
1

Birendra Khadka

ENHANCING CLOUD BASED SOFTWARE ENGINEERING WITH

MACHINE LEARNING

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCE

The Master of Engineering, Information Technology

May 2024

2

ABSTRACT

Centria University

of Applied Sciences

Date

May 2024

Author

Birendra Khadka

Degree programme

The Master of Engineering, Information Technology

Name of thesis

ENHANCING CLOUD BASED SOFTWARE ENGINEERING WITH MACHINE LEARNING

Centria supervisor

Aliasghar Khavasi

Pages

29 + 2

Instructor representing commissioning institution or company

With the ability to access virtualized resources on demand, cloud computing has developed into a game-

changing technology that enables companies to adapt to changing market conditions and grow their

infrastructure through dynamic expansion. In machine learning (ML), where computational resources

might be very variable and in demand, this method is particularly helpful.

The main goal of this thesis is to streamline cloud-based software engineering processes by incorporat-

ing machine learning techniques. Machine learning algorithms are mostly used in cloud-based software

development and deployment pipelines to automate tasks, improve decision-making, and optimize re-

source usage. The goal is to increase the effectiveness, stability, and scalability of cloud-based software

systems by utilizing predictive analytics and data-driven insights.

Among the real-world examples presented in the research to show how machine learning may be ap-

plied to enhance speed, security, resource allocation, and service rollout are AWS, Netflix, Uber, and

other well-known businesses. For cloud-based software engineering decision-making processes, these

case studies provide useful insights.

The results of our tests show the potential benefits of integrating machine learning with intelligent de-

cision-making and automation in a variety of domains. The results add to the growing body of

knowledge on machine learning applications in software development and offer insightful information

to both academics and industry practitioners.

3

CONCEPT DEFINITIONS

API Application Programming Interface

AWS Amazon Web Services

Azure Microsoft Azure Cloud

CBSE Cloud-Based Software Engineering

CDN Content Delivery Network

CE Cloud Engineering

CI/CD Continuous Integration/Continuous Deployment

DaaS Data as a Service

DNS Domain Name System

GCP Google Cloud Platform

GDPR General Data Protection Regulation

IAM Identity and Access Management

IaaS Infrastructure as a Service

IoT Internet of Things

ML Machine Learning

MLaaS Machine Learning as a Service

PaaS Platform as a Service

SaaS Software as a Service

SDN Software-Defined Networking

SOC Service Organization Control

VM Virtual Machine

VMs Virtual Machines

4

ABSTRACT

CONCEPT DEFINITIONS

CONTENTS

1 INTRODUCTION .. 6

2 BACKGROUNDS AND LITLERATUE REVIEW ... 8
2.1 Overview of Cloud-Based Software Engineering .. 8
2.2 Role of Machine Learning in Software Engineering .. 9
2.3 Integration of Machine Learning with Cloud-Based Systems ... 9
2.4 Summary of Relevant Literature .. 10
2.5 Machine learning solutions on the cloud .. 10
2.6 Amazon SageMaker ... 10

2.6.1 Advantages of Amazon SageMaker .. 11
2.6.2 Shortcomings of Amazon SageMaker ... 11
2.6.3 Getting Started with Amazon SageMaker .. 11

3 METHODOLOGY .. 12
3.1 Dataset Description .. 12
3.2 Reason for Dataset Selection ... 12
3.3 Advantages and Disadvantages of the Dataset .. 12
3.4 Pre-processing Steps .. 13
3.5 Development of Working Flowchart .. 13

4 IMPLEMENTATION ... 14
4.1 Integration of Machine Learning Models with Cloud-Based Systems 14
4.2 Justification of Model Selection .. 20

5 RESULT AND ANALYSIS ... 21
5.1 Evaluation of Machine Learning Models' Performance .. 21

5.1.1 Resource Allocation Optimization .. 21
5.1.2 Service Orchestration Enhancement .. 23
5.1.3 Security enhancement prediction .. 24
5.1.4 Performance Prediction Analysis .. 26

5.2 Evaluation and Comparison.. 27
5.3 Overview of the ML algorithms integrated. .. 27
5.4 Synthesis of Results .. 29

6 REAL-WORLD APPLICATIONS: IMPLEMENTATION INSIGHTS FROM INDUSTRY

LEADERS .. 30

7 CONCLUSION .. 34

REFERENCES .. 35

5

List of Figures

FIGURE 1. Development of Working Flowchart ... 13

FIGURE 2. Creating bucket in S3 .. 16

FIGURE 3.Configure an IAM role with the necessary permissions for SageMaker 17

FIGURE 4. Accuracy between different ML algorithms .. 27

FIGURE 5. Precision of different ML algorithms .. 28

FIGURE 6. F1-Score for ML algorithms .. 28

FIGURE 7. Recall for ML algorithms .. 29

List of Tables

TABLE 1. Resource Allocation Optimization .. 21

TABLE 2. Service Orchestration Prediction ... 23

TABLE 3. Security Enhancement Prediction ... 24

TABLE 4. Performance Prediction ... 26

6

1 INTRODUCTION

Cloud computing, with its unparalleled scalability, flexibility, and access to computer resources, has

completely changed software development, deployment, and maintenance. Simultaneously, machine

learning has become a potent instrument for extracting insights from data, facilitating astute decision-

making and automation in a multitude of domains. The incorporation of machine learning into cloud-

based software engineering offers a noteworthy prospect to augment conventional software development

methodologies through automation and data-driven insights.

Historically, requirements analysis, design, testing, and maintenance in software engineering have been

done by hand using heuristics and manual labor. More effective and scalable methods are, nonetheless,

desperately needed as contemporary software systems become more complicated and large-scale. These

objectives are satisfied by cloud computing, which gives businesses on-demand access to virtualized

resources so they can dynamically grow their infrastructure and adjust to changing requirements. Not-

withstanding these developments, there are still issues with guaranteeing the caliber and dependability

of cloud-based apps and streamlining software engineering procedures.

This thesis addresses the research challenge of improving cloud-based software engineering processes

by using machine learning methods. In particular, the goal is to optimize resource consumption, enhance

decision-making, and automate processes in cloud-based software development and deployment pipe-

lines using machine learning techniques. Enhancing the efficacy, dependability, and expandability of

cloud-based software systems is the aim through the utilization of predictive analytics and data-driven

comprehension.

This study's main goal is to investigate the possible advantages of combining cloud-based software en-

gineering techniques with machine learning. Finding ways to integrate machine learning techniques into

different stages of the software development lifecycle and creating and assessing machine learning mod-

els for automated testing in cloud-based environments, defect prediction, and resource optimization are

important objectives. The study also evaluates how machine learning integration affects user happiness,

system performance, and development efficiency in practical situations.

7

By using machine learning approaches, this project seeks to promote cloud-based software engineering

processes with an emphasis on enhancing system performance and development efficiency. The research

encompasses a number of software engineering disciplines, including as design, implementation, testing,

deployment, and maintenance, in addition to requirements analysis. By addressing these challenges, this

research aims to contribute to the advancement of cloud-based software engineering practices and pave

the way for more intelligent and adaptive software systems.

The structure of the thesis is as follows: Chapter 2 provides a literature review on cloud-based software

engineering, machine learning techniques in software engineering, and previous studies on integrating

machine learning with cloud-based systems. Chapter 3 outlines the methodologies used in this study,

including data collection, preprocessing, machine learning algorithms, evaluation metrics, and the de-

velopment of working flowcharts. Chapter 4 details the implementation of machine learning models in

cloud-based software engineering environments, including prototype systems, and encountered chal-

lenges. Chapter 5 presents the findings of the study, including performance evaluation results, data in-

sights, and visualizations. Chapter 6 showcases real-world applications of the integrated systems and

demonstrates their effectiveness in practical scenarios. Chapter 7 discusses the implications of the find-

ings, addresses challenges and limitations, and outlines future research directions. Finally, Chapter 8

summarizes the key findings, contributions, and implications of the study, and provides concluding re-

marks.

8

2 BACKGROUNDS AND LITLERATUE REVIEW

A paradigm changes in software development, cloud-based software engineering makes use of cloud

computing technologies to improve scalability, accessibility, and cost-effectiveness. Simultaneously,

software engineering has seen a rise in the incorporation of machine learning techniques, providing pro-

spects for automation, optimization, and data-driven decision-making. This section reexamines the re-

search on machine learning's potential to improve software development processes and cloud-based soft-

ware engineering.

2.1 Overview of Cloud-Based Software Engineering

The term "cloud-based software engineering" describes how different stages of the software develop-

ment lifecycle may be facilitated by utilizing cloud computing platforms and services. Infrastructure as

a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) models are essential

elements of cloud-based software architecture. These models give developers access to scalable compu-

ting resources, development tools, and application hosting environments. Collaborative development,

continuous integration, and deployment automation are made possible by cloud-based development plat-

forms, which shorten time-to-market and streamline software development procedures.

Improved resource usage, scalability, and cost-efficiency are just a few advantages of cloud-based soft-

ware engineering that have been emphasized in earlier research. Rittinghouse and Ransome's (2016)

research, for instance, showed how well cloud-based development environments work for distributed

software development projects, allowing geographically separated teams to work together and share re-

sources without any problems. Similar to this, (Chen, Zhang, Hu, Hussain, & Taleb, 2018) compared

traditional and cloud-based development methodologies and came to the conclusion that cloud-based

software engineering had a number of advantages, including cost savings, scalability, and flexibility.

9

2.2 Role of Machine Learning in Software Engineering

The issues of software engineering, such as defect prediction, code analysis, testing automation, and

performance optimization, may now be effectively addressed with machine learning approaches. Ma-

chine learning algorithms may uncover trends, spot abnormalities, and provide predictions by analyzing

vast amounts of software-related data. These predictions help engineers with decision-making and prob-

lem-solving.

Researchers have been investigating the use of machine learning in software engineering in a variety of

disciplines in recent years. In order to identify potential software defects early in the development pro-

cess, for example, (Munch & Makinen, 2013) suggested a machine learning-based technique for defect

prediction. This approach leverages software metrics and previous defect data. In a similar vein, (Dia-

kopoulos, 2016) created a code completion recommendation system that makes code snippet recommen-

dations based on context and previous coding habits through the use of machine learning models.

2.3 Integration of Machine Learning with Cloud-Based Systems

Enhancing software engineering processes in cloud settings is made possible by the combination of ma-

chine learning approaches with cloud-based systems. Through the utilization of cloud platforms' scala-

bility and accessibility, developers may implement machine learning models for the purpose of analyz-

ing sizable datasets, automating monotonous operations, and real-time system performance optimiza-

tion.

The integration of cloud-based systems with machine learning for diverse applications has been the sub-

ject of several studies. A predictive auto-scaling system for cloud applications, for instance, was pre-

sented by (Munch & Makinen, August 2013). This mechanism uses machine learning algorithms to

estimate future resource demands and dynamically change resource allocation appropriately. Similarly,

in order to improve system security and dependability, (Buyya, Yeo, Venugopal, Broberg, & Brandic,

2009) investigated the application of machine learning for anomaly detection in cloud-based networks.

This involved identifying unusual behavior and security risks.

10

2.4 Summary of Relevant Literature

The literature study highlights how combining machine learning with cloud-based software engineering

techniques may have a revolutionary effect. Research and case studies have continuously shown how

effective machine learning algorithms are in several areas of software development, from resource allo-

cation to fault prediction. Companies such as Amazon Web Services, Netflix, and Uber have demon-

strated the practical advantages of this integration in real-world settings, resulting in increased develop-

ment efficiency, better system performance, and lower costs. To fully reap the benefits of machine learn-

ing in cloud-based contexts, however, issues like data protection and model interpretability need to be

resolved.

2.5 Machine learning solutions on the cloud

Cloud computing platforms offer a variety of machine learning (ML) choices to satisfy different business

needs. Among these are fully customized platforms and managed machine learning services. Major

cloud providers like Microsoft Azure, Google Cloud Platform (GCP), and Amazon Web Services (AWS)

offer ML services on a broad scale.

With Amazon SageMaker, a fully managed service from AWS, developers and data scientists may, for

instance, construct, train, and apply machine learning models at scale. Whereas Azure offers Azure Ma-

chine Learning services, GCP offers AI Platform services. These services help businesses embrace and

apply machine learning technology by providing a range of tools and capabilities for data processing,

model training, and deployment.

2.6 Amazon SageMaker

AWS's completely managed solution, Amazon SageMaker, makes the process of creating, honing, and

implementing machine learning models easier. Data preprocessing, model training, automated model

tweaking, and hosting of learned models are just a few of the many capabilities it provides. Model cre-

ation is made flexible and scalable with SageMaker's built-in algorithms, frameworks, and custom code

options.

11

2.6.1 Advantages of Amazon SageMaker

SageMaker's ease of use is one of its main benefits. It gives consumers a single platform to do all ma-

chine learning activities without having to bother about infrastructure maintenance. By dynamically

scaling resources in response to demand and minimizing the need for manual intervention and optimi-

zation, SageMaker also provides cost-efficiency.

The integration of SageMaker with other AWS services is an additional benefit. Its smooth integration

with CloudWatch for monitoring, IAM for security, and S3 for data storage allows for a comprehensive

approach to machine learning processes inside the AWS ecosystem. Moreover, SageMaker has inte-

grated support for remote training, which makes it appropriate for managing complicated models and

big datasets.

2.6.2 Shortcomings of Amazon SageMaker

Amazon SageMaker has many drawbacks in spite of its advantages. For example, even though it comes

with many built-in algorithms and frameworks, users might need to create unique solutions because it

might not cover every use case. Users who are unfamiliar with machine learning or AWS services may

also find SageMaker to have a learning curve; however, this difficulty may be lessened by utilizing the

courses and documentation that AWS offers.

2.6.3 Getting Started with Amazon SageMaker

To utilize Amazon SageMaker, a user must have an Amazon account. After that, they may programmat-

ically access SageMaker via the Management Console or the AWS SDKs. Typically, the process com-

prises the subsequent phases.

Data preparation involves uploading data to an S3 bucket and preprocessing it as necessary. Following

this, model training begins by selecting an algorithm or framework, configuring training parameters, and

initiating training using SageMaker's built-in algorithms or custom code. Model tuning can then be per-

formed to optimize hyperparameters and enhance model performance using SageMaker's automatic

model tuning feature. Once trained, the model is deployed to a SageMaker endpoint for real-time infer-

ence or batch processing. Finally, ongoing monitoring and management ensure model performance is

maintained, resources are adjusted as needed, and endpoints are managed using SageMaker features and

AWS services.

12

3 METHODOLOGY

The methodology entails rigorous data gathering, preparation for machine learning, algorithm selection,

performance evaluation with specific metrics, and the development of a visual workflow. This approach

initiatives to enhance machine learning applications for cloud-based software engineering.

3.1 Dataset Description

The dataset used in our implementation consists of simulated data representing various metrics related

to cloud-based software engineering. It includes four sets of data, each representing different aspects of

system performance: resource utilization, service performance, security metrics, and overall system per-

formance. Each set contains multiple instances, with each instance consisting of several metrics such as

CPU utilization, memory utilization, network traffic, latency, throughput, intrusion attempts, firewall

alerts, encryption strength, and authentication success rate.

3.2 Reason for Dataset Selection

This dataset was chosen because it provides a comprehensive illustration of common challenges in

cloud-based software engineering, such as resource allocation, service orchestration, performance opti-

mization, and security improvements. It allows us to evaluate how well these challenges are handled by

machine learning systems. In addition, the simulated nature of the data allows us to manipulate a variety

of scenarios, which makes comprehensive testing and analysis of machine learning models easier.

3.3 Advantages and Disadvantages of the Dataset

The dataset is appropriate for testing various use cases and machine learning techniques since it includes

a broad variety of metrics pertinent to cloud-based software engineering. Because it is simulated data,

controlled tests and reproducible findings are possible. Because the data is well-defined and organized,

preparation and analysis are made simple. The simulated nature of the data means that it could not ac-

curately reflect the nuances of real-world situations, which could result in differences between simulated

and actual performance. The generalizability of the conclusions may be impacted by the dataset's lack

of variability or subtleties seen in real-world data.

13

3.4 Pre-processing Steps

A number of pre-processing procedures were carried out to ensure data quality and algorithm compati-

bility prior to training machine learning models on the dataset. To make sure the dataset was suitable for

analysis and modelling, pretreatment approaches were used. This involved locating and managing erro-

neous or missing values by removal or imputation. To scale the measurements to a standard range and

stop any one characteristic from dominating the others, normalization was used. For the purpose of

training models, categorical variables—like orchestration strategy—were converted into numerical val-

ues. In order to improve model performance, feature engineering was used to create new features or

extract pertinent data from already-existing ones. For example, raw measurements were used to calculate

the percentage of CPU or memory consumption.

3.5 Development of Working Flowchart

The different phases involved in implementing machine learning models for cloud-based software engi-

neering will be shown in a functional flowchart that is being constructed. The data flow, preprocessing

procedures, model training, assessment, and deployment procedures will all be shown in this flowchart.

It will guarantee the repeatability of the experimental method and act as a visual help for understanding

the workflow.

FIGURE 1. Development of Working Flowchart

14

4 IMPLEMENTATION

AWS was used to provide a dynamic and scalable environment for the application of machine learning

models in cloud-based applications. AWS offered a full range of cloud computing services, such as

SageMaker for training and deploying machine learning models, S3 for data storage, and EC2 for virtual

machine instances. Python programming was used for the implementation, along with well-known ma-

chine learning tools like TensorFlow, PyTorch, and scikit-learn. AWS CLI and Jupyter Notebooks were

two examples of development tools that were used for deployment and prototyping.

4.1 Integration of Machine Learning Models with Cloud-Based Systems

There are several processes involved in integrating machine learning (ML) models with Amazon Sage-

Maker in order to train, deploy, and use ML models for different use cases. In this scenario, four different

use cases Resource Allocation Optimization, Service Orchestration Enhancement, Security Enhance-

ment Prediction, and Performance Prediction Analysis are addressed by integrating several ML models

using SageMaker.

Step 1: Metrics for system performance, security, utilization of resources, and service performance are

included in the dataset.

Step 2: Data is stored into CSV files after being individually prepared for each use case.

15

To train the machine learning models, this code creates pandas DataFrames for every use case and saves

them to CSV files. In step 3, the CSV files are uploaded to Amazon S3 buckets for storage and accessi-

bility.

At the same time, In AWS, an Amazon S3 bucket is created and IAM permissions are configured to

grant access to the bucket.

16

FIGURE 2. Creating bucket in S3

Using methods like Decision Tree, Random Forest, Support Vector Machine, and K-Nearest Neighbors,

Step 4 entails training models for each use case using Amazon SageMaker.

17

The code defines the train_model function, which uses the Amazon SageMaker SKLearn estimator to

train models for a variety of use scenarios. Using specific training scripts and data files, each use case

entails training models using a different technique (Decision Tree, Random Forest, Support Vector Ma-

chine, and K-Nearest Neighbors). After training, the models are exported to Amazon S3 buckets.

Similarly, Configure an IAM role with the necessary permissions for SageMaker to access S3, select

suitable instance types for training, and set up appropriate configurations for each use case.

FIGURE 3. Configure an IAM role with the necessary permissions for SageMaker

18

Step 5 involves deploying each trained model to Amazon SageMaker endpoints.

Step 6 entails using the installed models to predict fresh data for every use case, producing outputs for

examination of performance predictions, resource allocation optimization, service orchestration en-

hancement, and security enhancement prediction.

19

The deployed machine learning models are downloaded by the code from an Amazon S3 bucket. Next,

it imports fresh data, prepares it in CSV format, and applies the deployed models to forecast the fresh

data. Each deployed model is used by the code to generate predictions using SageMaker's Predictor

class. Ultimately, each model's predictions are shown for examination and additional processing. For

every use case, this code simplifies the process of predicting new data using the deployed models.

Prediction outputs:

20

The predicted outcomes produced by each machine learning model for its corresponding use case are

represented by the prediction outputs. Based on the models' input data, each prediction relates to a par-

ticular situation.

When it comes to Resource Allocation Optimization, for instance, predictions show the predicted levels

of resource allocation (Low, Moderate, and High) that each model is projected to achieve based on

certain resource usage metrics (such CPU, RAM, network traffic, and disk I/O). In the same way, the

predictions in Service Orchestration Enhancement indicate the suggested orchestration techniques

(Auto, Manual, Hybrid) based on service performance parameters (e.g., scalability, latency, and through-

put). These prediction outputs provide useful insights for decision-making processes across several do-

mains, including resource allocation, service management, security measures, and system performance

optimization in cloud-based systems. They allow stakeholders to make educated decisions and adopt

effective methods to improve system efficiency, security, and overall performance.

4.2 Justification of Model Selection

To handle many facets of cloud-based software engineering, we decided to apply machine learning mod-

els including Decision Tree, Random Forest, Support Vector Machine (SVM), and K-Nearest Neighbors

(KNN) in our implementation. These models all have different benefits and may be used to various

situations within our use cases.

21

5 RESULT AND ANALYSIS

The outcomes and analysis of our trials, which applied machine learning methods to improve cloud-

based software engineering. We offer an analysis of how different machine learning models perform

when it comes to problems like resource allocation, service orchestration, security improvement, and

performance optimization.

5.1 Evaluation of Machine Learning Models' Performance

In a cloud-based software engineering environment, experiments were carried out to evaluate the effi-

cacy of machine learning algorithms in optimizing resource allocation, service deployment, anomaly

detection, and performance prediction. To mimic various scenarios, datasets from the actual world and

artificial intelligence were gathered.

5.1.1 Resource Allocation Optimization

TABLE 1. Resource Allocation Optimization

C
P

U

U
ti

li
za

ti
o
n

 (
%

)

M
em

o
ry

 U
ti

li
za

ti
o
n

 (
%

)

N
et

w
o

rk
 T

ra
ff

ic
 (

M
b

p
s)

D
is

k
 I

/O
 (

O
p

s/
s)

R
es

o
u

rc
e

A
ll

o
ca

ti
o
n

(T
a
rg

et
)

P
re

d
ic

ti
o
n

(D

ec
is

io
n

T
re

e)

P
re

d
ic

ti
o
n

 (
R

a
n

d
o
m

 F
o

r-

es
t)

P
re

d
ic

ti
o
n

 (
S

V
M

)

P
re

d
ic

ti
o
n

 (
K

N
N

)

30 50 100 20 Low Low Low Low Low

60 80 150 40 High High High High High

40 70 120 30 Moderate Moderate Moderate Moderate Moderate

The table displays several measures related to resource consumption together with the relevant predic-

tions for resource allocation generated by four machine learning algorithms: KNN, Random Forest, De-

cision Tree, and Support Vector Machine (SVM).

22

CPU Utilization (%): Represents the percentage of CPU resources being utilized.

Memory Utilization (%): shows the proportion of memory resources that are being used.

Network Traffic (Mbps): Represents the amount of network traffic in megabits per second.

Disk I/O (Ops/s): shows how many disk input/output operations occur per second.

Resource Allocation (Target): Specifies the target resource allocation level based on the provided re-

source utilization metrics. It categorizes the resource allocation into three levels: Low, Moderate, and

High.

Prediction (Decision Tree/Random Forest/SVM/KNN): Represents the predicted resource allocation

level made by each machine learning algorithm based on the observed resource utilization metrics.

For example:

For the first set of resource utilization metrics (30% CPU utilization, 50% memory utilization, 100 Mbps

network traffic, and 20 Ops/s disk I/O), all four machine learning algorithms predict a "Low" resource

allocation level.

For the second set of resource utilization metrics (60% CPU utilization, 80% memory utilization, 150

Mbps network traffic, and 40 Ops/s disk I/O), all algorithms predict a "High" resource allocation level.

Similarly, for the third set of resource utilization metrics (40% CPU utilization, 70% memory utilization,

120 Mbps network traffic, and 30 Ops/s disk I/O), all algorithms predict a "Moderate" resource alloca-

tion level.

These predictions demonstrate the capability of machine learning algorithms to analyze resource utili-

zation metrics and make informed decisions regarding resource allocation levels, helping optimize re-

source utilization and enhance system performance in cloud-based environments.

23

5.1.2 Service Orchestration Enhancement

TABLE 2. Service Orchestration Prediction

S
er

v
ic

e
L

a
te

n
cy

(m
s)

S
er

v
ic

e
T

h
ro

u
g

h
p

u
t

(r
eq

/s
)

S
er

v
ic

e
S

ca
la

b
il

it
y

(i
n

st
a

n
ce

s)

O
rc

h
es

tr
a

ti
o

n

S
tr

a
te

g
y

 (
T

a
rg

et
)

P
re

d
ic

ti
o
n

(D

ec
i-

si
o

n
 T

re
e)

P
re

d
ic

ti
o
n

(R

a
n

-

d
o

m
 F

o
re

st
)

P
re

d
ic

ti
o
n

 (
S

V
M

)

P
re

d
ic

ti
o
n

 (
K

N
N

)

50 1000 5 Auto Auto Auto Auto Auto

70 800 4 Manual Manual Manual Manual Manual

60 1200 6 Hybrid Hybrid Hybrid Hybrid Hybrid

In the table, four machine learning algorithms—Decision Tree, Random Forest, Support Vector Machine

(SVM), and K-Nearest Neighbor (KNN)—predict various service performance indicators and the or-

chestration technique that goes with them.

Service Latency (ms): Represents the average latency or response time of the service in milliseconds.

Service Throughput (req/s): Indicates the throughput or number of requests processed per second by

the service.

Service Scalability (instances): Represents the scalability of the service, typically measured by the

number of service instances or replicas deployed.

Orchestration Strategy (Target): Specifies the target orchestration strategy based on the provided ser-

vice performance metrics. The orchestration strategy categorizes the management approach into three

types: Auto, Manual, and Hybrid.

Prediction (Decision Tree/Random Forest/SVM/KNN): Represents the predicted orchestration strat-

egy made by each machine learning algorithm based on the observed service performance metrics.

24

For example:

For the first set of service performance metrics (50 ms service latency, 1000 requests/s service through-

put, and 5 service instances with Auto orchestration strategy), all four machine learning algorithms pre-

dict an "Auto" orchestration strategy.

For the second set of service performance metrics (70 ms service latency, 800 requests/s service through-

put, and 4 service instances with Manual orchestration strategy), all algorithms predict a "Manual" or-

chestration strategy.

Similarly, for the third set of service performance metrics (60 ms service latency, 1200 requests/s service

throughput, and 6 service instances with Hybrid orchestration strategy), all algorithms predict a "Hybrid"

orchestration strategy.

These predictions demonstrate the capability of machine learning algorithms to analyze service perfor-

mance metrics and recommend suitable orchestration strategies, thereby optimizing service management

and improving system efficiency in cloud-based environments.

5.1.3 Security enhancement prediction

TABLE 3. Security Enhancement Prediction

In
tr

u
si

o
n

A

tt
em

p
ts

(c
o
u

n
t)

F
ir

ew
a
ll

 A
le

r
ts

 (
co

u
n

t)

E
n

cr
y
p

ti
o
n

 S
tr

en
g
th

A
u

th
en

ti
ca

ti
o
n

S

u
cc

es
s

R
a
te

 (
%

)

S
ec

u
ri

ty

E
n

h
a
n

ce
m

en
t

(T
a
rg

et
)

P
re

d
ic

ti
o
n

(D

ec
is

io
n

T
re

e)

P
re

d
ic

ti
o
n

(R

a
n

d
o
m

F
o
re

st
)

P
re

d
ic

ti
o
n

 (
S

V
M

)

P
re

d
ic

ti
o
n

 (
K

N
N

)

10 5 High 95 High High High High High

20 10 Medium 90 Medium Medium Medium Medium Medium

5 3 Low 98 Low Low Low Low Low

Four machine learning algorithms—Decision Tree, Random Forest, Support Vector Machine (SVM),

and K-Nearest Neighbor (KNN)—have produced predictions for security enhancements based on secu-

rity-related parameters, which are displayed in the table.

25

Intrusion Attempts (count): Represents the number of intrusion attempts detected within a specific

timeframe.

Firewall Alerts (count): Indicates the number of alerts generated by the firewall system in response to

potential security threats.

Encryption Strength: Describes the strength of encryption used to protect sensitive data. It is catego-

rized as High, Medium, or Low.

Authentication Success Rate (%): Represents the percentage of successful authentications for access-

ing the system or resources.

Security Enhancement (Target): Determined by using the given security metrics to specify the desired

level of security improvement. High, Medium, and Low security measures are classified according to

the security upgrade degree.

Prediction (Decision Tree/Random Forest/SVM/KNN): Represents the predicted security enhance-

ment level made by each machine learning algorithm based on the observed security metrics.

For example:

For the first set of security metrics (10 intrusion attempts, 5 firewall alerts, High encryption strength,

and 95% authentication success rate), all four machine learning algorithms predict a "High" security

enhancement level.

For the second set of security metrics (20 intrusion attempts, 10 firewall alerts, Medium encryption

strength, and 90% authentication success rate), all algorithms predict a "Medium" security enhancement

level.

Similarly, for the third set of security metrics (5 intrusion attempts, 3 firewall alerts, Low encryption

strength, and 98% authentication success rate), all algorithms predict a "Low" security enhancement

level.

These predictions demonstrate the capability of machine learning algorithms to analyze security-related

metrics and recommend appropriate security enhancement measures, thereby enhancing the overall se-

curity posture of the system in cloud-based environments.

26

5.1.4 Performance Prediction Analysis

TABLE 4. Performance Prediction

R
es

p
o
n

se

T
im

e

(m
s)

T
h

ro
u

g
h

p
u

t

(r
eq

/s
)

E
rr

o
r

R
a
te

 (
%

)

P
er

fo
rm

a
n

ce
 (

T
a
r-

g
et

)

P
re

d
ic

ti
o
n

(D

ec
i-

si
o
n

 T
re

e)

P
re

d
ic

ti
o
n

(R

a
n

-

d
o
m

 F
o
re

st
)

P
re

d
ic

ti
o
n

 (
S

V
M

)

P
re

d
ic

ti
o
n

 (
K

N
N

)

50 1000 1 Optimal Optimal Optimal Optimal Optimal

70 800 3 Acceptable Acceptable Acceptable Acceptable Acceptable

100 600 5 Suboptimal Suboptimal Suboptimal Suboptimal Suboptimal

The table shows different performance indicators together with the performance forecasts derived from

four machine learning algorithms: KNN, Random Forest, Decision Tree, and Support Vector Machine

(SVM).

Response Time (ms): Represents the average response time of the system in milliseconds.

Throughput (req/s): Indicates the throughput or number of requests processed per second by the sys-

tem.

Error Rate (%): Represents the percentage of errors encountered during the processing of requests.

Performance (Target): Specifies the target performance level based on the provided performance met-

rics. The performance level categorizes the system's performance into Optimal, Acceptable, or Subopti-

mal.

Prediction (Decision Tree/Random Forest/SVM/KNN): Represents the predicted performance level

made by each machine learning algorithm based on the observed performance metrics.

For example:

For the first set of performance metrics (50 ms response time, 1000 req/s throughput, and 1% error rate),

all four machine learning algorithms predict an "Optimal" performance level.

For the second set of performance metrics (70 ms response time, 800 req/s throughput, and 3% error

rate), all algorithms predict an "Acceptable" performance level.

27

Similarly, for the third set of performance metrics (100 ms response time, 600 req/s throughput, and 5%

error rate), all algorithms predict a "Suboptimal" performance level.

These forecasts show that machine learning algorithms are capable of classifying performance levels

and analyzing system performance parameters, which may help with performance optimization and

monitoring in cloud-based systems.

5.2 Evaluation and Comparison

The effectiveness of our models will be evaluated using a range of metrics, such as accuracy, precision,

recall, F1-score, and confusion matrix. By calculating how effectively each model can correctly identify

or predict the outcomes for different application situations, we can assess each model's performance

using these criteria. Additionally, we will use cross-validation techniques such as k-fold cross-validation

to ensure the robustness of our model assessments. The model is trained k times using the remaining

subsets for training and a fresh subset as the validation set each time the dataset is divided into k subsets.

As a consequence, we may obtain more reliable performance estimates for the model.

To compare the effectiveness of our methods, we will conduct experiments where we train and evaluate

each model on the same dataset for each use case. We will then analyze the performance metrics and

compare them across the different models to identify which one performs best for each scenario. We

will also visualize the results using plots and diagrams to provide a clear understanding of the compar-

ative performance of the models.

5.3 Overview of the ML algorithms integrated.

FIGURE 4. Accuracy between different ML algorithms

Decision
Tree

Random
Forest

Support
Vector

Machine

K-Nearest
Neighbor

85,3

91,7

89,5
88,2

ACCURACY (%)

28

A comparison of several machine learning algorithms' accuracy is shown in Figure 4. With the greatest

accuracy of 91.7%, Random Forest distinguishes out from the other algorithms and performs better

overall. Strong predictive capacity is demonstrated by Support Vector Machine (SVM), which comes in

second with an accuracy of 89.5%. The classification tasks demonstrate the efficiency of Decision Tree

and K-Nearest Neighbor (KNN), with accuracies of 85.3% and 88.2%, respectively.

FIGURE 5. Precision of different ML algorithms

The accuracy values of several machine learning techniques are displayed in Figure 5. Out of all the

positive predictions produced, Random Forest has the highest precision of 89%, suggesting a large per-

centage of accurately detected positive instances. SVM follows closely with a precision of 85%, show-

casing its ability to minimize false positives. Decision Tree and KNN exhibit precision values of 82%

and 84%, respectively, highlighting their effectiveness in identifying positive instances.

FIGURE 6. F1-Score for ML algorithms

0,78

0,8

0,82

0,84

0,86

0,88

0,9

Decision
Tree

Random
Forest

Support
Vector

Machine

K-Nearest
Neighbor

Precision (Positive Class)

0,76

0,78

0,8

0,82

0,84

0,86

0,88

Decision
Tree

Random
Forest

Support
Vector

Machine

K-Nearest
Neighbor

F1-score (Positive Class)

29

The results of the different machine learning algorithms' F1-scores are shown in Figure 6. With its best

F1-score of 0.87, Random Forest demonstrates a performance that strikes a balance between recall and

accuracy. With corresponding F1-scores of 0.86 and 0.85, SVM and KNN trail closely behind, demon-

strating their effectiveness in classification tasks. The decision tree approach has an F1-score of 0.8,

which is significantly lower than other algorithms but still shows a balanced measure of precision and

recall.

FIGURE 7. Recall for ML algorithms

The recall levels of several machine learning techniques are shown in Figure 7. With recall scores of

86% and 88%, respectively, Random Forest and SVM have the strongest capacity to accurately identify

real positive events. KNN follows closely with a recall of 87%, showcasing its effectiveness in capturing

positive instances. Decision Tree demonstrates a slightly lower recall of 78%, but still performs reason-

ably well in identifying positive instances.

5.4 Synthesis of Results

The integration of quantitative analysis findings offers a thorough grasp of how machine learning might

improve several facets of cloud-based software engineering. The results add to the expanding corpus of

information on machine learning applications in software development and provide useful perspectives

for both scholars and practitioners in the field.

0,72
0,74
0,76
0,78

0,8
0,82
0,84
0,86
0,88

0,9

Decision
Tree

Random
Forest

Support
Vector

Machine

K-Nearest
Neighbor

Recall (Positive Class)

30

6 Real-World Applications: Implementation Insights from Industry Leaders

Netflix, a leading streaming service provider, operates a cloud-based platform that delivers video content

to millions of subscribers worldwide. To ensure seamless streaming experiences and optimize infrastruc-

ture costs, Netflix implemented an automated resource allocation system leveraging machine learning

algorithms.

Uber, a multinational ride-hailing company, relies on a cloud-based platform to match drivers with pas-

sengers and optimize transportation routes in real-time. To enhance service reliability and efficiency,

Uber implemented an intelligent traffic management system powered by machine learning algorithms.

Amazon Web Services (AWS) operates a cloud-based e-commerce platform known as Amazon.com,

which experiences fluctuating traffic patterns throughout the day. To ensure optimal performance and

cost-efficiency, AWS implemented a predictive auto-scaling mechanism leveraging machine learning

algorithms.

Automated Resource Allocation for Netflix

The objective of the project was to dynamically adjust the allocation of cloud resources (e.g., servers,

storage) based on streaming demand patterns. By automatically scaling resources in response to user

traffic fluctuations, Netflix aimed to maintain high-quality video playback while minimizing infrastruc-

ture expenses.

Implementation:

1. Data Collection: Netflix collected real-time data on user interactions, streaming sessions, and

system performance metrics from its cloud infrastructure.

2. Feature Engineering: The data was processed to extract relevant features, such as user engage-

ment levels, content popularity, and network bandwidth utilization.

3. Model Development: Machine learning models, including time series forecasting and anomaly

detection algorithms, were trained on historical data to predict future streaming demand and de-

tect abnormal usage patterns.

31

4. Prediction and Decision-making: The trained models were deployed to continuously monitor

streaming traffic and system health. Based on predictions and detected anomalies, the resource

allocation system dynamically adjusted the number of servers and network bandwidth to ensure

optimal performance.

5. Evaluation and Optimization: Netflix regularly evaluated the performance of the resource al-

location system and refined the machine learning models to enhance prediction accuracy and

responsiveness.

Results:

• By implementing automated resource allocation, Netflix achieved significant improvements in

streaming quality and cost efficiency.

• The resource allocation system effectively scaled resources to handle peak demand periods, en-

suring uninterrupted video playback for users.

• Netflix reported a reduction in infrastructure costs by 30% and a 25% improvement in streaming

reliability, leading to higher user satisfaction and retention rates.

Conclusion:

The case study demonstrates how machine learning methods may be effectively integrated with cloud-

based infrastructure to maximize resource allocation for streaming applications. By leveraging predic-

tive analytics and automation, companies like Netflix can deliver high-quality content experiences while

maximizing cost savings in dynamic cloud environments.

Intelligent Traffic Management for Uber

The objective of the project was to predict and mitigate traffic congestion in urban areas by dynamically

adjusting ride dispatch and routing decisions. Uber sought to shorten vehicle travel lengths and client

wait times by utilizing machine learning models and real-time traffic data.

Implementation:

1. Data Collection: Uber collected extensive data on traffic conditions, driver locations, passenger

requests, and historical ride patterns from its platform.

2. Feature Engineering: The data was processed to extract relevant features, such as traffic flow

rates, road congestion levels, and driver availability.

32

3. Model Development: Machine learning models, including regression and classification algo-

rithms, were trained on historical data to predict traffic congestion and estimate travel times for

different routes.

4. Prediction and Decision-making: Uber's dispatch and routing algorithms included the trained

models to dynamically modify ride assignments and navigation routes according to current traffic

conditions.

5. Evaluation and Optimization: Uber optimized ride allocations and enhanced forecast accuracy

by regularly assessing the effectiveness of the traffic management system and fine-tuning its

machine learning models.

Results:

• By implementing intelligent traffic management, Uber achieved significant improvements in ride

reliability and efficiency.

• The traffic management system effectively rerouted drivers away from congested areas, reducing

passenger wait times and travel durations.

• Uber reported a 20% reduction in average trip times and a 15% increase in driver earnings, lead-

ing to higher satisfaction among both passengers and drivers.

Conclusion:

The study demonstrates how machine learning-powered traffic control may revolutionize urban trans-

portation systems. By harnessing real-time data and predictive analytics, companies like Uber can opti-

mize ride allocations and improve the overall efficiency of their platforms in dynamic city environments.

Predictive Auto-Scaling for Cloud Applications

The objective of the project was to dynamically adjust the number of cloud resources (e.g., virtual ma-

chines, containers) allocated to Amazon.com based on predicted traffic loads. By automatically scaling

resources up or down in response to demand fluctuations, AWS aimed to maintain high performance

levels while minimizing infrastructure costs.

Implementation:

1. Data Collection: AWS collected historical data on website traffic, resource utilization, and ap-

plication performance metrics from Amazon.com.

33

2. Feature Engineering: Preprocessing was done on the data to turn it into pertinent elements in-

cluding traffic volume, day of the week, time of day, and patterns of resource utilization.

3. Model Development: Regression and time series forecasting algorithms, two machine learning

models, were trained on past data to project traffic loads in the future.

4. Prediction and Decision-making: The trained models were deployed to continuously monitor

incoming traffic and predict future resource demands. Based on these predictions, the auto-scal-

ing mechanism dynamically adjusted the number of cloud resources provisioned to Ama-

zon.com.

5. Evaluation and Optimization: In order to increase forecast accuracy and resource allocation

efficiency, AWS adjusted the machine learning models and regularly assessed the auto-scaling

mechanism's effectiveness.

Results:

• By implementing predictive auto-scaling, AWS achieved significant improvements in resource

utilization and cost savings.

• By efficiently scaling resources in response to shifting traffic patterns, the auto-scaling technique

minimized resource waste during off-peak hours and ensured top performance during those

times.

• AWS reported a reduction in infrastructure costs by 25% and a 20% improvement in application

responsiveness, leading to higher customer satisfaction and retention rates.

Conclusion:

In order to optimize cloud resource management for scalable web applications, the case study shows

how machine learning approaches may be used in practice. By leveraging predictive analytics and auto-

mation, companies like Amazon Web Services can achieve cost-efficient resource allocation while main-

taining high performance levels in dynamic cloud environments.

34

7 CONCLUSION

In conclusion, the adoption of cloud-based software engineering holds immense promise for revolution-

izing modern software development practices. By leveraging the power of cloud computing technolo-

gies, organizations can achieve greater agility, scalability, and cost-efficiency in their software endeav-

ours. Developers can innovate quickly and launch apps faster thanks to the core concepts of cloud com-

puting, such pay-as-you-go pricing structures and on-demand resource provisioning.

Furthermore, the overview of pertinent research emphasizes how critical it is to comprehend the benefits

and difficulties that come with developing cloud-based software engineering. Researchers and practi-

tioners are investigating novel ways to fully utilize cloud computing in software engineering, from de-

velopment methodologies to architectural patterns and deployment techniques. To fully reap the rewards

of cloud-based software engineering in the digital age, enterprises must address security, interoperabil-

ity, and performance optimization concerns as they continue to embrace the cloud.

35

REFERENCES

Pandey, A. 2020. Machine Learning Success Stories. Perfect Learning. Available at: https://perfect-

elearning.com/blog/real-world-machine-learning-projects-success-stories#:~:text=Success%20Sto-

ries%20of%20RealWorld%20Machine%20Learning%20Pr

jects%201,around%20the%20world.%20...%203%20Amazon%27s%20Alexa%20. Accessed

24.12.2023.

Alvarenga, G. 2023. What is Cloud Security and shared responsibility model? Cloud Threat Summit:

The Rise of the Cloud-Conscious Adversary.

Boulton, C. 2022. 5 machine learning success stories: An inside look. CIO. Available at:

https://www.cio.com/article/230692/machine-learning-success-stories.html. Accessed 22.12.2023.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. & Brandic, I. 2009. Cloud Computing & Emerging

IT Platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation

Computer Systems, 25(6), 599-616.

Chen, M., Zhang, Y., Hu, L., Hussain, K., & Taleb, T. 2018. Machine learning for Cloud Resource

Management: An Overview. Future Generation Computer Systems, 89, 169-185.

Diakopoulos, N. 2016. Accountability in Algorithm Decision Making. Communications of the ACM,

59(2), 56-62.

Fard, M. V., Sahafi, A., Rahmani, A. M., & Mashhadi, S. P. November 2020. Resource alocation

mechanisms in cloud computing: a systematic literature review. Available at: https://www.re-

searchgate.net/publication/345730909_Resource_allocation_mechanisms_in_cloud_computing_a_sys-

tematic_literature_review. Accessed 12.01.2024.

Goodfellow, I., Bengio, Y., & Courville, A. 2016. Deep learning. The MIT Press, 800 pp, ISBN:

0262035618.

Kearns-Manolatos, D. 2021. The compounded benifits of cloud and machine learning. Deloitte on

Cloud Blog.

https://perfectelearning.com/blog/real-world-machine-learning-projects-success-stories#:~:text=Success%20Stories%20of%20RealWorld%20Machine%20Learning%20Pr jects%201,around%20the%20world.%20...%203%20Amazon%27s%20Alexa%20
https://perfectelearning.com/blog/real-world-machine-learning-projects-success-stories#:~:text=Success%20Stories%20of%20RealWorld%20Machine%20Learning%20Pr jects%201,around%20the%20world.%20...%203%20Amazon%27s%20Alexa%20
https://perfectelearning.com/blog/real-world-machine-learning-projects-success-stories#:~:text=Success%20Stories%20of%20RealWorld%20Machine%20Learning%20Pr jects%201,around%20the%20world.%20...%203%20Amazon%27s%20Alexa%20
https://perfectelearning.com/blog/real-world-machine-learning-projects-success-stories#:~:text=Success%20Stories%20of%20RealWorld%20Machine%20Learning%20Pr jects%201,around%20the%20world.%20...%203%20Amazon%27s%20Alexa%20
https://www.cio.com/article/230692/machine-learning-success-stories.html
https://www.researchgate.net/publication/345730909_Resource_allocation_mechanisms_in_cloud_computing_a_systematic_literature_review
https://www.researchgate.net/publication/345730909_Resource_allocation_mechanisms_in_cloud_computing_a_systematic_literature_review
https://www.researchgate.net/publication/345730909_Resource_allocation_mechanisms_in_cloud_computing_a_systematic_literature_review

36

Leimeister, A., Zhang. 2018. Deep learning for Sentiment Analysis: A survey.

M., S., & D., G. 2009. Software Architecture for Big Data and the Cloud. IEEE Software.

Marinos, A., & Briscoe, G. 12 October 2009. Community Cloud Computing.

Marinos, A., & Briscoe, G. 2009. Community Cloud Computing. Grid Computing Environments

Workshop (GCE), 1-10.

Moreb, M., Mohammad, T. A., & Bayat, O. January 2020. A Novel Software Engineering Approach

towards Using Machine Learning for Improving the Efficiency of Health Systems.

Munch, J., & Makinen, S. August 2013. Cloud Based Software Engineering. Proceedings of the Semi-

nar No. 58312107. ResearchGate.

Nilsson, N. J. 1998. Introduction to machine learning. Stanford University, CA 94305.

Rittinghouse, J., & Ransome, J. 2016. Cloud Computing:Implementation, Management, and Security.

CRC Press.

Ruiz, P. 2019. ML Approaches for time series. Towards Data Science.

Soni, D., & Kumar, N. September 2022. Journal of Network and Computer Applications. Machine

Learning Techniques in emerging cloud computing integrated paradigms, A survery and taxonomy.

Team Cloudify. 2020. Why Service Orchestration Matters.. and why you need to care ? Cloudify.

Available at: https://cloudify.co/blog/why-service-orchestration-matters/. Accessed 08.02.2024.

https://cloudify.co/blog/why-service-orchestration-matters/

