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Early diabetes identification is crucial for controlling chronic illnesses. This study 
uses WEKA to compare the performance of four classification algorithms 
(Multilayer Perceptron, Logistic Regression, Random Forest, and Extra Trees) for 
diabetes prediction.  
 
Accuracy, precision, recall, and f-measure were evaluated across various train-test 
splits. The multilayer perceptron regularly outperformed others, indicating its 
usefulness in diabetes prediction. Logistic regression and random forest both 
produced encouraging results. Extra trees have regularly underperformed. 
  
These findings emphasize the potential of classification algorithms for early 
diabetes diagnosis, which can help healthcare practitioners make more informed 
decisions. Future research might investigate sophisticated algorithms, combine 
many data sources, and assess therapeutic impact in real- world scenarios. 
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1 INTRODUCTION 

1.1 Background of the Research 

My academic interest in machine learning, particularly its applications in 

healthcare, combined with personal experiences witnessing family members 

battle diabetes, motivated this thesis. Seeing family members battle with diabetes 

has motivated me to utilize statistics to forecast and treat the disease. Focusing 

on diabetes prediction with WEKA, a user-friendly platform with powerful medical 

data algorithms, aligns with my objective of creating a predictive model for early 

diabetes identification. This research not only improves my machine learning 

abilities but also aims to make a significant contribution to healthcare by 

potentially saving lives and lowering the worldwide diabetes burden. 

According to Kangra and Singh (2023, p. 1728): "Today, the world is facing a lot of 

chronic diseases such as heart disease, cancer, diabetes, and tuberculosis. The 

early detection of these illnesses is crucial. The patient must endure these diseases 

for a very long time. Numerous studies are being done to control these diseases. 

But these diseases are becoming more prevalent day by day" Therefore, there is 

an urgent need for further research and interventions to effectively control these 

chronic diseases. The World Health Organization supports this assumption, stating 

that noncommunicable diseases (NCDs) account for 71% of all deaths worldwide, 

with early identification being a major method in lowering this burden (WHO, 

2018). 

The healthcare sector is experiencing rapid evolution, marked by the continuous 

accumulation of data due to the generation and storage of vast amounts of 

information, including electronic medical records, reports, and diagnostic findings. 

Data mining plays a pivotal role in harnessing this wealth of healthcare data, 

facilitating the extraction of novel and valuable insights from extensive datasets. 

Within healthcare, data mining serves as a predictive tool for various diseases and 
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aids physicians in the diagnostic process (Koh & Tan, 2011; Raghupathi & 

Raghupathi, 2014; Alpan & Ilgi, 2020). 

As per WHO (2019), “Diabetes is a chronic metabolic disorder characterized by 

elevated blood glucose (or blood sugar) levels, leading to progressive damage in 

the heart, blood vessels, eyes, kidneys, and nerves. About 422 million people 

worldwide have diabetes, with the majority living in low- and middle-income 

countries.” Diabetes cases are rising globally, posing a major health threat with 1.5 

million deaths annually (WHO, 2019). This rise in diabetes prevalence is also noted 

by the International Diabetes Federation (American Diabetes Association, 2019), 

which states that diabetes affects 463 million people worldwide, and this number 

is expected to reach 700 million by 2045. Hence Saeedi et al. (2019) provides 

information that diabetes has increased by nearly double in the last twenty years 

which calls for increased awareness and control measures. 

1.2 Problem Statement 

The detection of diabetes in the starting phase is important to manage the new 

patient without problems. It is difficult to diagnose diabetes in individuals until 

serious health issues appear (American Diabetes Association, 2018). It is 

impractical for everyone to identify the early symptoms of diabetes and try to find 

medical observations. They may not even know their risk status or cannot always 

afford proper check-ups, especially in low- and middle-income countries 

(American Diabetes Association, 2019).  

This research demonstrates how early detection of diabetes using classification 

algorithms can increase prediction accuracy. It also shows how these algorithms 

can speed up medical response. This research uses machine learning methods 

such as Logistic Regression, Multilayer Perceptron, Random Forest, and Extra Tree 

algorithms to create strong models that enable early detection of diabetes among 
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people with different aspects related to their health (Kangra & Singh, 2023; Saeedi 

et al., 2019). 

1.3 Fields of Science for Thesis 

This research talks about how various scientific and technical fields combine. It 

aims to find the best classification algorithms for predicting diabetes. The focus of 

this work is in the domain of computer sciences, particularly dealing with machine 

learning. The research involves different machine learning methods such as 

Logistic Regression, Multilayer Perceptron, Random Forest, or Extra Trees to 

create a diabetes prediction model (Hastie, Tibshirani, & Friedman, 2009). These 

models are developed and assessed utilizing the complimentary platform WEKA 

(Hall et al., 2009). The dataset, diabetes health indicators, is available on Kaggle 

(Teboul, 2021). It emphasizes the significance of information technology for data 

management and access (Grolemund & Wickham, 2017). To understand the 

outcomes, the results must be interpreted by employing the statistical and 

probability theories (Casella & Berger, 2002). The models can, however, be 

evaluated by use of other measures like precision, recall as well as the F-measure. 

The diabetic health indicators dataset used in the study can be found on Kaggle 

(Teboul, 2021). The major idea is to illustrate how important it is to manage and 

obtain data using information technology (Grolemund & Wickham, 2017). 

Statistical and probability theories are necessary for interpreting the results 

(Casella & Berger, 2002). The study employs indicators such as accuracy. It also 

uses accurate Recall measures and F-measures to check the performances of the 

models. Understanding the statistical basis of these variables makes the study 

possible. This allows for more accurate judgments regarding each method's 

performance (James et al., 2013). Furthermore, the results are consistent with the 

wider subject of data science. Data science entails data gathering, cleaning, 

preprocessing, analysis, and model building (Provost & Fawcett, 2013). This study 
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utilizes several data science methods. It analyzes the diabetes health indicator 

dataset and creates categorization models. 

1.4 Research Philosophy and Time Horizon 

This study on diabetes prediction is consistent with a positivist worldview. 

Positivism stresses the scientific method and objective inquiry to learn about the 

world (Creswell, 2009). It is considered that there is an outside world. Observation 

and experimentation can quantify this reality, which is independent of the 

observer (Mertens, 2010; Phillips & Burbules, 2000). 

This study takes a positivist approach for various reasons. First, it is based on well- 

defined machine-learning algorithms. These are objective approaches to data 

analysis (Russell & Norvig, 2019). Second, the study makes use of a publicly 

available dataset that includes measurable diabetic health markers (Teboul, 2021). 

The assessment measures (accuracy, precision, recall, and F-measure) are all 

objective and statistically valid (Sokolova & Lapalme, 2009). Finally, WEKA is a 

popular platform. It is used for machine-learning tasks. WEKA offers a consistent 

environment for model development and validation (Hall et al., 2009). 

This study utilized a secondary dataset from the Teboul (2021). This is coherent 

with the cross-sectional approach. The data only represents one point in time. The 

secondary dataset eliminates the need for data collection. This study during the 

timeline focused on data analysis and also focused on building a classifier. 

Experimentation and result interpretation occurred over four months. 

1.5 Research Questions and Objective 

The main research questions are:  

• How do Logistic Regression (LR), Multilayer Perceptron (MLP), Random 

Forest (RF), and Extra Tree (ET) classifiers compare in terms of evaluation 
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metrics (accuracy, precision, recall, and F-measure) for predicting 

diabetes? 

• How does varying the percentage split (70%, 80%, and 90%) of dataset 

impact the performance of LR, MLP, RF, and ET classifiers for diabetes 

prediction? 

The objective of the research is to compare the performance of Logistic Regression 

(LR), Multilayer Perceptron (MLP), Random Forest (RF), and Extra Tree (ET) 

classifiers using WEKA for diabetes detection. 

Research on Diabetes depends on being able to detect it early because this way it 

is possible to treat the condition promptly before it leads to the problems 

associated with it (American Diabetes Association, 2018). Precise classification 

algorithms assist in detecting vulnerable individuals, thereby making detection 

strategies more easily available and faster (Zheng et al., 2017). These algorithms 

also aid in risk classification, customizing treatment strategies, and prioritizing 

high-risk patients (He et al., 2019). Identification is crucial in following the progress 

of diseases and in making adjustments to the treatment schedules. Research on 

these algorithms not only increases diagnosis accuracy but also enhances diabetes 

research by encouraging innovation and promoting evidence-based healthcare 

practices (Hinton, 2018). 

1.6 Research Significance 

This study contributes to the advancement of machine learning for early diabetes 

diagnosis by: 

• Early diagnosis through effective prediction algorithms can lead to timely 

intervention and potentially better patient outcomes. 

• By identifying high-performing algorithms, healthcare organizations can 

prioritize implementation of the most effective models, optimizing 

resource allocation for diabetes prediction. 
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• Findings can inform the development of improved medical decision 

support systems, aiding healthcare professionals in more accurate and 

efficient diabetes risk assessments. 

1.7 Structure of the Thesis 

This thesis is structured in five major chapters, references, and appendices to 

systematically explore the potential of machine learning for diabetes prediction. 

Chapter 1: The introduction establishes the basis. It delves into the consequences 

of diabetes and the difficulties associated with its diagnosis. The potential of 

machine learning for prediction (using WEKA) is then discussed, followed by the 

study challenge, questions, and objectives. Finally, the chapter discusses the 

study's significance. 

Chapter 2: The literature review covers existing research on machine learning for 

diabetes prediction, with an emphasis on algorithms utilized in WEKA. It addresses 

previous research algorithms, datasets, and assessment techniques. 

Chapter 3: Methodology provides the reader with the tools. This chapter describes 

WEKA and the methods used, followed by information on the diabetes dataset and 

any data pre-processing approaches. 

Chapter 4: Experiment and Analysis focuses on practical application. It describes 

the data splitting method, assessment measures, and outcomes for each 

algorithm. Finally, it assesses the findings, emphasizing their strengths and flaws. 

Chapter 5: Conclusion and Future. Work concludes the thesis. It presents major 

discoveries (including algorithm performance), recognizes limits, and suggests 

future research directions to enhance diabetes prediction with machine learning. 
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2 LITERATURE REVIEW 

2.1 Machine Learning 

According to Fuentes (2023), “Machine Learning (ML) focuses on the creation of 

systems or models that can learn from data and improve their performance in 

specific tasks without the need to be explicitly programmed, making them learn 

from past experiences or examples to make decisions on new data.” ML has two 

main types: Supervised learning and Unsupervised learning.  

Supervised learning, the most common type of machine learning, uses labeled 

datasets to predict categorical or continuous values by mapping input features to 

labels (Crabtree, 2023). Algorithms like linear regression, logistic regression, 

decision trees, and support vector machines are commonly used (Crabtree, 2023). 

It is essential for tasks such as image recognition (Crabtree, 2023). In contrast, 

unsupervised learning uses unlabeled datasets to identify patterns and 

relationships, employing algorithms like k-means and PCA for clustering and 

dimensionality reduction (Crabtree, 2023). This method is useful in marketing for 

customer segmentation without pre-existing labels (Crabtree, 2023). Both 

approaches are crucial for enabling intelligent machine learning (Goodfellow et al., 

2016). 

2.2 Classification 

According to Han et al. (2012), Building models in data analysis for categorizing 

points of data is referred to as classification. The model’s build is called classifiers. 

It identifies patterns that distinguish classes which helps them to predict class 

labels accurately. Applications of classification are widespread and include image 

recognition, spam email detection, medical diagnosis, customer segmentation, 

and sentiment analysis (Han et al., 2012; James et al., 2013).  
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To ensure the effectiveness of the classifier in real-world applications, evaluation 

matrixes are used (Sokolova & Lapalme, 2009). These metrics assess the 

performance of the classifiers, ensuring they can accurately and reliably predict 

class labels across various datasets and conditions. Evaluation metrics are critical 

for validating the practical utility of classifiers, guiding improvements, and 

ensuring their robustness in diverse applications. 

2.3 Diabetes Mellitus 

As per the WHO (2019), “Diabetes Mellitus (DM) is a chronic metabolic disorder 

characterized by elevated blood glucose (or blood sugar) levels, leading to 

progressive damage in the heart, blood vessels, eyes, kidneys, and nerves.” The 

global burden of diabetes is substantial and continues to grow, affecting millions 

worldwide (Saeedi et al., 2019). Kangra and Singh (2023) describe diabetes as 

having four main classifications: type-1, type-2, pre-diabetes, and gestational 

diabetes. Type-1 diabetes is a chronic condition where the immune system attacks 

and destroys beta cells in the pancreas that release insulin (Kangra & Singh, 2023; 

Atkinson et al., 2014). Type-2 diabetes causes low insulin secretion and excessive 

blood sugar levels (Kangra & Singh, 2023; DeFronzo et al., 2015). Pre-diabetes is 

characterized by raised blood sugar levels that are not high enough to be identified 

as type 2 diabetes (Kangra & Singh, 2023; Tabák et al., 2012). Pregnant women 

with high blood sugar are diagnosed with gestational diabetes (Kangra & Singh, 

2023; McIntyre et al., 2019). 

2.4 Related Works 

Kangra and Singh (2023) compared the ML algorithms DT, KNN, LR, NB, RF, and 

SVM for predicting diabetes using WEKA. They found SVM best for the Pima 

Indians Diabetes dataset (74% accuracy), while KNN and RF excelled on the 

Germany dataset (98.7% accuracy) (Kangra & Singh, 2023). 
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Anusha (2023) researched the application of machine learning algorithms to 

predict diabetes. The study compared the LR, RF, and KNN algorithms. Logistic 

regression had the highest accuracy, at 82.7% (Anusha, 2023). 

Bhat et al. (2023) suggested an ML technique for early diabetes prediction (PIDD 

dataset). The authors tested many algorithms (SVM, LR, KNN, and RF), with 

random forest attaining the greatest accuracy (92.85%). K-fold cross-validation 

was utilized for verification. 

Özsezer and Mermer (2022) predicted diabetes risk using machine learning 

models on a diabetes health indicators dataset (253,680 entries, 21 variables from 

CDC). KNN achieved 0.74 accuracy; LR 0.72; DT 0.84; RF 0.84; NB 0.84. Splitting 

data 80:20 (training: testing) resulted in comparable accuracy for Random Forest 

(84.4%) and Decision Tree (84.7%), making them top performers for risk 

estimation (Özsezer & Mermer, 2022). 

In their study, Chang et al. (2022) utilized machine learning algorithms to predict 

diabetes diagnosis on a CDC health indicators dataset (253,680 entries, 21 

variables). They compared various algorithms (DT, RF, KNN, LR, and NB) based on 

accuracy, precision, recall, and F1 score. Random Forest has the best accuracy rate 

(82.26%) (Chang et al., 2022). 

Alpan and Ilgi (2020) evaluated data mining techniques for diabetes classification 

on a UCI dataset (520 instances, 17 attributes). Classification algorithms (Bayes 

Network, NB, J48, RT, RF, KNN, and SVM) were evaluated. KNN achieved the 

highest accuracy (98.07%). 

Sisodia and Sisodia (2018) evaluated the utility of classification algorithms in 

predicting diabetes. They discovered that Naive Bayes outperformed Decision 

Trees and Support Vector Machines (SVM), achieving an accuracy of 76.30%. Their 

findings demonstrate the potential of machine learning to improve early detection 
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and prognosis of diabetes, thereby potentially reducing the burden on healthcare 

systems. 

Research conducted by Alehegn, Joshi, and Mulay (2018) aimed at establishing 

how effective machine learning algorithms are in predicting the arrival of Diabetes 

Mellitus (DM). The Pima Indian Diabetes Data Set (PIDD) yields a high accuracy of 

90.36% when using the Ensemble Method (PEM). Single algorithms, such as 

Decision Trees, have lower accuracy, ranging from 85% to 80%. They conclude that 

PEM outranks the Decision tree. 

Hassan Malaserene and Leema (2020) used the Pima Indian Diabetes Dataset to 

predict Diabetes Mellitus (DM) with classification techniques. They tested 

different algorithms, including Decision Trees, K-Nearest Neighbors (KNN), and 

Support Vector Machines (SVM). SVM performed best with an accuracy of 90.23%. 

This shows its value in classifying medical data. 

Patil and Tamane (2018) published a paper comparing different algorithms to 

predict whether someone will be diagnosed with diabetes mellitus (DM). They 

evaluated Logistic Regression, KNN, SVM, and Decision Trees using the Pima Indian 

Diabetes dataset. According to their findings, Logistic Regression and Gradient 

Boost were the best algorithms. They achieved an accuracy rate of 79%, making 

them useful for early DM diagnosis. 

Khanam and Foo (2021) studied how well neural networks and machine learning 

algorithms can predict diabetes using data from the Pima Indian Diabetes dataset. 

They tested Support Vector Machine and Logistic Regression. Both algorithms had 

a 70% accuracy rate. However, they discovered that a neural network model 

performed even better, with an accuracy of 88.6%. This outperformed all other 

methods they tried. They concluded that neural networks and machine learning 

methods are effective for predicting diabetes.  



16 

 

3 METHODOLOGY 

3.1 Background 

This section outlines the study process, following the common steps employed by 

most researchers (see Figure 1). Steps are elaborated in the following subsection: 

 

Figure 1. Block diagram of research methodology 

3.3 Holdout Method 

To evaluate the classifier, the holdout method is used. The holdout method is a 

data-splitting technique that divides the original dataset into two parts: training 

and testing. The training set is used to construct and train the data mining model, 

and the test set is used to assess the model's ability to generalize to new data. In 

this research, different train-test splits (70:30, 80:20, and 90:10) are used. 

Classification Algorithms 
(LR, MLP, RF, and ET) 

Performance Evaluation 
(Accuracy, Precision, Recall & F-Measure) 

Diabetes Dataset 

Holdout Method 

Training Data 
(70%, 80%, 90%) 

Classification Model 

Test Data 
(30%, 20%, 10%) 
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Figure 2. An example of a holdout method for split ratio of 70:30 

3.4 Algorithms 

In this study, four classification algorithms are implemented to train and test the 

classifiers. 

Random Forest is a supervised learning technique used for both classification and 

regression tasks, although it is more commonly employed for classification 

problems (Anusha, 2023). The strength of a random forest increases with the 

number of trees it contains (Anusha, 2023). The random forest algorithm 

constructs decision trees based on data samples, gathers predictions from each 

tree, and then selects the most frequent prediction as the final output (Breiman, 

2001). This ensemble technique prevents overfitting by averaging the results from 

multiple trees, making it generally more robust than single decision trees (Liaw & 

Wiener, 2002). Figure 3 illustrates the workflow of the Random Forest Algorithm 

(Anusha, 2023). 

 

Figure 3. Working of Random Forest algorithm (Adapted from Anusha, 2023) 

DATASET 

 

Training set (70%) Test Set (30%) 

 

 

Dataset 

Training Split1 Training Split2 Training Splitn . . . . . 

DT1 DT2 DTn . . . . . 

Majority Voting 

Prediction 
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Logistic Regression (LR) is a statistical model that utilizes a logical function to 

create a binary-dependent variable, estimating the relationship between 

dependent and independent variables based on probabilities, and accommodating 

categorical dependent variables (Bhat et al., 2023). Maalouf (2011) emphasizes 

the enduring relevance of LR in data mining, especially for binary classification 

tasks. 

According to Nosratabadi et al. (2021), “Multilayer perceptron (MLP) is a type of 

neural network that has a supervised learning technique using the back- 

propagation method” (p. 408). As illustrated in Figure 4, MLP utilizes a layered 

structure typically consisting of an input layer, one or more hidden layers, and an 

output layer. Each neuron within a layer connects to all neurons in the subsequent 

layer, enabling the network to learn complex, non-linear relationships 

(Nosratabadi et al., 2021). 

 

Figure 4. Architecture of the multilayer perceptron neural networks. (Adopted 

from Nosratabadi et al., 2021)  
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Geurts et al. (2006) introduce a novel tree-based ensemble method, named Extra- 

Trees, for supervised classification and regression tasks. This algorithm 

randomizes both attribute and cut-point selection strongly during tree node 

splitting, potentially leading to the construction of totally randomized trees 

independent of the output values. The degree of randomization can be adjusted 

through a parameter choice tailored to specific problems. Besides its 

computational efficiency, the algorithm's main strength lies in its robustness and 

accuracy (Geurts et al., 2006). 

According to Saeed (2023), the Extra-Trees classifier is a bagging machine learning 

algorithm that utilizes random trees built from training data samples to achieve 

high classification accuracy and reduce overfitting. 

3.5 Performance Evaluation 

A confusion matrix is a table used to evaluate the performance of a classifier in a 

classification task (Han & Kamber, 2012).  

 
Actual Positive 

(YES) 

Actual Negative) 

(NO) 

Predicted Positive 

(YES) 

True Positive  

(TP) 

False Positive 

(FP) 

Predicted Negative 

(NO) 

False Negative 

(FN) 

True Negative 

(TN) 

Figure 5. Components of confusion matrix 

The commonly used metrics to evaluate the performance of classification 

algorithms are accuracy, precision, recall, and F-measure (Sokolova et al., 2006). 

Accuracy reflects the proportion of correctly classified instances across all classes 

(Equation 1). It provides a general overview of the model's performance but can 

be misleading in imbalanced datasets (Sokolova et al., 2006). Precision (Equation 

2) measures the proportion of true positives among all instances predicted as 
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positive. It reflects the model's ability to avoid false positives. Recall (Equation 3) 

focuses on the proportion of true positives identified by the model from all actual 

positive cases. It highlights the model's ability to avoid false negatives. F-measure 

(Equation 4), also known as the F1-score, combines precision and recall into a 

single metric, providing a more balanced view of the model's performance. 

Accuracy =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
-------------------------------------------------------------- (1) 

Precision =
𝑻𝑷

𝑻𝑷+𝑭𝑷
 ----------------------------------------------------------------------- (2) 

Recall =
𝑻𝑷

𝑻𝑷+𝑭𝑵
---------------------------------------------------------------------------- (3) 

𝐹 −Measure =
𝟐×Precision×Recall

Precision+Recall
------------------------------------------------------- (4) 
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4 EXPERIMENTAL SETUP AND RESULTS ANALYSIS 

4.1 Background 

This chapter gives information about the implementation and performance 

analysis of our used algorithms LR, MLP, RF, and ET for diabetes prediction. The 

whole experiments were performed on Windows 10 64-bit operating system. The 

system specifications used for this experiment are an Intel® Core™ i5-3230M CPU 

with 8 GB RAM. WEKA version 3.8.6 was also installed in this system. 

The study utilized the Waikato Environment for Knowledge Analysis (WEKA) to 

achieve the research objective (Witten, Frank, Hall, & Clark, 2011) which is a widely 

accepted suite of data mining tools. It is popular for its broad collection of 

machine-learning algorithms designed for data mining tasks and related analyses 

(Witten et al., 2011). It provides a strong platform for various analyses with tools 

for data preparation, clustering, classification, association, regression, and 

visualization (Hall et al., 2009). Weka is written in Java and distributed under the 

General Public License (Hall et al., 2009). It was developed at the University of 

Waikato, New Zealand in an attempt to ease the process of studying by promoting 

openness and the ease of accessing data for research (Hall et al., 2009). 

4.2 Dataset Description 

The Behavioral Risk Factor Surveillance System (BRFSS) is the nation's main 

framework of health-related phone surveys that collect state information 

around U.S. inhabitants with respect to their health-related chance behaviors, 

constant well-being conditions, and utilization of preventive administrations 

(Behavioral Risk Factor Surveillance System, 2017). BRFSS presently collects 

information in all 50 states as well as the area of Columbia and three U.S. domains 

since 1984. BRFSS completes more than 400,000 grown-up interviews each year, 

making it the biggest ceaselessly conducted well-being study framework in the 

world (Behavioral Risk Factor Surveillance System, 2017). In this study, a CSV of 
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the dataset accessible on Kaggle for the year 2015 was utilized (Teboul, 2021). 

This dataset contains the responses of 253,680 respondents and 21 features 

with two classes on the target variable ("NO" means no diabetes or "YES" means 

prediabetes or diabetes). These features are either questions straightforwardly 

inquired of members, or calculated factors based on personal member response 

(Teboul, 2021). 

Table 1. Data features description (Adapted from Özsezer & Mermer, 2022)  

Features Name Description 

High Blood Pressure (BP) 0 = No High BP, 1 = High BP 

High Cholesterol (Chol) 0 = No High Cholesterol, 1 = High Cholesterol 

Cholesterol Check 0 = No, 1 = Yes 

Body Mass Index (BMI) 
Numerical value representing weight adjusted 
for height 

Smoker 
0 = No (has not smoked 100+ cigarettes in 
lifetime), 1 = Yes 

Stroke 0 = No, 1 = Yes (has had a stroke) 

Heart Disease or Attack 
0 = No (no coronary heart disease or 
myocardial infarction), 1 = Yes 

Physical Activity 
0 = No physical activity in past 30 days 
(excluding work), 1 = Yes 

Fruit Consumption 
0 = No, 1 = Consumes fruits 1 or more times per 
day 

Vegetable Consumption 
0 = No, 1 = Consumes vegetables 1 or more 
times per day 

Heavy Alcohol Consumption 0 = No, 1 = Meets criteria for heavy drinking 

Health Insurance Coverage 
0 = No, 1 = Has any health insurance/prepaid 
plan 

Difficulty Affording 
Healthcare 

0 = No, 1 = Faced difficulty affording healthcare 
in the past year 

General Health Perception Scale 1-5 (1 = Excellent, 5 = Poor) 

Mental Health Days 
Number of days in the past 30 with poor 
mental health (scale 1-30) 

Physical Health Days 
Number of days in the past 30 with poor 
physical health (scale 1-30) 

Difficulty Walking 
0 = No, 1 = Has serious difficulty 
walking/climbing stairs 

Sex 0 = Female, 1 = Male 

Age Category 13-level category (18-29 to 80+) 
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Education Level 
Scale 1-6 (Never attended school to college 
graduate+) 

Income Category 
Scale 1-8 (less than $10,000 to $75,000 or 
more) 

Diabetes Status "NO" = No Diabetes, "YES" = Diabetes 

 

4.3 Experimental Setup and Parameters 

WEKA version 3.8.6 was used for the experiments. It is a popular open-source 

machine-learning software tool. Table 2 provides an overview of the experimental 

parameters used in the investigation. 

Table 2. Experimental Parameters 

 

The Extra-Trees classifier's run information is displayed in Figure 6 and includes 

information about the scheme, relation, number of instances, attributes, and test 

mode. Similar trials employing training-testing splits of 70:30, 80:20, and 90:10 

was carried out for Random Forest, Multilayer Perceptron, and Logistic Regression 

analysis. 

Classifer1: “weka.classifiers.functions.Logistic” 

Classifer2: “weka.classifiers.functions.MultilayerPerceptron” 

Classifer3: “weka.classifiers.trees.RandomForest” 

Classifer4: “weka.classifiers.trees.ExtraTree” 

Relation: “diabetes_binary_health_indicators_BRFSS2015.csv” 

Instances: “253680” 

Test options: “Percentage Split (70:30, 80:20 and 90:10)” 
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Figure 6. Output of Extra Tree algorithm showing run information in WEKA 

 

Figure 7. Classified instances by Extra Tree algorithm 
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Figure 7 presents the WEKA output, where the Extra-Trees algorithm achieved a 

classification accuracy of 79.98%. The study evaluated other algorithms (Logistic 

Regression, Multilayer Perceptron, Random Forest) using training/testing splits 

of 70:30, 80:20, and 90:10. 

4.5 Results Analysis 

This section presents and analyzes the performance of four machine learning 

algorithms (MLP, LR, RF, and ET). This research evaluates these algorithms using 

various train-test splits (70:30, 80:20, and 90:10) and assesses their efficacy 

through key performance metrics: accuracy, precision, recall, and f-measure. 

Table 3. Classification performance of algorithms (70:30 split) 

 
70:30 Split 

Algorithm Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Multilayer Perceptron 86.59 83.5 86.6 82.8 

Logistic Regression 86.43 83.2 86.4 83 

Random Forest 85.82 82.4 85.8 83 

Extra Tree 79.98 80.6 80 80.3 
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Figure 8. Classification performance of algorithms (70:30 split) 

For the 70:30 split (see Table 3 and Figure 8), MLP marginally surpasses LR and RF 

in accuracy and recall, while ET exhibits the lowest performance across all metrics. 

Table 4. Classification performance of algorithms (80:20 split) 

 
80:20 Split 

Algorithm Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Multilayer Perceptron 86.57 83.6 86.6 83 

Logistic Regression 86.35 83.1 86.4 82.8 

Random Forest 85.78 82.3 85.8 82.9 

Extra Tree 79.90 80.5 79.9 80.2 
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Figure 9. Classification performance of algorithms (80:20 split) 

The trend persists in the 80:20 split (see Table 4 and Figure 9), with MLP 

consistently leading in accuracy, precision, recall, and f-measure, followed closely 

by LR and RF, while ET consistently performs the poorest. 

Table 5. Classification performance of algorithms (90:10 split) 

 
90:10 Split 

Algorithm Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Multilayer Perceptron 86.35 83.1 86.3 82.9 

Logistic Regression 86.26 82.9 86.3 82.7 

Random Forest 85.66 82.2 85.7 82.9 

Extra Tree 79.81 80.4 79.8 80.1 
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Figure 10. Classification performance of algorithms (90:10 split) 

In the 90:10 split (Table 5 and Figure 10), performance metrics slightly decrease 

across the board due to the smaller test set; however, the relative performance of 

algorithms remains consistent. MLP maintains a slight edge in accuracy, recall, and 

f-measure, with LR and RF closely trailing behind. 

Throughout all train-test splits, MLP consistently outshines with the highest 

accuracy, precision, recall, and f-measure, establishing itself as the most robust 

algorithm for diabetes mellitus prediction in this study. LR and RF also perform 

commendably, with LR exhibiting slightly superior results. Conversely, the 

consistently inferior performance of the ET al algorithm underscores its 

ineffectiveness for this dataset and task. 
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Table 6. Accuracy across different train-test split ratios 

 Algorithm 70:30 Split 80:20 Split 90:10 Split 

Multilayer Perceptron 86.59 86.57 86.35 

Logistic Regression 86.43 86.35 86.26 

Random Forest 85.82 85.78 85.66 

Extra Tree 79.98 79.90 79.81 

 

 

Figure 11. Accuracy across different train-test split ratios. 

For accuracy (see Table 6 and Figure 11), the MLP shows stable performance 

across all split ratios, with minor decreases as the test set size reduces (86.59% for 

70:30, 86.57% for 80:20, and 86.35% for 90:10). LR and RF exhibit similar trends, 

with minor variations in accuracy (LR: 86.43% to 86.26%, RF: 85.82% to 85.66%). 

The ET classifier consistently shows the lowest accuracy across all splits, with 

minor fluctuations around 80%. This suggests that larger test sets may provide 

more reliable performance estimates for these models. 
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Table 7. Precision across different train-test split ratios 

 Algorithm 70:30 Split 80:20 Split 90:10 Split 

Multilayer Perceptron 83.5 83.6 83.1 

Logistic Regression 83.2 83.1 82.9 

Random Forest 82.4 82.3 82.2 

Extra Tree 80.6 80.5 80.4 

 

 

Figure 12. Precision across different train-test split ratios 

Regarding Precision (see Table 7 and Figure 12), both MLP and LR maintain stable 

precision across different splits, with only slight variations (MLP: 83.5% to 83.1%, 

LR: 83.2% to 82.9%). RF also shows stable precision, with values ranging from 

82.4% to 82.3%. ET's precision remains around 80.6% to 80.4%, the lowest among 

the models. This indicates that precision is relatively unaffected by the split ratio, 

suggesting that the models' ability to correctly identify positive cases (diabetes) is 

stable regardless of the test set size. 
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Table 8. Recall across different train-test split ratios 

 Algorithm 70:30 Split 80:20 Split 90:10 Split 

Multilayer Perceptron 86.6 86.6 86.3 

Logistic Regression 86.4 86.4 86.3 

Random Forest 85.8 85.8 85.7 

Extra Tree 80 79.9 79.8 

 

 

Figure 13.  Recall across different train-test split ratios 

In terms of Recall (see Table 8 and Figure 13), MLP and LR exhibit high recall values, 

with minimal changes across splits (MLP: 86.6% to 86.3%, LR: 86.4% to 86.3%). RF 

shows a slight increase in recall with a smaller test set (85.8% to 85.7%), while ET 

has the lowest recall, ranging from 80% to 79.8%. The consistent recall values 

across split ratios suggest that the model's ability to identify true positive cases is 

relatively unaffected by the size of the test set. 
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Table 9. F-measure across different train-test split ratios 

 Algorithm 70:30 Split 80:20 Split 90:10 Split 

Multilayer Perceptron 82.8 83 82.9 

Logistic Regression 83 82.8 82.7 

Random Forest 83 82.9 82.9 

Extra Tree 80.3 80.2 80.1 

 

 

Figure 14. F-measure across different train-test split ratios 

For f-measure (see Table 9 and Figure 14), which balances precision and recall, 

MLP and LR display stable values with slight increases in consistency (MLP: 82.8% 

to 82.9%, LR: 83% to 82.7%). RF also maintains a stable F-measure across splits 

(83% to 82.8%), while ET's F-measure is consistently lower, around 80.3% to 

80.1%. The consistent F-measure values across split ratios suggest that the models' 

overall performance, balanced between precision and recall, remains relatively 

stable regardless of the test set size.  
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5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

The fight against chronic diseases like diabetes is becoming increasingly important 

as more and more people are affected worldwide. Early detection is crucial for 

effective management. This study investigated how well different machine 

learning algorithms could be used to predict diabetes using WEKA. This study 

compared four algorithms: multilayer perceptron, logistic regression, random 

forest, and extra trees. The study tested the algorithms using different portions of 

the data for training and testing (70:30, 80:20, and 90:10).  

Research Question: How do LR, MLP, RF, and ET classifiers compare in terms of 

evaluation metrics (accuracy, precision, recall, and F-measure) for predicting 

diabetes? 

Answer: The analysis of classification algorithms for predicting diabetes revealed 

distinct performance differences. The analysis of classification algorithms for 

predicting diabetes showed different results. MLP had the highest accuracy with 

rates of 86.59%, 86.57%, and 86.35% for the 70:30, 80:20, and 90:10 splits. Due to 

this MLP is the best classifier as it has good precision, recall, and F-measure. LR 

followed with accuracy rates of 86.43%, 86.35%, and 86.26%, and stable precision 

and recall. So, it indicates reliable performance. RF performed slightly lower but 

was still competent and it had good recall and F-measures. However, its accuracy 

was a bit lower. ET had the worst performance, with accuracy around 79.98%, 

79.90%, and 79.81%, and lower precision, recall, and F-measures as compared to 

the others. Overall, MLP was the best for classifying diabetes, followed by LR and 

RF. ET is the least effective algorithms as compared to others. This shows the 

importance of choosing the right machine learning models for accurate diabetes 

predictions. 
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Research Question: How does varying the percentage split (70%, 80%, and 90%) 

of dataset impact the performance of LR, MLP, RF, and ET classifiers for diabetes 

prediction? 

Answer: Varying the percentage split (70%, 80%, and 90%) of the dataset impacts 

the performance of LR, MLP, RF, and ET classifiers for diabetes prediction. MLP 

maintains high and stable accuracy across all splits. Its accuracy slightly decreases 

from 86.59% at 70:30 to 86.35% at 90:10. Its precision, recall, and F-measure also 

remain consistent. This shows MLP performs well regardless of the train-test split. 

LR also shows similar stability. Its accuracy decreases slightly from 86.43% to 

86.26%. Precision and recall values stay around 83.1% and 86.4%. The F-measure 

scores remain stable. This indicates LR is reliable across different splits. RF 

experiences a small decline in accuracy from 85.82% to 85.66%. Precision and 

recall stay consistent around 82.3% and 85.8%. This suggests RF performs well 

with slight variation across splits. ET consistently has the lowest performance. Its 

accuracy ranges from 79.98% to 79.81%. Precision, recall, and F-measure values 

are lower. This suggests ET is less effective regardless of the data split. Overall, 

MLP and LR are the most reliable classifiers for diabetes prediction. They show 

minimal impact from varying data splits. RF performs well but shows more 

variation. ET is the least effective across all metrics. 

These results help explore machine learning for early diabetes diagnosis. 

Healthcare professionals can use this knowledge to choose the right algorithms 

for risk assessment. They should consider factors like model accuracy and 

interpretability. The study highlights the importance of checking model 

performance across different data splits. This is crucial for real-world applications.  

In conclusion, insights have been provided by this research on how machine 

learning algorithms may be used in forecasting diabetes. Future research can 

explore advanced algorithms and feature engineering techniques. These efforts 

aim to further improve model performance and generalizability.  
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5.2 Future Work 

Some areas for future research include: 

• Considering using advanced models like deep learning and ensemble 

methods to improve diabetes prediction. 

• Using feature engineering to create informative and scalable features to 

help building predictive models that improve performance. 

• Developing features selection methodologies to detect the features that 

are most critical so that in the process, the model is easier to comprehend 

(interpretative) and performs well on unseen data (generalizability). 

• Incorporation with Clinical Practice in Real-Life Situation. 

Future diabetes prediction research should focus on more robust models such as 

Deep Learning and Ensembles. These new methods can work much better than 

older ones, especially in the health sector. For instance, various neural networks 

variations can identify complex patterns. Ensemble forecasting requires 

combining many models to enhance precision. Using these technologies could 

lead to more accurate and quicker diabetes diagnoses, significantly improving 

patient outcomes. To find features that improve model performance, we need to 

use feature engineering methods. These methods create features full of useful 

information. Machine learning algorithms make accurate predictions by using data 

closely related to real-world information. This works best when we use extra 

knowledge about specific domains to create new important features. This might 

include finding new ways to update information from medical records and 

combining indicators to create a clearer picture of diabetes risk factors. 

Furthermore, when we aim to discover key traits and create easy-to-understand 

models applicable to various datasets, the crucial step is employing feature 

selection methods. Streamlining models by concentrating on essential parts 

enhances clarity, which is crucial in healthcare since professionals depend on 
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accurate, clear predictions. Models with fewer but significant factors enhance 

clinical decision-making by increasing accuracy and clarity, aiding practitioners in 

making better-informed choices. Furthermore, it is vital to integrate these models 

into actual medical practice. This involves designing user-friendly interfaces, such 

as dashboards and visual tools, to assist medical professionals in quickly 

understanding model estimates and assumptions. To keep healthcare applications 

fair and trustworthy, we must address ethics and privacy concerns. It is crucial to 

handle these issues carefully, especially when working together on research 

involving data. 

5.3 Implication of thesis for the Medical Sector 

This research shares important discoveries that could greatly benefit the medical 

community, especially in predictive analytics and managing diabetes. Advanced 

machine learning models such as Multilayer Perceptron (MLP), Logistic Regression 

(LR), and Random Forest (RF) greatly improve the accuracy of diagnosing diabetes. 

They enable early detection and intervention, leading to better management of 

the condition. This initial evaluation could decrease fatal case incidences and cut 

down the spread of the disease improving patient outcomes in the end. 

Incorporating predictive models into clinical processes allows medical personnel 

to improve clinical judgment. This enhances treatment accuracy. Medical 

personnel gain access to sophisticated decision-support tools. These tools 

enhance their decision-making capabilities. Predictive analytics helps healthcare 

by finding patients with a high risk of health issues. This ensures resources are 

used effectively, improves overall care, and reduces unnecessary spending. 

Furthermore, using machine learning to create individualized treatment plans 

addresses specific patient characteristics. Ultimately, this way helps in more 

effective and patient-focused treatment. The findings provide a basis for future 

investigation. They stimulate the discovery of new algorithms and methodologies. 
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These advancements enhance predictive capabilities and expand applications 

beyond diabetes. This fosters creativity in medical research and healthcare 

delivery. 
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Appendices 

APPENDIX 1. SUMMARY RESULT OF MULTILAYER PERCEPTRON 

 

Figure 15. Summary result of MLP across 70:30 split 

 

Figure 16. Summary result of MLP across 80:20 split 
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Figure 17. Summary result of MLP across 90:10 split 

APPENDIX 2. SUMMARY RESULT OF LOGISTIC REGRESSION 

 

Figure 18. Summary result of Logistic Regression across 70:30 split 
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Figure 19. Summary result of Logistic Regression across 80:20 split 

 

Figure 20. Summary result of Logistic Regression across 90:10 split 

 

 

 



47 

 

APPENDIX 3. SUMMARY RESULT OF RANDOM FOREST 

 

Figure 21. Summary result of Random Forest across 70:30 split 

 

Figure 22. Summary result of Random Forest across 80:20 split 
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Figure 23. Summary result of Random Forest across 90:10 split 

APPENDIX 4. SUMMARY RESULT OF EXTRA TREE 

 

Figure 24. Summary result of Extra Tree across 70:30 split 
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Figure 25. Summary result of Extra Tree across 80:20 split 

 

Figure 26. Summary result of Extra Tree across 90:10 split 


