

Patrik Teivonen

STAGING ENVIRONMENT IMPLEMENTATION IN A SOFTWARE DELIVERY

AUTOMATION PIPELINE

STAGING ENVIRONMENT IMPLEMENTATION IN A SOFTWARE DELIVERY

AUTOMATION PIPELINE

Patrik Teivonen
Final projects
Spring 2024
Degree Program in Information
Technology
Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Program in Information Technology

Author(s): Patrik Teivonen
Title of the thesis: Staging Environment Implementation in a Software Delivery Automation Pipeline
Thesis examiner(s): Teemu Leppänen
Term and year of thesis completion: Spring 2024 Pages: 28

This thesis aims to evaluate the use of staging environments in enhancing the development
processes for software delivery automation pipeline tooling. With the implementation of a staging
environment for an existing delivery automation pipeline case, it was envisioned that adding it would
ease the testing of changes to the tools and configurations while not disrupting the production
environment and releases, thus improving the efficiency and the quality of the release process. The
work was commissioned by The Qt Company Oy.

The first step in achieving the intended goals was to map out the current automation infrastructure
and to identify the minimal required changes for the pipeline to support a multi-deployment scenario
and which parts needed to be replicated. Then, a more refined version control branching strategy
was chosen as a vehicle to make those adjustments without unnecessarily disrupting the
production deployment and for the future development of the automation tooling. Finally, the
deployment of the automation pipeline was conducted to provisioned machines in the staging
environment, verifying that the configurations are correctly set up and that all parts of the pipeline
functioned as expected.

The thesis work concluded with a functioning initial deployment of the staging pipeline. Additionally,
the new proposed development and testing process for automation tooling was trialed with taking
it in use for the subsequent changes. The new branching and production update strategy has
already proved effective in speeding up the development workflow separating it from other release
activities, although it will take some more time for everything to adopt the new process. While not
all the benefits of the staging environment could be realized at this early stage, the results gathered
were considered useful in detecting gaps in the current deployment and planning future
enhancements.

Keywords: continuous delivery, packaging, releasing, Jenkins, Ansible, staging environment,
automation pipeline, quality assurance, software development process

4

CONTENTS

1 TERMS AND ABBREVIATIONS .. 5

2 INTRODUCTION ... 6

3 THEORY .. 7

3.1 Software Delivery Automation .. 7

3.2 Delivery Automation Pipeline .. 8

3.3 Staging Environments .. 8

3.4 Automating Deployments and Monitoring ... 9

4 REQUIREMENTS .. 10

5 IMPLEMENTATION ... 13

5.1 Version Control System (VCS) ... 13

5.2 Artifact Exporter .. 14

5.3 Jenkins CI/CD Deploy Configuration .. 16

5.4 Packaging Job Configuration .. 19

5.5 Delivery Job Configuration ... 19

5.6 Deployment .. 19

6 RESULTS AND VERIFICATION .. 21

6.1 Artifact Exporting Functionality ... 21

6.2 Jenkins, VM Cloning, Pipeline Jobs ... 22

6.3 Production update .. 23

6.4 Getting Feedback ... 23

7 DISCUSSION .. 24

REFERENCES .. 27

5

1 TERMS AND ABBREVIATIONS

AD Microsoft Active Directory

API Application programming interface

AWS Amazon Web Services

CD Continuous delivery

CDN Content delivery network

CI Continuous integration

CLI Command line interface

HTTP Hypertext Transfer Protocol

INI Initialization file, a file format for configurations

IT Information technology, a process team for technical assistance and systems

JSON JavaScript Object Notation, a file format

LDAP Lightweight Directory Access Protocol

NFS Network File System

README An accompanying manual or documentation text file in a markdown format

REST Representational state transfer, an architecture

RTA Release test automation

SDLC Software development life cycle

SSH Secure Shell Protocol

UI User interface

URL Uniform Resource Locator, a type of Uniform Resource Identifier (URI)

VCS Version control system

VM Virtual machine

XML Extensible Markup Language, a file format

YAML YAML Ain't Markup Language, a data serialization language

6

2 INTRODUCTION

The Qt Company Oy is a multinational software company headquartered in Finland mainly known

for its development framework Qt, whose technology is widely used globally by software developers

across many different types of platforms and systems. It has undergone a growth transformation

over the years to attain a global presence, diversifying its product portfolio to encompass all areas

of software development, with the most recent acquisitions in the quality assurance category. (1.)

While the increase in products and the expansion of present offerings might have opened new

avenues for additional growth and market penetration, it has also brought to light new challenges

in handling the rising number of releases in the cycle with the current processes that have finally

started to prove inadequate. The workflow with a single linear pipeline has worked well in the past,

but the frequency of the releases combined with the complexity of the system has reduced the

amount of time slots allocated for developing and testing the automation in place. The need for a

more streamlined process was apparent to maintain the robustness and quality of continuous

delivery.

To effectively address these concerns, the release team recognizes the significance of proposing

to add a separate deployment of the automation pipeline, only for testing purposes. The changes

to the automation tooling and configurations could be then thoroughly evaluated in this simulated

staging environment before deploying them to the production environment, allowing for quicker

incorporation of new features to the pipeline while simultaneously reducing the risk of delayed

releases. It is envisioned that significant improvements will be seen in the efficiency, predictability,

and reliability of the whole release process after this change, thereby also minimizing the impact of

potential issues as these will be caught earlier.

This thesis aims to contribute to the domain of software delivery automation by documenting the

implementation of the described staging pipeline deployment case for The Qt Company Oy and

establishing a new proposed process model for the development of the automation tooling. While

the suitable tooling and processes can vary depending on the use case, the findings of the work

are also expected to underscore the importance of staging deployments and effective processes

in the context of other continuous delivery systems alike.

7

3 THEORY

3.1 Software Delivery Automation

The term software delivery describes a process where a software product undergoes a

transformation from the initial concept through development to the end users in the form of a final

licensed product. This involves a series of steps that the company teams must execute to make

the said product available for the customer to access via the chosen distribution method. (2.)

Software development in today’s fast-paced world necessitates quick and reliable delivery of high-

quality software. To measure the performance or efficiency of the software delivery process,

various metrics can be used. Quantitative metrics include but are not limited to the lead and cycle

time, the frequency of deployment, the change failure rate, and code refactoring ratios. On the other

hand, one of qualitative aspects might focus on getting feedback to identify the strong and weak

points regarding the expectations from the customer. Modern software products are increasingly

complex, meaning traditional manual approaches risk not always fulfilling these requirements as

measured by the metrics. Automation is seen as one of the most important ways to tackle the speed

problem in software delivery reducing the time needed to complete the Software Development Life

Cycle (SDLC). (3.)

Organizations that implement automation practices such as Continuous Integration (CI) or

Continuous Delivery (CD) have been seen to score higher on performance metrics as documented

by industry data. In 2021, one of such reports, "Accelerate State of DevOps" by DevOps Research

and Assessment (DORA), the research showed that highest performing organizations adopting

these practices have a change failure rate that is 3 times lower and can deploy code 973 times

more frequently than their low performing counterparts. These findings highlight the substantial

benefits of automation in improving both the speed and reliability of software delivery processes.

(4, p. 12-13.)

8

3.2 Delivery Automation Pipeline

Pipelines are one way to represent the steps of the software delivery process. They can be defined

as sets of automated processes which speed up the software delivery. There are no universally

specific rules how a pipeline should look like and the tools which it must utilize considering software

delivery processes can differ even within the same organization among various software products

and teams. To give a simplified example of a delivery automation pipeline in the context of this

thesis, the main products of The Qt Company such as the Qt Framework appear to follow a

commonly found structure consisting of the components seen in figure 1 below.

FIGURE 1. The main stages of a delivery automation pipeline

The delivery automation pipeline begins with a revision control system, Git (5), where the

developers will commit their code. Before integration, contributions are reviewed (6) through the

web-based code review system, Gerrit (7; 8). From there the code proceeds to being built in a

Continuous Integration (CI) build system, such as the open-source automation server Jenkins (9)

or the in-house built CI environment replacement, Coin (10). After completing the CI stage, the

relevant build artifacts are usually exported for the various other Continuous Delivery (CD)

processes which includes the packaging, deploying, testing, and finally publishing the software

product release for distribution (11, p. 12-13.). These processes will be described in more detail in

the requirements and implementation sections.

3.3 Staging Environments

In software development, staging is an environment that is a mirror of or resembles closely with the

original production environment. Following the best practices, the staging and production

environments should be isolated from each other, although this is not always possible. The basic

usage of a staging environment in development is that a certain new revision of the software or

configurations will be deployed to the staging environment from version control for testing,

9

demonstration, or training purposes, before deciding on whether it is ready for production

deployment. Version control strategies such as branching can allow easy management of multi-

deployment configurations. (12.)

3.4 Automating Deployments and Monitoring

With multiple deployments such as staging and production environments, a large set of tools,

configurations, and services need to be deployed. As this process is often complex and demands

time, automating the deployment process saves resources and helps in finding problems earlier in

the development cycle. (13, p. 1.)

One of the tools that is used in The Qt Company for automating deployments is Ansible by Red

Hat, which allows to manage machine configurations in a simple text format (14). Configurations

for the company pipeline infrastructure can then be committed, reviewed, and stored in the version

control where they can be deployed automatically during maintenance. Manual configuration and

deployment examples and other guides take place in the version control README files or the

intranet wiki pages.

The monitoring of delivery pipeline infrastructure is also crucial for many reasons, including quality

assurance of deployments and operational efficiencies. Monitoring allows detecting problems early

in the delivery process. By catching issues early, it prevents small issues from escalating into larger,

more costly situations. It therefore plays a role in maintaining the health of the SDLC by reducing

errors and stress for the development team while increasing deployment flexibility. (15, p. 4, 17-

21.)

By continuously monitoring the delivery pipeline, teams can also streamline processes in

operations, identify bottlenecks, and optimize resource usage. This then leads to quicker and more

efficient software releases. (16.) This is especially true for The Qt Company, which employs

software monitoring tools such as Grafana (17) to create visualized dashboards from infrastructure

real time data, with alerting configured for excessive resource usage or errors in pipeline

infrastructure services allowing for various optimizations and quick resolution of problems.

10

4 REQUIREMENTS

The goal of the implementation work in the subsequent sections is to create an isolated

environment in which the changes and improvements to tooling related to artifact exporting,

packaging, and delivery automation could be tested without interrupting the releasing workflows in

the production environment (R6). In this chapter, the requirements for this staging environment will

be outlined in relation to the different stages in the pipeline, so that the results can be then evaluated

against the targets which are set before the implementation. For an overview of the main

requirements with their identifiers and descriptions, see table 1 on page 11.

Beginning with the version control, a new branching strategy must be proposed for the Git

repositories containing the tools and configurations. Furthermore, the tools and configurations

should reside in the same repository to keep them in sync better, and other benefits associated

with the so-called “monorepos” (18). The deployment in production should keep the current main

branches and separate branches can be created where needed for the staging environment

implementation work and future use. It should be possible to deploy the latest configurations and

tools directly from the branch in the version control (R2). A merging strategy is to be developed

where the changes for the staging and production branches stay in sync periodically, with the

staging containing all the latest changes and production containing the tested revision of changes

and the latest configurations for release activities.

FIGURE 2. The architecture overview of the current pipeline infrastructure top-level components.

11

Next, it is important to define the infrastructure setup needed for the staging environment. The

current pipeline architecture components can be seen in figure 2. To start with, to get the build

artifacts into the staging environment, it was decided that a separate artifact exporter instance

would be set up, but it was to use the same CI storage to save resources (R3). In addition to that,

for the same reason, automatic exporting of build artifacts will be disabled where necessary, so the

finished integration inbox will not be linked to the staging instance (R4). The packaging and delivery

area also needs a separate Jenkins CI instance, which will be configured to use the same

packaging and deploy configurations as in production (R1) but use the staging versions of the

storage servers instead.

Furthermore, the virtual machine pool from OpenNebula as well as the provisioning configurations

will be shared between the two, so to isolate the builds, the server addresses and access keys

need to be reliably configurable if further network isolation is not possible to prevent leaking

between the two deployments. A separate Coin for Jenkins instance will be deployed to request

the cloud resources with different user credentials. (R6)

To offer more isolation, the other staging instance machine infrastructure as well as artifact and

package storage servers are to be put into a separate network, controlled by firewall rules to allow

only the required shared access to virtual machines and CI storage (R6). Release test automation

(RTA) will test the content from the production environment, and the CI artifacts are the same in

both environments, so triggering RTA tests will be disabled in the staging environment (R4). For

final software packages in the staging environment, only dummy storage buckets and servers are

to be created and used for testing delivery functionality with no external access.

During the staging environment implementation, Jira management tool (19) must be used to track

the current progress with the tasks. For tooling changes, unit tests should be created and linters

and commit hooks utilized for quality assurance. At the beginning, during the implementation, and

after successful deployment, there must be meetings held with the release team and other

stakeholders discussing the details of the staging environment and to provide training. Email and

informal communication can be used as well, as a form of knowledge transfer, to keep everyone

updated with the latest developments. Documentation should also be created for the new

functionality and processes in intranet pages or version control README text files depending on

which one is more accessible to the intended audience. The existing diagrams and guides are also

to be updated to include the staging deployment details. (R5)

12

TABLE 1. Requirements overview

Requirement ID & Description Acceptance Criteria Source & Justification

R1: The staging environment

must replicate the current

production environment as

closely as possible.

Use comparable

configurations and versions

for infrastructure deployment,

virtual machine pools,

automation systems, software

packaging, and delivery

methods.

Accurate and reliable

simulation of the production

environment, best practices.

Maintaining and keeping

duplicate configurations up to

date is not feasible.

R2: The pipeline must

support automated

deployment from version

control to both the staging

and production environment

during updates.

All necessary pipeline tools,

configurations, and

infrastructure successfully

deployed automatically via

Ansible or other existing

CI/CD tools. Strategy defined

for production updates.

Efficiency improvement with

reduction of manual work.

Follow the CI/CD best

practices. Controlled

production update

mechanism.

R3: The staging must use the

artifacts from the same

integrations as production,

R4: Automated pipeline flows

enabled only as needed for

testing purposes.

No staging Coin CI

deployment. Artifact exports

from shared CI storage.

Separately configurable

automatic exports. Automated

triggering of timers and RTA

tests disabled.

Resource usage

minimization. Coin CI system

is already testable via existing

test deployments. Shared

release content tested only

once by RTA.

R5: The staging pipeline must

be documented

Tasks created in Jira project

management tool (19),

Availability of intranet

documentation and README

files, internal training

Progress tracking, knowledge

transfer, onboarding,

maintenance instructions

R6: Must be reasonably

isolated from production and

unnecessary outside access.

Separated network segments

where possible. Verification of

configuration overlap. Version

control branching strategy.

Minimize interruption to

production. Security best

practices, data integrity,

access controls.

13

5 IMPLEMENTATION

This section with its subsections focuses on the practical parts of the thesis work and the

implementation of the necessary changes to the current tooling and configurations in preparation

for the staging pipeline deployment. The CI infrastructure responsible team was also tasked with

cloning the current Ansible production configurations for the staging pipeline counterpart machines

with those changes not being mentioned here. One of the anticipated challenges was that the

Ansible configurations might be incomplete as far as the current production deployment is

concerned, since some of the environment set up has been done manually in the past.

5.1 Version Control System (VCS)

The version control system related process changes were the first step in establishing the proper

development environment for implementing the changes required for the staging pipeline. Firstly,

the focus was on the unification of two releasing team’s single branch Git repositories containing

the tools and configurations mainly used by the packaging and distribution stage of the pipeline.

Before introducing more complex branching strategies, the scripts and other tools were moved to

a single repository structure with the configurations, streamlining the process of making new

features that would have required simultaneous changes to both repositories previously. The old

leftover repository was archived to keep it still functional until the automation configurations were

updated to only clone the new unified repository. Active contributors were notified of this change

via email.

FIGURE 3. Git repository branching demonstration.

After the transition period to the unified repository was completed, a new development branch was

added in addition to the existing main or production branch. This would be used initially to make

the staging pipeline changes and later merged back once everything was complete. It was decided

14

that following the deployment of the staging pipeline, the process for new commits was to be

changed so that all the changes would then go first to this development branch where they are then

tested if necessary and when needed cherry-picked to the production in the case of hot fixes and

other release critical activities. There would also be periodic production update cycles during the

maintenance break schedule, where the development branch is verified to be stable by the release

team and the new features that were not previously picked would be merged with the production

branch. The new process and initial branching are illustrated in figure 3.

Although most of the Qt product repositories use a more elaborate release-based branching system

as described on the “Branch Guidelines” Qt Wiki page (20), where every new product version will

have a corresponding repository branch with its version number, this was seen unnecessary at this

point with the releasing repository as there was already a tagging process in place where the

repository state is tagged on new releases with the revision used to package the product. Therefore,

this new process with the addition of a separate development branch was seen as sufficient also

considering how the automation tool configurations were set up in the packaging Jenkins

environment. The production Jenkins deployment would keep using the stable and tested

production branch and the upcoming staging environment then default to the development branch

with the latest features.

5.2 Artifact Exporter

For the staging releasing pipeline to work, some content for testing the packaging and delivery

automation is necessary. For this purpose, the release team has a dedicated machine for getting

the build artifacts from the CI system into the artifact storage server. The artifact exporter tool

provides ways to either export the finished integrations automatically via a continuously running

Linux systemd service (21) or to trigger a manual export job. As already discussed in the

requirements section, it was decided that to keep the resource usage minimal and the content

consistent with the production, a separate CI for the generation of the staging artifacts will not be

used. Instead, the staging pipeline will share the same artifacts from the production integrations,

and both instances of the artifact exporter services must be able to operate simultaneously

connected on the same CI storage. The staging export will be done to a separate storage server

with RSYNC tool which operates over SSH. See diagram in figure 4 below.

15

FIGURE 4. Artifact exporter pipelines sharing the mounted CI storage.

Mounting the artifact sources via Network File System (NFS) in two places does not in itself provide

many challenges, but the automatic triggering of exports would, due to the implementation of the

finished integration inbox, require the implementation of a task-sharing mechanism between the

two exporter instances. After investigating the potential ways to implement this, it was decided that

this was out of scope at this point. During the discussion, it was noted that the automatic or manual

export functionality could easily be triggered manually when needed, and further resource savings

could be seen by not running automatic exports as most of the exports would not be relevant for

tests run in the staging pipeline.

The list of projects to automatically export artifacts from as well as the source and target storage

server locations was specified in a single JSON configuration file in the version control. To better

facilitate testing the automatic exports and getting the exported artifacts to the right place, the ability

to specify the configuration file in the tool options was seen as necessary, so there could be a

different configuration for the staging version of the exporter.

The artifact exporter service script is written in Python 3. For arguments passed to it from command

line it utilizes the “argparse” library (22). The parser was modified to take an additional launch

parameter “--service-config” (figure 5) to specify the configuration preset when the systemd service

was launched (figure 6). When the service is started with this parameter, instead of using the

production configuration, it will try to find the corresponding JSON configuration file from the

directory and error out if no such configuration exists. The ability to filter automatic exports by

projects could then be tested in the staging pipeline without modifying the configuration for the

production exporter service. Also, when the manual export is triggered from the command line,

additional configuration options, such as the correct export destination addresses could be set for

exports with the staging counterparts which were documented to the intranet pages.

16

FIGURE 5: The Python 3 argparse argument definition for --service-config.

FIGURE 6: The Artifact Exporter tool systemd service file, with the added command line argument
highlighted for the staging environment.

In addition to this artifact exporter tool script change, a new configuration was created in the version

control for the staging environment with the planned server addresses and initial set of automated

export definitions. The Ansible roles configuration was also modified to take the new launch

arguments into account when installing and activating the exporter services in both the production

and staging instances.

5.3 Jenkins CI/CD Deploy Configuration

FIGURE 7. Common Jenkins integration, packaging, and delivery job flows.

17

The packaging and distribution stage of the pipeline uses Jenkins for automation. The different

types of tasks run on Jenkins can be seen from figure 7. All these main pipeline flows must be

tested in the staging environment, which meant that a separate staging instance would be deployed

for the staging environment. It became apparent that Ansible had the configurations required for

doing a plain Jenkins installation with some of the required plugins, but for example, the user matrix

authentication set up was missing and was previously deployed manually in the production

instance.

To resolve the need for user authentication, Jenkins must be connected to the company’s Active

Directory (AD) (23). Using the generated default credentials for the admin Jenkins user, it is

possible to configure LDAP authentication and set the required permissions for the users in

compliance with the company’s security policies. The “need to know” principle applies where the

employees are given only the necessary access to do their assigned tasks. In addition to the

plugins, a simple Groovy script was created to be run as part of the Ansible roles to automatically

configure the LDAP options via the Jenkins API if they were missing from the machine. There was

no existing Ansible plugin found to achieve this, so the Jenkins script plugin was the easiest option.

Another thing missing from Ansible was the deployment of Jenkins jobs. The pipeline jobs were

manually deployed to the production instance using a custom deploy script written in Python 3 that

interacts with the Jenkins REST Application Programming Interface (API) (24). INI configurations

and XML job templates used to generate the final Jenkins job XML configuration are stored in the

packaging repository to allow for deployments from the version control system. The missing

configurations that had job deployments in the current production Jenkins that were not present in

version control were created.

Considering that even if running this job deploy script was added to Ansible in its current state, it

would require some work as it was limited to deploying jobs one or few at the time from a single

configuration file or a template. Furthermore, the server addresses for the Jenkins instance and

repository branch names were hard-coded and scattered around the deploy configurations. For

multi-deployment scenario, those should be configurable from a single place. Also, it is expected

that there will be some jobs that are only relevant to the staging environment for testing purposes

or vice versa, so that there must be a mechanism to decide which jobs belong to which Jenkins

instance.

18

To satisfy the above requirements in addition to that the pipeline jobs shall be easily deployable in

an automated manner, it was decided that a new top-level configuration file must be added for each

Jenkins deployment which specifies all the jobs expected to be deployed for that instance. This will

allow the deployment of all jobs quickly at once when needed, such as during a maintenance break,

and it can be added to Ansible for automated deployment of jobs when running other updates. The

configuration file will then also specify which repository and branch combinations to add to every

Jenkins job and some other options such as the target Jenkins instance address URL. The YAML

file format (25) was chosen for this purpose due to its simple human-readable syntax. See figure 8

for the initial example configuration of the top-level configuration file.

FIGURE 8: Top-level Jenkins configuration file example.

With the addition of the new top-level configuration files for both production and staging

deployments, Jenkins URLs, duplicate repository definitions, and branch definitions were cleaned

up from the configuration INI files and the original deploy script adapted to ask for this information

via the CLI options. A new batch deploy script was added which parses the given top-level

configuration file with the PyYAML library for Python and loops over the included jobs applying the

options specified to the XML templates and deploys the updated job definitions via the Jenkins API.

Furthermore, new options were added to allow disabling of all specified RTA and timer triggers,

which will be useful for the non-production deployments as per the requirements. Deploy script and

INI configurations were also modified to support adding Jenkins jobs automatically to the specified

views, which was not previously supported. Jenkins Access tokens are not shared between the

production and staging deployments to allow for more isolation preventing accidental cross-

19

deployments and are not stored in the version control but are kept separately in a more secure

place to follow the company’s security policies.

5.4 Packaging Job Configuration

Next, it was time to adjust the packaging configurations and build scripts to allow for use in multiple

deployments. Previously hard-coded server address values for artifact storage servers and

distribution endpoints were replaced by aliases, which would be then configurable from a single

place to point to the correct locations. They are applied at the start of the Jenkins job via a

packaging bootstrap script that is aware whether the Jenkins agent is connected to a production,

or a staging instance based on the “JENKINS_URL” environment value that Jenkins sets

automatically (26). Therefore, even agents from the same virtual machine pool can be somewhat

isolated from each other if the correct configuration is applied. Separate access keys and secrets

were also created for use in the staging environment so that there is less chance of mix-up between

the environments. (R6)

5.5 Delivery Job Configuration

Automated and manual delivery job configurations needed adjustments not to update production

access control lists automatically during a sync job. As per the requirements, the distribution

buckets hosted on AWS S3 service and storage servers deployed by the CI team would be made

available with different names only internally so no separate access control would be required to

access them other than that. There were hardcoded S3 bucket names that needed to be adjusted

to be different for the staging environment, as well as new credentials needed to be stored for

accessing those separately from the production environment.

5.6 Deployment

This subsection will go over the details on how the deployment of the staging environment

machines was done to bring up the staging environment itself. The same CI infrastructure pool from

OpenNebula already in use with the production environment was used to provide and provision the

virtual machines to best replicate the pipeline conditions between the environments as per

requirement R1.

20

The first step in the deployment process was the provisioning of virtualized hardware and the

operating systems along with Ansible for the required test environment machines. Hardware with

resources comparable to the existing production machines was chosen, although downscaled for

now to accommodate the expected load for the test pipeline. The capabilities would then be scaled

up in the future if deemed necessary, but it is good to start small to minimize the resource waste.

A Jira ticket with the planned server specifications was assigned to the teams responsible for CI so

that the resources could be reserved for the configuration of the systems.

In addition to the hardware and the deployment of operating system templates, the CI team

configured the private networking in cooperation with the IT. A network with a different subnet,

domains, and access keys was created for the test environment servers which were practically

isolated from those used in the production deployment to avoid any potential damage from

misconfigured server addresses in the pipelines. The security aspects such as firewall

configurations were also set up according to the company policies, and the list of needed services

such as the Jenkins, HTTP server (Apache, Nginx) proxies to web user interfaces (UIs), and Secure

Shell (SSH) server software that will be running on the machines was requested to be added to the

allowed list for the data communication inside the pipeline environment to be able to take place.

21

6 RESULTS AND VERIFICATION

After the staging environment machines were initially deployed, it was time to verify that all the

services in the pipeline were accessible and functional. Initially there were some unexpected

problems in general with the network and firewall configuration that delayed some functionality

verifications but those were resolved with the IT team. In this section, the achievements regarding

the requirements set before the implementation will be also evaluated. For example, considering

that there was not much manual work required to bring up the staging environment after the missing

configurations in Ansible and the Jenkins job deploy functionality were implemented, that was

enough to meet the R2 requirement of automating future deployments.

6.1 Artifact Exporting Functionality

To begin at the start of the staging pipeline, artifact exporting functionality was tested first. There

were some initial issues with getting the CI storage mounted as it was in a different network, but

after a second network interface was connected to the staging exporter machine the exports could

be tested. This is not ideal in terms of isolation, as the exporter machine will have access to the

production CI network, but it was the most reasonable option considering that a separate CI would

use up too many unnecessary resources without any real benefit, as decided with R3. Therefore,

the R6 isolation requirement was determined to be fulfilled at this stage.

Other than some minor issues with configurations, the full export of Qt framework was tested to the

staging artifact storage server and the added staging configuration preset appeared to function as

expected. The exporter tool storage drive for temporary files also had to be expanded from the

initially planned specifications, as a single export was able to take up the full space reserved for

the data partition. Once the export testing was completed successfully, there appeared to be no

differences between the exported artifacts from production and staging, so with R1 in mind the

operation is identical in both environments. With the export service running, it was also verified that

there were no automatic exports launched with the dummy inbox configuration on the staging

environment as per the requirement R4.

22

6.2 Jenkins, VM Cloning, Pipeline Jobs

After the Jenkins deployment, the dashboard was accessible through the web interface. Some

missing plugins noticed from the configuration panel were added to the Ansible configurations, and

the batch deploy script was used to deploy the staging jobs from configurations. The next step was

to ensure that the virtual machine cloning functionality was set up to be able to run jobs on agent

nodes other than the built-in node (the Jenkins host machine).

FIGURE 9. Overview of the Jenkins executors set up.

For this purpose, there is a custom implementation in place to integrate with the company’s in-

house built CI system Coin as shown in figure 9 above. When a job is launched on Jenkins, it will

trigger another job which contacts a Coin instance (specifically deployed for Jenkins use) with the

integration request containing information such as the desired machine configuration and the

required additional Git repositories to be cloned from the version control, and then once the guest

VM provisioning and allocation from OpenNebula cloud platform (27) is ready the Jenkins agent

will be launched and connected to run the job.

Once the basic features of Jenkins were functional, more in-depth testing was done with the new

configurations to ensure that all the continuous integration build jobs in Jenkins, installer and

packaging jobs, and continuous delivery publishing tasks were able to be successfully run in the

staging Jenkins environment without affecting the production deployment. This consisted of running

test integrations for products that used Jenkins as CI such as Qt Creator and various repository

and dummy production sync tasks for the Qt Framework and other products. With the main

23

packaging and delivery flows tested, it was verified that the staging Jenkins was able to operate

independently from production (R6) with the same features functional (R1).

6.3 Production update

Once the staging pipeline functionality was tested, the development branch changes were

scheduled to be merged back to the production repository. The date was chosen to be the next

maintenance break when the production machines would be also updated with the latest Ansible

changes. Despite a problem with the environment clean up between the Jenkins jobs ran in different

deployments everything went rather smoothly and there were no big interruptions to the releases.

Thus, the R2 requirement of automatic deployments were further verified with the updated

production deployment in addition to the initial staging deployment done before that.

6.4 Getting Feedback

Although the process changes were announced via email, there was still some confusion about the

new staging environment and processes with the development branch strategy. After a while of

monitoring the situation, most of the team members got somewhat used to the new workflow and

there were some valuable suggestions presented on how to enhance the proposed process as part

of future process improvement work. For example, the use of release branching for the repositories

was suggested, and there were multiple comments about the change cherry-picking process.

One of the highlighted things in the feedback was also that there should be more documentation

specifically related to the usage of the staging environment and the production update process. In

terms of updating existing documentation to include the staging environment details, however, the

documentation requirement R5 would be sufficient, so it should be considered partially completed.

Keeping this in mind, more work was required to improve the documentation pages on the intranet

and communicate the new changes to all the team members. Future tasks were planned for this in

the team backlog.

24

7 DISCUSSION

In conclusion, the implementation of the staging pipeline has marked a first step toward the pursuit

of a more streamlined and reliable delivery automation development process in the release team.

The ability to run builds separately from production within this isolated pipeline has already allowed

the development and testing efforts to continue in the development branch, although it will still take

some time for every member of the team to adopt the staging environment and the new branch

workflow in their own tasks. I will be looking forward to continuing to work with the team getting

everyone to the same page on the current state of the delivery automation pipeline deployments

and to further improving the processes outside of this work.

Even after an extended period getting familiar, developing, and working with the individual tools in

the delivery automation pipeline during the previous work I have completed for the company, there

was still significant value gained from this exercise for the purposes of personal development and

growth. The pipeline implementation process allowed me to deepen my knowledge about the

releasing system in general, seeing how everything glues together and interacts in the bigger

picture. It provided more elaborate insights in various individual components, too, that I was not

necessarily aware of before looking into it further in the context of this work. This comprehensive

understanding has enhanced my future abilities significantly in terms of troubleshooting the pipeline

for problems and optimizing the workflow in the future.

The exercise was also helpful for the purpose of exploring the gaps in the current automated

deployment tools and configurations, as it was clearly seen which parts of the system were not fully

deployed by the Ansible roles and other scripts, since the automatic deployments were not always

used from the start but developed afterwards alongside the growth of the company. Therefore, it

was possible to improve on this aspect by implementing the missing blocks from the automation

configurations. Having almost no prior experience with Ansible, this made it possible to also

develop my skills in that area and familiarize myself with the Ansible role design principles which

were not obvious from the start without reading up on the documentation and getting feedback from

the other team members.

The most challenging aspects were that the existing internal documentation of deployments and

who has access to what systems were not always easily accessible in the company intranet but

25

had to be assumed from the current production environment or by interviewing colleagues. Relying

on outdated details, missing information, or inaccuracies with individual recollections made it more

difficult to proceed as quickly as was envisioned. In addition, most of the work was completed

during the holiday season, which meant that key personnel were not always available when needed,

leaving the team with the resources we had to figure things out within the planned timeline.

That also unfortunately meant that the reviewing of changes was delayed by some time until the

right people could give feedback on the implementation and further changes. With the tight release

schedule, it took some time to finally implement the repository process changes and the execution

of the initial production update strategy, so that it could be completed smoothly without many

interruptions. Ultimately, the work and the results from it were spread over a much longer period

than initially planned, although it was expected there would be some setbacks and challenges.

In essence, most of the target requirements set out before the implementation were achieved

during the thesis work. However, considering the current state of the pipelines after the deployment,

there were still areas that require further work. Despite the focus on manual pipeline testing use

cases in the requirements of the initial deployment, defining a set of automated test jobs to be run

in the staging environment could be one of those future improvements. This would allow the pipeline

to continuously test and deploy the new changes to the delivery automation tooling as part of

staging a change in the version control.

Another aspect to pay more attention to in the future is to add more isolation between the production

and staging environments, mainly as the virtual machine pool is still currently shared, which could

allow for leakage between the environments given an erroneous configuration value since both

networks are accessible from the agent. The thing to learn from introducing isolation, however, is

that it can distance the staging environment from the production, making it so that the configurations

might not stay consistent with both. Thus, it is important to balance in between the isolation and

the replicability of the test deployments.

Furthermore, it was noticed that the monitoring capabilities in the staging area are still very limited

compared to the production environment. The Grafana dashboards providing overview of the

production environment machines are not yet available for the staging machines although the alerts

seem to be functional, although the Jira tasks were created to address this in the future. The same

goes for the documentation related to the usage of the different pipelines in place, which needs to

26

be improved over time so that there is less training time needed to be spent when instructions could

be easily available in the intranet wiki pages for quick reference.

27

REFERENCES

1. The Qt Company 2024. About the Qt Group – Code Less & Create More. Search date

25.2.2024. https://www.qt.io/group.

2. Thales Group 2021. Software Delivery Explained. Search date 13.5.2024.

https://cpl.thalesgroup.com/software-monetization/software-delivery-explained.

3. Lachaume, Arnaud (Keypup) 2023. From Chaos to Consistency: How to Streamline

Software Delivery for Seamless Results. Search date 13.5.2024.

https://www.keypup.io/blog/mastering-software-delivery-strategy.

4. Google Cloud DevOps Research and Assessment (DORA) 2021. Accelerate State of

DevOps Report. Search date 13.5.2024. https://services.google.com/fh/files/misc/state-

of-devops-2021.pdf.

5. The Git Community 2024. Git. Search date 13.5.2024. https://git-scm.com/.

6. Qt Wiki 2024. Qt Contribution Guidelines. Search date 13.5.2024.

https://wiki.qt.io/Qt_Contribution_Guidelines.

7. Google Open Source Projects 2024. Gerrit. Search date 13.5.2024.

https://opensource.google/projects/gerrit.

8. The Qt Project 2024. Gerrit Code Review Dashboard (QtFork). Search date 13.5.2024.

https://codereview.qt-project.org/.

9. Jenkins 2024. Jenkins User Documentation. Search date 13.5.2024.

https://www.jenkins.io/doc/.

10. The Qt Company 2022. Introduction — Coin - Qt Continuous Integration 1.0.0

documentation. Search date 13.5.2024. https://testresults.qt.io/coin/doc/introduction.html.

11. Shahin, Mojtaba & Ali Babara, Muhammad & Zhu, Liming 2017. Continuous Integration,

Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges and

Practices. Search date 25.2.2024. https://arxiv.org/ftp/arxiv/papers/1703/1703.07019.pdf.

12. Disruptive Library Technology Jester 2006. Traditional

Development/Integration/Staging/Production Practice for Software Development. Search

date 25.2.2024. https://dltj.org/article/software-development-practice/.

13. Humble, Jez & Read, Chris & North, Dan 2011. The Deployment Production Line. Search

date 25.2.2024. https://continuousdelivery.com/wp-

content/uploads/2011/04/deployment_production_line.pdf.

https://www.qt.io/group
https://cpl.thalesgroup.com/software-monetization/software-delivery-explained
https://www.keypup.io/blog/mastering-software-delivery-strategy
https://services.google.com/fh/files/misc/state-of-devops-2021.pdf
https://services.google.com/fh/files/misc/state-of-devops-2021.pdf
https://git-scm.com/
https://wiki.qt.io/Qt_Contribution_Guidelines
https://opensource.google/projects/gerrit
https://codereview.qt-project.org/
https://www.jenkins.io/doc/
https://testresults.qt.io/coin/doc/introduction.html
https://arxiv.org/ftp/arxiv/papers/1703/1703.07019.pdf
https://dltj.org/article/software-development-practice/
https://continuousdelivery.com/wp-content/uploads/2011/04/deployment_production_line.pdf
https://continuousdelivery.com/wp-content/uploads/2011/04/deployment_production_line.pdf

28

14. Ansible 2024. How it works. Search date 25.2.2024.

https://www.ansible.com/overview/how-ansible-works.

15. Humble, Jez & Farley, David 2010. Reliable Software Releases Through Build, Test And

Deployment Automation. ISBN 978-0-321-60191-9.

16. Forsgren, Nicole & Humble, Jez & Kim, Gene 2018. Accelerate: The Science of Lean

Software and DevOps. ISBN 978-194278379.

17. Grafana Labs 2024. Get started with Grafana Open Source – Grafana Documentation.

Search date 13.5.2024. https://grafana.com/docs/grafana/latest/getting-started/.

18. Narwhal Technologies Inc 2022. Monorepo explained. Search date 13.5.2024.

https://monorepo.tools/.

19. Atlassian 2024. Jira | Issue & Project Tracking Software | Atlassian. Search date

13.5.2024. https://www.atlassian.com/software/jira.

20. Qt Wiki 2024. Branch guidelines. Search date: 13.5.2024.

https://wiki.qt.io/Branch_Guidelines.

21. Systemd 2023. System and Service Manager. Search date: 13.5.2024.

https://systemd.io/.

22. Python Software Foundation 2024. argparse — Parser for command-line options,

arguments and sub-commands. Search date: 13.5.2024.

https://docs.python.org/3/library/argparse.html.

23. Jenkins 2024. Jenkins LDAP Plugin. Search date: 13.5.2024.

https://plugins.jenkins.io/ldap/.

24. Jenkins 2024. Remote Access API. Search date: 13.5.2024.

https://www.jenkins.io/doc/book/using/remote-access-api/.

25. The Official YAML Web Site. Search date: 13.5.2024. https://yaml.org/.

26. Jenkins 2024. Using environment variables. Search date 13.5.2024.

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/#using-environment-variables.

27. OpenNebula Systems 2023. OpenNebula – The Open Source Cloud & Edge Computing

Platform. Search date 13.5.2024. https://opennebula.io/.

https://www.ansible.com/overview/how-ansible-works
https://grafana.com/docs/grafana/latest/getting-started/
https://monorepo.tools/
https://www.atlassian.com/software/jira
https://wiki.qt.io/Branch_Guidelines
https://systemd.io/
https://docs.python.org/3/library/argparse.html
https://plugins.jenkins.io/ldap/
https://www.jenkins.io/doc/book/using/remote-access-api/
https://yaml.org/
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/#using-environment-variables
https://opennebula.io/

	CONTENTS
	1 TERMS AND ABBREVIATIONS
	2 INTRODUCTION
	3 THEORY
	3.1 Software Delivery Automation
	3.2 Delivery Automation Pipeline
	3.3 Staging Environments
	3.4 Automating Deployments and Monitoring

	4 REQUIREMENTS
	5 IMPLEMENTATION
	5.1 Version Control System (VCS)
	5.2 Artifact Exporter
	5.3 Jenkins CI/CD Deploy Configuration
	5.4 Packaging Job Configuration
	5.5 Delivery Job Configuration
	5.6 Deployment

	6 RESULTS AND VERIFICATION
	6.1 Artifact Exporting Functionality
	6.2 Jenkins, VM Cloning, Pipeline Jobs
	6.3 Production update
	6.4 Getting Feedback

	7 DISCUSSION
	REFERENCES

