

Coding a 2D Game Engine for ESP32: A Showcase of Design Pat-

terns

David Jean Raymond Gianadda

Haaga-Helia University of Applied Sciences

Bachelor of Business Information Technology

Product type thesis

2024

 Abstract

Author(s)
David Jean Raymond Gianadda

Degree
Bachelor of Business Information Technology

Report/Thesis Title
Coding a 2D Game Engine for ESP32: A Showcase of Design Patterns

Number of pages and appendix pages
52 + 1

This product thesis documents the development of a 2D game engine for the ESP32 microcon-
troller platform. The aim of the thesis is to provide a concrete and documented example of de-
sign patterns implementation, serving as a demonstration of competency for the author and as
an educational tool for the reader. The thesis is structured into an introduction, theoretical
framework, practical part, and discussions chapters.

The introduction provides context for the project and outlines its scope, targeting readers inter-
ested in design patterns implementation in game development and embedded systems pro-
gramming. The theoretical framework covers essential concepts such as object-oriented pro-
gramming, design patterns, and clean coding principles, laying the groundwork for the practical
development phase.

The practical part details the iterative process of building the game engine, focusing on key
components such as input management, scene management, and core architecture. Design
patterns such as Singleton, Composite, and State are integrated into the engine's architecture to
enhance modularity and scalability.

In the discussions chapter, potential future features implementations are explored and the use
of artificial intelligence during the thesis work is explained. Sustainability topics are discussed,
and the conclusion of the work is provided.

Overall, this thesis provides a comprehensive exploration of game engine development on the
ESP32 platform, with a focus on clean coding practices and the use of design patterns.

Key words
Design Pattern, Game Engine, Object-Oriented Programming (OOP), Microcontrollers, ESP32,
C++

Table of contents

1 Introduction .. 1

1.1 Scope .. 1

1.2 Outcomes .. 1

1.3 Structure and Format .. 2

2 Theoretical Framework ... 3

2.1 Object Oriented Programming ... 3

2.1.1 Objects and Classes .. 4

2.1.2 Encapsulation and Data Hiding .. 4

2.1.3 Inheritance ... 4

2.1.4 Polymorphism .. 4

2.1.5 Composition ... 5

2.2 Design Patterns ... 5

2.2.1 Composite Pattern ... 6

2.2.2 Singleton Pattern ... 7

2.2.3 State Pattern .. 7

2.2.4 Observer Pattern.. 8

2.3 Clean Coding .. 9

2.3.1 Readable Code .. 9

2.3.2 SOLID Principles.. 10

2.4 Game Engine .. 11

2.4.1 History ... 11

2.4.2 Definitions .. 11

2.5 ESP32 ... 12

2.5.1 Important Concepts .. 13

2.5.2 Development Environment ... 13

2.6 Similar Projects ... 14

2.6.1 Other ESP32 Game Engines ... 14

2.6.2 Graphics Libraries .. 15

2.6.3 IoT Experimental Project .. 15

3 Practical Part .. 16

3.1 Iteration 0 - Hello World ... 16

3.1.1 Device & Components ... 16

3.1.2 Development Environment ... 20

3.1.3 Testing the Components .. 21

3.2 Iteration 1 – Engine’s Core & Inputs .. 25

3.2.1 Inputs as Objects ... 25

3.2.2 Input Manager as Singleton Pattern ... 26

3.2.3 Loop... 28

3.2.4 Engine’s Core as Composite Pattern ... 28

3.2.5 Screen Saver Demo ... 31

3.3 Display Issue ... 32

3.3.1 Identifying the Issue ... 32

3.3.2 Refactoring .. 35

3.4 Iteration 2 – Controls & Collisions .. 36

3.4.1 User-Controlled Paddle .. 36

3.4.2 Collision Detection ... 38

3.4.3 Pong Game Demo ... 40

3.5 Iteration 3 – Scene Management & Better Collisions .. 41

3.5.1 Scene Management as State Pattern ... 41

3.5.2 Event Driven Collision Detection with Observer Pattern 44

4 Discussions .. 46

4.1 Future Features Development and Patterns .. 46

4.2 Use of AI ... 47

4.3 Sustainability ... 47

4.4 Conclusions... 48

Sources .. 49

Appendices ... 53

Appendix 1. Link to GAMESP32 GitHub Repository ... 53

1

1 Introduction

Software development is the art of writing instructions for machines to create tools for humans.

Websites, operating systems, artificial intelligences, information systems, 3D sculpting tools and

video games, all software is the result of collaborative effort and creative ingenuity. Software in-

volves continuous refinement and evolution. Over time, the need for maintainable and reusable

code has driven the convergent evolution of various techniques and best practices. These ad-

vancements ensure that software can adapt to changing requirements and remain robust and ef-

fective throughout its lifecycle. This paper documents the use of those techniques and best prac-

tices in the implementation of a 2D game engine.

1.1 Scope

This thesis concludes a three-year adventure of learning software development. As a final bachelor

project, its first goal is to demonstrate proficiency in software architecture by creating a well-struc-

tured and efficient 2D game engine. It also aims to showcase the practical use of design patterns

in software development through their implementation in a game engine. And finally, it provides

personal learning opportunities in topics such as embedded development, Internet of Things, and

the C++ language.

The target reader should be familiar with software development, as the practical part of this report

is focused on how to write code. The product and code examples are written in C++. Unified Mod-

eling Language (UML) notation is also used to visualize code architecture. The concepts specifi-

cally related to game development and embedded software development are explained when rele-

vant, so there is no need for prior knowledge in those domains to understand the thesis.

Readers who would benefit the most from this report are software development students familiar

with the Object-Oriented Programming (OOP) paradigm and interested in design patterns. Hobby-

ist game developers interested in game engine architecture, as well as embedded software devel-

opment enthusiasts looking for insights into the OOP approach in embedded systems, will also find

this report valuable. In general, any developer that is not yet familiar with design patterns or who is

looking for a practical example of their implementation will gain valuable information in this report.

1.2 Outcomes

The first and main outcome of the thesis is the product itself. A game engine for ESP32, in the form

of a GitHub repository. This game engine will provide the boiler plate code that can be used as a

base to write games for ESP32. Note that making a graphical user interface for users to interact

2

with the game engine is out of scope. Instead, this game engine can be seen as a framework, or a

base project, providing the basic architecture and tools for coding games.

The second outcome is a gaming device built from an ESP32. To develop and test the game en-

gine, a functional gaming device is required. The components that were used and how the device

was assembled are explained in the practical part of the thesis.

Finally, some basic games are written with the game engine. The games help by providing a guide-

line on the feature to implement in the game engine. They are also useful for visually demonstrat-

ing the progress of the project and for testing the implemented features. The demonstration games

are not meant to offer groundbreaking gameplay experience, instead they can be seen as proof of

concept of the game engine’s capabilities.

1.3 Structure and Format

This report is split into four sections. The introduction explains the context of the thesis topic, its

scope and deliverables, and the structure of the report. Then the theoretical framework summa-

rizes the key concepts of software development that are used in the making of the product. The

practical part presents the code writing process with a focus on the implementation of design pat-

terns. It follows the structure of the product’s GitHub repository branches, so that the reader can

see how the code evolved during the project’s iterations. Finally, the discussions chapter reflects

on the results of the product and makes a comparison with the initial expectations. It is also used to

discuss topics such as the use of artificial intelligence (AI) during the project and broader topics like

sustainability and future iterations of the project. The report ends with the list of sources used and

its appendix.

This report is formatted according to Haaga-Helia’s guidelines for long reports and thesis (Thesis

Coordinators 2022, 1-21). Figures and tables are used to illustrate the text. Two types of figures

can be found: images and code snippets. The code snippets are formatted with the Easy Code

Formatter addon for Microsoft word. Due to the frequent mention of code in the text, special for-

matting is used when classes, objects, methods, functions, and libraries are mentioned. This for-

matting is Arial 11 Bold and Italic.

3

2 Theoretical Framework

The theoretical framework groups all the knowledge used to produce the thesis work. It contains

software development concepts, introduction to embedded software development, and research on

similar products.

Chapters 2.1 to 2.3 contain all the notions about software development that will be referred to dur-

ing the creation of the game engine. Each concept has been concisely summarized to serve as a

refresher for the target readers. If a concept is new to the reader, or requires a deeper explanation,

it is suggested to check the sources mentioned. Note that those concepts are not specific to any

language, but their implementation may vary from one language to another. For that reason, some

additional information about the implementation in C++ is included when relevant.

Chapter 2.4 serves as an introduction to the concept of game engines. It investigates the origins of

the term and the many definitions it has. This chapter ends with the definition of game engine used

during this project.

Chapter 2.5 explains what the ESP32 is. It also provides an introduction to the requirements and

tools used for embedded software development.

And finally, chapter 2.6 is research on previous work done in similar topics. It includes a review of

existing similar projects, libraries that may be used in the development of the game engine, and

previous work done by the author that is relevant to this project.

2.1 Object Oriented Programming

Object Oriented Programming (OOP) is the foundation of this thesis. It is a software development

paradigm based on the use of objects (mdn web docs 2023). The wide adoption of OOP comes

from its capability to improve code modularity, reusability, and maintainability by organizing soft-

ware design around objects (Herdwaria 2023).

To gauge the popularity of the OOP paradigm we can look at the study made by Kristoffer Gun-

narsson and Olivia Herber, “The Most Popular Programming Languages of GitHub's Trending Re-

positories”. In their paper’s conclusions, the authors mention four programming languages as being

represented in both their and other similar studies about popular languages. Those are Java, Py-

thon, JavaScript, and C++, all of which are OOP languages. (Gunnarsson & Herber 2020, 24)

4

The following sub-chapters will recap and summarize the key concepts of OOP. The main source

for those sub-chapters is “The Object-Oriented Thought Process” book by Matt Weisfeld, author,

college professor and software developer. Secondary sources include popular software develop-

ment learning websites such as W3 schools, CodeAcademy, and GeeksForGeeks, that were used

for the concise definitions they offered.

2.1.1 Objects and Classes

As explained by Weisfeld, objects are the fundamental elements of OOP. An object contains data

and behaviors. The data elements are referred to as attributes and the behaviors as methods. Ob-

jects are defined by classes. A class is the blueprint of an object, it is required to have a class de-

fined to create an instance of an object. (Weisfeld 2019, chapter 1)

2.1.2 Encapsulation and Data Hiding

The process of combining data and behaviors into objects is called encapsulation. Weisfeld ex-

plains that the benefit of encapsulation is the control of access to data and behaviors via the con-

cept of Data Hiding. This control is used to ensure that objects only make available to other objects

what is relevant for their use. (Weisfeld 2019, chapter 1)

W3 Schools explains that in C++, access control is enforced via access specifiers. The keyword

`public` specifies that the attribute or method can be accessed or called from outside the class.

The keyword `private` specifies that the attribute or method can only be accessed within the class.

(W3 Schools s.a.)

2.1.3 Inheritance

In OOP it is possible to reuse a class and add new attributes or new methods to it, as mentioned

by the Codecademy Team. This is Inheritance. Inheritance is used when multiple classes share

some common parts but also need their specific attributes and methods. The class that is being

inherited is the parent class or the base class. The class that inherits is the child class or subclass.

(Codeacademy Team 2023)

C++ supports multiple inheritance, meaning that a class can inherit from more than a single parent

class (Weisfeld 2019, chapter 1).

2.1.4 Polymorphism

Polymorphism is closely related to inheritance, as it occurs when a group of subclasses inherit

from the same parent class. In their article for GeeksForGeeks, MKS075 explains that while

5

inheritance allows subclasses to expand on the base class, polymorphism delegates the imple-

mentation of methods to the subclass, allowing objects of different classes to be treated inter-

changeably (MKS075 2024).

2.1.5 Composition

It was established that a class is composed of data as attributes and behavior as methods. Those

attributes can themselves be objects. This process of assembling objects to create new objects is

called composition. (Weisfeld 2019, chapter 1)

2.2 Design Patterns

“By definition, Design Patterns are reusable solutions to commonly occuring problems(in the
context of software design). Design patterns were started as best practices that were applied
again and again to similar problems encountered in different contexts. They become popular
after they were collected, in a formalized form, in the Gang Of Four book in 1994.” (OODesign
s.a.)

The official title of the book mentioned in the quotation from OODesign is “Design Patterns: Ele-

ments of Reusable Object-Oriented Software”, a staple in software development literature. The au-

thors, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, collectively known as the

Gang Of Four, were awarded the prestigious AITO Dahl-Nygaard Prize in 2006 for the profound

impact of their work (AITO 2022). This book is used as the main source for this chapter. The Re-

factoring Guru is also cited multiple times. It is a website dedicated to helping software developers

write better code through the use of refactoring, design patterns and SOLID principles (Refactoring

Guru s.a. c).

Design Patterns are based on the common empirical experience of all software developers. As the

Gang Of Four explains it, using this knowledge allows developers to design systems faster and

avoids the need to come up with new, untested, designs. Design Patterns, since they have been

precisely defined, also improve the quality of communication between developers, removing the

need to explain the implementation of the code as the name and the functioning of the pattern is

known by every party. (Gamma, Helm, Johnson, & Vlissides 1994, chapter 1)

Gamma, Helm, Johnson, & Vlissides say that a pattern is defined by its name, the problem it

solves, the solution, and the consequences or results of the pattern’s implementation. Patterns are

also classified by purpose. The three types of purpose are creational, structural, or behavioral.

(Gamma, Helm, Johnson, & Vlissides 1994, chapter 1) The following sub-chapters present all the

patterns used in the project.

6

2.2.1 Composite Pattern

The Gang Of Four defined the Composite pattern as a structural design pattern used to group ob-

jects into tree structures made of nodes and leaves. The point of the pattern is to allow clients to

interact with a node or with a single leaf in the same manner. (Gamma, Helm, Johnson, & Vlissides

1994, chapter 4) This pattern is built on the OOP concepts of polymorphism and composition. Poly-

morphism is used so that clients can interact with different classes interchangeably, such as nodes

and leaves. And composition is used to group objects, as is done when a node contains leaves or

other nodes. What the Composite pattern does is combine those two principles by enabling the cli-

ent’s commands to be passed down the tree structure recursively (Gamma, Helm, Johnson, & Vlis-

sides 1994, chapter 4).

Figure 1 shows the class diagram of the Composite pattern. Both the Leaf and the Composite im-

plement the Component interface. The Operation() method is a behavior that can be called by the

client. When the Operation() is called on a composite node, the node will then call the Operation()

on all of its children. Not that in figure 1, the Component is shown to specify not only the Opera-

tion() method but also all the children component management method that are used to by compo-

sites to handle the addition or the removal of other composites and leaves. The design patterns are

guidelines or templates on how to structure code. Their implementations may vary according to the

context. For instance, the Refactoring Guru suggests defining a component interface that contains

only the methods used by both leaves and nodes (Refactoring Guru s.a. a). This can be seen in

Figure 1. Composite pattern (Gamma, Helm, Johnson, & Vlissides 1994, chapter 4)

7

figure 2.

2.2.2 Singleton Pattern

The Singleton pattern is explained to be a creational design pattern. It is used to enforce the exist-

ence of only one instance of a class in the code. It also makes this class accessible anywhere in

the code. (Gamma, Helm, Johnson, & Vlissides 1994, chapter 3)

As shown in figure 3, the Singleton itself is the only class found in this pattern. It is specified that

the Singleton is in charge of creating itself and making itself available to the rest of the code. This

can be achieved by making the constructor method not public. (Gamma, Helm, Johnson, & Vlissi-

des 1994, chapter 3)

2.2.3 State Pattern

The Gang Of Four presents the State design pattern as a behavioral design pattern used to

change the state of an object. There are two main scenarios that would require a change of state in

Figure 2. Composite Pattern from the Refactoring Guru (Refactoring Guru s.a. b)

Figure 3. Singleton pattern (Gamma, Helm, Johnson, & Vlissides 1994, chapter 4)

8

an object. The first is when the behavior of the object changes according to its state. The State pat-

tern allows for such changes at runtime. The second is when complex conditional statements are

involved. By encapsulating each state in a separate class, the State pattern treats each state as an

independent object, allowing for flexible and maintainable state changes. (Gamma, Helm, Johnson,

& Vlissides 1994, chapter 5)

For example, given a Calculator class, the context, with a request method, calculate(), that takes

two numbers as a parameter. The Calculator could have states to represent add, subtract, multi-

ply and divide operations. The Calculator has a single instance of a state for each of the opera-

tions and only one of this state is its current state. When the Calculator method calculate() is

called, it will in turn call a handle method in its current state as can be seen in figure 4.

2.2.4 Observer Pattern

The Gang of Four defines the Observer pattern as a behavioral design pattern used for scenarios

where changes in one object need to be propagated to other objects without tightly coupling them.

This approach ensures flexibility and maintainability of the code. (Gamma, Helm, Johnson, & Vlis-

sides 1994, chapter 5)

The Observer pattern consists of two main types of participants: the Subject and the Observer.

The Subject maintains a list of its Observer, also known as dependents, and provides helper

methods for handling Observer instances. The Observer defines an updating interface that is

called by the Subject whenever a change in the Subject's state occurs. This pattern uses the con-

cept of loose coupling, to allow the Subject and Observer to vary independently. (Figure 5.)

Figure 4. State pattern (Gamma, Helm, Johnson, & Vlissides 1994, chapter 5)

9

2.3 Clean Coding

“Clean code is a term used to refer to code that is easy to read, understand, and maintain. It
was made popular by Robert Cecil Martin, also known as Uncle Bob, who wrote "Clean Code:
A Handbook of Agile Software Craftsmanship" in 2008. In this book, he presented a set of
principles and best practices for writing clean code, such as using meaningful names, short
functions, clear comments, and consistent formatting.” (Codacy 2023)

In the “Clean Code: A Handbook of Agile Software Craftsmanship" Robert Cecil Martin gather the

definition of clean code from renown programmers. While they all accentuate different aspects of

clean code, two main approaches emerge. The first is strictly about the code, how it should be

split, and what it should accomplish. The second approach is about the developers and how the

code should be written to be read by humans. (Martin 2008, chapter 1) Both aspects are expended

upon in the following sub-chapters.

2.3.1 Readable Code

According to Martin, when working on a program, be it for implementing a new feature or to fix a

bug, more time is spent reading than writing. And for that reason, they advise to consider the read-

ability of the code by humans to ensure the maintainability of the code. (Martin 2008, chapter 1)

This chapter summarizes some of the key concepts defined in Martin’s book.

In their book, Martin also says that writing readable code implies meaningful and descriptive

names for variables, functions, and classes. Good naming conventions help convey the purpose of

a code element without needing additional comments. Names should be precise, avoiding ambigu-

ity and providing clear context. (Martin 2008, chapter 2) For instance, a variable name

elapsedTime is more informative than a vague name like t.

Comments are blocks of text written in the code but that are not compiled. They are used by devel-

opers to explain and document their code. In Martin’s book, comments are said to be another

Figure 5. Observer pattern (Gamma, Helm, Johnson, & Vlissides 1994, chapter 5)

10

crucial element for readability. They should be concise, relevant, and kept up to date with any code

changes. Old comments should be removed to avoid confusion, and so do code snippets that are

commented out. (Martin 2008, chapter 4)

Formatting is how the code is arranged in its file. Elements of formatting include indentation, spac-

ing, line breaks, and the organization of code into logical sections. Martin explains that adopting a

consistent coding standard or style guide can help teams maintain uniformity, making the code-

base easier to navigate and understand (2008, chapter 5). It is not uncommon to find automatic

formatting tools in modern code editor, simplifying this process.

2.3.2 SOLID Principles

Weisfeld explains SOLID as a set of five coding principles meant to solve common issues found in

non-reusable code. Those principles were defined by Robert Martin and the SOLID acronym

comes from Michael Feathers. (Weisfeld 2019, chapter 12) The following definitions are from

Weisfeld’s book, they are presented as direct quotations because Weisfeld did an excellent job of

summarizing them.

Single Responsibility Principle:

“The Single Responsibility Principle states that a class should have only a single reason to
change. Each class and module in a program should focus on a single task. Thus, don’t put
methods that change for different reasons in the same class. If the description of the class in-
cludes the word “and,” you might be breaking the SRP. In other words, every module or class
should have responsibility over a single part of the functionality provided by the software, and
that responsibility should be entirely encapsulated in the class.” (Weisfeld 2019, chapter 12)

Open/Close Principle:

“The Open/Close Principle states that you should be able to extend a class’s behavior, without
modifying it.” (Weisfeld 2019, chapter 12)

Liskov Substitution Principle:

“The Liskov Substitution Principle states that the design must provide the ability to replace any
instance of a parent class with an instance of one of its child classes. If a parent class can do
something, a child class must also be able to do it.” (Weisfeld 2019, chapter 12)

Interface Segregation Principle:

“The Interface Segregation Principle states that it is better to have many small interfaces than
a few larger ones.” (Weisfeld 2019, chapter 12)

Dependency Inversion Principle:

“The Dependency Inversion Principle states that code should depend on abstractions.”
(Weisfeld 2019, chapter 12)

11

2.4 Game Engine

The main outcome of this thesis is a game engine. Hence the importance of defining exactly what

a game engine is, especially since multiples definitions exist. The following sub-chapters look at

the origin of the concept of game engine. They also gather modern definitions of the term from di-

verse sources. Finally, the definition of game engine for this project is given.

2.4.1 History

Jason Gregory, the author of the book “Game Engine Architecture”, explains that the term "game

engine" originated in the mid-1990s with first-person shooter (FPS) games like Doom by id Soft-

ware. Doom had an advanced separation of concern in its code, meaning that elements such as

game assets and gameplay rules were not tightly coupled. This allowed developers to license and

modify the game by creating new content with minimal changes to the engine. This innovation led

to the rise of the "mod community," where gamers and small studios used provided toolkits to de-

velop new games by altering existing ones. (Gregory 2017, chapter 1)

Before that, each new game had to be developed as a completely new project. It is suggested that

this was in part due to the hardware limitations of the time that forced developers to write highly

specific code which prevented reusability. (Andrade 2015, 1)

2.4.2 Definitions

While the term game engine originated from developer starting to reuse code, the term kept evolv-

ing. Here are a few different definitions found in diverse sources. On their website, arm, the CPU

manufacturer, defines a game engine as a software development environment that streamlines

video game creation across various programming languages, and that includes components like a

2D or 3D graphics rendering engine, a physics engine, artificial intelligence (AI) for player interac-

tion, a sound engine, an animation engine, and other features (arm s.a.). Andrade also refers to a

game engine as a software used for creating video games, mentioning that the components of the

game engine are often a grouping of third party-libraries brought together to offer an abstraction

layer for game development (Andrade 2015, 2). Those definitions are most relevant to modern

game engines such as Unity, Unreal Engine and Godot, that offer software with advanced graph-

ical user interfaces for game development.

12

In their book, Gregory highlights an interesting point regarding their definition of a game engine :

“The line between a game and its engine is often blurry. When a game contains hard-coded logic or

game rules, or employs special-case code to render specific types of game objects, it becomes diffi-

cult or impossible to reuse that software to make a different game. We should probably reserve the

term “game engine” for software that is extensible and can be used as the foundation for many differ-

ent games without major modification.” (Gregory 2017, chapter 1)

This paragraph suggests a broader definition of the game engine where the engine is considered

as the code from a game that can be reused for making other games. This goes along with the def-

inition found in a game development YouTube channel who describes it as (Giant Sloth Game April

2023, min. 1:30-2:30) “the collection of underlying systems that support a game” adding that an ed-

itor is not mandatory and that the engine could be as specific as one wants it to be, in regards of

both game types or the platform that the game or engine runs on.

This second set of definition is more relatable to the context of this thesis, as the objective is to de-

velop all the boilerplate code used for creating games, specifically in 2D and for the ESP32 plat-

form.

2.5 ESP32

The ESP32 is a microcontroller from the company ESPRESSIF with networking capabilities using

Bluetooth and Wi-Fi, making it an IoT device (CircuitSchools Staff 2022). Figure 6 shows a picture

of an ESP32 development board.

The following chapters aim to introduce the process of developing ESP32 by defining important re-

lated concepts. They also explain what tools and steps are used to write code that runs on an

ESP32.

Figure 6. ESP32 Espressif ESP-WROOM-32 Dev Board, Ubahnverleih, 2018 CC0 1.0

https://creativecommons.org/publicdomain/zero/1.0/deed.en

13

2.5.1 Important Concepts

There are a few concepts that need to be defined to understand what the ESP32 is, such as what

are embedded systems, what is a microcontroller, and what is the Internet of Things (IoT).

Embedded Systems

“Embedded systems, also known as embedded computers, are small-form-factor computers
that power specific tasks. They may function as standalone devices or as part of larger sys-
tems, hence the term "embedded," and are often used in applications with size, weight,
power, and cost (SWaP-C) constraints.” (Brett 2024)

Microcontrollers

“A microcontroller is a compact integrated circuit designed to govern a specific operation in an
embedded system. A typical microcontroller includes a processor, memory and input/output
(I/O) peripherals on a single chip.” (Lutkevich 2019)

Internet of Things

“The Internet of Things (IoT) describes the network of physical objects—“things”—that are
embedded with sensors, software, and other technologies for the purpose of connecting and
exchanging data with other devices and systems over the internet. These devices range from
ordinary household objects to sophisticated industrial tools.” (Oracle s.a.)

2.5.2 Development Environment

An ESP32 requires software to perform tasks. This software, like the one that will be developed

during this thesis, must be written on a computer. The computer then compiles the code and builds

the application before uploading it onto the ESP32 (ESPRESSIF s.a.). An integrated development

environment (IDE) is generally used to simplify this process by providing a code editor and a com-

piler. Many other tools are often found in IDEs, like the serial monitor which can be used to log

messages from the ESP32 in real-time. The code itself is typically based on a framework that pro-

vides essential libraries and tools for developing applications on the ESP32. Arduino Core and

ESP-IDF are the two most common frameworks used to develop code for the ESP32 (ESPBoards

2023).

As explained by ESPBoards, Arduino Core uses the Arduino programming language, which is

based on C and C++. A project is referred to as a “Sketch” and the code is written in a file with the

same name as the project and a “.ino” file extension. It is possible to write C++ classes and use

them in Sketch. Two functions must be implemented in the Sketch file. The setup() function is

called once when the board turns on, then the loop() function that is executed repeatedly while the

board is powered. Arduino Core provides user-friendly abstraction when it comes to library man-

agement and code compilation. Meanwhile ESP-IDF, the official framework for ESP32 made by

14

Espressif, has a lower-level approach that provides more control over the code, but makes it more

complex to learn. (ESPBoards 2023)

ESP-IDF can be used on Eclipse with a plugin, Arduino proposes their own IDE for Arduino Core,

and both ESP-IDF and Arduino Core can be used with Visual Studio Code, the popular IDE from

Microsoft, with the installation appropriate of Visual Studio Code extensions. (ESPRESSIF s.a.; Ar-

duino 2023)

2.6 Similar Projects

This following sub-chapters will mention previous searches and similar projects. They are about

existing game engines for ESP32, libraries that will be used in this thesis, some pre-built ESP32

gaming devices and similar previous projects from the author of the thesis.

2.6.1 Other ESP32 Game Engines

Many software developers show enthusiasm for game development and will develop games on

any platform. The ESP32 is no exception, and this chapter lists some of the existing projects that

can be used to make games on ESP32.

FabGL is a library for ESP32 that is used to control various types of displays such as VGA, Color

NTSC/PAL Composite, I2C and SPI displays, and it also offers support for inputs, sound, graphical

user interface and retro-game consoles emulation. (fdivitto 2023) Most relevant to this paper, the

library is also a game engine as it provides a scene and sprites code base to write games as well

as a collision detection class.

MicroGameConsole is a repository with a project meant to run on ESP32 with SSD1306 OLED

display and push buttons (benricok 2023). The repository contains the code for pong-like and

snake-like games.

The ESP Little Game Engine, from the esp8266_game_engine repository by corax89, provides a

user interface to help make games. The project is composed of an online emulator of the ESP8266

based gaming device, an editor to write the code, a sprite making tool and a library for ESP devel-

opment. (corax89 2021) The library is used in the online editor but can also be used as any other

Arduino library. Functions are defined to be used for game making. The functions include sprite

management, tiles management, strings and shapes rendering, and even particles emission.

15

2.6.2 Graphics Libraries

In embedded software development, it is common practice to use libraries to handle low-level code

required to use sensors and components. Displays, for instance, are complex components that are

most often used with libraries. This chapter groups popular graphics libraries for different embed-

ded development displays.

The TFT_eSPI library by Bodmer is said to be usable to control TFT displays with a variety of dif-

ferent drivers. It is also compatible with many microcontrollers. With over three-thousand stars on

the GitHub repository and over a thousand forks, this library has a strong community behind it and

has been frequently used in tutorials. (Bodmer 2024)

Adafruit is an American company that makes and sell development boards and components. They

also provide code to power their components like the Adafruit-GFX-Library, a graphics library that

can be used to power all Adafruit’s displays when paired to hardware specific library that they also

provide (Adafruit 2023).

Finally, FabGL by fdivitto has been mentioned as a game engine in the previous chapter. Though,

it should also be cited as a graphics library since it is mainly described as a display controller on its

GitHub repository. (fdivitto 2023)

2.6.3 IoT Experimental Project

The Haaga-Helia-IoT-Experimental-Project is the project that inspired this thesis topic. As men-

tioned on the GitHub repository of the project, it was made during the Spring 2024 IoT Experi-

mental Project course of the Haaga-Helia University of Applied Sciences. The project is an arcade-

like game made from an ESP32 and a set of sensors. In the game, a player controls a ship and

tries to avoid incoming asteroids. The particularity of this game is that the controls change over

time and go from a conventional joystick to touchless controls with a proximity sensor to orienta-

tion-based controls with a gyroscope sensor. (Gianou 2024)

This project was made collaboratively by Isabelle Stransky-Heilkron, Sara Erbismann and David

Gianadda. David, the author of this thesis, was responsible for the game development part of the

Haaga-Helia-IoT-Experimental-Project. While the game is functioning, it was developed without

clean coding in mind and expanding on it would require a lot of refactoring. The project made dur-

ing this thesis is a new take on making a game engine for ESP32, with a focus on the reusability of

the code instead.

16

3 Practical Part

The practical part of this thesis is organized by iterations. Each iteration starts by setting up the

goals that should be reached by the end of it. Then the development work of the iteration is de-

tailed and explains what was implemented and how it was implemented. Alternatives solutions and

why they were not used are also mentioned.

The methodology used for this practical part is based on agile software development, although no

specific methodology was strictly implemented. The concept of iterations, as used in this project,

takes inspiration from Scrum methodology’s sprint but without using a product backlog and the

goals settings done at the beginning of each iteration is inspired by the Kanban approach.

3.1 Iteration 0 - Hello World

This chapter is about all the steps taken to be ready to start the development work on the game

engine. Those steps include selecting the components used to build the gaming device, wiring all

the components together, setting up the development environment, and testing the components.

The name of “Iteration 0 – Hello World” is based on the common software development practice of

the “Sprint 0” which consists of setting up the development environment for a project up to a point

where an “Hello World” message can be sent or displayed, demonstrating that the development

work is ready to start. Therefore, the goal by the end of this iteration is to be ready for the develop-

ment of the actual game engine.

3.1.1 Device & Components

To develop a game engine for ESP32, we need a gaming device. For this project we will build our

own device by connecting inputs and outputs to a microcontroller. This chapter is about the compo-

nents that were selected for the custom gaming device.

Note that an alternative to building the gaming device ourselves is to use pre-assembled ESP32

centric gaming devices that are commercially available. This option was discarded as part of the

motivation behind this thesis topic was based on the opportunity to work with microcontrollers and

components.

The brain of the device is the ESP32 microcontroller. All other components, like inputs and outputs,

are directly connected to it. It also hosts the code used to get data from inputs and to send data to

outputs. There are many models of ESP32 to choose from, varying in form factor, features, and

memory capacities. The ESP32-S3-WROOM-1-N16R8 was selected for its Flash and PSRAM ca-

pacities. More Flash memory allows for more code to be uploaded to the microcontroller, and

17

PSRAM can be useful when displaying graphics. The ESP32-S3-WROOM-1-N16R8 has 16 MB of

Flash and 8 MB of PSRAM. ESP32 boards typically have between 4 MB and 16 MB of Flash and

from none to 16MB of PSRAM. (Figure 7.)

A display is needed to output the graphics of the game. Initially, a 3.5inch 480x320 MCU SPI Serial

TFT LCD Module Display with an ILI9488 driver and an SD card slot was selected. For simplicity,

this display is referred to as the TFT display in the rest of this document. (Figure 8.)

This choice was based on the screen size and resolution, its compatibility with the TFT_eSPI li-

brary, mentioned in the theoretical framework, and the integrated SD card slot. Unfortunately, this

proved to be a poor choice for reasons that are discussed in chapter 3.3. This display had to be

switched during the development process.

The replacement display is the Adafruit Monochrome 2.7" OLED Graphic Display. The resolution is

much lower than the one from the previous display with only 128x64 pixels. The reasons behind

this choice are explained in chapter 3.3. (Figure 9.)

Figure 7. ESP32-S3-WROOM-1-N16R8 development board (Amazon 2023)

Figure 8. TFT LCD Module Display (Elecrow s.a.)

18

Finally, any gaming console needs inputs, such as buttons and joysticks. Inputs enable the player

to interact with the device.

Buttons come in many different types and shapes. The ones used in this project are known as

push button switches. Keyboard switches were selected for their satisfying feel, and for design

preferences. Note that any push button switches can be used instead. A push button switch oper-

ates by closing a circuit when pressed, allowing current to flow between its terminals. Figure 10

shows the exact model used in the project.

The last component is a joystick. A joystick is essentially two potentiometers that read analog val-

ues. One potentiometer is dedicated to the “X” axis, and one is dedicated to the “Y” axis. Each axis

can have their value accessed by reading the pin of the microcontroller they are wired to. The spe-

cific joystick for this project is a brandless component that also features an integrated push button

like shown in figure 11.

Figure 9. Adafruit Monochrome 2.7" OLED Graphic Display (Adafruit s.a.)

Figure 10. BOX Navy Clicky Switch from Novelkeys (MaxGaming s.a.)

19

The prototype device went through two phases during the development of the project. At first, all

components were mounted on a breadboard. This version used the TFT display and some basic

buttons. (Figure 12.)

The second phase is an improved version of the prototype, as seen in figure 13. A mounting piece

was designed in the open-source 3D modelling software Blender with the FreeCAD addon. All the

components previously mentioned in this chapter were measured and modeled into Blender. They

were then placed in a satisfactory manner and the mounting piece was modelled to hold them all

together. The mounting piece was 3D printed on a resin 3D printer at the Haaga-Helia 3D Lab.

Figure 11. Joystick mounted on a PCB (Sintosen palvelut s.a.)

Figure 12. Phase 1 of the gaming device prototype

20

This version of the gaming device uses the OLED display and has a total of five keyboard switches

used as buttons.

Note that all the components, appart from the joystick, used during this thesis were acquired and

financed by the author of the thesis. The joystick was provided by the 3D Lab from Haaga-Helia.

3.1.2 Development Environment

To start developing the code of the game engine, an integrated development environment (IDE) is

required. Popular IDEs for ESP32 have been mentioned in the theoretical framework. For this pro-

ject, Visual Studio Code from Microsoft with the Arduino extension was chosen. This choice is

based on Visual Studio Code’s integrated Git tools and PowerShell terminals, as well as personal

experiences with it.

The Arduino Core framework was selected based on personal experiences and for its beginner-

friendliness. The Haaga-Helia-IoT-Experimental-Project, overviewed in the theoretical frame-

work, had already been made using the Arduino Core framework. Furthermore, as this thesis aims

to provide some educational content to the reader, the simpleness of the Arduino Core framework

was deemed more fitting than the more complex ESP-IDF framework.

Version control with Git will be used to manage and save the project to a remote GitHub repository.

This repository is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0)

license, making it easy for anyone to access and use the project. Since one of the goals of this pro-

ject is to be educational, the repository will feature a dedicated branch for each iteration found in

Figure 13. Phase 2 of the gaming device prototype

21

the practical part of this thesis. This structure will allow readers to easily access the code produced

in each iteration, facilitating their understanding and learning.

3.1.3 Testing the Components

The last step of iteration 0 is to test each component to make sure they are properly wired, and to

ensure that they are not damaged or malfunctioning. Some components require an external library

to be used, this will also be covered in this chapter.

Buttons

Buttons can be tested with the Arduino sketch from figure 14. The code works as follows. First, the

constant for each of the button’s dedicated pin is defined. Then, the pin mode is defined using the

pinMode() method from the Arduino Core framework. Finally, in the loop, the value of each pin is

accessed with the digitalRead() method from the Arduino Core framework, and it is printed in the

serial monitor. The value should be “1” when the button is not pressed and “0” when pressed.

 1. #define BUTTON_A_PIN 37
 2. #define BUTTON_B_PIN 21
 3.
 4. void setup()
 5. {
 6. Serial.begin(115200);
 7. pinMode(BUTTON_A_PIN, INPUT_PULLUP);
 8. pinMode(BUTTON_B_PIN, INPUT_PULLUP);
 9. }
10.
11. void loop()
12. {
13. Serial.print("A : " + String(digitalRead(BUTTON_A_PIN)) + " | ");
14. Serial.println("B : " + String(digitalRead(BUTTON_B_PIN)));
15. delay(100);
16. }

Figure 14. Button testing code

Joystick

The joystick is composed of two potentiometers and one button. The “X” and “Y” are analog values

that have dedicated pins. Those values can be read by calling the analogRead() method with the

pin’s number as parameter. The “X” and “Y” values range from 0 to 4095 and are expected to be

around 1900 and 2000 when the joystick is not touched. Note that, due to their analog nature, the

value of “X” and “Y” may fluctuate. Figure 15 shows the code used for testing the joystick’s axes.

The joystick’s button is being tested in the same manner as previously done in figure 14. The axes

do not require setup. In the loop(), both axis and the button’s value are accessed and displayed in

the serial monitor.

22

 1. #define VRX 8
 2. #define VRY 3
 3. #define SW 46
 4.
 5. void setup()
 6. {
 7. Serial.begin(115200);
 8. pinMode(SW, INPUT_PULLUP);
 9. }
10.
11. void loop()
12. {
13. Serial.print("X : " + String(analogRead(VRX)) + " | ");
14. Serial.print("Y : " + String(analogRead(VRY)) + " | ");
15. Serial.println("SW : " + String(digitalRead(SW)));
16.
17. delay(100);
18. }

Figure 15. Joystick test code

Display

The display plays a crucial role in the game device. To develop games, basic functions like draw-

ing shapes, drawing images, and displaying text are needed. Thankfully, we do not need to imple-

ment those functions as they can be found in libraries that handle all the low-level code used to

display graphics on a screen.

The TFT display, presented in the theoretical framework, is the display that was first meant to be

used for this project, and it was used during the development work until iteration 2. The TFT_eSPI

library is used to handle the display. It can be downloaded from the libraries’ GitHub repository

where the set-up process is also detailed (Bodmer 2024). The library requires to be set up accord-

ing to the display we are using.

The code in figure 16 was used to test the TFT display. The code starts by including the SPI library

from the Arduino Core framework and the TFT_eSPI library. Then an object from the TFT_eSPI

library is instantiated as tft. In the setup() function, some initialization methods are called on the tft

instance and the message “Hello World!” is printed on the actual display. The expected outcome is

shown in figure 17.

23

 1. #include <SPI.h>
 2. #include <TFT_eSPI.h>
 3.
 4. TFT_eSPI tft = TFT_eSPI();
 5.
 6. void setup()
 7. {
 8. tft.init();
 9. tft.setRotation(3);
10. tft.fillScreen(TFT_BLACK);
11. tft.setTextSize(5);
12. tft.setCursor(48, 120);
13. tft.print("Hello World!");
14. }
15.
16. void loop()
17. {
18. }

Figure 16. TFT display test code

The TFT display was later replaced by an OLED display. The library used to drive the OLED dis-

play is made by Adafruit, who also manufactures the display itself. Adafruit’s approach to writing

graphics libraries is different to the approach used by Bodmer. Instead of using a single library and

a set-up file, Adafruit uses two libraries. The first is the Adafruit-GFX-Library that contains all the

functions to interact with the display (Adafruit 2023). And the second is specific to the display used

and defines the display’s properties. The second library used in this project is

Figure 17. Hello World on TFT display

24

Adafruit_SSD1325_Library (Adafruit 2024). The approach of dedicated libraries is more user-

friendly whereas the set-up file approach is more open for users’ tinkering.

The code used to test the OLED display comes from the Adafruit_SSD1325_Library and can be

found in the examples folder under “ssd1325test” (Adafruit 2024). The expected result is a bunch

of Adafruit logos being displayed on the screen and moving down in a falling motion, as seen in fig-

ure 18.

Figure 18. Adafruit logos on OLED display

25

3.2 Iteration 1 – Engine’s Core & Inputs

Iteration 1 marks the beginning of the actual project. From now on, all the code can be found in the

GitHub repository of this project (appendix 1). Each iteration found in this report has a correspond-

ing branch in the repository. Branches are typically deleted once they are merged into the main

branch. However, for this project, each branch has been preserved so that the code produced in

each iteration is easily identifiable. It is advised to read each chapter of the practical part with the

GitHub repository open on the corresponding branch. Branch can be selected on the top left side

of the webpage as shown in figure 19.

The goals for this iteration are to :

− get user inputs and have them accessible anywhere in the code.

− implement the core loop of the game engine.

− demonstrate the core loop with an animated screen saver.

3.2.1 Inputs as Objects

In iteration 0 we already covered how to get the values of the joystick and buttons. The code used

for testing the inputs was entirely written in the Arduino Sketch file. Now, we want to encapsulate

the logic used for inputs into objects.

We start by defining an interface, named AbstractInput. This class will define what behaviors

must be implemented by the concrete inputs. By applying the Dependency Inversion Principle, we

Figure 19. Branch selection on GitHub

26

enforce the use of polymorphism. This will later be useful to handle any input, regardless of it being

a joystick or a button. This is an example of the application of the Liskov Substitution Principle.

The AbstractInput class has two virtual methods, begin(), and getValue(). The begin() method

will be used for inputs that require a setup, like the buttons do. The getValue() is simply used to

return the current value of the input. This may seem like it would not work with the joystick that has

three distinct values. However, the joystick does not need to be represented in the code as a joy-

stick object. Instead, it can be broken down into two JoystickAxis and one Button, all of them im-

plementing the AbstractInput. (Figure 20.)

3.2.2 Input Manager as Singleton Pattern

Inputs are a key part of any video game. Inputs enable players to move characters, to drive

vehicles, to navigate menus, or to attack enemies, and to perform many more actions, making

interactivity a defining feature of video games and setting them apart from other forms of media.

Given the wide variety of scenarios and use cases for inputs, the game engine should provide a

way to easily access inputs programmatically. We will implement a class, the InputManager,

whose responsibility is to make the current value of a given input readable from anywhere in the

code. The Singleton design pattern is ideal for such a scenario.

The InputManager has a map of String and AbstractInput attribute as well as methods to add

and remove AbstractInput to this map. The getInputValue() method is used when the client

needs to access the current value of an input, it takes a String as parameter. This String is the

name of the AbstractInput, that is also used to organize the AbstractInput in the map. The name

Figure 20. Abstract and concrete inputs class diagram

27

attribute had to be added in the AbstractInput for this implementation of the InputManager to

work. (Figure 21.)

The use of composition and polymorphism with this Singleton implementation makes the code

easy to expand without having to modify the code of the class. If a new input type was to be added

to the game device, all the new code required is a new class that implements the AbstractInput, a

line to instantiate this new class and a line to add it to the InputManager’s inputMap. This is an

example of the Open/Close principle. Figure 22 shows the UML for the complete input manage-

ment system.

Figure 21. InputManager class diagram

Figure 22. Input management architecture

28

3.2.3 Loop

To build the base of the game engine, it is important to understand how video games work. Let us

use the example of a flipbook. In the creation of a flipbook animation, every frame of the animation

is drawn on the pages of the book. Once this process is completed, the pages can be flipped to

play the animation. Similarly, a video game consists of a succession of frames. Although, the

frames must be drawn in real-time instead of in advance. The first role of the engine is to ensure

that a loop is maintained, like a continuous flipping of pages.

Every project done with the Arduino Core framework must implement two functions, setup() and

loop(). We can simply use this loop() function as the engine’s base loop operation. Note that pas-

sages in the loop() function from the Arduino Core framework happen as fast as the chip can han-

dle them. A common practice in Arduino and ESP32 development is to introduce a delay at the end

of the loop() function. The delay() function can stop the code execution for a given amount of time

and is often used to slow down the execution of the code. It could be a solution to set a frame rate

in the game engine. Although, this might result in inconsistent frame rate due to the game logic that

could take more or less time to be executed depending on its complexity.

Instead, we will implement a function that checks the amount of time that elapsed since the begin-

ning of passage in the loop(). If the amount of time is equal to or greater than a set frame duration

the next frame can start, otherwise the function keeps evaluating the elapsed time. (Figure 23).

1. void waitUntilEndOfFrame()
2. {
3. static unsigned long lastLoop;
4. while (millis() - lastLoop < FRAME_DURATION_MS)
5. {
6. }
7. lastLoop = millis();
8. }

Figure 23. Frame duration control function

3.2.4 Engine’s Core as Composite Pattern

The second role of the engine is to manage the ongoing processes within each frame or loop itera-

tion. We will refer to it as game logic. It includes rendering the background, handling the behavior

of non-playable characters, rendering UI, detecting collision and all other events that can happen in

games. It is all the code that is executed during each frame.

To tackle the complexity of the game engine, the game logic will be broken down and encapsu-

lated into game objects. Knowing that those objects will be performing actions, and that they will be

rendered on the display, polymorphism should be used to abide to the Liskov Substitution Princi-

ple. This can be done by defining an abstract class for the game objects. Figure 24 shows the new

29

AbstractGameObject class, used as the interface for game objects. The interface specifies two

methods. The update() method will be used to perform game logic, such updating the coordinates

of a moving character or updating a score. The render() method is used to render the object on the

display, which is why it takes a reference to an instance of a TFT_eSprite. This is the object used

to draw on the display. It comes from the TFT_eSPI library. All game objects should be updated

and rendered in the Sketch file loop() function.

At this point, it would be possible to create some concrete game objects, classes that implement

the AbstractGameObject, and make a game. Figure 25 shows a supposition of what this would

look like. In the loop(), all game objects are individually updated then are all rendered on by one.

 1. void loop() {
 2. // Update environment
 3. background.update();
 4. tileset.update();
 5. foreground.update();
 6. // Update player
 7. player.update();
 8. // Update enemies
 9. enemy1.update();
10. enemy2.update();
11. // Update UI
12. lifeUI.update();
13. scoreUI.update();
14. // Render environment
15. background.render(sprite);
16. tileset.render(sprite);
17. foreground.render(sprite);
18. // Render player
19. player.render(sprite);
20. // Render enemies
21. enemy1.render(sprite);
22. enemy2.render(sprite);
23. // Render UI
24. lifeUI.render(sprite);
25. scoreUI.render(sprite);
26. }

Figure 25. Example of messy game engine code

The example from Figure 25 is here to showcase what we want to avoid. Readability is not great

and there is a lot of repetition in the example code. Those issues would only get worse when the

complexity of the project increases. However, this counter example does contain a clue to a

Figure 24. AbstractGameObject class diagram

30

solution to its problems. As suggested by the code’s comments, some logical groups appear.

Those groups are the environment, the player, the enemies, and the user interface (UI).

The Composite design pattern is an ideal solution to this situation. It provides a hierarchical tree

structure which allows for a logical grouping of the elements. With a Composite pattern, all UI ele-

ments, enemies, and environment elements of the fictional example from figure 25 can be grouped

into nodes. Figure 26 illustrates what the tree would look like for this example.

GameEngine is a new class that implements AbstractGameObject along with a vector of Ab-

stractGameObject and helper methods to add and remove elements to this vector. It serves as

the root node of the Composite’s pattern tree. The GameEngine’s purpose is to recursively call the

update() and render() method down the composite tree. The new loop() function would change to

be what is shown in figure 27.

1. void loop() {
2. gameEngine.update();
3. gameEngine.render(sprite);
4. }

Figure 27. Example of well-organized game engine code

For the implementation of the Composite pattern in the game engine, the AbstractGameObject

class from figure 24 is used as the interface that must be implemented component of the tree. In

our case, the operation related to adding and removing child components will not be included in the

AbstractGameObject class. As mentioned in the theoretical framework, whether both leaves and

nodes should implement the child component helper functions or not depends on the sources or

the context of the implementation.

We also implemented a composite node, the GameEngine, which is the root node of the tree. To

complete the core of our game engine, a leaf node is implemented. The RenderEngine is respon-

sible for pushing the buffered frame to the display. From the TFT_eSPI library, we are using an in-

stance of the TFT_eSprite object, which allows us to pre-render a frame in memory before pushing

it to the display. This buffering technique helps with avoiding screen flickering. Figure 28 shows the

UML implementation of the game engine’s core as a Composite pattern.

Figure 26. Example of composite tree for a well-organized game engine

31

3.2.5 Screen Saver Demo

To conclude this iteration, a demonstration should be implemented. This demonstration is not part

of the game engine but serves as testing of the work done in the iteration. As mentioned in the

goals for this chapter, the demonstration should be a screen saver that displays an animation in a

loop.

It was thought that it would be interesting to ask ChatGPT, the large language model (LLM) based

chatbot from OpenAI, to generate the class that should display a bouncing ball on the device's

screen. By providing information, such as the design pattern used for the game engine architecture

and the code of the AbstractGameObject, GameEngine, and RenderEngine, ChatGPT was able

to return an almost ready-to-use DemoBounceSphere class. Only the path of the “includes” and a

line performing an unnecessary rendering operation had to be modified from the code generated

by ChatGPT. Figure 29 shows the Composite pattern tree for the screen saver demonstration.

Figure 28. Architecture of game engine core as Composite pattern

Figure 29. Composite tree of screen saver demonstration

32

3.3 Display Issue

This chapter is dedicated to an issue that emerged at the end of iteration 1, when running the

bouncing sphere screen saver demonstration. The animation of the sphere appeared to be slow

and jittery. Code to measure the duration of each passage in the loop() method was immediately

implemented, as shown in figure 30, and revealed that it took 728 ms to display a single frame.

This means that the game engine was running at approximately 1.37 frames per second (fps). For

reference, according to a blog post from Saraswat, the slowest commonly used frame rate is 24 fps

for movies, whereas video games often aim for 60 fps or more (26 November 2023).

 1. void loop()
 2. {
 3. unsigned long startTime = millis();
 4.
 5. gameEngine.update();
 6. gameEngine.render(display.getSprite());
 7.
 8. unsigned long endTime = millis();
 9. unsigned long duration = endTime - startTime;
10. Serial.println("Loop iteration duration: " + String(duration) + "ms");
11. }

Figure 30. Loop function with loop iteration duration measurement

3.3.1 Identifying the Issue

To solve this issue, let us firstly look at the process of displaying the image on screen. We are us-

ing Bodmer’s TFT_eSPI library which offers two solutions for displaying images. The first is to use

an instance of the TFT_eSPI object that has methods such as fillCircle() that will draw a filled cir-

cle on the display. On each call of the TFT_eSPI drawing method, the screen will be updated in-

stantly. The newly drawn item will appear on top of what was being previously displayed. With this

method, each object would have to be cleared before being drawn again, to create an animation.

This can either be done by redrawing the object in its previous location but with a background color

and then drawing it again in its new location, or by clearing the whole display with a background

color. This method was initially used during the Haaga-Helia-IoT-Experimental-Project and the

result was unsatisfactory as it produced an intense flickering effect.

The second technique that can be used to display graphics is the use of TFT_eSprite. As ex-

plained by Bodmer, TFT_eSprite are graphics drawn in memory instead of directly on the display.

They are then pushed on to the display once ready. Display sized TFT_eSprite can be used for

frame buffering. (Bodmer 2024) To draw a filled circle we would first instantiate a TFT_eSprite and

then use it the fillCircle() method. This technique was implemented in the Haaga-Helia-IoT-Ex-

perimental-Project to fix the flickering issue. It is also the technique being used in this project.

33

Note that in the Haaga-Helia-IoT-Experimental-Project, the screen resolution was 128x160 pix-

els, and the frame rate was never noticed to be problematically slow.

Other information we get from the TFT_eSPI library is about color depth. The color depth is the

number of bits dedicated to storing data about color (Brian 2023). It is possible to reduce the color

depth used to reduce the size of graphics. Bodmer mentions using this technique with TFT_eS-

prite if the microcontroller’s memory is not sufficient for frame buffering (Bodmer 2024).

Considering all of the above, testing was done to see how different factors like rendering tech-

niques, color depth and render size would affect the frame rate. The results of those tests are

shown in table 1.

Table 1. Results of rendering speed testings

Width
(px)

Height
(px)

Total
Resolu-
tion (px)

Color
Depth
(bit)

Tech-
nique

Frame
Duration
(ms)

Frame
Per Se-
cond

Comment

480 320 153600 16
TFT_eS-
prite

728 1.37

480 320 153600 1
TFT_eS-
prite

744 1.34

240 160 38400 16
TFT_eS-
prite

182 5.49

240 160 38400 1
TFT_eS-
prite

186 5.38

480 320 153600 16
TFT_eS-
prite

728 1.37
Nothing drawn on
TFT_eSprite

480 320 153600 16
TFT_eS-
prite

0 X
TFT_eSprite not pushed
to screen

480 320 153600 16 TFT_eSPI 151 6.62
Frame is reset by drawing
a display sized black rec-
tangle. Result is flickery

480 320 153600 16 TFT_eSPI 4 250.00
Only the past location of
the sphere is reset by
drawing a black circle.

480 320 153600 16 TFT_eSPI 25 40.00

Draw 5 sphere, only the
past location of the
sphere is reset by drawing
a black circle.

480 320 153600 16
TFT_eS-
prite

688 1.45
SPI_FREQUENCY
40000000 in user_setup.h

480 320 153600 16 TFT_eSPI 105 9.52
SPI_FREQUENCY
40000000 in user_setup.h

34

The testing revealed important information. Firstly, the use of lower color depths never improved

the frame duration. The initial hope was that reducing the size of the TFT_eSprite would make it

faster to render. Secondly, we can notice that the total resolution of the TFT_eSprite and the time

it takes to display it are linked. We also learned that a TFT_eSprite of a given size always takes

the same amount of time to be rendered regardless of whether we draw a circle on it or not.

On the other hand, TFT_eSPI render time is linked to the size of what is being drawn. For that rea-

son, the best results were obtained when redrawing only the sphere instead of clearing the com-

plete screen by drawing a black rectangle. Despite the speed, the uses of TFT_eSPI without clear-

ing the screen has many issues and limitations:

− Its results are often flickery.

− It makes the code side of the rendering process more complex.

− It limits the number of pixels that can be changed in each frame.

− It makes it complex to use background other than solid colors.

Finally, the test done in the last two lines of Table X shows an interesting result. For both

TFT_eSPI and TFT_eSprite, changing a setting related to SPI frequency in the setup file of Bod-

mer’s library showed slightly better performance. The default value for this setting, used in all the

other tests, is 27000000. In the comments of the setup file of their library, Bodmer mentions that

the SPI_FREQUENCY constant is the SPI clock frequency and that it directly affects the rendering

speed. They also mention that a speed of 80000000 may either work or cause corruption. (Bodmer

2024) The results of rendering a circle with an SPI clock frequency of 80000000 resulted in strange

graphics as shown in figure 31.

There are two main options to solve the slow frame rate issue. The first is to only use part of the

screen, with the TFT_eSprite frame buffering technique. The inconvenience being that using only

Figure 31. Corrupted display of a circle

35

a fraction of the screen is aesthetically displeasing. The second option is to use TFT_eSPI drawing

with a limited number of pixels being updated each frame. This option brings a lot of complexity to

the code and the results look flickery. Other options require to change the display for either another

display that uses either a faster transfer protocol, or a smaller resolution, or another display tech-

nology or all of those.

It was decided that the display will be replaced by a new one. The Adafruit Monochrome 2.7"

OLED Graphic Display was chosen for its unique size and resolution. The resolution is 128x64 pix-

els, yet the display’s diagonal size is 2.7” or 6.858 cm. This is explained by the exceptionally large

pixels being used. Those pixels are also limited to a color depth of one, as the display is mono-

chrome. The hope behind this choice is that by greatly reducing the frame size, rendering time will

not be an issue anymore. Note that this new display also uses SPI as communication protocol.

Aesthetically, the monochrome and big pixel factors provide an arcade-like style that is coherent

with the rest of the game device.

3.3.2 Refactoring

The new display requires a new library. This means that the code needs refactoring to adapt. For-

tunately, by following good coding practices, the amount of code to change was kept low. At first,

the Display class, used to represent the physical display in the code, was modified to create a Dis-

playOLED class, functioning in the same manner but with instance of the Adafruit_SSD1325

class instead of the TFT_eSPI.

This was then changed again when it was realized that there was no need for a Display or Dis-

playOLED class at all. The initial idea was to have a class to represent each type of physical com-

ponent wired to the ESP32. For instance, the Button class handles all the logic related to physical

buttons. This is essentially what the Adafruit_SSD1325 class, from the external library, does. For

that reason, and for simplicity, the DisplayOLED class was removed in a second refactor and in-

stead, an instance of Adafruit_SSD1325 was given as an attribute to the RenderEngine class.

In the GitHub repository of this project, the branches Iteration_0 and Iteration_1 are written to work

with the TFT display. The branch Iteration_2 was started with the TFT display and a new branch

named TFT-to-Oled-Refactoring was used to implement the refactoring explained in this chapter.

During this process of debugging and refactoring and debugging, the second prototype of the gam-

ing device was made. It uses the new OLED display.

36

3.4 Iteration 2 – Controls & Collisions

In iteration 1, a system to access input data via the InputManager Singleton was implemented.

During this iteration, we will test this system by creating interactions between what is being dis-

played on screen and the user inputs. For that, a simple pong-like game will be developed. In this

game, two paddles are placed on the left and right side of the screen. A ball bounces from side to

side of the screen and the paddles must be used by the players to prevent the ball from exiting the

screen on their side, similar to a game of table tennis.

The second feature that will be implemented in this iteration is a collision detection system. In the

example of the pong-like game, this system will be used to detect collisions between the ball and

the paddles. The system itself will be part of the game engine and should be reusable.

3.4.1 User-Controlled Paddle

We will start by implementing a user-controlled paddle. The paddle is an object and will have its

dedicated class DemoPaddle. Just like the DemoBounceSphere, it is part of the GameEngine

Composite pattern tree. Hence, it must implement the AbstractGameObject class and must be

added to the GameEngine instance.

The update() method of DemoPaddle must implement the movement logic. It needs to get the

value of inputs and move the paddle accordingly. Figure 32 shows the most basic implementation

of this logic. We can also see that the InputManager is accessible from the DemoPaddle class

without having to be passed down the composite tree, thanks to the Singleton property of being ac-

cessible anywhere in the project.

 1. void DemoPaddle::update()
 2. {
 3. InputManager *inputManager = InputManager::getInstance();
 4. if (inputManager->getInputValue("Y axis") > 2000)
 5. {
 6. y += speed;
 7. }
 8. else if (inputManager->getInputValue("Y axis") < 1900)
 9. {
10. y -= speed;
11. }
12. }

Figure 32. Update method of DemoPaddle class

In the update() method of figure 32, we first get the reference to the InputManager Singleton.

Then we change the value of y based on the “Y” axis input of the InputManager. There is an issue

with this code, it allows for the paddle to move out of the limit of the screen. In the DemoB-

ounceSphere from the previous iteration, we were passing the screen’s height and width as

37

parameters. This allowed us to check if the ball’s x and y values were within the limits of the

screen. Though, passing the screen’s width and height to every object that may need it is redun-

dant and cumbersome.

In this iteration we will keep using the screen’s dimensions as borders to limit the movements of

the paddles. However, access to those dimensions will be implemented in a better way. There are

a few options to improve this case. The first would be to use a Singleton that contains those infor-

mations. The Singleton could be the GameEngine itself, the RenderEngine or some new class

made for that purpose only. Although, since the value we want to make easily accessible are con-

stants, we will instead create a simple header file and store those constants there. We will also

take this refactoring opportunity to move all constants from the Sketch file to this new Constants.h

file. This makes the Sketch file more readable. And we will also replace the use of the #define key-

word to declare typed constants instead. Using the const keyword allows for type safety, whereas

#define cannot be typed checked (GeeksforGeeks 2022).

With the screen’s dimensions now easily accessible, the logic to prevent the paddle from going out

of screen can be implemented. This is done by checking if the paddle is out of screen after moving

and resetting it to the exact border of the screen if it is the case, as shown in figure 33.

 1. void PaddleLeft::update()
 2. {
 3. InputManager *inputManager = InputManager::getInstance();
 4. if (inputManager->getInputValue("Y axis") > 2000)
 5. {
 6. y += speed;
 7. }
 8. else if (inputManager->getInputValue("Y axis") < 1900)
 9. {
10. y -= speed;
11. }
12. // Check for screen boundaries
13. if (y < 0)
14. {
15. y = 0;
16. }
17. if (y + height > SCREEN_HEIGHT)
18. {
19. y = SCREEN_HEIGHT - height;
20. }
25. }

Figure 33. Update method of DemoPaddle class with screen border checking

Note that for the demonstration pong-like game, we will define two paddle classes, one for the left

side of the screen and one for the right side of the screen. Inheritance could have been used to re-

duce the redundancy of the code, however for this basic example it was not deemed useful.

38

3.4.2 Collision Detection

The paddle can now be moved to attempt to intercept the bouncing ball that we are reusing from

the screensaver demo of iteration 1. However, the ball will pass through the paddle and does not

bounce off it. It is now time to implement collision detection.

One basic way to implement the collision between the ball and the paddle would be to pass the ref-

erences of the paddle to the ball. The ball would then be able to implement a bouncing logic based

on overlapping coordinates, similar to how the ball checks for the display’s border. Though, this is

not a good approach, as it would tightly couple the DemoBounceSphere class to the Demo-

Paddle class. If we wanted to add another paddle, or some sort of obstacle, in the scene, we

would have to refactor DemoBounceSphere and manually add the references to all the new ob-

jects. This option would also not be reusable in the game engine.

Instead, we can take advantage of the Composite pattern. There is already a composite node that

has references to all the AbstractGameObject of the scene. We can create a CollisionDetector

class that will encapsulate the collision detection logic and give an instance of this class to the

composite node. The AbstractGameObject that are part of the composite node and that need to

check for collisions will then be able to access their parent’s CollisionDetector and use it.

This implementation requires some refactoring. The AbstractGameObject currently cannot ac-

cess their parents, the CollisionDetector class does not exist yet, not all composite nodes should

have a CollisionDetector, and AbstractGameObject require a physical area that can be used for

checking for collisions. At the moment, all the AbstractGameObject of the pong-like game are

placed directly under the GameEngine root node of the composite tree. (Figure 34.)

Figure 34. Game engine composite tree without sub-somposite nodes

39

To improve the separation of concerns and hierarchical architecture of the composite tree, we will

implement a new composite node. PongGameScene will contain all the elements of the pong-like

game in its vector of AbstractGameObject, and it also has a CollisionDetector and a Score-

Handler class to keep track of the score and a ScoreUI class, an AbstractGameObject used for

displaying the score of the game. (Figure 35.) In the future we will use multiple scenes to display

different state of the game, like a start scene, a game scene, or a game over scene. For this rea-

son, we will also implement a GameScene abstract class.

The CollisionDetector class is also implemented. All it does is define a function that expects two

AbstractGameObject as parameters and then returns whether those AbstractGameObject are

overlapping using the Axis-Aligned Bounding Box (AABB) collision detection method (Gregory

2017, chapter 12). Since the AABB algorithm relies on boxes to check for collision, a new class,

the HitBox, was introduced (figure 36). All AbstractGameObject have a default getHitBox()

method that returns a nullptr to cover the case where they do not have a HitBox. Developers

have the responsibility of instantiating a HitBox for the AbstractGameObject that need one, like

the paddles and ball of the pong-like game.

Figure 35. PongGameScene class diagram

40

Finally, the AbstractGameObject that need to access the CollisionDetector are given a refer-

ence to their parent. At the moment the reference to the parent is passed in the Sketch. It is not an

optimal implementation but sufficient for a proof of concept. In the pong-like game demo, the

BounceSphere uses the CollisionDetector of the PongGameScene to check for collisions with

the other objects of the scene, in this case, the paddles.

This system works and can be used efficiently by only performing a collision check when needed,

although it contains weaknesses. For example, the AbstractGameObject that checks for collisions

only receives a Boolean as an answer and does not know what it is colliding with. The Ab-

stractGameObject performing the check is also responsible for defining the logic of iterating

through all the objects of the scene, which is not ideal according to Single Responsibility Principle.

3.4.3 Pong Game Demo

The demonstration game is a two-player pong-like game. The left paddle is controlled by the joy-

stick and the right paddle is controlled by two buttons. When a player scores, their score is updated

and displayed on their side of the screen. The ball automatically respawns in the center of the

screen and starts moving opposite to the direction it was going when the score occurred. The

game is endless and there is no other screen than the game screen. A still of the game is shown in

figure 37.

Figure 36. Class diagram of HitBox

41

3.5 Iteration 3 – Scene Management & Better Collisions

The pong-like game demo works but there can never be a winner when playing the game. No win-

ner detection game logic has been implemented at this point. We can also note that the game

starts as soon as the gaming device is powered. This does not constitute the best gaming experi-

ence for players. In this iteration, a scene management system will be implemented so that games

can have multiple scenes allowing them to launch on a start menu, that can then go into the game

itself, and finally to a game-over screen.

3.5.1 Scene Management as State Pattern

The State pattern perfectly fits the requirements we have for scene management. As mentioned by

the Gamma, Helm, Johnson, and Vlissides, it is best used when the behavior of an object, called

the context, changes according to its state and when the states need to change at runtime

(Gamma, Helm, Johnson, & Vlissides 1994, chapter 5).

Let us consider a new class, the SceneManager, that would be the context of the State pattern.

The context is composed of all its possible states. The states themselves are also classes, so the

context has an attribute for each of its states. In our case, the states are what we have been calling

scenes. The SceneManager has a currentScene attribute on which it will call the request method.

The currentScene is the state that handles the execution of the method. In our game engine, the

methods we want to request are the update() and render() method. This means the

SceneManager will actually be a node of the composite tree, so it must implement the Ab-

stractGameObject interface.

Figure 37. Pong-Like game on the custom esp32 gaming device

42

There is however an issue when using one attribute per state. Not all games will have the same

number of states or scenes in our case. To solve this issue, we will modify the State pattern imple-

mentation with a technique that was already used for our InputManager. Instead of an attribute for

each state, we use a map of String and GameScene. Our SceneManager now needs some

helper functions to add and remove states, similar to what is implemented in a composite node of

the Composite pattern. This solution provides a developer friendly approach. The SceneManager

is part of the game engine and does not need to be changed or implemented by the developers.

The context is only one part of the State pattern implementation. The concrete states need to im-

plement an abstract state interface. We have already made a prototype of the abstract state inter-

face for the scenes during iteration 2. The GameScene class will be refactored into the base state

of the State pattern. Though, instead of making it an interface, it will be an abstract class, meaning

that it already defines some functions like the update() and render() methods, but also includes

some virtual functions that developers can implement to fit the specific needs of their game’s

scenes. Two new methods, onEnterScene() and onExitScene(), are added as virtual functions.

Those methods will be systematically called when a new scene is set in the SceneManager. Ex-

ample use case of those methods includes:

− loading assets when entering a scene

− resetting player coordinates and score when exiting a scene

− saving a score when exiting a scene

Finally, the scene management system should be easily accessible in the code. Going from the

start menu to the game will probably be handled by a controller class that checks for a specific in-

put, whereas going to the game over screen may result from a collision during the game, be it the

ball entering the goal in the pong-like game or the player dying in some platforming game. For that,

the Singleton pattern will once again be used. Figure 38 shows the result of the State pattern im-

plementation of the SceneManager that is also part of the composite tree and that is also a Single-

ton.

43

An example of this implementation can be found in iteration 3 of this project’s repository. The ex-

ample is built upon the pong-like game from previous iterations. In this example there are three dif-

ferent GameScene. Figure 39 shows a snapshot of each scene as well as the finite state machine

to illustrate navigation between the scenes.

Figure 38. UML of scene management State pattern

Figure 39. Finite state machine of scenes in Pong-Like demonstration game

44

Figure 40 shows the composite tree of the pong-like game example. Notice that the

SceneManager has a special role in the tree. It is not a leaf because it holds children in the form of

the GameScene, nor is it a composite node because it does not iterate through each of its chil-

dren. Instead, it manages what branch of the three should be active, and it ensures that only one of

its possible paths is active. In figure 40, this is illustrated with grey arrows pointing to the non-active

paths.

One feature that was not implemented is the ability to share data between states. This common

use-case is generally handled by passing the context itself as a parameter to the states. In our

case, the context is a Singleton, making it easily accessible. The issue with the game engine ap-

proach is that we have already written the SceneManager context class, and that it should be

modified by game developers to include the data they want to share between states. One work-

around would be to give the SceneManager a map of String and String to be used as key-value

data storage, shared between the states. However, this does not allow for sharing objects refer-

ences.

3.5.2 Event Driven Collision Detection with Observer Pattern

The last feature planned for the development process of the game engine was a revision of the col-

lision detection system. It could not be implemented due to time constraints; however, this chapter

explains why and how the use of the Observer pattern would improve the collision detection sys-

tem.

Figure 40. Composite tree of Pong-Like demonstration game

45

The current collision detection system has several limitations that affect code quality and maintain-

ability. The primary issue is the tight coupling between game objects and the collision detection

logic. Each AbstractGameObject is responsible for checking collisions with other objects in the

scene, which violates the Single Responsibility Principle by combining collision detection logic with

the object's primary functionality. This approach also leads to duplicated code and a lack of flexibil-

ity, as each game object must implement its own collision checking mechanism.

Implementing an event-driven collision detection system using the Observer pattern addresses

these issues by decoupling the collision detection logic from individual game objects. In this sys-

tem, the CollisionDetector class is responsible for detecting collisions and emitting events when

collisions occur. This is in line with the Single Responsibility Principle, as the CollisionDetector

focuses only on collision detection. AbstractGameObject subscribe to collision events through an

EventManager, which handles the registration of listeners and broadcasting of events. This decou-

pling means that game objects do not need direct references to each other or the collision detector,

enhancing modularity and maintainability.

46

4 Discussions

The discussions chapter reviews the work done during the thesis and discusses topics such as po-

tential future features for the game engine and more design patterns that could be used. It also re-

flects on the sustainability aspects of the project and ends with the conclusion of the thesis.

4.1 Future Features Development and Patterns

During this thesis, the foundation of the game engine was designed, implemented, and demon-

strated. Key features like input management, scene management, core architecture and basic colli-

sion detection are functioning. However, many more features could be implemented. This chapter

gives some examples of features that could be developed in future work on the project started in

this thesis.

Most games and gaming devices have more than one type of output. While the display is used for

visuals, adding an amplifier and speaker to the game device would enable sounds to be played. A

sound management system would programmatically handle playing sound files. This would imply

storing sound files in the project, accessing the sound files, and accessing the sound management

system to play, pause and stop sound.

Another interesting feature would be animation management. In our engine, the 2D rendering is

mostly handled by the Adafruit-GFX-Library. With animation management, developers could give

a set of sprites to a game object and those sprites would then be changed every given amount of

time to create an animation. This feature would also most likely require storing image files.

Physics simulation is a common feature of game engines, it simplifies the processus of applying

physics to objects to make them move. Simulated physics makes it easier to handle movements

like jumps and falls. Physics simulation engines sometimes incorporate particles systems for envi-

ronmental elements like rain, dust, or splatters. Although, particles would be basic with the low res-

olution of the OLED display used in our game device. Collision detection is a key element of this

feature, although it is only a small part of it.

Networking is another potential feature that could enhance the game engine, especially with the

ESP32, capable of networking via Wi-Fi and Bluetooth. Future work could include developing an

interface to simplify the connection to Wi-Fi. This UI could be integrated into the composite tree, as

one of the scenes of the SceneManager, and be used as a home screen. Networking capabilities

could also enable interactions with the internet, such as saving scores online and fetching data into

games. These are common use cases for ESP32 embedded systems, and many libraries are

available for this purpose. Finally, networking could allow developers to create online multiplayer

47

games. However, this feature would require some sort of online game synchronization system like

the development of specific networked game objects that can share their attributes between client

devices to ensure synchronization. Unity uses a similar system called Netcode for GameObjects,

which provides a framework for building multiplayer games by synchronizing game objects across

networked clients (Reeve 2024).

To support the development of these features, various design patterns could be employed. The

Observer pattern was already mentioned for an improved version of the collision detection. It could

also be used for implementing networked game objects. The State pattern could be used for man-

aging animations. With states corresponding to different animations of a character such as idling,

running, attacking, and jumping. For particle emission, that we could implement in the physics sim-

ulation engine, the Flyweight pattern would optimize memory usage and performance by sharing

common data among particles, reducing redundancy, and improving efficiency.

Finally, additional design patterns could be used to enhance the existing code of the game engine.

The Factory pattern could be employed for improving the creation of objects like inputs or game

entities, ensuring a clean and modular architecture. The Adapter pattern could be used to make

the engine compatible with multiple graphic libraries, such as Bodmer’s and Adafruit’s libraries, by

adapting their interfaces to the engine's requirements.

4.2 Use of AI

In the development of this thesis, ChatGPT by OpenAI was used for both the development process

of the project and for the redaction of the report. During coding, ChatGPT was mostly used for de-

bugging and refactoring purposes. This allowed for a faster development process. Secondary uses

of ChatGPT includes helping with learning C++ specifics and discussing design patterns. It pro-

vided valuable insights and suggestions. As mentioned in iteration 1, the code used for the bounc-

ing ball screensaver demonstration was generated by ChatGPT.

In the redaction phase, ChatGPT was used to improve readability by refactoring complex sen-

tences, and by suggesting synonyms and alternate formulations. While AI was used to improve the

form of the content, it was not involved in content generation.

4.3 Sustainability

This chapter addresses the environmental sustainability aspects of software development in gen-

eral. It is also used to discuss the educational sustainability of the game engine developed in this

thesis.

48

The ESP32 is by design a low-power device. This contrasts with the trend of personal computers

becoming always more powerful and energy consuming. Optimization has always been a key as-

pect of software development. It used to be important because hardware had strong limitations and

software developers had to be careful about the efficiency of their software otherwise it would not

fit on the machine. Nowadays, hardware is so efficient that in many cases, inefficient code might

go unnoticed, and yet it is the responsibility of developers to care about the efficiency of their soft-

ware for energy consumption reasons. Design patterns, like the Flyweight pattern, can help opti-

mize resource usage and minimize environmental impact.

Education plays a crucial role in sustainability by cultivating knowledge and skills development. To

support this, the game engine developed in this thesis is openly available on GitHub under a Crea-

tive Commons Attribution 4.0 International (CC BY 4.0) license.

4.4 Conclusions

The main objectives of this thesis were to develop a 2D game engine for ESP32 and to demon-

strate how design patterns can be used to create a clean and maintainable codebase. To realize

those main objectives, a secondary one had to be completed. Building a gaming device around an

ESP32 was the first task undertaken during this thesis. It was mostly successful as the device was

prototyped and improved over two iterations. A major issue with the hardware arose during the de-

velopment work. The slow rendering of the initial display gave the opportunity to investigate the

working of lower-level protocols used in embedded software development by means of testing.

This valuable lesson will be a reminder to not overlook low-level protocols.

Regarding the game engine, the implemented features are the core loop, input management, 2D

rendering, collisions detection and scene management. One of each type of design pattern was

successfully implemented into the game engine. The input management system and the scene

management system both use a creational pattern, the Singelton. The core of the engine is built

upon the Composite pattern, a structural one. And a behavioral pattern is also used in the scene

management system with a State pattern. The Observer pattern could not be implemented, alt-

hough the benefits of its usage have been described. Other patterns were mentioned for future fea-

tures implementation.

This thesis concludes a three-year adventure of learning software development. It has been the

opportunity to review and present all the concepts learned through this journey, from the funda-

mental class of OOP to the intricate combinations of design patterns used for architecting the

game engine. It emphasizes all that is dear to the author in the world of software development and

serves as the ideal conclusion to their bachelor formation.

49

Sources

Adafruit s.a. Adafruit Monochrome 2.7" OLED Graphic Display. URL: https://www.ada-

fruit.com/product/2674 . Accessed: 11 May 2024.

Adafruit 2023. Adafruit-GFX-Library. URL: https://github.com/adafruit/Adafruit-GFX-Library . Ac-

cessed: 22 May 2024.

Adafruit 2024. Adafruit_SSD1325_Library. URL: https://github.com/adafruit/Adafruit_SSD1325_Li-

brary . Accessed: 24 May 2024.

AITO. 2022. The AITO Dahl-Nygaard Prize Winners For 2006. URL:

https://sites.google.com/aito.org/home/aito-dahl-nygaard/2006-winners . Accessed: 28 May 2024.

Amazon 2023. ESP32-S3-WROOM-1-N16R8 development board. URL: https://www.ama-

zon.com/YEJMKJ-ESP32-S3-DevKitC-1-N16R8-Development-ESP32-S3-WROOM-1-Microcon-

troller/dp/B0CDRM6BGQ . Accessed: 11 May 2024.

Andrade, A. 2015. Game engines: a survey. EAI endorsed transactions on serious games, 2, 6, pp.

1-6.

Arduino 2023. Visual Studio Code extension for Arduino. URL: https://marketplace.visualstu-

dio.com/items?itemName=vsciot-vscode.vscode-arduino . Accessed: 13 May 2024.

arm s.a. What is a Gaming or Game Engine?. URL : https://www.arm.com/glossary/gaming-en-

gines . Accessed: 26 March 2024.

benricok 2023. MicroGameConsole. URL: https://github.com/benricok/MicroGameConsole . Ac-

cessed: 24 May 2024.

Bodmer 2024. TFT_eSPI. URL: https://github.com/Bodmer/TFT_eSPI . Accessed: 22 May 2024.

Brett, D. 2024. What Are Embedded Systems?. URL: https://www.trentonsystems.com/en-

gb/blog/what-are-embedded-systems . Accessed: 4 May 2024.

Brian, P. 2023. Color Depth. URL: https://techterms.com/definition/color_depth . Accessed: 22 May

2024.

CircuitSchools Staff. 2022. What is ESP32, how it works and what you can do with ESP32? URL:

https://www.circuitschools.com/what-is-esp32-how-it-works-and-what-you-can-do-with-esp32/ . Ac-

cessed: 29 May 2024.

https://www.adafruit.com/product/2674
https://www.adafruit.com/product/2674
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit_SSD1325_Library
https://github.com/adafruit/Adafruit_SSD1325_Library
https://sites.google.com/aito.org/home/aito-dahl-nygaard/2006-winners
https://www.amazon.com/YEJMKJ-ESP32-S3-DevKitC-1-N16R8-Development-ESP32-S3-WROOM-1-Microcontroller/dp/B0CDRM6BGQ
https://www.amazon.com/YEJMKJ-ESP32-S3-DevKitC-1-N16R8-Development-ESP32-S3-WROOM-1-Microcontroller/dp/B0CDRM6BGQ
https://www.amazon.com/YEJMKJ-ESP32-S3-DevKitC-1-N16R8-Development-ESP32-S3-WROOM-1-Microcontroller/dp/B0CDRM6BGQ
https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.vscode-arduino
https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.vscode-arduino
https://www.arm.com/glossary/gaming-engines
https://www.arm.com/glossary/gaming-engines
https://github.com/benricok/MicroGameConsole
https://github.com/Bodmer/TFT_eSPI
https://www.trentonsystems.com/en-gb/blog/what-are-embedded-systems
https://www.trentonsystems.com/en-gb/blog/what-are-embedded-systems
https://techterms.com/definition/color_depth
https://www.circuitschools.com/what-is-esp32-how-it-works-and-what-you-can-do-with-esp32/

50

Codacy 2023. What Is Clean Code? A Guide to Principles and Best Practices. URL:

https://blog.codacy.com/what-is-clean-code . Accessed: 6 April 2024.

Codecademy Team 2023. What is Inheritance in Object-Oriented Programming? URL:

https://www.codecademy.com/resources/blog/what-is-inheritance/ . Accessed: 30 March 2024.

corax89 2021. esp8266_game_engine. URL : https://github.com/corax89/esp8266_game_engine .

Accessed: 24 May 2024.

Elecrow s.a. TFT LCD Module Display. URL: https://www.elecrow.com/3-5inch-480x320-mcu-spi-

serial-tft-lcd-module-display.html . Accessed: 11 May 2024.

ESPBoards 2023. ESP-IDF vs Arduino Core: Which Framework to Choose in 2023. URL:

https://www.espboards.dev/blog/esp-idf-vs-arduino-core/ . Accessed: 13 May 2024.

ESPRESSIF s.a. Get Started. URL: https://docs.espressif.com/projects/esp-idf/en/sta-

ble/esp32/get-started/index.html . Accessed 13 May 2024.

fdivitto 2023. FabGL. URL: https://github.com/fdivitto/FabGL . Accessed: 24 May 2024.

Gamma,E., Helm,R., Johnson,R., & Vlissides,J. 1994. Design Patterns: Elements of Reusable Ob-

ject-Oriented Software. Addison-Wesley Professional. Place of Publication unknown. E-book. Ac-

cessed: 30 March 2024.

GeeksforGeeks 2022. Difference between #define and const in C? URL: https://www.geeksfor-

geeks.org/diffference-define-const-c/ . Accessed: 14 May 2024.

Gianou 2024. Haaga-Helia-IoT-Experimental-Project. URL : https://github.com/Gianou/Haaga-He-

lia-IoT-Experimental-Project . Accessed: 24 May 2024.

Giant Sloth Games. April 2023. So you want to make a Game Engine!? (WATCH THIS before you

start). Online video. URL: https://www.youtube.com/watch?v=3rcka6P2cVI . Accessed: 25 May

2024.

Gregory,J. 2017. Game Engine Architecture. 2nd Edition. A K Peters/CRC Press. Place of publica-

tion unknown. E-book. Accessed: 26 March 2024.

Gunnarsson, K. & Herber, O. 2020. The Most Popular Programming Languages of GitHub's Trend-

ing Repositories. Bachelor's thesis. School of Electrical Engineering and Computer Science

(EECS). URL: https://www.diva-portal.org/smash/get/diva2:1463849/FULLTEXT01.pdf . Accessed:

5 May 2024.

https://blog.codacy.com/what-is-clean-code
https://www.codecademy.com/resources/blog/what-is-inheritance/
https://github.com/corax89/esp8266_game_engine
https://www.elecrow.com/3-5inch-480x320-mcu-spi-serial-tft-lcd-module-display.html
https://www.elecrow.com/3-5inch-480x320-mcu-spi-serial-tft-lcd-module-display.html
https://www.espboards.dev/blog/esp-idf-vs-arduino-core/
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/index.html
https://github.com/fdivitto/FabGL
https://www.geeksforgeeks.org/diffference-define-const-c/
https://www.geeksforgeeks.org/diffference-define-const-c/
https://github.com/Gianou/Haaga-Helia-IoT-Experimental-Project
https://github.com/Gianou/Haaga-Helia-IoT-Experimental-Project
https://www.youtube.com/watch?v=3rcka6P2cVI
https://www.diva-portal.org/smash/get/diva2:1463849/FULLTEXT01.pdf

51

Herdwaria, S. 2023. Exploring the Need for Object-Oriented Programming. URL:

https://dzone.com/articles/exploring-the-need-of-object-oriented-programming . Accessed: 28 May

2024.

Lutkevich, B. 2019. microcontroller (MCU). URL: https://www.techtarget.com/iotagenda/defini-

tion/microcontroller . Accessed: 4 May 2024.

Martin, R. C. 2008. Clean Code: A Handbook of Agile Software Craftsmanship. Pearson. Place of

Publication unknown. E-book. Accessed: 6 April 2024.

MaxGaming s.a. BOX Navy Clicky Switch from Novelkeys. URL: https://www.maxgam-

ing.fi/fi/switches/box-navy-clicky-switch . Accessed: 11 May 2024.

mdn web docs 2023. OOP. URL: https://developer.mozilla.org/en-US/docs/Glossary/OOP . Ac-

cessed: 13 April 2024.

MKS075 2024. Difference between Inheritance and Polymorphism. URL: https://www.geeksfor-

geeks.org/difference-between-inheritance-and-polymorphism/ . Accessed: 13 April 2024.

OODesign s.a. Design Patterns. URL: https://www.oodesign.com/ . Accessed: 30 March 2024.

Oracle s.a. What is IoT?. URL: https://www.oracle.com/internet-of-things/what-is-iot/ . Accessed: 4

May 2024.

Reeve, A. 2024. About Netcode for GameObjects. URL: https://docs-multi-

player.unity3d.com/netcode/current/about/ . Accessed: 31 May 2024.

Refactoring Guru s.a. a. Composite. URL: https://refactoring.guru/design-patterns/composite . Ac-

cessed: 20 May 2024.

Refactoring Guru s.a. b. Composite Pattern from the Refactoring Guru. URL: https://refactor-

ing.guru/design-patterns/composite . Accessed: 20 May 2024.

Refactoring Guru s.a. c. Hello, world!. URL: https://refactoring.guru . Accessed: 28 May 2024.

Saraswat, M. M. 26 November 2023. Frame Rate - Everything You Need To Know. 100ms blog.

URL: https://www.100ms.live/blog/frame-rate#commonly-used-frame-rates . Accessed: 20 May

2024.

Sintosen palvelut s.a. Joystick mounted on a PCB. URL: https://kauppa.sintosen.com/prod-

uct/1926/ . Accessed: 11 May 2024.

https://dzone.com/articles/exploring-the-need-of-object-oriented-programming
https://www.techtarget.com/iotagenda/definition/microcontroller
https://www.techtarget.com/iotagenda/definition/microcontroller
https://www.maxgaming.fi/fi/switches/box-navy-clicky-switch
https://www.maxgaming.fi/fi/switches/box-navy-clicky-switch
https://developer.mozilla.org/en-US/docs/Glossary/OOP
https://www.geeksforgeeks.org/difference-between-inheritance-and-polymorphism/
https://www.geeksforgeeks.org/difference-between-inheritance-and-polymorphism/
https://www.oodesign.com/
https://www.oracle.com/internet-of-things/what-is-iot/
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://refactoring.guru/design-patterns/composite
https://refactoring.guru/design-patterns/composite
https://refactoring.guru/design-patterns/composite
https://refactoring.guru/
https://www.100ms.live/blog/frame-rate#commonly-used-frame-rates
https://kauppa.sintosen.com/product/1926/
https://kauppa.sintosen.com/product/1926/

52

Thesis Coordinators 2022. Guidelines for Long Reports and Theses. Haaga-Helia. Helsinki. URL:

https://www.haaga-helia.fi/sites/default/files/file/2022-02/Guidelines_for_long_reports_and_the-

ses_2022_0.pdf . Accessed: 7 May 2024.

Ubahnverleih. 2018. ESP32 Espressif ESP-WROOM-32 Dev Board. URL: https://commons.wiki-

media.org/wiki/File:ESP32_Espressif_ESP-WROOM-32_Dev_Board_%282%29.jpg . Accessed:

29 May 2024.

Weisfeld, M. 2019. The Object-Oriented Thought Process, 5th Edition. Addison-Wesley Profes-

sional. Place of Publication unknown. E-book. Accessed: 28 March 2024.

W3 Schools s.a. C++ Access Specifiers. URL : https://www.w3schools.com/cpp/cpp_access_spec-

ifiers.asp . Accessed: 30 March 2024.

https://www.haaga-helia.fi/sites/default/files/file/2022-02/Guidelines_for_long_reports_and_theses_2022_0.pdf
https://www.haaga-helia.fi/sites/default/files/file/2022-02/Guidelines_for_long_reports_and_theses_2022_0.pdf
https://commons.wikimedia.org/wiki/File:ESP32_Espressif_ESP-WROOM-32_Dev_Board_%282%29.jpg
https://commons.wikimedia.org/wiki/File:ESP32_Espressif_ESP-WROOM-32_Dev_Board_%282%29.jpg
https://www.w3schools.com/cpp/cpp_access_specifiers.asp
https://www.w3schools.com/cpp/cpp_access_specifiers.asp

53

Appendices

Appendix 1. Link to GAMESP32 GitHub Repository

URL: https://github.com/Gianou/GAMESP32

https://github.com/Gianou/GAMESP32

	1 Introduction
	1.1 Scope
	1.2 Outcomes
	1.3 Structure and Format

	2 Theoretical Framework
	2.1 Object Oriented Programming
	2.1.1 Objects and Classes
	2.1.2 Encapsulation and Data Hiding
	2.1.3 Inheritance
	2.1.4 Polymorphism
	2.1.5 Composition

	2.2 Design Patterns
	2.2.1 Composite Pattern
	2.2.2 Singleton Pattern
	2.2.3 State Pattern
	2.2.4 Observer Pattern

	2.3 Clean Coding
	2.3.1 Readable Code
	2.3.2 SOLID Principles

	2.4 Game Engine
	2.4.1 History
	2.4.2 Definitions

	2.5 ESP32
	2.5.1 Important Concepts
	2.5.2 Development Environment

	2.6 Similar Projects
	2.6.1 Other ESP32 Game Engines
	2.6.2 Graphics Libraries
	2.6.3 IoT Experimental Project

	3 Practical Part
	3.1 Iteration 0 - Hello World
	3.1.1 Device & Components
	3.1.2 Development Environment
	3.1.3 Testing the Components

	3.2 Iteration 1 – Engine’s Core & Inputs
	3.2.1 Inputs as Objects
	3.2.2 Input Manager as Singleton Pattern
	3.2.3 Loop
	3.2.4 Engine’s Core as Composite Pattern
	3.2.5 Screen Saver Demo

	3.3 Display Issue
	3.3.1 Identifying the Issue
	3.3.2 Refactoring

	3.4 Iteration 2 – Controls & Collisions
	3.4.1 User-Controlled Paddle
	3.4.2 Collision Detection
	3.4.3 Pong Game Demo

	3.5 Iteration 3 – Scene Management & Better Collisions
	3.5.1 Scene Management as State Pattern
	3.5.2 Event Driven Collision Detection with Observer Pattern

	4 Discussions
	4.1 Future Features Development and Patterns
	4.2 Use of AI
	4.3 Sustainability
	4.4 Conclusions

	Sources
	Appendices
	Appendix 1. Link to GAMESP32 GitHub Repository

