inside the Blade view.

If the route name does not match any of the specified category route names, thus

all stored articles and category information are retrieved and provided as an

associative object array with the appropriate view.

Named routes also enable easy linking in Blade files with the Blade syntax. This

is used on many occasions in the project, like the Guide collection page sidebar

to toggle the correct button to active, indicating which page the user is now on.

Markdown processing

The article-specific page consists mostly of dynamic content fetched from the

database. This provided a unique challenge of how to process and style the pure

Markdown retrieved from the database. Similarly to the other pages, the base of

34

Turku University of Applied Sciences Thesis | Emilia Heinonen

the article-specific page consists of a Blade view with HTML and Tailwinds CSS

utility classes, extending the sidebar layout. This page is noticeably simpler in

terms of code compared to the other pages, as it only contains a back button,

category name, article title and the content itself.

The figure 14 represents the article-specific page view with a guide article from

the Contract Management -category.

Figure 14. Article specific page

To convert the markdown formatted text to HTML, the “Str::markdown()”-function

was used from Laravel's Str-utility class. It is a class that provides static methods

for working with strings.

For styling, the transformed HTML, the Tailwind CSS Typography plugin includes

a set of utilities for designing rich text material like blog posts and markdown files.

When applying the prose class to an element, the Typography plugin styles all of

its child elements, including headings, paragraphs, lists, blockquotes, tables, and

more. This allows for easy application of consistent typographic styles to a large

35

Turku University of Applied Sciences Thesis | Emilia Heinonen

block of text. These automatic stylings can also be tailored to each application

using element modifiers.

3.2 Retrieval-Augmented Conversational AI System

3.2.1 Frontend

The AI system can function with two different style possibilities. One is a full-page

version with an animated robot mascot. The robot mascot was designed

specifically for Arcista and appears mainly on the maintenance screen of the

software. The animations such as idle, waving, and thinking animations were

added since studies have shown that adding anthropomorphic cues to a virtual

chat agent can be beneficial for achieving a positive user experience in the cases

of mishap or malfunction. [39], [40], [41]

The figure 15 illustrates the full-page chat screen.

36

Turku University of Applied Sciences Thesis | Emilia Heinonen

Figure 15. Chatting screen.

The figure 16 illustrates the chat widget possibility. This type of widget is already

widespread on many websites and is rather simple to access via a static button.

The animated robot mascot could also be added to this version of the chat. To

use space more efficiently, it was not designed into this iteration of the chat

widget.

37

Turku University of Applied Sciences Thesis | Emilia Heinonen

Figure 16. Chat widget on the homepage.

3.2.2 Backend

The inner workings of the AI system consist of multiple parts. The messages are

handled on the frontend server by JavaScript. When the user presses the enter

or the send button after typing their question, a handler function processes it. The

handler function takes the user's query and if it’s not empty, the message is

assigned a class, in this case, “c-outgoing”. This means that it’s user user-

originated message and should be styled accordingly.

The handler function passes the user’s query and the class it was assigned,

forward to the message creator function. The message creator function is

responsible for creating the list element and the div element, inside of which the

message is going to be put. The list element in HTML is used to group a set of

related items in lists. In this case, the listed items are div elements styled with

CSS to look like chat bubbles. The div element is by default a block element,

which means it takes up all available width and includes line breaks before and

after. It can be styled and is commonly used to group web page sections, such

as text and images. [42]

38

Turku University of Applied Sciences Thesis | Emilia Heinonen

The message creator function assigns the necessary Tailwind CSS utility classes

to the div, to style it properly to present the user a chat bubble. The final content,

which contains a new list item with the style div and the user’s message inside,

is returned to the handler function that appends it to the chat frame. Appending

is a way to dynamically add content to a web page after it loads. The Document

Object Model (DOM) represents the structure of a web page as a tree of

elements. One way to manipulate this structure is through the

“appendChild”- method. This method, available in most modern browsers'

JavaScript engines, allows for appending a child element, like a paragraph, a div

or a button, to an existing parent element within the DOM tree. This enables

functionalities like adding new content to a page based on user interactions or

updating content based on server responses received through Asynchronous

JavaScript and XML (AJAX) requests. AJAX lets web pages communicate with

servers in the background, without reloading the entire page. This is achieved by

JavaScript code in the browser sending requests and receiving responses, often

in JSON format, from the server. This allows for a more responsive user

experience as content can be updated dynamically without interrupting the user's

flow.

After the user’s message has been appended and is visible, the handler function

uses AJAX to pass the user query from the frontend server to the backend server,

while creating a temporary waiting-message bubble to the chat. The AJAX makes

a POST request to a route that can accept it and point it to the correct controller.

A POST request is a specific type of communication method used within the

HTTP protocol, the foundation of data exchange on the web. In an ideal situation,

the controller receives the POST request and the contents of the user request.

The controller pre-processes the user request into a form that it can then be given

to the RAG pipeline. This pre-processing consists of sanitising by converting the

query to UTF-8 encoding, eliminating any leading or trailing whitespace, and

applying basic XSS protection via the "htmlspecialchars" -function. Once this is

done, the input is then escaped for shell argument usage with the

"escapeshellarg" -function. This prevents the shell from misinterpreting the

string's contents, especially if it contains special characters or spaces. The shell

39

Turku University of Applied Sciences Thesis | Emilia Heinonen

is used to run the Python script that is responsible for communicating with the

LLM and producing a relevant answer based on the user’s query and the

additional information provided by the RAG pipeline.

The Python script is run through the "shell_exec" method, passing the sanitised

and escaped user message as a shell argument. The "shell_exec" method is

used since the script's output will most likely be multiple lines long, and it is

necessary to obtain all of the lines. The script's output is captured and stored in

the variable response. If the Python script produces no output i.e., the response

is null, the method sets it to the message "Error executing Python script". This

easily indicates to developers that something is wrong with the Python script. The

method returns the response which can be the Python script's output or an error

message.

The Python script contains LlamaIndex to facilitate the ingestion and indexing of

documents, enabling the LLM to access and process information for tasks like

question answering and conversation generation. LlamaIndex is the RAG

framework used to implement natural language processing into the chat system.

LlamaIndex can be thought of as a bridge between LLMs and the company data

that exists in different formats such as PDFs.

The way LlamaIndex and RAG generally work can be compared to having a pile

of unorganised documents and information in various languages. LlamaIndex

acts like a librarian, taking this information and organizing it into a structured

format called an "index." This index is a processed collection of data from the

original documents and makes it easier for the LLM to find relevant pieces of

information quickly. Different information comes in different forms, like text

documents, website responses, or even data from databases. LlamaIndex uses

data connectors to handle this variety of data types. These connectors act like

translators, converting the information from its original format into a format the

LLM can understand. LLMs, as powerful as they are, still need some

guidance. LlamaIndex helps by providing context through system prompts. These

prompts are like instructions that tell the LLM how to approach and interpret the

information in the index. By preparing the information and guiding the

40

Turku University of Applied Sciences Thesis | Emilia Heinonen

LLM, LlamaIndex can be used to build chatbots that can conversationally answer

questions like it is utilised in this project, or to power search engines that can find

relevant information from data collection much faster than a human could.

This project utilises the Python version of LlamaIndex, with OpenAI’s GPT 3.5

Turbo as the default LLM and ada-002 text-embedding model to create the vector

embeddings. Vector embeddings are numerical representations of the

relationships of words, sentences, and other kinds of data. Vector embeddings

transfer an object's main traits or attributes into a concise and organised array of

numbers, allowing computers to quickly access the information. Similar data

points are clustered closer together when transformed into points in a

multidimensional space. The usage of vectors in machine learning enables the

search for related objects. A vector-searching algorithm needs only to locate two

vectors that are close together in a vector database. [43], [44]

The script starts by gathering the necessary tools such as the API key and the

necessary packages that need to be imported. Next, the system sets the system

prompt. Then, the script checks if it already has an index ready to use. If there is

no index already existing, the script gathers the documents provided in a local

folder and builds the index using a tool called "SimpleDirectoryReader". Data

connectors take the information and convert it into a format the system can

understand. This conversion process is also referred to as ingestion. The data

connectors ingest data from various sources, format and convert it into a

Document representation that consists of text and basic metadata. LlamaIndex

describes a Document as a container for any data source, such as a PDF, an API

response, or data collected from a database. By default, a Document holds text

as well as information and relationships to other documents.

Once the original data has been ingested into Documents, the script begins to

generate the Index. Indexes store data as Node objects and extend a Retriever

interface for further setup and automation possibilities. During indexing, the

loaded Documents are broken down into chunks and parsed into Node objects,

which are lightweight abstractions of text strings that keep track of metadata and

41

Turku University of Applied Sciences Thesis | Emilia Heinonen

relationships. The Node Objects are turned into vector embeddings, ready to be

queried by the LLM.

After the index is generated, it is often recommended to save it for later use

because having a ready-to-use index speeds up the processing time by

eliminating the need to re-index every time a query is made. Re-indexing is most

likely only required when updating or modifying the original documents. Index

storage is usually done with a vector store, and LlamaIndex provides a variety of

vector store solutions, as well as the built-in, default Simple Vector Store, which

is ideal for fast experimentation purposes. It is an in-memory vector store that

allows the index to persist on the disc so that in cases where an Index already

exists on the local disc, it is loaded instead of creating a new one. This greatly

improves loading times and reduces unnecessary duplication of resources.

As the index is ready, either by loading or generation, the script moves on to

initialising the query engine. A query engine acts as an intermediary between the

queries and the underlying data. It takes the query as input and analyses the

wording trying to understand the intent behind the question. Leveraging the pre-

built index created by LlamaIndex, the query engine searches for relevant

information and based on the search results, The retriever components retrieve

the most relevant portions of the indexed data. This might involve fetching entire

documents, specific sections, or even smaller snippets depending on the nature

of the question. As the retrieved information might not be directly usable as an

answer the query engine might need to further process it, potentially using the

LLM itself, to generate a clear and concise response that addresses the question

asked. As this project’s AI system is intended to work as a chat, LlamaIndex’s

chat engine was used instead of the query engine. The chat engine is a stateful

analogy of the query engine. It can answer queries with previous context in mind

as it preserves the conversation history.

After the process of forming the answer is done, the query engine returns the

answer. The original PHP controller that initialised the Python script with the shell

execute command now reads the lines containing the answer from the shell and

passes it on, back to the frontend server. The JavaScript creates a chat bubble

42

Turku University of Applied Sciences Thesis | Emilia Heinonen

for it and appends it to the chat. It is quite marvellous how all of this happens in

under 5 seconds at best. With more optimising, there is a high chance that even

faster results could be obtained.

The figure 17 presents the backend process flow as a simplified chart for better

visualisation.

Figure 17. Simplified process flow

Evaluation

There are many methods for evaluating the responses. LlamaIndex provides

essential elements for measuring the quality of the generated results. They also

provide essential components for measuring retrieval quality.

43

Turku University of Applied Sciences Thesis | Emilia Heinonen

Response Evaluation: Does the response correspond to the retrieved context?

Does it also match the query? Does it match the reference answer or the

guidelines?

For response evaluation, LlamaIndex offers LLM-based evaluation modules to

measure the quality of results. This uses a "gold" LLM (e.g. GPT-4) to decide

whether the predicted answer is correct in a variety of ways. Many of the current

evaluation modules do not require ground-truth labelling. Evaluation can be

performed using a combination of the question, context, and response, together

with LLM calls. In addition to assessing searches, LlamaIndex can utilise the data

provided to produce evaluation questions. This means that it is possible to build

questions automatically and then use an evaluation pipeline to see if the LLM can

accurately answer them using the data. [24]

Retrieval Evaluation: Are the retrieved sources related to the query?

The concept of retrieval evaluation is not uncommon; given a dataset of questions

and ground-truth rankings, one can evaluate retrievers using ranking metrics

such as mean reciprocal rank, hit rate, precision, and others. [24]

However, none of these evaluation options were used for this project. Since this

project was primarily an early prototype and proof-of-concept example, it would

not receive sufficient activity to generate enough relevant data. It was also

thought to be more efficient to manually validate the responses rather than

implementing the evaluation tools.

This project began with a somewhat different approach to testing and focus. The

testing was expected to be done with legitimate Arcista users, with the primary

focus being on user responses and opinions on this AI system. The original

intention for testing was to collect data on the performance of both the traditional

and AI systems through a brief usage test and an experience survey.

The participants would have been randomly separated into two groups, and

testing would have been done on an individual basis. Each tester would have

been given a question that they needed to answer using either the traditional or

44

Turku University of Applied Sciences Thesis | Emilia Heinonen

AI system. The participant's time spent finding the answer would have been

recorded for comparison. The survey section would have addressed more of the

actual user experience and the testers' thoughts on the tested technology. These

findings were intended to be used to lightly assess and influence the choice of

whether or not to continue building the AI system.

However, these plans changed due to a lack of answers to the email campaign

conducted to gather participants for this testing. It was determined that the

development team would conduct small-scale testing, with a focus on basic test

usage and manual analysis of response relevancy. This strategy provided

valuable information on what needed more development in the future for

prospective production-level versions.

45

Turku University of Applied Sciences Thesis | Emilia Heinonen

4 Discussion

This chapter focuses on both the potential and limitations of two self-service

support systems designed for software with strict security policies: a static help

centre and a conversational AI system. These technologies were designed to

address the difficulty of delivering fast and user-friendly help while maintaining

security standards that restrict external access to program documentation.

4.1 Evaluating the Help Centre

The static help centre has various benefits. Its simplicity of deployment and

minimal ongoing costs make it an appealing option. Once developed, the material

is easily accessible and reliable for users who can find the appropriate articles.

However, the efficiency of the help centre is heavily reliant on the quality and

accessibility of its content. Creating and maintaining informative and up-to-date

information requires a concerted effort, especially when the software is often

updated. Likewise, if the article's organisation is unclear, readers may struggle to

find the information they need, resulting in frustration and wasted time.

Due to its manual nature, expanding and upkeeping the help centre’s content in

multiple languages might be costly. Translating technical material requires expert

knowledge to ensure accuracy and clarity, which adds significant cost to the

overall solution.

4.2 Evaluating the conversational AI system

The conversational AI system shows potential for providing a more personalised

and efficient user experience. These systems, employing machine learning

algorithms, can process and respond to user queries in real-time, enabling a more

interactive type of self-service support. The system’s capacity to learn and

develop based on user interactions provides a major benefit over static

resources. Another compelling feature of conversational AI is its ability to use

46

Turku University of Applied Sciences Thesis | Emilia Heinonen

current software documentation as is, removing the requirement for dedicated

help articles. As many large language models are trained on multilingual

datasets, the AI system has the potential to simplify the content generation

process, removing language barriers with relatively low additional cost. However,

developing a properly optimised multilingual system may demand further

consideration.

The conversational AI system developed in this thesis has limitations that must

be addressed before it can be considered a viable solution. The system's

performance varies, with response times fluctuating and replies not always

matching the user's inquiry. In ideal conditions, responses can be generated in

less than 6 seconds; but, if the system has just been opened, it may take up to

30 seconds. At this point, the request often gets terminated since it took too long.

The request termination threshold can be adjusted, but this issue must also be

addressed. It is unacceptable to have such long generation times, even in ideal

conditions.

In certain circumstances, the system just pulls text from the original documents

without truly understanding the user's intent. The AI can also misinterpret the

user's question, resulting in useless responses, that technically match some

keywords from the user query. These constraints necessitate additional research

and refinement to ensure dependable and accurate user help.

The most notable drawback of this AI system is the lack of suitable MIT-licensed,

open-source LLMs. Arcista has strict privacy policies that essentially prohibit the

use of third-party applications in such cases where the data would leave Finland’s

borders. Without an open-source, locally hostable LLM model, the conversational

AI system cannot be built into Arcista, and it cannot be used to manage any type

of customer data. This is a significant issue, that needs to be solved to create a

production-ready system.

47

Turku University of Applied Sciences Thesis | Emilia Heinonen

4.3 Limitations and Future Work

Both the static help centre and the conversational AI system present potential

solutions to the problem of delivering user support for software that has strong

security requirements. The static help centre is a convenient and cost-effective

solution, but it demands user effort to access information and ongoing content

management. The conversational AI system has the potential to provide a more

engaging and customised experience, but its existing limitations necessitate

further research to ensure accuracy in the user support it provides.

The conversational AI system developed in this thesis is a prototype with limited

functionality. Additional research is required to resolve performance issues and

improve the system's ability to understand and respond correctly to user

requests. Throughout the limited usage testing conducted within this project, it

became evident that the AI system requires functional expansions such as multi-

modality, which is the ability to handle and display relevant images.

Furthermore, the analysis of the help centre and the AI system concentrated on

their theoretical strengths and limitations. Future research could and should

include user studies that compare the user experience with both approaches and

assess their effectiveness in providing self-service assistance. A hybrid system

that incorporates both the static help centre and the conversational AI, may be

worth researching further when the AI systems implementation requirements are

met.

48

Turku University of Applied Sciences Thesis | Emilia Heinonen

5 Conclusion

This thesis investigated the feasibility of developing self-service support solutions

for Arcista, an archival software with strict security policies and no existing self-

service support solutions. Two potential solutions were developed and explored:

a static help centre and a conversational AI system.

The developed static help centre demonstrates ease of implementation and low

ongoing costs. However, maintaining informative and up-to-date content requires

dedicated effort and might not be scalable for complex software.

The conversational AI prototype was developed to research using AI in software

like Arcista. This thesis successfully demonstrated that while it is possible, it has

severely restrictive factors. Arcista’s strict security policies set limitations for the

component selection of the AI system. Each component must be open-source,

MIT-licensed and local or self-hostable. The lack of suitable open-source Finnish

large language models prevents full implementation of the AI system until a

suitable solution has been found or developed.

This thesis provides valuable insights for Arcista's future development. The static

help centre will serve as the foundation for the development of an Arcista-

integrated help centre to give quick user support. The conversational AI prototype

demonstrates the potential for a more advanced support system, paving the way

for future exploration in this area. The AI system offers more possibilities for

tailored support and easier upkeep without the need to create specialised

content. The testing results indicate that the AI system developed in this thesis

would not function effectively as a standalone support approach, but when paired

with the traditional Help Centre, it has the potential for quick search and

personalised assistance.

Future work on the conversational AI system should focus on identifying or

developing a suitable open-source Finnish LLM model and expanding the AI

system capabilities to multimodal to handle relevant imagery. Additionally,

49

Turku University of Applied Sciences Thesis | Emilia Heinonen

exploring hybrid solutions combining the help centre with AI functionalities or

integrating the AI directly within Arcista are promising areas for further research.

This thesis successfully established the groundwork for developing self-service

support solutions for Arcista. While the conversational AI system requires further

development, the static help centre offers a practical foundation for the

developers. This thesis lays a solid foundation for Arcista's future user support

efforts and opens the door to additional research into AI-powered customer

service solutions.

50

Turku University of Applied Sciences Thesis | Emilia Heinonen

References

[1] IBM, ‘What is Artificial Intelligence (AI)?’ [Online]. Available:

https://www.ibm.com/topics/artificial-intelligence.

[2] Investopedia, ‘What Is Artificial Intelligence (AI)?’ [Online]. Available:

https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp.

[3] SAS3, ‘Artificial Intelligence (AI): What it is and why it matters’. [Online].

Available: https://www.sas.com/en_us/insights/analytics/what-is-artificial-

intelligence.html.

[4] NVIDIA, ‘What are Large Language Models? | NVIDIA’. Accessed: May

12, 2024. [Online]. Available: https://www.nvidia.com/en-

us/glossary/large-language-models/

[5] B. Copeland, ‘Alan Turing | Biography, Facts, Computer, Machine,

Education, & Death’. [Online]. Available:

https://www.britannica.com/biography/Alan-Turing.

[6] ‘History of Artificial Intelligence - AI of the past, present and the future! -

DataFlair’. Accessed: May 21, 2024. [Online]. Available: https://data-

flair.training/blogs/history-of-artificial-intelligence/

[7] ‘History of AI: How generative AI grew from early research | Qualcomm’.

Accessed: May 21, 2024. [Online]. Available:

https://www.qualcomm.com/news/onq/2023/08/history-of-ai-how-

generative-ai-grew-from-early-research

[8] ‘The History of Artificial Intelligence - Science in the News’. Accessed:

May 21, 2024. [Online]. Available:

https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/

[9] C. University, ‘AI in Video Games | Columbia University’. [Online].

Available: https://ai.engineering.columbia.edu/ai-applications/ai-video-

games/.

51

Turku University of Applied Sciences Thesis | Emilia Heinonen

[10] J. Hurwitz and D. Kirsch, Machine Learning IBM Limited Edition. 2018.

[11] ‘What Is Machine Learning (ML)? | IBM’. Accessed: Jun. 03, 2024.

[Online]. Available: https://www.ibm.com/topics/machine-learning

[12] ‘Supervised vs. unsupervised learning: What’s the difference? | IBM’.

Accessed: May 30, 2024. [Online]. Available:

https://www.ibm.com/think/topics/supervised-vs-unsupervised-learning

[13] IBM, ‘What Is Unsupervised Learning?’ Accessed: May 19, 2024.

[Online]. Available: https://www.ibm.com/topics/unsupervised-learning

[14] IBM, ‘Five machine learning types to know - IBM Blog’. Accessed: May

19, 2024. [Online]. Available: https://www.ibm.com/blog/machine-learning-

types/

[15] IBM, ‘What is Deep Learning?’ Accessed: May 12, 2024. [Online].

Available: https://www.ibm.com/topics/deep-learning

[16] IBM, ‘What Is Supervised Learning?’ Accessed: May 19, 2024. [Online].

Available: https://www.ibm.com/topics/supervised-learning

[17] databricks, ‘A Compact Guide to Large Language Models, databricks’.

[18] Z. Ji et al., ‘Survey of Hallucination in Natural Language Generation’,

ACM Comput Surv, vol. 55, no. 12, Feb. 2022, doi: 10.1145/3571730.

[19] NVIDIA, ‘Generative AI – What is it and How Does it Work?’ Accessed:

May 12, 2024. [Online]. Available: https://www.nvidia.com/en-

us/glossary/generative-ai/

[20] A. W. S. Amazon, ‘What are Transformers? - Transformers in Artificial

Intelligence Explained - AWS’, December, [Online]. Available:

https://aws.amazon.com/what-is/transformers-in-artificial-intelligence/.

[21] A. Vaswani et al., ‘Attention Is All You Need’, 2017.

52

Turku University of Applied Sciences Thesis | Emilia Heinonen

[22] IBM, ‘What Are AI Hallucinations?’ Accessed: May 28, 2024. [Online].

Available: https://www.ibm.com/topics/ai-hallucinations

[23] Learn Prompting, ‘Pitfalls of LLMs’. [Online]. Available:

https://learnprompting.org/docs/basics/pitfalls.

[24] LlamaIndex, ‘LlamaIndex documentation’. [Online]. Available:

https://docs.llamaindex.ai/en/stable/.

[25] Turing, ‘Fine-Tuning LLMs : Overview, Methods, and Best Practices’.

[Online]. Available: https://www.turing.com/resources/finetuning-large-

language-models.

[26] databricks, ‘What is Retrieval Augmented Generation (RAG)? |

Databricks’. Accessed: May 12, 2024. [Online]. Available:

https://www.databricks.com/glossary/retrieval-augmented-generation-rag

[27] NVIDIA, ‘What Is Retrieval-Augmented Generation aka RAG | NVIDIA

Blogs’. Accessed: May 12, 2024. [Online]. Available:

https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/

[28] L. H. Inc, ‘Laravel Documentation’, Laravel Holdings Inc, [Online].

Available: https://laravel.com/docs/11.x.

[29] GeeksforGeeks, ‘MVC Framework Introduction’. Accessed: May 30, 2024.

[Online]. Available: https://www.geeksforgeeks.org/mvc-framework-

introduction/

[30] T. L. Inc, ‘Tailwind CSS - Documentation’, Tailwind Labs Inc, [Online].

Available: https://tailwindcss.com/docs/installation.

[31] AWS, ‘What is SQL? - Structured Query Language (SQL) Explained -

AWS’. Accessed: May 12, 2024. [Online]. Available:

https://aws.amazon.com/what-is/sql/

[32] M. Foundation, ‘MariaDB’, MariaDB Foundation, [Online]. Available:

https://mariadb.org/.

53

Turku University of Applied Sciences Thesis | Emilia Heinonen

[33] A. Becker, ‘HeidiSQL’. [Online]. Available: https://www.heidisql.com/.

[34] Cloudflare, ‘What is a vector database? | Cloudflare’. Accessed: May 12,

2024. [Online]. Available: https://www.cloudflare.com/learning/ai/what-is-

vector-database/

[35] ‘PHP: Hypertext Preprocessor’. Accessed: May 21, 2024. [Online].

Available: https://www.php.net/

[36] ‘Node.js — Run JavaScript Everywhere’. Accessed: May 21, 2024.

[Online]. Available: https://nodejs.org/en

[37] ‘Dribbble - Discover the World’s Top Designers & Creative Professionals’.

Accessed: May 30, 2024. [Online]. Available: https://dribbble.com/

[38] Tutorialspoint, ‘What are Named Routes in Laravel?’ Accessed: May 19,

2024. [Online]. Available: https://www.tutorialspoint.com/what-are-named-

routes-in-laravel

[39] X. Lv, Y. Liu, J. Luo, Y. Liu, and C. Li, ‘Does a cute artificial intelligence

assistant soften the blow? The impact of cuteness on customer tolerance

of assistant service failure’, Ann Tour Res, vol. 87, p. 103114, Mar. 2021,

doi: 10.1016/J.ANNALS.2020.103114.

[40] Q. Hu and Z. Pan, ‘Is cute AI more forgivable? The impact of informal

language styles and relationship norms of conversational agents on

service recovery’, Electron Commer Res Appl, vol. 65, p. 101398, May

2024, doi: 10.1016/J.ELERAP.2024.101398.

[41] M. Song, H. Zhang, X. Xing, and Y. Duan, ‘Appreciation vs. apology:

Research on the influence mechanism of chatbot service recovery based

on politeness theory’, Journal of Retailing and Consumer Services, vol.

73, p. 103323, Jul. 2023, doi: 10.1016/J.JRETCONSER.2023.103323.

[42] ‘HTML Div Tutorial’. Accessed: May 30, 2024. [Online]. Available:

https://www.w3schools.com/html/html_div.asp

54

Turku University of Applied Sciences Thesis | Emilia Heinonen

[43] ‘What are Vector Embeddings? | Definition from TechTarget’. Accessed:

May 30, 2024. [Online]. Available:

https://www.techtarget.com/searchenterpriseai/definition/vector-

embeddings

[44] ‘What are embeddings in machine learning? | Cloudflare’. Accessed: May

30, 2024. [Online]. Available: https://www.cloudflare.com/learning/ai/what-

are-embeddings/

	List of abbreviations
	1 Introduction
	1.1 Final Product
	1.2 Objectives and Limitations
	1.2.1 Objectives
	1.2.2 Limitations

	2 Technologies
	2.1 Artificial Intelligence
	2.1.1 Brief History
	2.1.2 Machine learning and deep learning

	2.2 Retrieval-augmented Generation
	2.3 Application Core
	2.3.1 Laravel
	2.3.2 Tailwind CSS & UI

	2.4 Databases
	2.4.1 Relational Database
	2.4.2 Vector Database

	3 Development
	3.1 Help Centre
	3.1.1 Project Setup
	3.1.2 Frontend
	3.1.3 Backend

	3.2 Retrieval-Augmented Conversational AI System
	3.2.1 Frontend
	3.2.2 Backend

	4 Discussion
	4.1 Evaluating the Help Centre
	4.2 Evaluating the conversational AI system
	4.3 Limitations and Future Work

	5 Conclusion
	References

