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Abstract:
Electric Vehicle (EV) sales and popularity are increasing because it is a sustainable and

environmentally friendly way of transportation. EVs reduce fossil fuel dependency and

reduce (carbon dioxide) CO2 emissions. Due to its random and volatile nature, increas-

ing demand for charging burdens the electric grid. EVs can be considered energy storage

with available energy and capacity constraints that can provide flexibility to the power

system by balancing products when aggregated. Electric vehicle charging stations can

participate in frequency reserves markets by curtailing the charging current during un-

der frequency. Frequency Containment Reserve in Disturbance (FCR-D) is a frequency-

based control logic that aims to adjust the frequency of the electric system by activating

reserves. The station operator’s readiness to respond to under-frequency situations de-

termines their compensation. This compensation incentivizes the operator to stay alert

and take immediate action if necessary, ensuring an uninterrupted power supply. Rec-

ognizing the crucial role that the station operator plays in maintaining a reliable power

grid, their compensation reflects the value of their expertise and dedication. Forecasts

of charging patterns are essential to reliably providing this ancillary service. This paper

aims to build a generalized model for forecasting EV charging demand and the FCR-D

upward price. Forecasting demand capacity and FCR-D upward price is typically done



using traditional and deep learning approaches based on time series analysis. We use two

distinct datasets to forecast demand and FCR-D upward price using both univariate and

multivariate methods. The forecasting horizon is typically one month. Different forecast-

ing algorithms include MSTL, ETS, NHiTS, TiDE, and Dlinear. MSE, MAE, RMSE, and

SMAPE were used to compare model performance. According to the result, the NHITS

outperforms other models in terms of long-term forecasting for univariate with the EV

charging demand data and Tide for multivariate. Similarly, for forecasting the FCR-D up-

ward Price, NHiTS for univariate and TiDE for multivariate outperform the other models.

Keywords: Time Series Forecasting, Demand response, electric vehicle, Balancing

Services, Frequency Containment Reserve in Disturbance, Sustainability, Green transi-

tion, Bidding Strategies
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1. Introduction

1.1 Background

Efficient transportation is an indispensable element of economic development and a sub-

stantial contributor to energy consumption. It consumes an enormous amount of fossil

fuel, one of the contributors to the CO2 gases. Transportation emissions have almost

tripled due to growing populations and economies. The transportation sector accounts

for 20% of global emissions and is the second-largest carbon-polluting sector worldwide

(Statista 2023).

Recently, with the advancement of battery technologies for storing a huge amount of

energy, electric vehicles have become a preferred transportation choice because they are

low-carbon and environmentally friendly. In Finland in 2023, there were about 84,000 EV

passenger cars compared to last year, 2022, which was about 45,000. (Tiedotuskeskus

2024) . EV transportation will likely replace Internal Combustion Engine (ICE) cars

shortly. The widespread adoption of electric vehicles has raised concerns about the poten-

tial impact on the electric grid due to the variability and unpredictability of EV charging

loads. The power grid will be affected by peak power, frequency, and voltage variation.

It is important to accurately estimate the demand for electric vehicle charging to predict

how additional demand will affect the electricity grid. Forecasting EV charging helps

maintain grid stability and resilience while assisting with long-term investment planning

and resource allocation for charging infrastructure. Successfully forecasting EV charging

demand is crucial in preserving the utility of the grid.

The peak hours are usually the busiest with the charging demand and less peak at night.

With peak during the day, the EV fleet’s uncontrolled charge may threaten the power

outage with less infrastructure. As EV consumption increases, the prediction of the ag-

gregated EV demand becomes more critical for the Transmission System Operator (TSO).

So flexibility has become crucial to balance demand and production at every moment. A

grid is healthy when the frequency does not deviate from an equilibrium value of 50 HZ

in Europe.

Ancillary services are operations and services that guarantee the stability of the power
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grid by maintaining the balance between demand and electricity supply at all times. Var-

ious assets such as power plants, batteries, and industrial sites can provide these services,

adapting to production or consumption needs. EV charging offers a significant and rapidly

growing opportunity to help power systems cope with disturbances. Hence, The rapidly

expanding charging network for electric vehicles can be harnessed as a disturbance re-

serve to support the power system (Fingrid 2023).

Due to increased pressure on the electrical grid and fluctuations from renewable energy,

demand for related services will increase, leading to higher prices. Forecasting the power

consumption of EV charging stations is crucial and has many interests. Long-term fore-

casts allow us to anticipate the penetration of electric vehicles and estimate the need for

new charging stations. In contrast, short- and mid-term forecasts will enable us to im-

plement charging strategies or cost optimizations and provide ancillary services like Fre-

quency Containment Reserve (FCR).

1.1.1 Objective

The primary goal of this thesis is to develop a forecasting model to predict:

1. The hourly demand (in MW) for a group of EV chargers over a month.

2. The hourly bid price for FCR-D upward over a month.

We use the forecasted demand to place a bid in the FCR-D upward market. We must not

under-deliver the bidded capacity for the next day, as the penalty for doing so is three

times the bid price of under-delivered capacity. Additionally, the thesis investigates how

EVs can contribute to the energy sector’s flexibility. One can bid in the aggregator market

based on the demand for EV charging. The main objective of forecasting the bid price is

determining the total revenue in the upcoming period. The thesis also aims to assess the

effectiveness of the conventional statistical model and compare it with the complex deep

learning algorithm to enhance forecasting.

1.1.2 Research Question

The primary research questions for the thesis are:

13



1. Can state-of-the-art deep learning approaches accurately forecast EV charging de-

mand and FCR-D upward bid price for a month-long horizon?

2. What are the advantages of univariate and multivariate forecasting approaches, and

how do different features contribute to forecasting accuracy?

3. Additionally, does the applied model reliably inform bidding strategies to minimize

mistakes, given the penalty of three times the cost of the bid price for under-delivery

during the hour?

1.1.3 Limitation

The energy market is very changing and volatile, and the bid price can be affected by an

uncountable number of external factors, some of which may be :

• Predictable factor: spot price and weather data predict to some extent.

• Unpredictable factors: power disruption, power line failure, socio-economic and

geo-political, historical, and environmental.

• Lack of access to data regarding confounding variables such as maintenance breaks

and other unforeseen events.

The energy market data is erratic, and forecasting the market with such volatility is diffi-

cult when the forecast horizon is a month.

1.2 Commissioning Company - Virta

Virta is one the global leaders in EV charging technologies and the fastest growing EV

charging platform in Europe, founded in 2013. For the fourth time in 2023, The Financial

Times has recognized Virta as one of Europe’s Fastest Growing Companies.(Virta 2023a).

The company aims to solve climate change and move toward sustainability by bringing

electric mobility to businesses, people, and the energy system with the world’s most cost-

efficient and reliable electric vehicle charging platform.
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1.2.1 Virta Services

Virta provides businesses with an end-to-end charging solution that includes various ser-

vices: (Virta 2023c). Of the different services, the one that interests the thesis the most is

related to the energy market for FCR-D upward and demand response.

1.2.2 Virta Current Operation

Over 1,000 private and public entities across various industries, including retail, hotel,

real estate, parking, petrol, automotive, and energy, actively use the virta charging plat-

form. It has 34 patent families focusing on energy management capabilities, central to

the future connected energy and mobility ecosystem (Virta 2023a). Virta operates in over

35 countries and has access to more than 460,000 charging points through roaming. The

Virta platform delivers a new EV charging event every 2 seconds. In F land, virta has

137,000 EV drivers; roughly 33000 EV drivers are active monthly in Finland, where the

total energy utilized is 3.1 GigaWatt (GW) monthly. 1950 charging events every month

and almost 6000 newly registered drivers where we have 12000 operational EVSE in

Finland

Among the various topics in Virta operation, demand response is a service that can auto-

matically respond to rapid and unexpected disturbances in the power grid and help balance

the grid’s health. Virta is already a registered independent demand response aggregator

to the Finnish transmission system operator Fingrid Oyj (Virta 2023b). On November

19, the Olkiluoto 3 nuclear power plant unexpectedly disconnected from the grid due to a

turbine fault, activating this response in Finland. The charging power of charging events

on Alternating Current (AC) chargers around Finland was reduced within 5 seconds for

one minute due to the observed dip in grid frequency (Virta 2023b).

2. Finnish Energy Market
In Finland, electricity customers, including households and businesses, purchase their

electricity from suppliers in an open market that has been operational for over 20 years.

This market encompasses gen rating, transmitting, distributing, and selling electricity.

Notably, electricity import from January to June 2023 decreased by 58%, amounting to

4.6 TeraWattHour (TWh), while exports increased by 6%, totaling 3.8 TWh compared to
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the previous year (Statistics Finland 2023). In 2023, energy consumption was approxi-

mately 76.93 TW, with a total net import of 2.93 TW (LowCarbonPower 2024). Finland’s

electricity trading occurs on two platforms: Nord Pool Spot, the primary market for hourly

electricity trading within the Nordic wholesale market (Ministry of foreign affair 2023),

and the Finnish TSO Fingrid Oyj’s ancillary service markets, where reserve product trad-

ing takes place through yearly and hourly contracts.

2.1 Day-Ahead Elspot

The Elspot in the day is the primary electricity market in the Nordic and Baltic regions,

where most of the trading volume occurs. Energy traders submit bids to buy and sell

energy in hourly locks for the following day. Marginal pricing determines the price and

volume of energy by calculating the intersection of the cumulative demand and supply

curves. Bidding for electricity sale or purchase should be placed for the next day before

13.00 Eastern European Time (EET ) (Nordpool 2023).

Figure 1. Spot Price Cumulative Curve (Nordpool 2023)

Figure (1) shows that the selling curve represents aggregate supply, and the buying curve

represents aggregate demand. There is not always sufficient electricity transmission ca-

pacity, as production and consumption rarely occur in the network.

2.2 Intraday

The intraday market, exemplified by Nord Pool’s Elbas market, facilitates trading based

on consumption or production volumes calculated from the day-ahead market. Elbas op-

erates as a balancing market for the primary Elspot (NordPool 2023), allowing traders to
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adjust their transactions after the Elspot market closes. It works on a pay-as-bid principle,

where the price for a specific hour’s product may vary among participants.

2.3 Ancillary Service Market

Ancillary services are crucial functions that help grid operators maintain a reliable elec-

trical system. They ensure the smooth flow and direction of electricity, address imbal-

ances between supply and demand, and aid the recovery of the system after power system

events (Greening The Grid 2023). In Finland and the Nordic power system, the nominal

frequency of the system is 50 Hz, but fluctuations in power consumption and production

are constant. Fingrid Oyj, responsible for Finland’s electricity transmission grid, ensures

system security and power balance. To fulfill its responsibilities, Fingrid has established

marketplaces for essential ancillary services.

2.4 Frequency Containment Reserve Marketplaces

Finland’s power system comprises power plants, the primary grid, high-voltage and other

distribution networks, and consumers. Finland’s power system connects with Estonia

through HVDC transmission links and forms an integral part of the Nordic synchronous

area, which includes Sweden, Norway, and Eastern Denmark. High-voltage direct Cur-

rent (HVDC) transmission links connect the Nordic system with Central Europe. (Fingrid

2023a). Fingrid, Finland’s TSO, participates in the European Network of Transmission

System Operators (ENTSO-E). Most CR capacity is purchased domestically, with sep-

arate markets for FCR-N and FCR-D. TSO offers contracts to customers for automatic

consumption adjustment in response to grid frequency fluctuations for frequency contain-

ment.

2.4.1 Frequency Containment Reserve for Normal Operation (FCR-N)

FCR-N operates within the frequency range of 49.9 to 50.1 Hz in the power system, au-

tonomously reacting to deviations. Its activation does not rely on a control signal from

the TSO, as frequency is measured on-site. FCR-N runs continuously, maintaining a fre-

quency within the "normal operating band" of 50Hz ±0.1Hz. Activation is proportional

to the frequency deviation from 50Hz, increasing linearly. Activation increases as fre-

quency deviates from 50Hz until fully engaged at ±0.1Hz. Within 60 seconds, 63% of

reserves should be activated, with full activation within 180 seconds if needed (Fingrid
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2023b).

2.4.2 Frequency Containment Reserve for Disturbed Operation (FCR-D)

When the frequency drops below 49.9Hz, FCR-D automatically activates and must be

fully activated at 49.5Hz. FCR-D is required to react faster, requiring 50% to be acti-

vated within 5 seconds and 100% to be made available within 100 seconds. In the annual

market, the price remains constant throughout the calendar year. All market participants

receive the same compensation for maintaining reserve capacity (Fingrid 2024). FCR-

D products are reimbursed based on energy and capacity. In 2023, the annual market’s

capacity fee was 2.81 C/MW/h, with a volume of 345.1 MW. In 2024, the procurement

volume remains almost unchanged, with a capacity of 347.8 MW. (Fingrid 2024). The

reserve suppliers participating in the annual market confirm the reserve capacity they

maintain daily for the following day. In addition to the yearly market, Fingrid acquires

frequency stabilization reserve capacity through daily acquisition from the hourly market

in Finland. The most expensive activated bid sets the upregulation price for a given hour,

while the auction outcome determines the upregulation price and volume. The procure-

ment for FCR-D upward is carried out, minimizing total costs, but in such a way that the

entire procurement covers the reserve obligations of Fingrid (Fingrid 2024).

Figure (2) for the Hourly market shows the price, volume, bids, foreign trade, and reserve

plan during 2023. The average price was 27.56 C/MW, and the maximum was 600C

MW. The volume is the reserve providers’ free capacity; on average, it was 68 MW and a

maximum of 173 MW.

There are two main types of reserves:

• Reserves aiming to increase production (e.g., auxiliary power plants)

• Reserves for cutting down the demand (e.g., big factories ) Its purpose is to contain

the frequency during regular operation and disturbances.

Based on the technical specifications of Finnish TSO Fingrid, the system activates re-

serves at different frequency steps. (Fingrid 2023d chap. 3.1.2).
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Figure 2. Transactions on the hourly market, FCR-D upward (Fingrid 2024)

2.4.3 Base Logic for Virta FCR-D Upward

The Virta network has implemented FCR-D upward on a specific group of charging

points. This feature has no limit to the number of connections it can handle. However,

it only operates with stations that fulfill particular criteria and have undergone appropri-

ate testing. Once activated, the FCR-D upward backend actively monitors the frequency.

Suppose the frequency drops below a certain threshold. In that case, it recalculates the

power limits for each active charging point, decreasing the group’s total charging power

and ensuring that the charging points operate optimally even when the frequency drops

below the acceptable level.

Virta’s FCR-D upward adjustment logic for the charging point group is based on Fingrid’s

technical requirements, as shown in Figure (3). (Fingrid 2023d chap. 3.1.2).
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Figure 3. FCR-D upward adjustment

The power reduction occurs proportionally for each station based on the reported meter

values. The adjustment occurs in multiple steps, depending on the frequency level. The

FCR-D upward event begins and ends when the frequency crosses predefined thresholds.

Throughout the event, charging points respond to frequency fluctuations, reverting to their

original settings once the event concludes. The aim is to support the grid while minimiz-

ing disruption to EV drivers by avoiding unnecessary reserve activation. The steps that

were previously mentioned have been modified as per the instructions provided in Table

1.

Table 1. Step adjustment for FCR-D upward by virta

Step Reserve Activated
1st step: f ≥ 49.90 = 0 %
2nd step: f ≤ 49.85 = 12.5 %
3rd step: f ≤ 49.80 = 25 %
4th step: f ≤ 49.75 = 37.5 %
5th step: f ≤ 49.70 = 50 %
6th step: f ≤ 49.65 = 62.5 %
7th step: f ≤ 49.60 = 75 %
8th step: f ≤ 49.55 = 87.5 %
9th step: f ≤ 49.50 = 100 %
10th step: f ≥ 49.90 = 0 %
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2.4.4 A Practical Example of Stepwise FCR-D Upward in Action

Figures (4) and (5) show a synthetic test scenario with a certain number of AC station

graphs for FCR-D upward alongside an accurate graph. This graph illustrates meter values

reported by charging points in a group, displayed over a chosen period. The yellow curve

represents the group’s total power output, while the black curve represents frequency.

Notably, the actual power output of the group aligns with the frequency variation.

Figure 4. The maximum power output in the graph below is somewhere around 700kW

Figure 5. Frequency restored to 50 Hz for 5 minutes

2.4.5 Technical Requirement

Companies must fulfill specific technical requirements to participate in the reserve mar-

kets, providing FCR-D upward. They must undergo pre-qualification tests to demonstrate
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compliance. The Reserve Unit must include a controller that adjusts power based on

frequency measurement when participating in reserve maintenance. The activation of

FCR-D upward is based on automatic local control, as Fingrid does not send control sig-

nals. (Fingrid 2024). Table 2 shows the upward summary of the technical requirements

of FCR-D upward.

Table 2. FCR-D upward Technical Requirement

Description FCR-D upward
Minimum Bid size 1 MW

Activation Performance
- Power: 86 % / 7.5 s
- Energy: 3.2 x capacity* / 7.5 s
- With fast frequency change from 49.9 Hz to 49.5 Hz

Stability requirement
- Dynamic FCR-D up: valid
- tested with sine wave test in frequency domain
- static FCR-D up : not valid

FCR-D upward is divided into dynamic and static products. Dynamic FCR-D upward can

be regulated continuously and deactivate the reserve quickly when frequency deviation

decreases. Static FCR-D upward can not be constantly held and requires more recovery

time after activation.

Procurement For Hourly market

Fingrid purchases FCR-D upward from the domestic yearly and hourly markets. Virta

currently operates in an Hourly bidding market. Table 3 shows how the hourly market

procurement is carried out.
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Table 3. Procurement for Hourly Market

Hourly market
A reserve provider can participate in the hourly market
by making a separate agreement with Fingrid.
It is possible to enter the hourly market
even in the middle of the year.
TSO buys only the required amount of reserve.
Bids for the hours in the following 24-hour period
must be submitted by 6.30 pm (EET).
Reserve providers may submit daily offers for their reserve capacity.
A provider that has a yearly agreement may participate in the hourly market
only if it has supplied the reserve amount specified in the yearly agreement in full.
Payment is set based on the most expensive bid used separately for each hour.

Balancing Service Provider (BSP) submits hourly bids to the FCR-D upward hourly mar-

kets for the next day (CET time zone) until 18.30 (EET). For each hour, Fingrid places the

bids in price order, giving priority to the cheapest bid. Fingrid confirms the transactions

for the next calendar day by 22.00 (EET).

Figure 6. The communication regarding the bidding process to the FCR-markets (Entsoe 2023)
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3. Related Work
In recent years, forecasting techniques for EV charging demand have seen significant ad-

vancements, driven by the growing importance of electric mobility. This section presents

a comprehensive literature review encompassing various methodologies for forecasting

short-term and long-term EV charging loads. Electricity markets require efficient man-

agement to ensure reliable supply and stability, particularly with the increasing integration

of EVs into the grid. This section reviews pertinent literature on forecasting methodolo-

gies for ancillary electric power services and EV charging networks.

Amini et al. (2016) applied Autoregressive Integrated Moving Average (ARIMA) to fore-

cast the daily charging demand of EV parking lots By adjusting the integrated and auto-

regressive order parameters to minimize the mean square error (MSE). Zhu et al. (2019)

introduces, deep learning approaches in super-short-term minute-level short-term EV

charging load forecasting. The author uses Artificial Neural Network (ANN), Recur-

rent neural network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Unit

(GRU), stacked autoencoders (SAEs), and Bidirectional Long Short-Term Memory (Bi-

LSTM) models. The LSTM model is superior to the other methods and is competent in

forecasting extra-short-term EV charging load. Shahriar et al. (2021) used the historical

charging data in conjunction with weather, traffic, and events data to predict EV session

duration and energy consumption using algorithms like random forest, Support Vector

Machine (SVM), eXtreme Gradient Boosting (XGBoost), and deep neural networks. The

ensemble learning method achieved the best predictive performance. Ye et al. (2021)

studied the short-term demand for public charging stations. Their study included Ran-

dom Forest, ANN, and LSTM with features utilization rates, traffic flows, demographic

properties, EV registration, and points of interest for modeling. Study results show that

the LSTM model achieves the best prediction performance. Mohammad et al. (2023)

The paper proposes two encoder-decoder models based on convolution-extended short-

term memory networks (ConvLSTM) and bidirectional ConvLSTM (BiConvLSTM) in

combination with the LSTM network. In terms of (Root Mean Squared Error) RMSE,

the average outcomes of two proposed models, the ConvLstm-BiLstm and BiConvLstm-

Lstm, outperform other state-of-art encoder-decoder-based models LSTM, CNN, CNN-
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LSTM, LSTM, and BiLSTM .Koohfar et al. (2023) use the Transformer-based model

for predicting EV charging demand for both short-term and long-term forecasting. The

author benchmarked the transformer-based model against ARIMA, Seasonal Autoregres-

sive Integrated Moving Average( SARIMA), LSTM, and RNN. The transformer outper-

formed the other models in long-term forecasting while slightly lagging behind LSTM

in short-term prediction. In the context of multivariate long-horizon forecasting, Trans-

former Vaswani et al. (2023) approaches have dominated the landscape in recent years,

including Autoformer (Wu et al. 2021), an encoder-decoder model with decomposition

capabilities and an approximation to attention based on Fourier transform, (Zhou et al.

2020). A simple linear global univariate model can outperform the transformer-based

multivariate approaches for long-term forecasting (Zeng et al. 2023), which learns a lin-

ear mapping from context to the horizon. Challu et al. (2022) proposed NHiTS, which

provides an average accuracy improvement of almost 20% over the latest Transformer

architectures while reducing the computation time by an order of magnitude (50 times).

Das et al. (2023) proposed a Time-series Dense Encoder (TiDE) for long-term time-series

forecasting, being able to handle covariates and non-linear dependencies. The method

can match or outperform prior approaches on popular long-term time-series forecasting

benchmarks while being 5-10x faster than the best transformer-based model.

Kirsch & Singh (1995) conducted pioneering work on reserve pricing and costs from a

market perspective, delineating various cost components. Their study provided insights

into the complexities of reserve power pricing, addressing foregone sales, uneconomic

operation costs, start-up/shut-down costs, and efficiency losses. The SARIMAX and

ANN forecasts, which combine autoregressive and external predictors, have a signifi-

cantly higher forecast quality than the purely autoregressive SARIMA model, and the

forecast is purely based on exogenous predictors. Olsson & Soder (2008) modeled real-

time balancing power market prices in the Nordic region using combined SARIMA and

discrete Markov process models. Their findings underscored the suitability of the de-

veloped model combination for generating real-time balancing power price scenarios.

Dimoulkas et al. (2016) applied Hidden Markov Models (HMMs) to forecast balanc-

ing market prices in the Nordic region, highlighting the challenges in predicting reserve

activation-based prices because of random occurrences and the price is hardly predictable.
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Their analysis revealed better predictability for up-regulation volumes and premiums than

down-regulation counterparts. Giovanelli et al. (2017) examined forecasting FCR prices

for the day ahead, comparing ARIMA with machine learning methods. Machine learning

methods outperformed ARIMA predictions for certain periods, including Linear Regres-

sion, SVR, and gradient-boosted decision Trees (GDBT). Giovanelli et al. (2018) focused

on predicting day-ahead prices for ancillary markets, with a case study on the FCR-N mar-

ket. Their study revealed the superior performance of an Artificial Neural Network (ANN)

model over Support Vector Regression (SVR) and Autoregressive Integrated Moving Av-

erage (ARIMA) models. Kraft et al. (2020) utilized SARIMA, SARIMAX, and neural

network models for FCR price forecasting, emphasizing the benefits of combining auto-

regressive and exogenous factors. While neural networks outperformed in forecast qual-

ity, econometric approaches offered advantages in interpretability. Kempitiya et al. (2020)

They proposed a generalized model for global frequency reserve markets, employing a

Bayesian neural network approach for price prediction. Their model demonstrated high

accuracy, achieving an uncertainty accuracy (UA) value of 78.88% using MC-Dropout for

uncertainty estimation. Einolander & Lahdelma (2022) Developed an event-based sim-

ulation model to assess the demand response potential of EV charging networks. Using

multivariate copulas, the model generates artificial charge events to simulate real-world

data, achieving a mean absolute percentage error (MAPE) of 3.27% for daily dispatchable

FCR-D potentials and 4.65% for weekly predictions.

3.1 Research Gap

Many authors have worked with time series forecasting tasks related to various sectors,

of which EV demand forecasting and FCR-D upward bid price are among them. There

has not been enough research related to EV charge demand prediction. Even with the

research out there, most of the research is either carried out on the simulated data or

with a few data points from a specific location of the charging point, which does not

entirely help in understanding the problem. Most EV charge forecasting research utilizes

the classical statistical approach like ARIMA and its variants, classical machine learning

approaches like SVM, RF, and XGBoost, and neural-based approaches like ANN, RNN,

LSTM, and its variants. The topics related to EV charge demand response forecasting

have not yet explored many of the state-of-the-art models for time series forecasting. This
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thesis explores the gaps in other research, mainly for long-term time series forecasting for

a horizon of 720 hours. The thesis examines a classical and state-of-the-art deep learning-

based approach that others have not explored yet, which has shown great potential in

forecasting electricity, Electricity Transformer Temperature (ETT), and weather datasets.

The thesis employs real-world data from a charging point across different locations in

Finland.

Similarly, to forecast the bid price of FCR-D upward, most of the research carried out in

the Nordic market is related to FCR-N. Even with FCR topics, there are limited studies,

and they do not carry out any state-of-the-art deep learning approaches for forecasting.

None of the thesis tries to forecast a long horizon period. The other author’s research

discusses the potential of EVs to be a part of a power reserve to ensure power balance.

The provision of FCR with large-scale Battery Energy Storage Systems (BESS) has been

investigated and shown to be possibly profitable, depending on. Some research showcases

the EV as a power adjustment based on the simulated data, but none showcases its real-

world implications. Overall, this thesis tries to overcome the research gaps and utilize the

newer and promising deep learning approaches that any other author has not explored.

This thesis attempts to show that, despite challenges, providing ancillary services can

benefit the owner, the aggregator, and the grid.
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4. Research Method

4.1 Time-series Analysis and Forecasting

Time series analysis and forecasting are pivotal in understanding and predicting patterns

within sequential data recorded over specific time intervals. These intervals can range

from yearly to monthly or even finer resolutions. Unlike conventional regression prob-

lems, time series analysis introduces unique challenges due to its time-dependent nature,

inherent trends, and seasonality. In contrast to linear regression models, where obser-

vations are assumed to be independent, time series data exhibits temporal dependencies.

This dependence on time introduces complexities such as seasonality trends, where pat-

terns repeat over specific periods. The value of a data point at a given time depends on

the values of previous data points in the sequence. Understanding these characteristics is

crucial for accurate forecasting.

Two primary methods are commonly employed for time series forecasting:

1. Univariate Time Series Forecasting: This method analyzes only two variables - time

and the field to be forecasted. It simplifies the analysis by focusing solely on the

target variable’s temporal evolution.

2. Multivariate Time Series Forecasting: In contrast, multivariate forecasting incor-

porates multiple variables, with time as one of the dimensions. This approach al-

lows for more comprehensive modeling by considering various parameters along-

side temporal trends.

4.1.1 Time Series Analysis

Before forecasting, a thorough analysis of the time series data is essential. This analysis

aims to develop models that capture underlying patterns, facilitating accurate predictions.

A fundamental aspect of this analysis involves decomposing the time series into four

constituent parts:

1. Level: Represents the baseline value of the series if it follows a linear trend.

2. Trend: Describes the optional linear increasing or decreasing behavior observed
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over time.

3. Seasonality: Captures recurring patterns or cycles within the data.

4. Noise: Accounts for variability in observations that the model cannot explain.

Understanding these components enables practitioners to discern meaningful patterns and

relationships within the data, laying the groundwork for effective forecasting.

4.1.2 Time Series Forecasting

Forecasting entails predicting future observations based on historical data and established

models. It involves utilizing fitted or trained models to extrapolate future trends accu-

rately. Various statistical, machine learning, and neural-based models are commonly em-

ployed. As part of this thesis, we have selected specific models for evaluation. These

models are chosen based on the benchmark from the year 2023, which has shown tremen-

dously promising results on data such as electricity, ETT, and weather data. There are

many models based on MLP, transformers, and large language models, but for the thesis,

we are sticking with the MLP-based but promising model that has outperformed even the

transformers. The top models that are chosen are:

Statistical-Based Approach

• Multiple Seasonal-Trend decomposition using Loess (MSTL)

• Exponential Trend Smoothing (ETS)

State-of-the-Art Time Series Forecasting Approach

• Neural Hierarchical Interpolation for Time Series (NHiTS)

• Time-series Dense Encode (TiDE)

• Decomposition Linear (DLinear)
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4.2 Multiple Seasonal-Trend decomposition using Loess (MSTL)

There are many methods to decompose a time series with a single seasonal component,

such as Seasonal-Trend Decomposition using Loess (STL ) (Cleveland et al. 1990) and X-

13-ARIMA-SEATS (Bell & Hillmer 1984). Many time series can have multiple season-

ality; Bandara, Hyndman, and Bergmeir proposed a new algorithm for multi-seasonal de-

composition called Multiple Seasonal-Trend decomposition using Loess (MSTL) (Hyn-

dman et al. 2008). MSTL builds on STL, a decomposition method that can extract a

single seasonal component. Methods that extract multiple seasonal components include

Prophet (Taylor & Letham 2018), TBATS (De Livera et al. 2011), and STR (Dokumentov

& Hyndman 2022). Prophet and TBATS infer the seasonal components as part of training

a forecasting model. In an additive decomposition, MSTL assumes that the following

equation can express the time series decomposition:

yt = T̂t + Ŝ(1)t + Ŝ(2)t + · · ·+ Ŝ(N)
t + R̂t (1)

The MSTL model handles multiple seasonal patterns(e.g., daily, weekly, yearly, etc), cap-

tures complex patterns, reduces the impact of noise and outliers, and provides accurate

forecasts. These features make the MSTL model valuable for exploratory time series

analysis, data forecasting, and pattern detection, especially when dealing with multiple

seasonal components and intricate trends.

4.2.1 Loess Overview

Loess is a nonparametric smoothing method that fits a smooth curve to scatter plots

(Cleveland & Devlin 1988). Loess computes the smooth curve at any given point by

fitting a polynomial to a data window around that point. Loess performs a weighted re-

gression using nearest neighbors for each point in the time series.

The Loess calculation involves the following steps:

For each point in the time series, we select a neighboring window and assign weights

based on proximity using a tri-cubic function.

w(x) =


(
1−|x|3

)3 |x|< 1

0 |x| ≥ 1
(2)
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This function has positive values only between -1 and 1. Outside of this interval, the

function is zero. We must normalize the distance by dividing it by the maximum value

observed in D. More concretely,

w(x) =


(

1−
∣∣∣ d(x,x′)

maxi d(xi,x′)

∣∣∣3)3

|x|< 1,xi ∈ D

0 |x| ≥ 1
(3)

We use d(x, x’) to denote the distance between x and x’, one of the k’s nearest neigh-

bors. By normalizing the values, more considerable distances are assigned lower weights.

The point with the maximum distance will weigh zero, and the one at zero distance will

have the highest possible weight of one. This technique assigns higher importance to the

training data closest to the prediction point, achieving the "locality" effect.

Perform weighted regression by using the assigned weights and neighbors. Obtain the

fitted value for point t through local regression.

β =
(
XTWX

)−1
XTWY (4)

ŷ = β
T X (5)

The process is repeated for all points in the time series, thus obtaining a smoothed estimate

of the trend.
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4.2.2 MSTL Algorithm

Figure 7. MSTL algorithm

The steps involved in the MSTL algorithm are explained below, as shown in Figure 7.

Seasonal Component Extraction: The algorithm follows an iterative process that begins

with the shortest period and moves towards the most extended period (e.g., hourly, daily,

weekly). Starting with longer seasonality would erroneously include shorter seasonality

as part of the more extended seasonal component. The algorithm extracts each seasonal

component using the STL method and subtracts it from the time series. We continue the

process of iteration until we accurately extract all seasonal elements.

Refinement of Extracted Components:

The algorithm refines each seasonal component by adding it back to each iteration’s fully

deseasonalized time series. Then, the algorithm re-extracts the same seasonal component

using STL and subtracts the new estimate from the time series. This process is repeated

for each seasonal component to enhance accuracy.

Trend Extraction: During the refinement step, we extract the trend component from the

most extended seasonal period of the last STL fit.

Residual Calculation: Subtracting the trend component from the fully deseasonalized

time series gives us the residual component.

After these steps, the algorithm provides a trend and refined seasonal and residual com-

ponents. If no seasonal component is specified, the algorithm smooths the data to derive

the trend component.
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4.3 Exponential smoothing (ETS):

ETS stands for "Error-Trend-Seasonality" and defines how specifically the components

interact with each other. Based on the type of error, trend, and seasonality, Pegels (1969)

proposed a taxonomy, which was then developed further by Hyndman et al. (2002) and re-

fined by Hyndman et al. (2008). According to this taxonomy, error, trend, and seasonality

can be:

• Error: Additive (A) or Multiplicative (M);

• Trend: None (N), or Additive (A), or Additive damped (Ad), or Multiplicative

(M), or Multiplicative damped (Md);

• Seasonality: None (N), Additive (A), or Multiplicative (M).

For each exponential smoothing method in the ETS model, (Hyndman et al. 2008) de-

scribes two possible innovations in state space models, one corresponding to a model with

additive and multiplicative errors. The classification from Figure 8 presents 30 possible

models. The two models produce equivalent point forecasts using the same parameter

values but different prediction intervals.

(a) (b)

Figure 8. (a) Additive error (b) Multiplicative error ETS model (openforecast 2023)

4.3.1 Model Selection

Information criteria such as AIC, AICc, and BIC can be used to select the appropriate ETS

model for the time series data.
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Akaike’s Information Criterion (AIC) for ETS models is as follows:

AIC =−2log(L)+2k (6)

Where L is the likelihood of the model and k is the total number of parameters and initial

states that have been estimated (including the residual variance).

The AIC corrected for small sample bias AICc is defined as

AICc = AIC+
2k(k+1)
T − k−1

(7)

and the Bayesian Information Criterion (BIC) is

BIC = AIC+ k[log(T )−2] (8)

Three combinations (Error, Trend, Seasonal) can lead to numerical difficulties. Specif-

ically, the models that can cause such instabilities are ETS(A,N,M), ETS(A,A,M), and

ETS(A,Ad,M) due to division by values potentially close to zero in the state equations.

We usually do not consider these particular combinations when selecting a model.

When we deal with time series data, multiplicative error models prove helpful only when

the data is strictly positive. However, these models lose numerical stability in the presence

of zeros or negative values. Therefore, we will not consider multiplicative error models

if the time series contains non-positive values. Instead, we will apply only the six fully

additive models.
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4.4 Neural Hierarchical Interpolation for Time Series (NHiTS)

January 2022 Neural Hierarchical interpolation for Time Series forecasting (NHiTS) was

proposed by Challu et al. (2022) which enhances N-BEATS (Oreshkin et al. 2019) that

improves the treatment of the input and the output which result in the better accuracy and

lower computation cost. On the long-horizon forecasting task, NHiTS improved accuracy

by 25% on the Association for The Advancement of Artificial Intelligence (AAAI’s) best

paper award, the Informer (Zhou et al. 2020), while being 50x faster. (Challu et al. 2022).

NHiTS samples the time series at different rates, which can help learn the short-term and

long-term effects of the series. Generating the prediction combines the forecast obtained

at a different time scale, which is called hierarchical interpolation. The NHiTS model

Figure 9. Architecture of NHiTS Image from Challu et al. 2022

comprises stacks and blocks, with residual connections between each block within a stack.

The architecture of NHiTS in Figure 9 shows that the final prediction is the sum of partial

predictions from each stack.

4.4.1 Multi-Rate Signal Sampling

The MaxPool layer within a block facilitates multi-rate sampling in NHiTS. Each stack in

NHiTS has its kernel size, which determines the sampling rate. Larger kernel sizes smooth

the series and focus on long-term effects, while smaller ones maintain short-term effects,

as shown in Figure 10. This multi-rate processing reduces the MLP input width for most
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blocks. Utilizing a multi-rate sampling technique with sub-sampling layers accomplishes

several benefits: It reduces memory usage and computation, mitigates overfitting by de-

creasing the number of learnable parameters, and preserves long-term forecasting.

Figure 10. The effect of kernel size at the MaxPool layer

Equation (9) provides the NHiTS multi-rate sampling. Given block l input yt −L; t (the

input to the first block l = 1 is the network-wide input, yt − L; t,1 = yt − L : t ), this

operation can be formalized as follows:

y(p)
t−L:t,l = MaxPool

(
yt−L:t,l,kl

)
(9)

where l (the number of blocks) is getting yt−L:t,l ( the input) (Challu et al. 2022)

4.4.2 Non-Linear Regression

Once the input signal passes the MaxPool layer, the block uses fully connected networks

to perform a regression and output a forecast and a backcast. Backcast is the information

captured by the block. So, we remove the backcast from the input signal and pass the

resulting signal to the next block through residual connections. That way, the next can

model any information not captured by a particular block.
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4.4.3 Hierarchical Interpolation

The Hierarchical interpolation aims to reduce the prediction cardinality in forecasting

models, which is the number of elements in a set. As the forecast horizon lengthens,

this cardinality can cause computational challenges and unnecessary model complexity

(Challu et al. 2022). Each stack in NHiTS has an expressiveness ratio ( number of pre-

dictions per unit of time) that specializes in treating the series at a different rate because

the MaxPool layer sub-samples the series. For instance, one stack focuses on short-term

effects hourly, another sub-samples every 12 hours, and the next every 24 hours. Con-

sequently, each stack operates at its scale, resulting in different cardinalities. Combin-

ing predictions from different time scales achieves hierarchical interpolation, resulting in

fewer outputs.

Figure 11. Hierarchical interpolation in NHiTS Challu et al. 2022

Figure (11) shows that each stack outputs a different number of predictions because it

specializes in its scale (or frequencies). Stack 1 looks at long-term effects, making its

predictions more spaced in time. On the other hand, Stack 4 looks at short-term effects

and outputs more granular predictions that are closer in time.

4.5 Time-series Dense Encode (TiDE)

Several transformer-based models have emerged for time series forecasting, such as In-

former Zhou et al. (2020), Autoformer Wu et al. (2021), PatchTST Nie et al. (2022),

and TFT Lim et al. (2021), targeted at long-term horizons. However, recent studies in-

dicate that simple linear models can outperform these transformer-based approaches on

various benchmark datasets (Zeng et al. 2023). In April 2023, Google researchers in-
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troduced TiDE (Time-series Dense Encoder), a novel encoder-decoder model explicitly

designed for time series forecasting (Das et al. 2023). TiDE deliberately avoids the at-

tention mechanism of transformer models and instead utilizes MLPs for efficient training

and faster inference. During training, TiDE encodes past data with covariates. It decodes

the learned representation with known future covariates to make predictions, demonstrat-

ing superior performance over state-of-the-art transformer models for long-time horizon

forecasts.

Figure 12. The architecture of TiDE (Das et al. 2023)

The TiDE architecture processes each series independently, simultaneously passing one

series and its covariates. There are three main components to the model shown in Figure

(12):

• An Encoder

• A Decoder

• A Temporal Decoder
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They all rely on the residual block architecture.

4.5.1 Residual Block

The decoder, encoder, and temporal decoder rely on the residual block to serve as the

architecture’s base layer. A residual block is a type of neural network component that

consists of a multilayer perceptron (MLP) with one hidden layer and a Rectified Linear

Unit (ReLU) activation function. After the MLP, there is a dropout layer, an entirely linear

skip connection, and a final layer normalization step. The network uses this component

repeatedly for encoding, decoding, and making predictions.

4.5.2 The Encoder

The encoding step maps a time series’s past and covariates to a dense representation of

the feature (Das et al. 2023). It has two-step :

• Feature projection: The residual block maps x(ı)t dynamic covariates (exogenous

variables varying in time) into a lower dimensional projection.

x̃(i)t = ResidualBlock
(

x(i)t

)
(10)

the future value of the feature is necessary for multivariate forecasting Therefore,

the model must treat a look-back window and a horizon sequence. These sequences

can get very long, so by projecting to a lower dimensional space, we keep the

lengths manageable and allow the model to treat longer sequences, both in terms of

historical window and horizon of forecast.

• Dense encoder: The encoder concatenates the past of a series with its attributes and

projections of past and future covariates. The encoder, a stack of residual blocks,

learns a representation of the inputs, effectively creating a learned embedding. Once

the encoder completes the encoding, it sends the embedding to the decoder for

further processing. The equation gives the Dense encoder:

e(i) = Encoder
(

y(i)1:L; x̃(i)1:L+H ;a(i)
)

(11)
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4.5.3 Decoder

It takes the learned representation of the encoder and generates predictions.

Dense Decoder: The dense decoder, comprised of a stack of residual blocks, takes

the encoded information and produces a matrix for the temporal decoder as the first

step.

g(i) = Decoder
(

e(i)
)

∈ Rp.H

D(i) = Reshape
(

g(i)
)

∈ Rp×H
(12)

It takes an input from the encoding e(i) and maps it to a vector g(i) of size H × p, where

p is the decoder output dimension. The vector g(i) goes through reshape to get a matrix

D(i) ∈ Rd×H .

The decoded output is stacked with projected features to capture the direct effects of future

covariates. For example, holidays are punctual events that can impact specific time series.

With this residual connection, the model can capture and leverage that information.

Temporal Decoder: The temporal decoder produces the final predictions for a given time

series using a residual block with an output size of 1. It maps the decoded vector d(ı)
t at

t − th horizon time-step concatenated with the projected covariates x̃(i)L+t , i.e.

ŷ(i)L+t = TemporalDecoder
(

d(i)
t ; x̃(i)L+t

)
∀t ∈ [H] (13)

4.6 Decomposition Linear (DLinear)

Researchers have recently introduced several Transformer-based solutions for long-term

time series forecasting (LTSF). However, despite their effectiveness, Transformers exhibit

significant shortcomings in long-term forecasting. They struggle to extract temporal re-

lations efficiently from long sequences due to their permutation-invariant self-attention

mechanism (Zeng et al. 2023). Additionally, increasing the look-back window size does

not reduce forecasting errors, indicating a failure to utilize additional historical data effec-
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tively. Furthermore, Transformers fail to adapt their temporal attention, assigning similar

importance to different points in time regardless of their specific characteristics. This

limitation can hinder their predictive capability, mainly when dealing with non-stationary

real-world data.

Zeng et al. (2023) introduce a set of embarrassingly simple one-layer linear models named

long-term time series forecasting (LTSF). To validate their performance, the author chal-

lenges transformer-based LTSF solutions with direct multi-step (DMS) forecasting strate-

gies via a temporal linear layer called LTSF-Linear. The LTSF-Linear directly regresses

historical time series through a weighted sum operation for future prediction. The math-

ematical expression is :

X̂i =WXi (14)

Where W ∈RT×L is a linear layer along the temporal axis. X̂i and Xi are the prediction and

input for each ith variate. LTSF-Linear shares weights across different variate and does

not model any spatial correlations. LTSF-Linear is a set of linear models. Vanilla Linear

is a one-layer linear model. Two variants with two prepossessing methods, DLinear and

NLinear, are introduced to handle time series across different domains. For our thesis, we

are focusing on DLinear.

DLinear combines a Decomposition scheme used in Autoformer (Wu et al. 2021) and

FEDformer (Zhou et al. 2022) with linear layers. Figure (13) shows the DLinear archi-

tecture where input raw data is decomposed into trend and seasonal components using a

moving average kernel. After decomposition, it follows one linear layer to the Remain-

der and Trend. We obtain the final prediction by adding the output of both linear layers.

DLinear has proven more effective than vanilla linear models in managing trends and

seasonal patterns, especially in data with clear trends.
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Figure 13. The architecture of DLinear (Zeng et al. 2023)

4.6.1 Benefits of Using Simple Linear Systems

Using a more straightforward model like DLinear offers several advantages. DLinear

captures short- and long-range temporal relations and has a lower memory footprint, fewer

parameters, and faster inference speed than existing transformers. Additionally, obtaining

DLinear is easy and does not require tuning model hyper-parameters.
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5. Data Preparation and Exploratory Analysis
We used a quantitative approach to collect and analyze data for the thesis research. We

evaluated the applied algorithm for forecasting using quantitative metrics. We aimed

to forecast the Virta charge demand response and the Fingrid FCR-D upward price for

two tasks. The method involves univariate and multivariate approaches to estimate the

feature relationship contributing to forecasting. Statistical processes analyze time series

data to develop models that capture underlying patterns.

5.1 Dataset

There are two datasets for the forecasting task. Most quantitative prediction problems use

time series data collected at regular intervals or cross-sectional data collected at a single

point in time.

5.1.1 Electric Vehicle Charge Data

We utilize historical charging data from the Virta database and weather data from the

Finnish Meteorological Institute (FMI) to predict the power required to charge electric

vehicles in Finland at any particular hour. This forecasting task utilizes data collected

between 2018 and 2023 and includes information on AC and DC station types that we

tested for demand response purposes.

Table 4. Raw data from the virta data source

STATION
ID

CUSTOMER
ID

CHARGE_START
TIME_AT

CHARGE
ID

CHARGE_STOP
TIME_AT

CHARGED
MINS

CHARGE
Wh

1 12
2023-04-06T
17:56:17Z 21

2023-04-06T
19:03:40Z 68 12142

2 123
2022-04-08T
20:00:00Z 31

2022-04-09T
09:39:12Z 820 35270

3 124
2018-08-23T
10:01:40Z 33

2018-08-23T
11:27:57Z 87 5000

Table 4 shows that the data gives the information related to charge watt-hour, based on the

Charge_id , start time, and stop_time. The data are stored for each charge_id how long

the charge happened and the total watt consumption during the charging period. We need

to observe data at regular hourly intervals for our forecasting task. However, since some

charges last for an hour while others may last for half a day, we cannot resample the data

based on the charge start time for all events. To transform the data into hourly intervals

and remove the irregularly spaced time series, we calculate the total duration of the charge
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for each charge ID, finding the average amount of charge utilized for each hour.

We extract weather-related data from the Finnish Meteorological Institute (FMI) by down-

loading data from different regions of Finland, such as Helsinki, Oulu, Rovaniemi, and

Jyväskylä, and then find the mean temperature data in Finland. Table 5 presents the trans-

formed data.

Table 5. Virta charge data Transformed Hourly interval

ds
2018-01-01
00:00:00

2018-01-01
01:00:00

2018-01-01
02:00:00

2018-01-01
03:00:00

unique_id DC DC DC DC
TOTAL_STATION_ACTIVE 41 41 41 41
CHARGED_SESSION 2 2 1 1
STATION_USED 2 2 1 1
CUSTOMER_CHARGING 2 2 1 1
TOTAL_STATION_VENDOR_USED 2 2 1 1
TOTAL_STATION_MODEL_USED 2 2 1 1
TOTAL_SECONDS 2423 1297 900 1500
Pressure (msl)
(hPa) 1001.525 1000.8 1000.475 999.975

Precipitation amount
(mm) 0.0 0.0 0.0 0.5

Relative humidity
(%) 88.0 89.75 90.25 92.0

Precipitation intensity
(mm/h) 0.0 0.0 0.0 0.15

Snow depth
(cm) 20.0 20.0 20.0 21.0

Air temperature
(degC) -1.575 -1.575 -1.75 -1.9

Dew-point temperature
(degC) -3.325 -3.075 -3.1 -3.025

Wind direction
(deg) 141.5 144.25 148.25 144.0

Gust speed
(m/s) 6.0 6.975 6.675 6.675

Wind speed
(m/s) 4.175 4.625 4.3 4.4

y 0.028892 0.015145 0.01026 0.01662

5.1.2 Frequency Containment Reserve For Disturbance in Upward Dataset

For the forecasting task of FCR-D upward price, data was extracted from the Fingrid open

data API (Fingrid 2023c) for the period 2018-2023. Key features considered include

energy production and consumption, FCR-D bid information, weather, spot price, and

intraday trading. Some variables, such as inertia, were not included.

The extracted API data is transformed into an hourly interval data frame, as shown in

Table (6).
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Table 6. FCR-D upward data extracted from the Fingrid API

index 2021-01-01 00:00:00+00:00 2021-01-01 01:00:00+00:00 2021-01-01 02:00:00+00:00
production(MW) 6890.0 6829.0 6855.0
consumption(MW) 9206.0 9042.0 9010.0
mean_import/export -2315.05 -2211.225 -2153.365
up_price(C/MW) 3.0 3.0 3.0
up_volume(MW) 95.4 95.4 95.4
up_volume_yearly(MW) 366.7 366.6 367.5
bid(MW) 284.0 289.0 289.0
nordic_traade(MW) -164.8 -164.7 -165.6
min_hz 49.894 49.901 49.909
mean_hz 49.92385 49.93505 49.9474
max_hz 49.949 49.96 49.979
temp -0.124639 -0.283821 -0.358821
wind(MW) 201.0 187.0 183.0
hydro(MW) 1371.345 1330.56 1375.105
nuclear(MW) 2788.51 2778.3 2768.95
surplus_defict(MW) 1906.749 2742.42 2451.58
up-regulation_power_trans 0.0 0.0 0.0
up-regulation_activated_power 0.0 0.0 0.0
mwh_price 24.35 23.98 23.72
industrial(MWh/h) 1216.19 1223.4 1213.02
other_production(MWh/h) 74.0 74.0 74.0
cogeneration_production(MWh/h) 1239.13 1237.64 1238.54
intraday_EE_FI 1612.2 1586.4 1564.0
intraday_FI_EE 419.8 445.6 468.0
intraday_FI_RUS 280.0 280.0 280.0
intraday_FI_SE1 2600.0 2555.3 2519.9
intraday_FI_SE3 1252.2 1200.0 1200.0
intraday_RUS_FI 0.0 0.0 0.0
intraday_SE1_FI 0.0 -44.7 -80.1
intraday_SE3_FI -1147.8 -1200.0 -1200.0
com_intraday_FI_SE3 -46.7 12.1 63.3
com_FI_EE 609.3 584.0 568.7
com_FI_SE1 -1559.0 -1523.6 -1478.8
imbalance_FI_SE 110.443 158.852 138.785
FI_RUS_FI_stock -140.0 -140.0 -140.0

5.2 Exploratory Data Analysis

In time series Exploratory data analysis, these methods are mainly taken into considera-

tion:

• Collecting the data and cleaning it.

• Preparation of visualization for time series.

• Distribution test

• stationary test

• Time series Decomposition.

• Autocorrelation test

45



5.2.1 Moving Averages

In time series analysis, moving averages offer a valuable means of discerning the average

movement over a specific period. Using both the simple moving average (SMA) and the

exponential moving average (EMA), we can effectively mitigate short-term fluctuations,

identify enduring trends, and accurately capture prevailing market movements. EMA, in

particular, is a robust tool for trend identification and noise reduction achieved by gradu-

ally diminishing the weight of past data points and prioritizing recent observations. Con-

sequently, EMA exhibits more excellent responsiveness than SMA, rapidly adapting to

changing market conditions and offering greater sensitivity to evolving trends.

5.2.2 Distribution Test

Distribution describes the relationship between data points in their sample space and the

frequency of variable values. In machine learning, data distribution profoundly affects

model outcomes and accuracy. Distribution impacts machine learning models, includ-

ing training-test alignment, feature characteristics, class imbalance, generalization, and

the balance of bias and variance. It’s essential to consider the distribution of the train-

ing and test datasets and individual features within the data, as these can affect model

performance. The ability of a model to generalize well to new, unseen data largely de-

pends on the diversity of the training dataset. Overfitting and underfitting can occur when

the training data is not representative of the broader dataset, affecting the accuracy and

generalizability of the model. The data distribution influences the balance between bias

and variance in a model, which impacts the model’s performance. Understanding and ad-

dressing distribution-related issues are crucial for building accurate and robust machine-

learning models as the field evolves.

5.2.3 Stationary Check

Stationarity characterizes a time series with a constant mean, variance, and covariance

independent of time. If a time series exhibits stationarity over a specific time interval,

it will maintain this property at subsequent times. The properties of the stationary time

series remain consistent regardless of the observation time. Consequently, time series with

trends or seasonality are not stationary. The stationarity of a time series can be verified

using either the Augmented Dickey-Fuller (ADF) or Kwiatkowski-Phillips-Schmidt-Shin
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(KPSS) methods.

Augmented Dickey-Fuller (ADF) Test

ADF is a statistical or unit root test to test whether a given time series is stationary. Unit

roots are a cause for non-stationary. When conducting the ADF test, one usually assumes

a specific condition: If the p-value is less than or equal to the significance level. The

default significance level is 0.05.

• p-value > significance level: Fail to reject the null hypothesis (H0); Series is non-

stationary.

• P-value <= significance level: Reject the null hypothesis (H0); Series is station-

ary.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test

KPSS is a type of Unit root test that tests for the stationary of a given series around a

deterministic trend. In other words, the test is somewhat similar to the ADF test.

• P-value>0.05: Series is trend stationary .

• P-value<0.05: Series is non-stationary.

The KPSS test tests the hypothesis opposite to the one in the ADF test.

5.2.4 Decomposition

To decompose a time series, one needs to break it down into its various components:

• Trend and Level: Trend is the overall motion of the series, which may consistently

increase over time, decrease over time, or a combination of both.

• Seasonality: regular seasonal pattern in the time series

• Random: After accounting for trend and seasonality, the residual component, also

known as statistical noise, represents the remaining variation.
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All series have a level and noise, but trend and seasonality are optional. The combination

of the components in a time series can be Additive and Multiplicative

Additive decomposition,

yt = St +Tt +Rt (15)

Where yt is the data, St is the seasonal component, Tt is the trend cycle component, and

Rt is the remainder component, all in period t.

multiplicative decomposition

yt = St ×Tt ×Rt (16)

• The additive model is useful when the seasonal variation is relatively constant.

• The multiplicative model is useful when the seasonal variation increases over time.

5.2.5 Autocorrelation plots

Autocorrelation helps detect patterns and check for randomness. It measures the correla-

tion between the series and its lagged values( previous point in time). There are two types

of autocorrelation plots that we can use.

Autocorrelation Function (ACF)

ACF shows the value of the correlation coefficient between the series and its lagged val-

ues at different time intervals. That is why it’s known as the complete auto-correlation

plot.

• The ACF allows us to determine how much past observations influence future ones.

If the ACF shows significant autocorrelation in several lags, it indicates that the

series has long-term memory and that past observations are relevant for predicting

future ones.

• The shape of the ACF can reveal the presence of moving average components in

the time series. Lags, where the ACF shows a significant correlation, may indicate

the order of an MA model.
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Partial Autocorrelation (PACF)

PACF eliminates the indirect effects of intermediate lags and measures the direct correla-

tion between an observation and its lagged values. It helps identify the direct dependence

between an observation and its lag values without the influence of intermediate lags.

• The shape of the PACF can reveal the presence of auto-regressive components in the

time series. Lags in which the PACF shows a significant correlation may indicate

the order of an AR model.

• The PACF is used in conjunction with the ACF to determine the order of an AR or

MA model. By analyzing both the ACF and the PACF to identify significant lags,

one can build a suitable model for time series analysis and forecasting.

5.2.6 Correlation Table

Correlation, a statistical measure, quantifies the degree of linear association between two

variables, indicating how they change together consistently. It serves as a means of elu-

cidating superficial relationships without implying causation. The correlation coefficient,

denoted by r, is a dimensionless metric that ranges from -1 to +1. An r value closer to

zero signifies a weaker linear relationship. Positive values r represent a positive correla-

tion, indicating that both variables tend to increase simultaneously. Conversely, negative

r values indicate a negative correlation, where an increase in one variable corresponds to

a decrease in the other.
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5.3 Electric Vehicle Charge Data EDA

Figure (14) shows the charge data relevant to each hour interval from 2018-2023. The

charge is divided into AC and DC categories since we want to forecast demand based on

station type. Here, the data are taken only for some specific station models, like Alfens

for AC type, based on internal testing.

Figure 14. Charge data from (2018-2023) for AC and DC

Figure 15 illustrates the distribution graphs for both AC and DC types, revealing a log-

normal distribution pattern. This distribution characterizes random variables whose loga-

rithms adhere to a normal distribution, commonly observed in various natural phenomena.

Examples include tissue and blood pressure sizes, income distribution, and even lengths.

The log-normal distribution extends finance due to its representation of growth processes

independent of size. This distribution finds application in diverse fields such as epidemi-

ology, stock market analysis, and technological assessments such as file sizes.

Figure 15. Distribution Graph

In 2023, Finland experienced the highest demand for electric vehicle (EV) charging ca-

pacity from 8 a.m. to 4 p.m. This trend remains consistent throughout the year, with a

disproportionately high number of charging sessions during daytime hours. As a result,
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peak power demand is highest during those hours, while overnight, there are fewer charg-

ing sessions and a lower peak power demand. Figure (16) illustrates this trend in the daily

EV charging capacity market by month.

(a)

(b)

Figure 16. Daily Ev charging Capacity Demand in Finland by month for the year 2023 (a) AC (b) DC

Figure (17) shows the graph for AC and DC charging demand capacity by day of the

week in Finland. We can see that weekdays have more AC capacity than weekends.

People use charging stations on weekdays more frequently than on weekends when usage
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is relatively lower. The reason can be that people usually leave their car at the office, and

we can see that the charge is carried out more during office hours and working days than

on holidays.

(a)

(b)

Figure 17. (a) Weekly EV charging capacity in Finland For AC type (b) Weekly EV charging capacity
Finland in for DC

Figures (18 and 19) show the plot for SMA and EMA, which helps us look at the trend

in the data. We can see an upward trend with the EMA, which helps us to identify the

pattern in the data. The figures for AC and DC show that they are not stationary since the

series indicate linear trends .
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(a)

(b)

Figure 18. (a) SMA for AC charging capacity (b) SMA for DC

(a)

(b)

Figure 19. (a) EMA for AC charging capacity (b) EMA for DC

A double stationary test using Kwiatkowski-Phillips-Schmidt-Shin and augmented Dickey-

Fuller statistical tests is carried out, showing that it is not stationary, as shown in Table

(7). KPSS indicates nonstationary, and ADF indicates stationarity. Then, the series is

difference stationary. Differencing is to be used to make series stationary.
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Table 7. Stationary test for Virta Dataset

Test statistics p-value Result
ADF -6.286563e+00 3.685787e-08 Stationary
KPSS 35.27668453184683 0.01 Not stationary

From Figure (20), additive decomposition decomposes the charge data into trend, sea-

sonal, and residual components. These components can be combined to reconstruct the

data shown in the top panel. Notice that the seasonal component changes slowly over

time, so any two consecutive years have similar patterns, but years far apart may have

different seasonal patterns. After subtracting the seasonal and trend-cycle components

from the data, the residual components shown in the bottom panel of Figure (20) remain.

We can see that the trend and seasonality information extracted from the series seems

reasonable. The residuals are also interesting, showing periods of high variability in later

years of the series. On doing the seasonality test with the Darts seasonality check, we can

find multiple seasonality of :

( 24 48 72 96 120 144 168 192)

(a)

(b)

Figure 20. (a) AC decomposition (b) DC Decomposition with the period=8766
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Figure (21) of the Virta dataset shows the characteristics with high positive and neg-

ative correlations with the charge amount. Features whose range is above +0.02 or -

0.02 that features will have some importance with the charge amount. Relevant features

with a high positive correlation include the total_seconds, total_station_model_used, to-

tal_station_vendor_used, customer_charging_station_used, charged_session and station_active

. The date-time and temperature related feature has a low correlation with the charge

amount.

Figure 21. Correlation plot for the Virta charge data

Autocorrelation Plot for Charge Data

The autocorrelation plots (22 and 23) generated for the Virta dataset reveal noteworthy

observations discernible through the analysis of the Autocorrelation Function (ACF) and

Partial Autocorrelation Function (PACF). In particular, numerous autocorrelations sur-

pass the confidence interval of 95%, denoting statistical significance at the conventional

threshold of 5%. Key observations from this analysis include:

• Several autocorrelations are significantly non-zero. Therefore, the time series is

non-random.

• There is evident significance across various lags in ACF and PACF plots, as indi-

cated by their notable elevation above the designated significance threshold.

• A discernible geometric decay pattern within the PACF plot further clarifies the
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temporal autocorrelation dynamics inherent within the dataset.

(a)

(b)

Figure 22. (a) AC PACF (b) DC PACF with lags=48

(a)

(b)

Figure 23. (a) AC ACF (b) DC ACF with lags=48
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5.4 FCR-D Upward EDA

This section analyzed trend of FCR-D upward price and presented our findings in the

following sections:

Figure 24. FCR-D upward Price

Figure 25. FCR-D upward price with other features related to FCR-D

Figures 24 and 25 show the time series graph for FCR-D upward price from 2021 to 2023.

From Figure 24, we can see how the FCR-D upward price fluctuates. We can see the high

prices during the year 2023 compared to 2021. the graph is irregular and has erratic data

with high and low peaks. Figure 25 shows the pattern for the period taken from August

17 to the end of August. We can see the price from 2 to almost 600 euros. The graph

also includes other features related to the FCR-D event. During the trend of the FCR-D

upward price, spot prices increased, and Nordic trade was also high. However, the yearly

bid volume for FCR-D was low, as was the hourly bid volume. This resulted in a low

FCR-D upward hourly volume.
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(a)

(b)

Figure 26. (a) Distribution plot (b) distribution type test plot

Figure 26 shows the distribution of the FCR-D upward. Figure 26 (b) shows a test to verify

which distribution the graph follows. The distribution follows the Cauchy distribution.

Cauchy distribution, or Lorentz distribution, is a continuous probability distribution that

arises in various statistical contexts. It does not have a mean, variance, or higher moments

defined. Despite its lack of a mean and variance, it does have a median and mode. In

finance, investors use the Cauchy distribution to model the distribution of investment

returns. It can better capture the heavy tails often observed in financial data than the

Gaussian distribution.
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Figure 27. Daily FCR-D upward price in Finland by month for the year 2023

In Figure 27, we can see the prices of Daily FCR-D upward in Finland for different

months in 2023. The blue line represents the average price for the given month. As we

can observe, the prices are not constant and fluctuate abruptly. The FCR-D upward prices

have varied considerably around their means. The price distributions for both services are

positively skewed, with median prices below the mean and, occasionally, far exceeding

the means. The graph shows that the prices fluctuate significantly during spring (April,

May) and are higher in summer than in winter.

Figure 28. FCR-D upward price by day of the week in Finland for the year 2023
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Figure 28 shows the graph for the price of the FCR-D upward by the day of the week.

The blue line is the mean price for the weekday, and the others are the actual price for the

given week of the day. From the figure, we can see higher peaks during the weekdays and

higher fluctuations in the price above the mean.

(a)

(b)

Figure 29. (a) SMA plot (b) EMA plot

Figure 29 shows the graph for the price of the FCR-D upward over the last three months.

SMA and EMA help us understand the data’s trends and patterns.

Table 8. Stationary test for FCR-D upward

Test Statistics p-value Result
ADF -11.153482 0.000000 Stationary
KPSS 4.203506008415505 0.01 Not stationary

Table 8 shows the stationary test result for the price of the FCR-D upward. On conducting

ADF, we get the result as stationary, and KPSS gives us Not Stationary. So we can

conclude that the series is difference stationary. Differencing is to be used to make series

stationary.
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(a)

(b)

Figure 30. (a) Decomposition with hourly weekly period= 168 (b) Decomposition with period=8766 (hour
yearly)

Figure 30 illustrates the decomposition of the price of the FCR-D upward into its con-

stituent components trend, seasonal, and residual elements, with an additive decomposi-

tion approach over two distinct periods, 168 and 8766. With the more extended period of

8766, the seasonality insight becomes challenging. We can see it has a consistent trend

for a duration, followed by a subsequent upsurge. When analyzed within the seasonal

period 168, a cyclic pattern emerges characterized by a flat trend interspersed with peri-

odic peaks, reverting to a flat trajectory. The seasonal component changes slowly, so any

two consecutive years have similar patterns, but years far apart have different seasonal

patterns. The seasonal trend showing a unique occurrence around 15000 may indicate

overfitting. The remaining component in the bottom panel is the leftover seasonal and

trend-cycle components subtracted from the data. Additionally, the residuals exhibit in-

triguing temporal dynamics, featuring intervals of heightened variability in the later years

of the dataset. Conducting a seasonality test yields multiple seasonalities, denoted as :

(10, 24, 34, 38, 48, 59, 72, 82, 95, 106, 120, 132, 144, 154, 167, 178, 192).
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(a)

(b)

Figure 31. (a) PACF (b) ACF with lag =168

In the ACF and PACF graph from Figure 31, we can see significant autocorrelation. We

can make the following observations:

• Several autocorrelations are significantly non-zero. Therefore, the time series is

non-random.

• From ACF and PACF, almost all lags are significant since they are well above the

significance line.

• When we set the ACF parameter to 168, it shows high autocorrelation between

adjacent and near-adjacent lags (lag=1 to lag=168).
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Figure 32 shows the FCR-D upward price correlation plot with the other features. We can

see how each feature correlates with the upward price of the FCR-D. Any features whose

range is above +0.05 or below -0.05 that feature are taken with the bid price.

Figure 32. Correlation plot of FCR-D upward price
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6. Experiments
This section details the steps to answer the research question concerning the previously

described models. It details the tools of analysis and model evaluation.

6.1 Feature Selection and Preprocessing

Preprocessing data is crucial for forecasting tasks. Including too many parameters can

create unhelpful forecasting correlations and cause the gradient descent to become stuck

in local minima. We can divide the forecasting task into univariate and Multivariate.

For the multivariate task, we pass the other features as Covariates in darts (Herzen et al.

2022) and the nixtla library (Garza et al. 2022). Covariate series are time series that the

models can take as inputs. Still, they will not forecast but provide additional informa-

tion/context that can be useful to improve the prediction of the target series (variable we

wish to predict in the future). The covariate types are shown in Figure 33.

Figure 33. Covariates types in time series

We can pass the feature as :

• Past covariates: In the future, signals that require measurement may arise and be

unknown.

• Future covariates: time series whose values are known into the future at prediction

time (till forecast horizon). e.g., calendar data, holidays, weather forecasts, etc.
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6.2 Training, Validation, and Test Data

We have divided the dataset into three main subsets, as shown in Figure 34:

• The training set (black graph) trains the model to learn the hidden features in the

data. The training set should have different inputs so that the model is trained in all

conditions and can predict any data sample that may appear in the future.

• During training, the model uses the validation set ( blue graph) to validate its perfor-

mance. It is essential during hyperparameter tracking to help optimize the model’s

configuration. The validation set acts as a checkpoint, allowing for the detection of

overfitting.

• The model uses the test set (purple graph) to assess its accuracy and precision on

data that it has not previously encountered.

Figure 34. Data splitting into Train(black), Evaluation(blue), and Test(purple)

6.3 Hyperparameter Tuning

It is the process of selecting the optimal set of the optimal configuration for a machine

learning model to achieve the best performance. Optuna will be employed for the hy-

perparameter tuning task in the thesis, as the selection of hyperparameters heavily influ-

ences the performance of deep learning models for time series forecasting, outperforming

classical statistical and machine learning-based approaches. (Akiba et al. 2019). Op-
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tuna is a hyperparameter optimization software framework that can quickly implement

different state-of-the-art optimization methods to perform hyperparameter optimization

rapidly with excellent performance. By default, Optuna implements a Bayesian optimiza-

tion algorithm (TPE) (Watanabe 2023). Optuna enables users to adopt state-of-the-art

algorithms for sampling hyperparameters and pruning unpromising trials. Compared to

traditional methods such as grid search, Optuna dramatically speeds up optimization time

and performance. It also allows users to plot optimization histories to better understand

the model.

6.4 Training and Evaluation Metrics

As shown in Figure (35), time series have different error and evaluation metrics, and it’s

not easy to select one metric that is best for all tasks. It is essential not to look at one

error metric when evaluating the model’s performance since each metric has advantages

and weaknesses. So, it always depends on the use case underlying data.

Figure 35. Different Error Metrics

6.4.1 Scale Dependent

When we express error metrics in the same units as the underlying data, they depend on

the scale.
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Mean Absolute Error (MAE)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (17)

MAE is the average absolute difference between the actual (yi) and predicted ( ŷi) val-

ues. If you want to penalize an outlier, it is not advisable to use MAE. Using MAE

can help assess accuracy on a single series effectively. However, it is important to note

that comparing MAE across different series is not feasible due to its scale-dependent na-

ture, which makes it unsuitable for comparing accuracy on different scales.(Hyndman &

Koehler 2006)

Mean Squared Error (MSE)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (18)

MSE is the mean of the squared error. The squaring term in MSE heavily weights signif-

icant errors, which is suitable for focusing on large errors and putting more attention on

outliers (huge errors)

Root Mean Squared Error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (19)

Root Mean Squared Error is the square root of MSE, which avoids unit loss in MSE.

It has the same advantages as MAE and MSE but is sensitive to outliers. According to

Willmott & Matsuura (2005), using RMSE as a measure of error is inappropriate, and they

recommend using MAE instead. Chai & Draxler (2014) recommended that the RMSE

metric instead of MAE be used when evaluating and optimizing different models in the

presence of a Gaussian error distribution.
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6.4.2 Scale Independent

Mean Absolute Percentage Error (MAPE)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi

yi
∗100

∣∣∣∣ (20)

The mean absolute percentage error (MAPE) is a widely used metric in time series fore-

casting. It calculates the average absolute difference between the actual and predicted val-

ues divided by the true value. MAPE is scale-independent and used to compare forecast

performance between different time series. MAPE also comes with some disadvantages.

First, it generates infinite or undefined values for zero or close-to-zero actual values (Kim

& Kim 2016). When using percentages, MAPE does not make sense. One should avoid

using MAPE.

Symmetric Mean Absolute Percentage Error (SMAPE)

To avoid the asymmetry of the MAPE, Armstrong & Forecasting (1985) proposed the

“adjusted MAPE”.

MAPE = 100mean(2 |yt − ŷt |/(yt + ŷt)) (21)

The absence of absolute denominator values in the current method can produce negative

or infinite error metrics.

Makridakis (1993) proposed a similar metric and called it SMAPE.

SMAPE =
1
n

n

∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2

(22)

The SMAPE is the average across all forecasts made for a given horizon. Its advantages

are that it avoids MAPE’s problem of significant errors when y-values are close to zero

and the large difference between the absolute percentage errors when y is more critical

than y-hat and vice versa. Unlike MAPE, which has no limits, it fluctuates between 0%

and 200%. The modified version of SMAPE ensures that the metric’s results will always
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be between 0% and 100%:

sMAPE =
100%

n

n

∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)

(23)

6.4.3 Scale-Free Error Metrics

Hyndman and Koehler (Hyndman & Koehler 2006) proposed a new metric — the scale-

free error metric. Their idea was to scale the error based on the in-sample MAE from a

naive (random walk) forecast method.

Mean Absolute Scaled Error (MASE)

MASE =
MAE

MAEin-sample , naive

MAE =
1
n

n

∑
i=1

|yi − ŷi|
(24)

To calculate MASE, you need to divide the MAE by the MAE of a naive benchmark that

is based on our training data and is in-sample. Values of MASE greater than 1 indicate

that the forecasts are worse, on average, than in-sample one-step forecasts from the naive

model. MASE will not produce infinite or undefined values, making it a suitable metric

for time series data with zeros except in the irrelevant case where all historical data are

equal. However, MASE is still vulnerable to outliers (Chen et al. 2017). To obtain a

consistent estimator of the series’ scale, we need to assume that the time series difference

between periods is stationary and use the scaling factor.

Table 9 compares the different evaluation metrics on various properties.

Table 9. Evaluation metrics properties

MAE MSE RMSE MAPE SMAPE MASE
Simplicity High Medium Medium High Medium Medium
Interpretability High Low High High High Low
Scale-Invariant No No No No No Yes
Penalizes large errors No Yes Yes No No No
Outlier sensitivity Medium High High Medium Medium Medium
Symmetric Yes Yes Yes No Yes Yes
Original scale Yes No Yes No No No
Sensitivity to division by 0 No No No Yes Yes Yes
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6.5 Development Tools

Python is the primary programming language for working with time series data and fore-

casting model development, and it has become the de facto programming language in AI.

The additional packages used for the project are

• SciKit Learn for feature scaling,

• Numpy and Pandas, for data transformation

• Matplotlib and Plotly for visualization

• Optuna for hyperparameter tuning

• Darts and nixtla and modeling and forecasting.
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7. Results
Forecasting time series data is critical in various fields, often categorized into univariate

and multivariate approaches. This study investigates the efficacy of different forecast-

ing models applied to both methodologies across two datasets. We prioritize identifying

models suitable for long-term forecasting to achieve accurate long-horizon predictions.

Specifically, we evaluate models with a horizon of h=720, signifying a substantial fore-

casting duration. We use Bayesian optimization with the Optuna framework to optimize

performance and find the best algorithms. The dataset is partitioned into training, evalua-

tion, and test sets to facilitate rigorous model assessment and validation. This systematic

approach enables a comprehensive comparison of forecasting models, examining their

effectiveness over prolonged periods.

We used a machine with the following specifications to perform the training and forecast-

ing of the models:

• GPU, specifically the NVIDIA RTX 2080Ti with 11GB of memory capacity.

• The CPU for processing tasks is an Intel® Core™ i9-9900KS CPU running at

4.00GHz with 16 cores.

• The operating system is a Linux-based system, specifically Ubuntu version 22.04.3

LTS.

7.1 Electric Vehicle Charge Demand Forecasting

We utilize Mean Squared Error (MSE) as the loss function in our training process. We

consider all possible pairs of look-back and horizon that we can derive from the training

period in each epoch. It is important to note that two mini-batches may have overlapping

time points. Prior research on long-term forecasting commonly used this approach (Wu

et al. 2021). For each (look-back, horizon) pair from the test set, we evaluate the model

through rolling validation/evaluation.
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7.1.1 Univariate Forecasting For Charge Demand

We are exploring different modeling algorithms and a unified model approach to deter-

mine the optimal predictive framework for forecasting the power curve of both AC and DC

charging stations in Finland. To evaluate the performance of machine learning models, we

commonly use various metrics such as Mean Absolute Error (MAE), Mean Squared Error

(MSE), Root Mean Squared Error (RMSE), and Symmetric Mean Absolute Percentage

Error (SMAPE).

Table (10) shows the model’s performance evaluation with the default settings of the darts

and nixtla library model. NHiTS, TiDE, and MSTL achieve notably higher accuracy rates

among the various methods. The table shows that NHiTS performs well with the AC-type

chargers and Tide with the DC-type power graph forecasting. Therefore, in hyperpa-

rameter optimization, we focus specifically on MSTL, which has a statistical foundation,

and NHiTS, which employs a deep learning framework. We aim to refine and tune these

methods further to enhance their performance.

Table 10. Univariate model performance on charge power profile dataset

Index MAE MSE RMSE SMAPE
MSTL_AC 0.491203 0.4691 0.684909 15.921484
ETS_AC 1.006908 2.270910 1.506954 39.419789

nhits_AC 0.347398410659474 0.34731327849630333 0.5893329097346451 13.096508788823868
Tide_AC 0.3740527214143861 0.4223811126071762 0.6499085417250463 14.194860664246942
Dlinear_AC 0.567929019933126 0.7388673493074928 0.8595739347534294 22.377008217379014
nhits_DC 0.1261951236417534 0.02846478114790042 0.16871508867881502 34.082422833018065
Tide_DC 0.12047099043102591 0.0255768517539771 0.15992764537120246 32.8190611593662
Dlinear_DC 0.13520005187575135 0.03245776927450568 0.18016039874097103 36.83964803445115
MSTL_DC 0.201352 0.075343 0.274487 32.416013
ETS_DC 0.355107 0.235080 0.484850 89.434685

MSTL Approach:

In the process of parameter optimization utilizing the MSTL method, careful adjustment

of the parameter known as seasonal_length is essential, which governs the length of the

seasonal patterns within the time series data.

According to Table (11), we can identify the optimal configuration by setting the seasonal

length parameter within the range of [24, 168]. This setting leads to significantly reduced

SMAPE values, indicating enhanced forecasting accuracy and improved robustness in

capturing the underlying seasonal dynamics of the data. We employed the MSTL method

using the Statforecast library from nixtla, with the trend component forecasted through an

AutoETS model.
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Table 11. Parameter to fine-tune for MSTL

Seasonal_length [24,48,96] [24,168] [24,48] [24,48,168] [24,192] [24,168,192] [12,24] [12,24,168]

Based on the data presented in Table (12), we can observe the performance of the model

trained with the best hyperparameters. The model trained with these hyperparameters

decreased the AC SMAPE value from 15.921 to 7.1592, accounting for a 55.02% reduc-

tion. The DC SMAPE value also reduced from 32.41 to 30.72, accounting for 5.2% of

the RMSE reduction.

Table 12. The MSTL model evaluation metrics table with the best parameter.

Model MAE MSE RMSE SMAPE
MSTL_AC 0.169554 0.059708 0.244352 7.159238
MSTL_DC 0.112292 0.022241 0.244352 30.723868

Figures 36 and 37 show the forecasting capabilities of the MSTL model when confronted

with data it has not previously encountered. In the case of the AC dataset, it is evident

that the MSTL model demonstrates remarkable accuracy in its forecasting capabilities.

Similarly, when analyzing the DC dataset, the MSTL model exhibits a comparable level

of precision in forecasting outcomes on unfamiliar data points.

Figure 36. MSTL AC
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Figure 37. MSTL DC

NHiTS Approach

NHiTS employs a diverse array of parameters for tuning purposes, as detailed in Table

(13), to enhance the fine-tuning process. This fine-tuning process determines and high-

lights the optimal parameter configuration in the designated column labeled best_param.

The cumulative duration expended to get the best parameter amounted to approximately

125 minutes across 20 epochs of training.

Table 13. Parameter used to fine-tune the NHiTS model

Description Parameter Best_param

input_size
input_size: int,
autoregressive inputs size, y=[1,2,3,4]
input_size=2 ->y_[t-2:t]=[1,2].

[48,72,96,128,336,720,1440] 336

n_pool_kernel_size list with the size of the windows
to take a max/avg over.

[[2,2,2],[4,4,4],[8,8,8],[8,4,1],
[16,8,1],[2,2,1],[4,4,2],[16,8,4]] [[2,2,2]]

mlp_unit Structure of hidden layers for each stack type

[[[512,512],[512,512],[512,512]],
[[256,256],[256,256],[256,256]],
[[128,128],[128,128],[128,128]],
[32,32],[32,32],[32,32]]

[[[512,512],
[512,512],
[512,512]]]

activation activation function
[‘ReLU’, ‘Softplus’, ‘Tanh’, ‘SELU’,
‘LeakyReLU’, ‘PReLU’, ‘Sigmoid’] tanh

n_blocks Number of blocks for each stack
[[1,1,1],[2,2,2],[4,4,4],
[8,8,8],[6,6,6][16,16,16] [8,8,8]

dropout_prob_theta Dropout for NHITS basis. [0,1] 0.48782
scaler_type type of scaler for temporal inputs normalization ["standard","minmax","robust"] standard
pooling_mode input pooling module type [‘MaxPool1d’, ‘AvgPool1d’]. MaxPool1d
interpolation_mode interpolation basis [‘linear’, ‘nearest’] "nearest"

n_freq_downsample list with the stack’s coefficients
(inverse expressivity ratios) [[4,2,1],[8,4,2],[16,8,4],[2,2,1]] [4,2,1]

Figure 38 shows the hyperparameter importance of the model and which model parame-

ters are highly important for training the model.
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Figure 38. NHiTS hyperparameter importance

The training process utilized a batch size of 128 and an output horizon of 720, with

Mean Absolute Error (MAE) as the loss function. The model was trained under specific

parameter configurations, as presented in Table 13.

Table 14. The model evaluation metrics table trained with the best hyperparameter for NHiTS

Model MAE MSE RMSE SMAPE
NHITS_AC 0.165617 0.063177 0.251351 6.486849
NHITS_DC 0.116378 0.024488 0.6485 30.780519

After implementing the NHiTS methodology, we observed a modest improvement in the

performance of our forecasting model compared to the MSTL approach shown in Table

14. However, when we evaluated the performance for DC forecasts, we found that the

MSTL method outperformed NHiTS by a slight margin of 0.1838%, as indicated by the

SMAPE metric.

Figures 39 and 40 show the forecasting capabilities of the NHiTS model for both AC and

DC demand for the 720 horizon on unseen data.

Figure 39. NHiTS forecast
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(a)

(b)

Figure 40. Forecast on unseen data for NHiTS (a) AC power graph (b) DC power graph

7.1.2 Multivariate Forecasting for Charge Demand

In multivariate forecasting, a comprehensive approach involves training three distinct

MLP-based architectures on previously unseen data and predicting the same set of unseen

data. The outcomes of these efforts are detailed in Table (14), providing a comparative

analysis of the results obtained from all three models using various evaluation metrics on

scaled data. Upon inspection of the evaluation table, it becomes evident that the TiDE

architecture performs better than the other models, particularly in forecasting AC and DC

power graphs. Given these findings, it is reasonable to conclude that TiDE is optimal for

hyperparameter tuning, promising enhanced forecasting accuracy and reliability.

Table 15. Multivariate forecasting with the different model evaluation metrics with scaled data

NHiTS
AC

TiDE
AC

Dlinear
AC

NHiTS
DC

TiDE
DC

Dlinear
DC

MAE 0.074476 0.050259 0.082944 0.075127 0.052155 0.076228
MSE 0.013366 0.004776 0.012060 0.010527 0.005195 0.010531
RMSE 0.115611 0.069111 0.109817 0.102600 0.072079 0.102620
SMAPE 16.382371 11.780025 20.973077 36.049018 28.454319 49.09355
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TiDE Approach:

For the Task of Multivariate time series Forecasting, compared with other models, TiDE

shows a Promising result. So, TiDE is selected for the hyperparameter tuning process

to find the best parameter that can yield an optimal model that minimizes the loss func-

tion.

Table (16) shows the hyperparameter optimization task with Optuna. Through fine-tuning,

we get the optimal parameters for our model training. The total duration for hyperparam-

eter tuning was 395 minutes and 28 seconds to traverse the parameter landscape and

converge upon the most promising configuration.

Table 16. Hyperparameter tuning for the TiDE model

Parameter Description Values Best_value

input_chunk_length
Number of time steps
in the past to take as a
model input (per chunk)

[72,96,12,8,196] 196

num_encoder_layers The number of residual
blocks in the encoder. [1,2,4,6,8,16,32] 1

num_decoder_layers The number of residual
blocks in the decoder. [1,2,4,6,8,16,32] 16

decoder_output_dim The dimensionality of the
output of the decoder [8,16,32,64,48,72,128,256] 72

hidden_size
The width of the layers
in the residual blocks of
the encoder and decoder.

[16,64,48,72,128,256,512] 48

temporal_width_past
The width of the layers
in the past covariate
projection residual block

[4,8,16,32,48,64,72,168,128,256] 72

temporal_width_future
The width of the layers
in the future covariate
projection residual block

[2,4,6,8,16,32,48,64,72,128,168,256] 64

temporal_decoder_hidden The width of the layers
in the temporal decoder. [8,16,32,48,64,72,128,256] 72

dropout
Dropout probability
is to be used in
fully connected layers.

[ 0.0, 1] 0.2696966

use_layer_norm use layer normalization
in the residual blocks. [True,False] True

user_reversible_instance_norm

use reversible instance
normalization RINorm
against distribution shift .
It is only applied to the
features of the target series
and not the covariates.

[True,False] True

During model training, the add_encoders section utilizes parameters related to past and

future covariates to train the model. Table (17) below displays the model optimizers used

for gradient descent optimization.
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Table 17. An additional parameter for model Training with TiDE

use_static_covariates True

optimizer_kwargs {’gradient_clip_val’: 1,’max_epochs’: 20,
’accelerator’: ’gpu’, ’callbacks’: []}

lr_scheduler_cls torch.optim.lr_scheduler.ExponentialLR
lr_scheduler_kwargs {’gamma’: 0.999}
batch_size 128
random state 42

add_encoders

{’cyclic’: {’future’: [’month’, ’day’, ’hour’, ’weekday’, ’quarter’, ’day_of_week’]},
’datetime_attribute’: {’future’: [’year’]},
’position’: {’past’: [’relative’], ’future’: [’relative’]},
’transformer’: Scaler}

Figure (41) shows the importance of the hyperparameter in minimizing the error when

trained with different sets of parameters to find the best parameter.

Figure 41. Hyperparameter importance for the TiDE

Figure 42. Feature Importance for the charge data

Figure (42) displays the crucial features required for training a model specifically de-

signed to predict data points not encountered before. Each feature in this visualization

holds its unique importance in the training process, working together to enhance the

model’s ability to forecast outcomes effectively.
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Table 18. TiDE model evaluation result

MAE MSE RMSE SMAPE
Tide_AC 0.150418 0.048977 0.221306 5.836538
Tide_DC 0.109839 0.011626 0.133618 28.454319

Table (18) presents the TiDE model’s performance when forecasting with different eval-

uation metrics. The TiDE model’s multivariate methodology outperforms the univariate

NHiTS and MSTL approaches. In the univariate scenario, the NHiTS and MSTL models

achieved the best forecasted SMAPE values of 6.48 and 30.72 for AC and DC, respec-

tively. However, the multivariate TiDE framework improved these SMAPE values signif-

icantly, earning 5.83 for AC and 28.45 for DC, indicating a significant increase in forecast

accuracy, with a 10.03% improvement for AC and a 7.39% improvement for DC.

Figure 43 shows the forecasted result of the TiDE model on the unseen data.

(a)

(b)

Figure 43. Forecast on unseen data for TiDE (a) AC power graph (b) DC power graph
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7.2 FCR-D Upward Price Forecasting

We use univariate and multivariate approaches to extract insights and patterns from the

data to forecast the FCR-D Upward prices. Then, we assess the performance of these

approaches through detailed comparative analysis, allowing us to understand their effec-

tiveness in predicting the FCR-D Upward prices.

7.2.1 Univariate Forecasting for FCR-D Upward Price

Figure (44) visualizes various forecasting models. The graph incorporates the "yeo-

johnson" transformation, a statistical technique for enhancing the interpretability and ac-

curacy of the data.

Figure 44. Scaled model forecast for FCR-D upward price

Tables (19) and (20) analyze model evaluations, offering insights into their performance

across different temporal horizons. These evaluations concern two reference horizons:

one spanning 720 hours and the other comprising 72 hours. Examining these evaluations,

one can understand how each model performs over varying periods.

Table 19. Univariate forecasting for the FCR-D upward with horizon=720 hour

MAE MSE RMSE SMAPE
MSTL 23.283919 1450.159433 38.080959 119.737634
NHiTS 4.23081363 194.468555 13.9451983 65.0386820
TiDE 3.85474245 186.570071 13.6590655 57.2209815
Dlinear 3.77824850 191.435872 13.8360352 56.5151639
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Table 20. Univariate forecasting for the FCR-D upward with horizon=72 hour

MAE MSE RMSE SMAPE
NHiTS 1.99788964 5.59623690 2.36563668 57.5107570
TiDE 2.26479584 9.88127985 3.14345031 51.7645672
Dlinear 2.36985965 10.0905978 3.17657013 54.2650236

Figure (45) shows the forecasting capabilities of three different models on the FCR-D

upward price. The figure shows a horizon of 72 for three models. From the graph, TiDE

and Dlinear forecast high values for the peaks, whereas NHiTS forecasts them as close to

the peak value. Similarly, TiDE performs better than the other two approaches regarding

low price value.

(a) (b)

(c)

Figure 45. Forecast on unseen data for NHiTS (a) TiDE (b) Dlinear (c) NHiTS
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NHiTS for Univariate Approach

Due to its exceptional efficiency, NHiTS is the top choice for hyperparameter tuning in

univariate methods. It ensures faster model convergence and optimizes computational re-

sources, making it ideal for large-scale datasets or resource-constrained environments. In

addition, using the Nixtla library along with Optuna for hyperparameter tuning enhances

the efficiency and effectiveness of the tuning process. This combination simplifies the

search for the best hyperparameters while providing a flexible framework for thoroughly

exploring the hyperparameter space, resulting in optimized model performance. The ideal

parameters for model forecasting based on hyperparameter tuning are similar to those in

Table (13). We fine-tuned the hyperparameters of the NHITS model to achieve the best

parameter for FCR-D upward to improve upward price forecasting for two horizon peri-

ods, 72 and 720 hours. Through this fine-tuning process, we minimized the model’s error,

and Table (21) lists the best parameters for 2 different horizons.

Table 21. The best parameter for NHiTS with horizon 72 and 720

horizon=72 horizon=720
input_size 38 95
n_pool_kernel_size [4, 4, 4] [8, 4, 1]

mlp_units
[[512, 512],
[512, 512],
[512, 512]]

[[256,256],
[256,256],
[256,256]]

activation LeakyReLU, PReLU
n_blocks [4, 4, 4] [2, 2, 2]
dropout_prob_theta 0.5706586722339906, 0.7140907874265439
scaler_type standard invariant
pooling_mode MaxPool1d MaxPool1d
interpolation_mode nearest, linear
n_freq_downsample [8, 4, 2] [8, 4, 2]

The findings indicate that, in the context of FCR-D upward price forecasting, short-term

forecasting yields superior results compared to its long-term counterpart, as shown in Ta-

ble (22). This discrepancy arises from the inability of long-term forecasting to effectively

anticipate high peaks, which occur less frequently than low peaks due to the pronounced

variability and erratic characteristics inherent in the dataset. Evaluation of forecasting

performance utilizes Mean Absolute Error (MAE) as a metric, aiming to minimize MAE

across various parameter configurations. Consequently, short-term forecasting exhibits

greater efficacy than long-term forecasting, chiefly attributable to the latter’s deficiency in
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accurately capturing infrequent high peaks.

Table 22. NHiTS model performance metrics with h=72 and 720

h=72 MAE MSE RMSE SMAPE
NHITS 1.512989 3.97233 1.993071 39.478564
h=720
NHITS 3.461108 241.799 15.54991 48.988366

(a)

(b)

Figure 46. Univariate forecast on unseen data for NHiTS FCR-D upward price (a) horizon=72 (b) hori-
zon=720

Figure 46 shows the forecasting capabilities of the NHiTS model on the unseen data.

7.3 Multivariate Forecasting for FCR-D Upward Price

We used a multivariate forecasting methodology that resembles the one used in capacity

forecasting. Tables (23) and Figure (47) depict the evaluation of the model on new data,

along with the forecast plot. The models were trained with default parameters and a 192

input horizon using Quantile transformation. We evaluated the model for two different

time horizons, 72 and 720, and compared the results using a provided table. The TiDE

model performed better than its counterparts for short-term and long-term forecasting.

The model exhibited good performance across various metrics, demonstrating its effec-
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tiveness in predicting outcomes accurately over different timeframes.

Table 23. Multivariate forecasting for the FCR-D upward with horizon=72 and 720

h=72 MAE MSE RMSE SMAPE
NHiTS 3.623256949 25.8843196 5.08766348 57.8549751
TiDE 1.89620672 5.1346097 2.26596771 50.47363687
Dlinear 2.73339983 25.4660342 5.04638824 52.2062613
h=720

NHiTS 4.6144929 236.8211421 15.38899419 62.053940
TiDE 4.02479571 239.22995 15.5640694 57.336956
Dlinear 11.0328461 665.586171 25.7989567 189.561033

Figure 47. Multivariate forecast Left: TiDE Right: NHiTS Bottom_left: Dlinear

TiDE for Multivariate FCR-D Upward Price Forecasting

After assessing the outcomes from Table (23), we selected TiDE to optimize hyperparam-

eters. We adjusted according to the specifications in Tables (16 and 17) and fine-tuned

the hyperparameters for horizons (72 and 720) to identify the optimal values. Table 24

provides the details resulting from the subsequent hyperparameter tuning process. We

trained the models to use Mean Absolute Error (MAE) as the designated loss function
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and scaled them with "yeo-johnson."

Table 24. The best hyperparameter value for the TiDE model multivariate approach

Parameter Best_value
input_chunk_length 120
num_encoder_layers 24
num_decoder_layers 96
decoder_output_dim 8
hidden_size 64
temporal_width_past 256
temporal_width_future 96
temporal_decoder_hidden 8
dropout 0.41126
use_layer_norm False
user_revesible_instance_norm False

Figure 48 displays the importance of the parameters during the model training and evalu-

ation.

Figure 48. Hyperparameter Importance for TiDE FCR-D upward

The TiDE approach reduces the error from 50.47 to 42.93 for the 72-hour horizon and

57.33 to 49.36 for the 720-hour horizon given in Table 25. However, The TiDE approach

only marginally reduced the error rate despite having more feature parameters.

Table 25. Model evaluation after finding the best hyperparameter

TiDE MAE MSE RMSE SMAPE
72 1.5216958177280 3.479279363 1.8652826496 42.9382356358210

720 3.474955342 244.820066463 15.64672702 49.366241592706

After examining both multivariate and univariate methodologies, the univariate approach

is notably practical in forecasting upward price movements within a 72-hour horizon for
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the FCR-D upward. Despite including features, their incorporation fails to improve the

model’s performance. This outcome is potentially due to the dataset’s inherently erratic

characteristics.

(a)

(b)

Figure 49. Multivariate forecast on unseen data for TiDE (a) time segment (b) horizon=720
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8. Conclusions
In conclusion, the thesis explored various forecasting techniques for two distinct tasks:

charge power profile forecasting for demand response and FCR-D upward price fore-

casting. The research demonstrated that MLP-based architectures showed promising per-

formance in charge demand forecasting, exhibiting satisfactory results even with basic

models. However, when facing more complex techniques such as NHiTS and TiDE

for univariate and multivariate Forecasting, the trade-off between training time and in-

ference capabilities became apparent, with slower training but faster inference on GPU

platforms.

Regarding FCR-D upward price forecasting, the thesis identified significant challenges

due to high data variability and erratic properties, leading to lower accuracy in long-

horizon forecasting. Many external factors influence the FCR-D upward price, which is

challenging to consider when developing the forecasting model. While transformer-based

architectures may present a potential solution, their application was limited in this study.

Nonetheless, the primary objective of forecasting power profiles for long horizons remains

crucial, aiming to determine bidding capabilities and revenue generation thresholds.

Further exploration into transformer-based architectures and other advanced algorithms

could enhance the accuracy of FCR-D upward price forecasting. Another approach could

be to cap out the high FCR-D upward price to a certain threshold so the model can fore-

cast the low peak price with high accuracy and the high peak to consider as an anomaly

case, which seems to happen less frequently. Additionally, investigating the scalabil-

ity and performance trade-offs of different models, particularly long-horizon forecasting

scenarios, is essential for practical implementation in energy markets. Addressing these

challenges will ultimately contribute to more informed decision-making processes and

improved revenue optimization strategies in the energy sector.

Iterative processes such as model training and hyperparameter tuning can enhance model

performance. These can be augmented by expanding the parameter space with diverse

values and employing sophisticated feature selection methodologies.
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8.1 Discussion of Results

The section discusses the Result of the key question for the thesis.

RQ 1: Can state-of-the-art deep learning approaches accurately forecast EV charg-

ing demand and FCR-D upward bid price for a month-long horizon?

Long-term forecasting is crucial in the energy sector. However, it presents challenges

such as dealing with complex data, selecting models, estimating parameters, and man-

aging uncertainty. Despite these challenges, long-term forecasting is vital for optimizing

resource allocation, identifying risks, and making informed decisions in Energy market

markets. EV charging follows a seasonal pattern with high and low utilization during the

day and night. Weekdays see more usage than weekends and holidays, making it easy to

forecast long-term. However, FCR-D upward bid prices exhibit randomness, challenging

forecasting for a month-long horizon.

In exploring different modeling approaches for forecasting, using classical and state-of-

the-art deep learning methods, we found that even simple models like MSTL can perform

better in data with a consistent pattern for a long horizon. The MSTL model is faster to

train and inference. By employing MLP-based state-of-the-art methods, the forecasting

performance improves compared to MSTL. However, these models require more training

time and computational power, and inference is slower on the CPU than on the GPU.

When comparing different approaches based on the current best model for time series

forecasting for our task, NHiTS and TiDE performed better. NHiTS is better for uni-

variate, and TiDE is better for multivariate approach. In conclusion, advanced models

are more accurate when trained on vast amounts of data and capable of learning data

patterns.

RQ 2: What are the advantages of univariate and multivariate forecasting ap-

proaches, and how do different features contribute to forecasting accuracy?

With the univariate approach for both cases, MSTL, a statistical approach, is suitable

for long-term forecasting with an EV charge profile. With the state-of-the-art approach,

the NHiTS approach was slightly better at forecasting the AC power profile than the DC
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power profile. Similarly, the MSTL approach performed worse than other state-of-the-

art approaches for bid price forecasting. Also, with hyperparameter tuning, the NHiTS

performance was significantly better. The challenge with FCR-D upward forecasting is

due to data variability and the erratic nature of the data. My model could not accurately

forecast the higher bids.

In exploring whether a multivariate approach can enhance our forecasting capabilities,

we included multiple features and trained a model. Our findings indicate that the MLP

approach significantly reduces the margin of error for forecasting the charge profile.

Through hyperparameter tuning using the TiDE model, we observed improved perfor-

mance compared to the univariate approach. We included features like holidays, hours,

and Date Time as future covariates, while variables like station, charge-related informa-

tion, and temperature as past covariates. Incorporating these variables reduced model

error, demonstrating that adding features minimizes error. Our research indicates that

multivariate approaches are superior to forecasting the charge profile.

In the case of FCR-D upward bid price forecasting, selecting various features related to

bid, spot price, intraday features, and electricity features did not help us improve accu-

racy significantly. The univariate approach performed better with hyperparameter tun-

ing.

RQ 3: Does the applied model reliably inform bidding strategies to minimize mis-

takes, given the penalty of three times the cost of the bid price for under-delivery

during the hour?

Our study aims to assess the reliability of the model used for bidding strategy to minimize

errors. If there is under-delivery, a penalty of three times the bid price will be applied for

the specific hour. We aim to reduce over-bidding and ensure our model does not overesti-

mate the charge profile. The bid value should closely align with the charge profile value

for a given hour. We strive to predict the charge profile as accurately as possible.

When forecasting the charge power profile for the month horizon, our forecasted value

matches the unseen data with high confidence. So we can be sure that our forecasted

89



value can be used to place the next day’s bid. The predicted values matched the actual

charge profile with high confidence on weekdays and weekends. However, the predicted

values were slightly higher on public holidays than the exact power profile. Lower ca-

pacity is likely due to decreased usage of the charging stations on holidays. Our model

struggled to account for this relationship, as it’s difficult to understand human behaviour.

In conclusion, the forecasted value to place a bid reduces the error compared to the manual

way of guessing tomorrow’s charge profile. This method tends to lessen the overbidding

and under-delivery.

The primary objective of forecasting an upward price for FCR-D is to estimate the price

for the upcoming days and the monthly revenue if we bid with the forecasted capacity.

Overall, we have found that forecasting for the long term is more complex than predicting

for the short term, such as two days ahead. The forecasting model could predict the low

hourly bid, but our model could predict the pattern but not the exact bid price for the hour

where the bid is high. For example, in a given hour, the bid price can range from 2-10

euros, and suddenly, the next hour, it can increase by 10 to 20 times. The model can

capture the pattern but cannot forecast the exact value.

8.2 Impact of Research

8.2.1 Sustainability

Improved understanding and utilisation of charge demand forecasting can encourage a

sustainable transition. By accurately predicting EV charging demand, operators can opti-

mize resource allocation, enhance charging infrastructure, ensure reliable energy supply,

and promote renewable energy sources, thereby supporting broader sustainability goals

and advancing the transition to cleaner energy systems.

8.2.2 Green transition

The transition to green energy management is crucial for predicting EV charging de-

mand and FCR bid prices. companies can anticipate the rise in electric vehicle adoption

enabling efficient allocation of resources and planning of infrastructure. Integrating re-

newable energy into electric vehicle charging networks improves grid stability, reliability,

and eco-friendliness. This is crucial for promoting environmental sustainability, driving
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innovation in the energy sector, and moving towards a greener future.

8.2.3 Bidding Strategies

Efficient operation and stability of the grid are crucial for charging EVs. Bidding strate-

gies use market dynamics, energy supply and demand, and grid requirements to optimize

bid prices. Bidding strategies based on reliable forecasting models can enhance the effi-

ciency and competitiveness of energy markets. Availability of charging stations, grid load

forecasts, energy price fluctuations, and regulatory constraints are some factors that affect

these strategies. A data-driven bidding strategy helps anticipate energy price fluctuations

and adjust bids accordingly. Anticipating future demand and pricing dynamics, market

participants can optimize their bidding strategies to minimize costs, maximize revenue,

and ensure the reliable provision of energy services.
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