

Yuhao Zhou

MICROSERVICES AND DEVOPS

INTEGRATION

Technology and Communication
2024

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Ghodrat
Moghadampour, for his invaluable guidance, support, and encouragement
throughout the research process. His expertise, constructive feedback, and unwa-
vering commitment have been instrumental in shaping this thesis and my aca-
demic journey.

I extend my appreciation to Vaasa University of Applied Science for providing the
necessary resources and facilities for conducting this thesis.

Special thanks to my family for their unconditional love, understanding, and en-
couragement. Their unwavering support and belief in my abilities have been a con-
stant source of motivation.

I would also like to acknowledge the contributions of my tech leader Chang Lijun,
CEO of the company Shanghai Yushu Technology, for his collaboration and assis-
tance during various stages of this research project.

Lastly, I am thankful to all my friends and colleagues for their encouragement, dis-
cussions, and moral support throughout this journey.

This thesis would not have been possible without the collective efforts and sup-
port of all those mentioned above. Thank you.

22 May 2024

Yuhao Zhou

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Cloud-based Software Engineering

ABSTRACT

Author Yuhao Zhou
Title Microservices and DevOps Integration
Year 2024
Language English
Pages 62 + 6 Appendices
Name of Supervisor Ghodrat Moghadampour

This thesis aimed to make an existing web application more flexible for developers
to maintain, easier for operation staff to scale the resource when user demands
increased and reduce the server errors experienced by users of the application.

A big, old application was broken into smaller pieces called microservices. These
microservices were then deployed into a container orchestration environment for
easier management. DevOps tools were also added to automatically test and de-
ploy changes.

As a result, two new microservices were created using the Go programming lan-
guage and were running in a MicroK8s environment. Istio was added to help man-
age communication between services. All microservices are integrated with
GitHub Actions for automatic testing and deploying.

Now the development team can release updates more frequently, and the
backend of the application can scale up without much manual work. Users are
getting bug fixes and new features more often and are experiencing fewer
backend errors than before.

In the future, the rest of the application can be converted into microservices by
using the same methods in this thesis.

Keywords microservices, DevOps, service mesh, microK8s

CONTENTS

ABSTRACT

1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Motivation and Objectives .. 2

2 RELEVANT TECHNOLOGIES ... 4

2.1 Microservices Architecture ... 4

2.1.1 Background of Microservices .. 4

2.1.2 Benefits of Microservices .. 6

2.1.3 Challenges of Microservices .. 8

2.1.4 Building Microservices .. 9

2.2 DevOps .. 10

2.2.1 Background ... 11

2.2.2 Benefits of DevOps .. 11

2.2.3 DevOps Practices ... 12

2.3 Istio Service Mesh ... 14

2.4 GitHub Actions .. 16

2.5 Kubernetes .. 17

2.6 MicroK8s ... 19

2.7 The Go Programming Language .. 20

2.8 Docker ... 22

2.9 PostgreSQL .. 24

3 APPLICATION DESCRIPTION .. 26

4 DATABASE DESIGN.. 32

5 IMPLEMENTATION .. 36

5.1 Code Structure .. 37

5.2 MicroK8s ... 39

5.3 Istio Service Mesh ... 40

5.4 Load Balancing .. 41

5.5 GitHub Actions .. 42

6 TESTING .. 44

7 SUMMARY .. 48

8 CONCLUSIONS .. 50

REFERENCES .. 52

APPENDICES .. 55

LIST OF FIGURES AND TABLES

Figure 1. Use cases diagram of the mind mapping application of this thesis. 28

Figure 2. Sequence diagram of the mind mapping web application. 29

Figure 3. Sequence diagram of the CI/CD workflows of the application. 31

Figure 4. Class diagram of the application. ... 32

Figure 5. The result of GitHub Actions workflows. (Screenshot of Chrome browser)

 ... 44

Figure 6. Traffic tracking result of the service mesh. (Screenshot of Chrome

browser) .. 46

Figure 7. Memory consumption of the host Linux server. (Screenshot of SSH in

terminal) .. 47

Table 1. The objectives weightage table of this thesis. .. 26

Table 2. Priority table of requirements of this thesis. .. 27

Table 3. Achievement table of requirements in this thesis. 48

LIST OF CODE SNIPPETS

Code Snippet 1. Schema creation SQL of the template table in Template-API

service. .. 34

Code Snippet 2. Schema creation SQL of the material table in Material-API service.

 ... 35

Code Snippet 3. Code structure of Template-API service. 37

Code Snippet 4. Code structure of Material-API service. 38

Code Snippet 5. Shell script of installing MicroK8s on Ubuntu. 39

Code Snippet 6. Shell script of enabling Istio service mesh in MicroK8s. 40

Code Snippet 7. Load balancing configuration of the microservices application. 41

Code Snippet 8. Configuration of building Docker image for the application. 42

Code Snippet 9. The terminal output of unit test result of the application. 45

APPENDICES

APPENDIX 1. Code snippet of application configuration of Template-API service.

APPENDIX 2. Code snippet of application configuration of Material-API service.

APPENDIX 3. Code snippet of interservice communication of the application.

APPENDIX 4. Code snippet of workflows configuration of GitHub Actions.

1

1 INTRODUCTION

The company’s product in this thesis is a mind mapping web application designed

to help users organize their thoughts and manage ideas. It can be used to draw

beautiful diagrams and flowcharts. Users can create and edit diagrams in web

browsers. All the user data and files they created are stored in the cloud.

The product consists of two parts: frontend and backend. The frontend of the ap-

plication is written in JavaScript. The backend of the application is written in Go

programming language.

As time went by, the growing complexity of the application became a big problem

for the development teams. Developers were struggling with the chaos of depend-

ency entanglement and felt difficult to update the backend services. The process

of releasing a new feature became slower and slower.

As the number of users grew, scalability issues kept happening, making the system

unreliable from the users’ perspective. During weekends, there was a spike access

to the backend and caused ephemeral error related to resources shortage.

The development teams are longing for a solution to these problems. There was a

strong need to improve the backend of the application.

1.1 Background

The Mind Map web application of the company started out as a simple tool to help

users organize their thoughts and manage them efficiently. With an intuitive in-

terface, it allows users to create and edit beautiful diagrams and flowcharts di-

rectly in the web browser, with all data stored securely in the cloud. This seamless

experience quickly attracted a growing user base.

As the application grew, users noticed issues that impacted their experience. Sys-

tem reliability became a concern, with frequent outages and performance issues,

especially during peak hours. These issues were most noticeable during weekend

2

peak periods, when resource shortages caused brief errors and service unavailable.

Additionally, users were seeing a significant slowdown in the delivery of new fea-

tures. The once responsive development process seems to be bogged down, re-

sulting in longer wait times for updates and improvements.

From the developers' point of view, the increasing complexity of the application

was a major hurdle. The backend, originally designed to handle a modest load,

struggled to scale with the growing number of users. The architecture, initially

manageable, had evolved into a monolithic structure where components were

tightly coupled. This dependency entanglement made it difficult to implement

changes without affecting other parts of the system.

The scalability issues were exacerbated by the old monolithic architecture, which

did not lend itself well to the dynamic and expanding demands of the user base.

Furthermore, many processes within the development and deployment pipeline

remained manual. These manual tasks not only consumed significant time and ef-

fort but also introduced the potential for human error, further slowing down the

release of new features and patches.

1.2 Motivation and Objectives

To address the challenges posed by the monolithic architecture, migrating to a

microservices architecture is imperative. This approach allows the application to

be broken down into smaller, independent services that can be developed, de-

ployed, and scaled individually. This modularity enhances system reliability by iso-

lating failures and enables faster delivery of new features by reducing dependency

entanglement. Alongside this architectural shift, adopting DevOps practices is cru-

cial. DevOps fosters a culture of collaboration between development and opera-

tions, streamlines workflows through automation, and ensures continuous inte-

gration and delivery. This combination of microservices and DevOps will not only

resolve current scalability and complexity issues but also position the develop-

ment team to respond more agilely to user needs and market changes.

3

The thesis has 3 objectives:

1. Faster feature delivery. By decoupling services, development teams can

work on multiple parts of the application simultaneously without being

hindered by interdependencies. By integrating CI/CD pipelines, many man-

ual workflows became automated. Those two approaches lead to faster

feature delivery.

2. Scalability. Enable the application to scale more effectively in response to

increasing user demands and workload fluctuations. By using micro-

services architecture, selective scaling of the application is possible.

3. Reliability. Increase the resilience of the system by isolating faults within

individual microservices.

As a result, a decision was made to use Microservices architecture to fix the prob-

lems above and use DevOps practices to improve the agility of the development

team.

The topic of this thesis explores the integration of microservices architecture with

DevOps practices to enhance software development and deployment processes.

It focuses on how breaking down a monolithic application into smaller, independ-

ent services can improve scalability, reliability, and feature delivery. Additionally,

the thesis examines how adopting DevOps principles, such as continuous integra-

tion, continuous delivery, and automation, can streamline workflows, foster col-

laboration between development and operations teams, and lead to a more agile

and resilient system.

4

2 RELEVANT TECHNOLOGIES

This section provides an overview of the key tools, frameworks, and methodolo-

gies that play a significant role in the integration of microservices and DevOps

practices. This section serves to familiarize the reader with the foundational tech-

nologies underpinning the proposed approach, laying the groundwork for subse-

quent discussions on implementation and analysis. By examining these technolo-

gies in context, readers will gain a comprehensive understanding of the ecosystem

necessary for effective adoption and integration within software development

projects.

2.1 Microservices Architecture

Microservices architecture is “popular architectural style for building applications

that are resilient, highly scalable, independently deployable, and able to evolve

quickly” (Microsoft Azure, 2024, p. 1). It is becoming more and more popular in

software engineering area for its ease to scale and speed to develop, especially in

this rapidly evolving world, being agile is the key to success nowadays.

2.1.1 Background of Microservices

Before microservices architecture emerged, software was mostly written in mon-

olithic architecture style. With monolithic architectures, all processes are tightly

coupled and run as a single service. This means that if one process of the applica-

tion experiences a spike in demand, the entire architecture must be scaled. (Ama-

zon Web Services, 2024, p. 1) This brings unnecessary resource waste as the other

part of the application does not need that much of resource to run. As the code

base grows, the dependencies inside the application entangled gradually tighter

unavoidably, which makes adding and changing functionalities to the overall ap-

plication increasingly complex. This complexity would eventually limit the ability

of experimentation and implementation of innovative ideas in the R&D depart-

ment which slows the pace the product development of the company, even worse

5

when the company is in a crucial phase of developing innovative ideas to save the

company from bankruptcy. Monolithic architecture increases application availa-

bility risks because too many dependent and tightly coupled processes will in-

crease the impact of a single process failure. (Ponce, et al., 2019, p. 1)

But in a microservices architecture, applications are divided into multiple in-de-

pendent small services which are designed business unrelated as much as possible.

Those services communicate through well-defined interfaces using lightweight

APIs. (Ponce, et al.,2019, pp. 1-2)

The evolution of computing technologies has been significantly influenced by the

varying requirements of business applications. Traditionally, applications were de-

veloped in a monolithic style, residing on a single machine, and typically operated

by a single user. However, the advent of networking technologies introduced the

concept of sharing computing resources (both hardware and software) among dif-

ferent users over a network. This led to the development of splitting applications

into identifiable tiers: clients and servers. (Surianarayanan, et al., 2019, pp. 2-3)

In this model, the client tier usually consists of a physical machine running the cli-

ent or interface part of the application, while the service tier runs the core appli-

cation on a separate physical machine. Users can access applications on servers

over the network, a setup known as "two-tier client-server programming." This

marked a shift from monolithic to network-based computing, enabling simultane-

ous access by many users. Initially, two-tier client-server applications were ac-

cessed over a Local Area Network (LAN), supporting about ten users. However, as

user numbers grew, the LAN-based two-tier model became inadequate for scala-

bility and availability. (Surianarayanan, et al., 2019, pp. 2-3)

To address these limitations, the two-tier model was enhanced into a three-tier

architecture, separating business logic from databases. The three logical modules

client/presentation, business logic, and data access/database—were deployed on

6

different machines. This three-tier architecture became the standard business

model for over two decades. (Surianarayanan, et al., 2019, pp. 2-3)

The evolution of the internet brought significant changes to business applications.

Users wanted to access applications over the internet, leading to the development

of web applications. This shift not only changed access methods but also signifi-

cantly increased the number of users for commercial applications such as online

shopping, travel booking, banking, financial services, and e-governance. (Suriana-

rayanan, et al., 2019, pp. 2-3)

These trends demanded that business applications be readily available and highly

scalable, prompting further changes in application development. The expansion of

networks meant that applications were distributed over long-range networks. En-

terprises worldwide began developing distributed applications, with components

distributed across different locations and accessed over private networks. Concur-

rently, object-oriented distributed programming technologies were developed to

handle the distribution and interaction of objects between remote machines. (Su-

rianarayanan, et al., 2019, pp. 2-3)

To meet the dynamic needs of customers, businesses needed to integrate individ-

ual applications for efficient information aggregation. This led to the adoption of

Service-Oriented Architecture (SOA), typically implemented using XML-based web

services, to facilitate open communication protocols. (Surianarayanan, et al., 2019,

pp. 2-3)

2.1.2 Benefits of Microservices

The benefits of migrating from traditional monolithic architecture into micro-

services architecture are many. It solved most of the problems that traditional

monolithic architecture faces in modern software development industry. It meets

the key requirements of the current software development. Here are the descrip-

tions of what microservices could bring to the development teams.

7

Microservices architecture helps improve agility of development for the team to

experiment and adopt new ideas. When using monolithic architecture, the process

of releasing a new feature or bug fix can be tedious and time wasting as the code

base grows and one bug fix update can block the entire release process for a long

time. While microservices architecture solved this problem by dividing the appli-

cation into multiple independently deployable small services. (Ponce, et al., 2019,

p. 2)

Small and focused teams help avoid communication chaos. When teams are huge,

it is very easy for each team member to lose the understanding of their role and

responsibilities. These misunderstandings might eventually lead to an inefficient

communication flow in the team will probably make the whole company evolve

slower and slower. Small teams usually do not have those problems, each member

in the small team can easily have a clear mindset of what their job is. (Ponce, et

al., 2019, p. 2)

The small code base helps reduce the dependencies entanglement. When using

the traditional monolithic architecture, it is quite easy for the team members to

make the code dependencies tangled as the code base grows. The more team

members and code dependencies involved when adding or updating a code

change to the code base, the longer the releasing process would take. Micro-

services architecture solved this issue. (Amazon Web Services, 2024, p. 1)

The decomposition of microservices architecture brings fault isolation to the sys-

tem. When using a monolithic architecture, it is very common to have one part of

the application fail that causes the entire application unavoidable. However, in

the microservices architecture, services are designed independent individually,

single service’s failure will not cause the entire system crash. (Ponce, et al.,2019,

p. 2)

The decomposition of microservices architecture also brings scalability to the sys-

tem. Monolithic architecture cannot scale specific parts of the application. But in

8

microservice architecture, applications are divided into small, independent and

domain specific microservices which makes possible to scale up the single micro-

service which is in high demand to customers and the rest of the microservices

remains the same. (Balalaie, et al.,2016, p. 2)

2.1.3 Challenges of Microservices

There are also downsides of microservices architecture that developers might

need to think about when considering migrating a traditional monolithic architec-

ture into microservices architecture. This paragraph describes some of the com-

mon challenges that development teams would face when using a microservice

architecture.

In a microservices architecture, each service can be simpler compared to the tra-

ditional monolithic application, but the entire system, as the amount of micro-

services grows, becomes more and more complex. The development teams must

seek a better tool to help them manage all these microservices, and that tool is

usually called service mesh. (Istio Team, 2024, p. 1)

Developing and testing an application that has complex cross-microservices com-

munication can be difficult. It is not as easy as developing and testing the tradi-

tional monolithic application where all the logic is running inside the same process

which has a mature ecosystem to debug and tracing the failure. Applications that

are in microservices architecture must have something like service mesh and dis-

tributed tracing framework to debug and test the application which is much more

complex than the monolithic way. It is also very challenging to handle the depend-

ency issues when the application is evolving quickly. (Istio Team, 2024, p. 1)

The distributed way of building microservices applications has advantages in flex-

ibility and agility, but it can also lead to skill set problems. The moment when dif-

ferent teams use different programming languages and technologies to build their

own microservices, it becomes harder and harder for the tech leaders to control

9

the technology stack to keep the quality of the software stay consistent. Besides

the problem of mix of technologies, the necessary technologies along with micro-

services architecture, such as service mesh and container orchestrators, also re-

quires a lot of skill set, knowledge and talents in the company to handle potential

issues which can be a considerable re-source overhead. (Balalaie, et al., P,2016, p.

14)

Compared to traditional monolithic architecture where threads communicate

through memory, network congestion and latency could be another challenging

problem to handle when using microservices architecture as the inter-service

communication approach in microservices architecture is using network connec-

tion. Especially when the callback chain of service dependencies gets too long, the

extra network latency could become a considerable loss. (Microsoft Azure, 2024,

p. 1)

2.1.4 Building Microservices

To design a good microservices architecture, proper tools and analysis approaches

are needed. A well-defined microservice architecture can prevent most of the

common pitfalls from happening.

Identifying the boundaries of each microservices is the first step of designing mi-

croservices. This step finalizes the de-sign of individual microservices. The graini-

ness of microservices design determines the efficiency of the system and the de-

velopment team. It is a bad practice to make the service too small or too big. It

may add extra architecture complexities, resource overhead and operational com-

plexity to the system if the system gets too fine-grained. Picking a good balance

between them is the key to designing an efficient microservices architecture.

(Newman, S, 2015, p. 2)

After the microservices system is deployed to the production environment, it is

time to have developers or operators to operate, configure and monitor it. This

10

step requires the operator to have a strong skill set to set up everything and make

sure the system is running correctly both in the present and in the future. (New-

man, 2015, pp. 103-104)

2.2 DevOps

DevOps is the “combination of cultural philosophies, practices, and tools that in-

creases an organization’s ability to deliver applications and services at high veloc-

ity” (Amazon Web Services, 2024, p. 1). Better efficiency and faster delivery of

product value help organizations win in this rapidly evolving market.

DevOps integrates the worlds of development and operations through automated

development, deployment, and infrastructure monitoring. It represents an organ-

izational shift from siloed groups performing functions separately to cross-func-

tional teams working on continuous operational feature deliveries. This approach

helps deliver value faster and continuously, reduces problems due to miscommu-

nication between team members, and accelerates problem resolution. (Ebert, et

al., 2016, p. 1)

DevOps involves a cultural shift toward collaboration between development, qual-

ity assurance, and operations. Organizations set up continuous delivery with small

upgrades. Companies such as Amazon and Google have led this approach, achiev-

ing cycle times of minutes. However, the achievable cycle time depends on envi-

ronmental constraints and the deployment model. A single cloud service is easier

to facilitate than actual software deliveries of real products. (Ebert, et al., 2016, p.

1)

DevOps can be applied to various delivery models but must be tailored to the en-

vironment and product architecture. Not all products facilitate continuous deliv-

ery, such as in safety-critical systems. Nevertheless, even in constrained environ-

ments, upgrades can be planned and delivered quickly and reliably, as demon-

11

strated by the recent evolution of automotive software over-the-air updates. Be-

sides highly secured cloud-based delivery, such models need dedicated architec-

ture and hardware changes. One example is a hot-swap controller where one half

is operational while the other half builds the next updates, which are swapped to

active mode after in-depth security and verification procedures. DevOps for em-

bedded systems is more challenging than for cloud and IT services because it at-

tempts to combine legacy code and architecture with continuous delivery. (Ebert,

et al., 2016, p. 1)

2.2.1 Background

What are the effects of a software delivery process on the participants, and why

does it lead to conflict? As more features are completed, the developer's reputa-

tion improves. Throughput and good velocity are considered reflections of great

performance by the developers. In many situations, from the developer's view-

point, the new features available on test machines are indistinguishable from the

features deployed on production systems available for users. (Httermann, 2012, p.

21)

Programmers, testers, database administrators, and system administrators expe-

rience challenges every day. These problems include risky or faulty deployments

of software, an unnecessarily sluggish delivery process, and suboptimal collabora-

tion and communication due to silos. These issues often lead to an overall slow-

down that causes the company to lag its competitors and thus be placed at a dis-

advantage. (Httermann, 2012, p. 21)

2.2.2 Benefits of DevOps

There are a lot of benefits to applying DevOps model into the development teams.

DevOps model can significantly improve the response time to the market. By

streamlining all the processes during software development, DevOps enables

12

faster releasing speed of features, updates, bug fixes and new products. The pro-

cesses of testing, deployment and monitoring are automated by the practices of

Continues Integration and Continues Delivery (CI/CD), which tremendously help

the developers focus on the code itself instead of wasting energy on repetitive

manual operations. (Amazon Web Services, 2024, p. 1)

The DevOps model enhances the quality of the software. By using continues test-

ing and integration, most of the bug and obvious issues of the code can be caught

earlier than the traditional way. (Amazon Web Services, 2024, p. 1)

DevOps can increase the efficiency of the development teams significantly. The

key idea of DevOps principle is to automate all the repetitive works as much as

possible. This helps the team focus more on delivery value to the customers, and

makes the organization work more efficient and productive. (Amazon Web Ser-

vices, 2024, p. 1)

DevOps can improve collaboration by promoting ownership and accountability.

The development teams and operations teams work more closely than before.

This reduces the inefficient communication between developers and operators in

the traditional way. (Amazon Web Services, 2024, p. 1)

2.2.3 DevOps Practices

Treating operations (Ops) as first-class citizens from the point of view of require-

ments is crucial. Operations have specific needs related to logging and monitoring,

and involving Ops in the development of requirements ensures that these needs

are considered. For instance, logging messages should be understandable and us-

able by an operator. By including operations in the requirements development

process, these requirements are more likely to be integrated effectively, contrib-

uting to overall high quality. (Bass, et al., 2015, pp. 4-5)

13

Making development (Dev) more responsible for incident handling can signifi-

cantly shorten the time between the observation of an error and its repair. Organ-

izations that implement these practices often have a period during which Dev is

primarily responsible for a new deployment. After this initial period, responsibility

shifts to Ops. This approach helps ensure that errors are addressed promptly, lev-

eraging the expertise of the development team during the early stages of deploy-

ment. (Bass, et al., 2015, pp. 4-5)

Enforcing a standardized deployment process for both Dev and Ops personnel is

essential for maintaining high-quality deployments. This practice helps avoid er-

rors caused by ad hoc deployments and misconfigurations. A consistent deploy-

ment process also makes it easier to trace the history of a particular deployment

artifact and understand the components included. This traceability is crucial for

diagnosing and repairing errors efficiently. (Bass, et al., 2015, pp. 4-5)

Continuous deployment practices aim to reduce the time between a developer

committing code to a repository and the code being deployed. This approach em-

phasizes the use of automated tests to increase the quality of code that makes its

way into production. By streamlining the deployment pipeline, continuous deploy-

ment helps ensure that new features and fixes are delivered to users more rapidly

and reliably. (Bass, et al., 2015, pp. 4-5)

Developing infrastructure code, such as deployment scripts, with the same prac-

tices used for application code is vital. This ensures both high quality in the de-

ployed applications and that deployments proceed as planned. Errors in deploy-

ment scripts, such as misconfigurations, can lead to application, environment, or

process errors. Applying quality control practices from software development to

operations scripts and processes helps maintain the quality and reliability of these

critical components. (Bass, et al., 2015, pp. 4-5)

A good implementation of DevOps model must include a well-designed monitoring

and logging system. Advocating developers to focus more on their code itself does

14

not mean that developers do not have to care about the status after the code be-

ing pushed to the Git repository. Monitoring and logging refer to the importance

of being responsible for the code that developers pushed to the repository and

the experiences impact for users every time developers made a change to the code

base. The system needs to be responsive, which means when unexpected issues

happen, there should be a quick way to locate the source of the problems and

being quick to solve it as soon as possible. (Amazon Web Services, 2024, p. 1)

2.3 Istio Service Mesh

Service meshes are rapidly becoming the standard component of cloud application

in microservices architecture. A survey of the Cloud Native Computing Foundation

(CNCF) community found that 68% of organizations are already using or planning

to use service meshes in the next 12 months. The in-production use of service

meshes has been growing 40-50% annually. Service meshes are popular because

they solve important problems related to communication among loosely coupled

microservices, the dominant paradigm for modern cloud applications. This in-

cludes discovering where services are located, establishing secure connections,

and handling communication failures. They also offer many advanced capabilities

such as rate limiting, load balancing, and telemetry via built-in or custom message

processing filters. (Zhu, et al., 2022, p. 1)

However, service meshes are not without downsides. A primary one is overhead.

All application traffic traverses software proxies, called sidecars, which increases

request latency and consumes more resources. Service meshes can add tens of

milliseconds to request latency in some settings and can consume multiple (virtual)

CPU cores even at moderate load. These overheads can degrade user experience,

increase operational costs, and decrease revenue. (Zhu, et al., 2022, p. 1)

By using a proxy on top of each microservice, service mesh becomes by far the

industrial standard solution for solving the common problems that are brought by

the architecture of microservices. Service mesh can provide observability, traffic

15

management, and security to the microservices architecture. The mechanism of

adding a proxy layer in front of microservices moves the responsibility for these

jobs away from the services themselves, so that developers do not need to change

their code to have those powerful capability to the microservices architecture. (Is-

tio Team, 2024, p. 1)

Istio is one of the popular solutions to service mesh. As the challenges that brought

by migrating into microservices architecture described in the previous context,

service mesh technology emerged to solve those problems.

The architecture of Istio service mesh consists of two main components: Istio con-

trol plane and Envoy proxy. Istio service mesh uses Envoy proxy as the communi-

cation gateway for each container inside the pods, which makes it possible to im-

plement a service mesh layer transparently without making any code changes to

the existing distributed application. Istio control planes are responsible for storing

data and configurations centrally for the mesh. (Istio Team, 2024, p. 1)

This Envoy proxy manages traffic of the communication between microservices.

The features for its traffic management include traffic routing, load balancing, ser-

vice-to-service authentication, and traffic monitoring. It provides solutions to the

common demands of microservices architecture, such as circuit breaking,

timeouts, retries, service discovery, A/B testing and canary deployment. (Istio

Team, 2024, p. 1)

As the mesh grows in complexity, it starts to be challenging to have a clear view

on the call flow inside the mesh and the performance of the system. So, observa-

bility is also a key focus of Istio service mesh. It generates detailed telemetry for

all the services in the mesh. Service metrics of four main signals are generated

automatically for monitoring purposes: latency, traffic, errors, and saturation. It

can be checked within the dashboard in the service mesh. It helps the operation

teams get a basic insight on the performance of the mesh. (Istio Team, 2024, p. 1)

16

Distributed tracing log and access logs for each request can also be found in-side

the dashboard of Istio service mesh. It provides detailed information of the com-

munication flows inside the service mesh. (Istio Team, 2024, p. 1)

Istio is “a service mesh that was originally developed by Google but is now open

source. It provides a way to connect, manage and secure microservices that com-

municate with each other” (Istio Team, 2024, p. 1). Istio is used in production by

many companies such as Adobe, Baidu, and Google.

2.4 GitHub Actions

Automating repetitive tasks in the software development process is frequently

supported by social code platforms, such as GitHub. GitHub Actions is a service

offered by GitHub to automate all software workflows, including building, testing,

and deploying directly from GitHub. GitHub Actions is relatively new, with a beta

release available in November 2019. Since then, GitHub Actions has become a cen-

tral service for both practitioners and cloud adoption. Software developers have a

positive perception of GitHub Actions. (Valenzuela, Toledo, P., & Bergel, A., 2022,

p. 1)

Despite the relevance of GitHub Actions in state-of-the-art software development

practices, little is known about how practitioners build and maintain GitHub Ac-

tions workflows. It is not clear how practitioners cope with the particularities of

developing GitHub Actions workflows. For example, workflows are executed only

by pushing a change to the repository, debugging a GitHub Actions workflow is

carried out by inspecting logs, and workflows are typically edited through a generic

text editor in the GitHub interface. Developers can create a workflows manifest

file inside the code repository which consists of building and testing, maybe de-

ploying processes of configuration, and can be triggered conditionally when cer-

tain branch of the repository is merged or pushed. This allows developers to man-

age CI/CD configuration conveniently. It also supports features other than DevOps

practice. It can help manage open-source issues opened by other developers by

17

automatically adding labels to the issues. It can increase the efficiency of develop-

ment teams significantly. (GitHub, 2024, p. 1)

GitHub Actions provides multiple operating systems for virtual machines to run

the workloads that developers defined, such as Linux, Windows and MacOS

(Decan, et al., 2022, p. 8). When a pull request is merged or a certain branch is

pushed, GitHub Actions will check whether the event meets the condition filter

configured in the workload’s definition file. Then GitHub Actions will run the work-

loads sequentially in the order defined by developers. GitHub Actions also pro-

vides workloads templates that developers can use to simplify the processes of

writing workloads. (GitHub, 2024, p. 1)

Compared to other CI/CD tools like Jenkins, GitHub Actions is a new entrant in the

competition of CI/CD market. It is becoming more and more popular among de-

velopers who use GitHub. (Decan, et al., 2022, p. 7)

2.5 Kubernetes

Years ago, most software applications were big monoliths, running either as a sin-

gle process or as a small number of processes spread across a handful of servers.

These legacy systems are still widespread today. They have slow-release cycles

and are updated relatively infrequently. At the end of every release cycle, devel-

opers package up the whole system and hand it over to the operations (Ops) team,

who then deploy and monitor it. In case of hardware failures, the ops team man-

ually migrates it to the remaining healthy servers. (Luksa, 2017, pp. 1-3)

Today, these big monolithic legacy applications are slowly being broken down into

smaller, independently running components called microservices. Because micro-

services are decoupled from each other, they can be developed, deployed, up-

dated, and scaled individually. This enables quick and frequent changes to compo-

nents to keep up with today's rapidly changing business requirements. (Luksa,

2017, pp. 1-3)

18

However, with a larger number of deployable components and increasingly larger

data centres, it becomes more difficult to configure, manage, and keep the whole

system running smoothly. It is much harder to figure out where to place each of

those components to achieve high resource utilization and thereby keep hardware

costs down. Doing all this manually is hard work. We need automation, which in-

cludes automatic scheduling of those components to our servers, automatic con-

figuration, supervision, and failure handling. This is where Kubernetes comes in.

Kubernetes enables developers to deploy their applications themselves and as of-

ten as they want, without requiring assistance from the operations team. But Ku-

bernetes does not benefit only developers. It also helps the ops team by automat-

ically monitoring and rescheduling those apps in the event of a hardware failure.

The focus for system administrators shifts from supervising individual apps to

mostly supervising and managing Kubernetes and the rest of the infrastructure,

while Kubernetes itself takes care of the apps. (Luksa, 2017, pp. 1-3)

Kubernetes abstracts away the hardware infrastructure and exposes your whole

data centre as a single enormous computational resource. It allows developers to

deploy and run software components without having to know about the actual

server’s underneath. When deploying a multi-component application through Ku-

bernetes, it selects a server for each component, deploys it, and enables it to easily

find and communicate with all the other components of the application. (Luksa,

2017, pp. 1-3)

This makes Kubernetes great for most on-premises data centres, but where it

starts to shine is in the largest data centres, such as those built and operated by

cloud providers. Kubernetes allows them to offer developers a simple platform for

deploying and running any type of application while not requiring the cloud pro-

vider's own sysadmins to know anything about the tens of thousands of apps run-

ning on their hardware. With more and more big companies adopting the Kuber-

19

netes model as the best way to run apps, it's becoming the standard way of run-

ning distributed applications both in the cloud and on local on-premises infrastruc-

ture. (Luksa, 2017, pp. 1-3)

2.6 MicroK8s

MicroK8s is a lightweight distribution of Kubernetes, developed by Canonical who

own the Ubuntu operating system. It is an open-source system for automating de-

ployment, scaling, and management of containerized applications. It provides the

functionality of core Kubernetes components, in a small footprint, scalable from a

single node to a high-availability production cluster. It is designed to be able to run

most of the Kubernetes functionalities in low devices, such as Raspberry Pi, per-

sonal laptop, or virtual machines in the public cloud, with minimal resources con-

sumption. It is promoted to be zero-ops, production-ready Kubernetes distribu-

tion. (MicroK8s, 2024, p. 1)

MicroK8s is very easy to install, compared to other lightweight distribution of Ku-

bernetes. It can be installed on Ubuntu operating system by simply using one Snap

installation command. This makes it incredibly easy to set up a new Kubernetes

environment for development, testing and production usage. (MicroK8s, 2024, p.

1)

“Kubernetes, also known as K8s, is an open-source system for automating deploy-

ment, scaling, and management of containerized applications” (Kubernetes, 2024,

p. 1). Compared to a full-fledged Kubernetes cluster, MicroK8s consumes minimal

resources of computer as the name MicroK8s indicates. It makes MicroK8s very

suitable for running on those resource-constrained devices, such as personal lap-

tops and edge devices (Böhm, et al., 2021, p. 8).

MicroK8s was initially designed for developer workstations and was only later op-

timized for a low memory footprint. It prioritizes easy extensibility over minimal

resource usage, making it a preferred choice when using Ubuntu and the Snap

20

package manager, although it can also be installed on Windows. High availability

in MicroK8s is automatically activated on clusters with three or more nodes. Patch

release updates are installed automatically in MicroK8s. (Koziolek, et al., 2023, p. 26)

2.7 The Go Programming Language

Go is an open-source programming language initiated by Google in 2009. Go is

renowned for its robust support for system programming and its channel-based

concurrency mechanism. It is advertised as “an open-source programming lan-

guage that makes it easy to build simple, reliable, and efficient software.” These

strengths have made it the language of choice for many platforms software such

as Docker and Kubernetes, which are the most common software for containeri-

zation management. With the growing popularity of containerization technology

in today’s software industry, Go has therefore become a key element of many

modern software solutions. (Dilley, et al., 2019, p. 1)

The native inter-thread synchronization mechanisms in Go differ from more tradi-

tional synchronization mechanisms over shared memory by promoting the motto

“don’t communicate by sharing memory, share memory by communicating,” en-

couraging communication via channels. Go is cloud native oriented. Go code can

be compiled into a standalone binary executable that can be deployed without any

runtime dependencies. The feature simplifies the process of deployment and can

avoid many dependencies issues happening in the deployment phase. Go is de-

signed to be simple, composable, and concurrent, which aligns well with the ar-

chitecture of container orchestration tools. This makes Go a perfect choice for

building applications in the cloud-native environment. (Andrawos, et al., 2017, p.

8)

The aims of the Go programming language are to be expressive, fast, efficient,

reliable, and simple to write. Some programming languages, such as C or C++, are

fast and reliable but not simple. Conversely, other programming languages, such

21

as Java or Python, are simple to write but not as efficient. Go is like the C program-

ming language in many ways and is sometimes referred to as a “C-like language”

or “C for the 21st century.” However, Go is much more than that, as it adopts good

ideas from many other programming languages while avoiding features that lead

to complexity or unreliability. (McGrath, 2020, p. 2)

Perhaps most importantly, Go introduces the ability to take advantage of multi-

core CPU processing for concurrency using "goroutines" and "channels." This pro-

vides the potential for the computer to deal with several tasks at the same time.

Although the Go language does not have the class structures found in Object-Ori-

ented Programming (OOP) languages, such as C++ or Java, its features do provide

some degree of encapsulation, inheritance, and polymorphism—the three corner-

stones of OOP. (McGrath, 2020, p. 2)

22

2.8 Docker

Attention to cloud computing is increasing. Numerous technologies, such as Xen,

Hyper-V, VMware vSphere, and KVM, have been developed by the IT industry and

are known as virtualization technologies. To deploy many applications on the same

virtual machine, applications and their dependencies need to be organized and

isolated. Virtualization allows multiple applications to run on the same physical

hardware. However, there are drawbacks to virtualization techniques: virtual ma-

chines are large, performance can be unstable due to running multiple virtual ma-

chines, the boot-up process is lengthy, and virtual machines struggle with issues

like manageability, software updates, and continuous integration/delivery.

(Potdar, et al., 2020, p. 1)

Docker is a containerization platform that streamlines the process of building,

shipping, and running applications across various environments. By standardizing

the deployment process, Docker has significantly simplified a previously complex

development pipeline, which relied on diverse technologies such as virtual ma-

chines, configuration management tools, package management systems, and in-

tricate library dependencies. (Miell, 2019, pp. 2-3)

Prior to Docker, these tools required specialized management and unique config-

urations, often resulting in fragmented workflows. Docker's introduction has uni-

fied these processes, enabling engineers to collaborate more efficiently by using a

common pipeline and producing a single output deployable on any target system.

This innovation has not only reduced the need for maintaining multiple tool con-

figurations but has also established Docker as the standard solution for one of

software development's most challenging aspects: deployment. Docker's rapid

evolution and widespread adoption underscore its critical role in modern software

engineering. (Miell, 2019, pp. 2-3)

Docker offers a compelling alternative to virtual machines (VMs) in many scenarios,

particularly when the focus is on the application rather than the operating system.

23

By offloading OS management, Docker simplifies the developer's responsibilities.

It outperforms VMs in several key areas: it spins up faster, is more lightweight for

mobility, and facilitates easier and quicker sharing of changes through its layered

filesystem. Docker's strong command-line integration and scripting capabilities

further enhance its appeal. (Miell, 2019, pp. 7-8)

Docker excels in software prototyping by providing an isolated environment al-

most instantaneously. This allows developers to experiment without disrupting

existing setups or enduring the complexities of provisioning a VM. The conven-

ience and speed Docker offers in this regard can be truly transformative. (Miell,

2019, pp. 7-8)

Docker is also ideal for packaging software, especially for Linux users. A Docker

image can run on any modern Linux machine without dependencies, akin to Java

but without needing a JVM. This ensures consistent deployment across different

environments, making Docker a versatile and powerful tool for both development

and production. (Miell, 2019, pp. 7-8)

Docker helps to build and deploy containers, which can be used to package your

applications and services. Containers are launched from images and can contain

one or more running processes. Images can be thought of as the building or pack-

aging aspect of Docker, while containers represent the running or execution as-

pect of Docker. (Combe, et al., 2016, p. 12)

Containerization is a technology that virtualizes applications in a lightweight man-

ner, leading to significant adoption in cloud application management. A central

challenge has emerged around orchestrating the construction and deployment of

containers, both individually and in clusters. (Pahl, et al., 2017, p. 1)

Containers are an old concept. For decades, Unix systems have had the chroot

command, which provides a simple form of filesystem isolation. Since 1998,

FreeBSD has had the jail utility, which extended chroot sandboxing to processes.

24

Solaris Zones offered a comparatively complete containerization technology

around 2001 but was limited to the Solaris OS. (Mouat, 2015, p. 5)

Then Google started the development of CGroups for the Linux kernel and began

moving its infrastructure to containers. The Linux Containers (LXC) project started

in 2008 and brought together CGroups, kernel namespaces, and chroot technol-

ogy (among others) to provide a complete containerization solution. Finally, in

2013, Docker brought the final pieces to the containerization puzzle, and the tech-

nology began to enter the mainstream. (Mouat, 2015, p. 5)

Docker took the existing Linux container technology and wrapped and extended it

in various ways. Primarily through portable images and a user-friendly interface—

to create a complete solution for the creation and distribution of containers. The

Docker platform has two distinct components: the Docker Engine (responsible for

creating and running containers) and the Docker Hub (a cloud service for distrib-

uting containers). (Mouat, 2015, p. 5)

Containerization provides cloud application management based on lightweight

virtualization. The increasing interest in cloud container technologies highlights

the importance of their management and orchestration. (Pahl, et al., 2017, p. 13)

2.9 PostgreSQL

PostgreSQL is an advanced Object-Relational Database Management System

(ORDBMS) with a rich history dating back to 1977. Originally developed as the In-

gres project at the University of California, Berkeley, it evolved commercially

through Relational Technologies, Ingres Corporation. In 1986, Michael Stonebrak-

er's team at Berkeley extended the Ingres code to create Postgres, an object-rela-

tional database. By 1996, Postgres was renamed PostgreSQL, reflecting its en-

hanced functionality and a new open-source initiative. Today, PostgreSQL remains

25

actively developed by a global community of open-source contributors and is re-

nowned for being the most advanced open-source database system. (Drake, et al.,

2002, p. 1)

PostgreSQL's open-source nature allows users to freely obtain, use, and modify

the software without proprietary restrictions. This transparency extends to per-

formance benchmarks and statistics, which are often restricted by commercial da-

tabase vendors like Oracle. The freedom to tailor PostgreSQL to specific needs is a

significant advantage. However, a common misconception is that open-source

software is always free of cost. While PostgreSQL can be downloaded without ex-

ternal costs, there may still be expenses related to deployment, maintenance, and

support within a company. In summary, PostgreSQL's robust feature set and open-

source foundation make it a powerful and flexible choice for database manage-

ment, suitable for both small-scale applications and enterprise-level deployments.

(Drake, et al., 2002, p. 2)

PostgreSQL is an open-source, client-server, relational database. It offers a unique

mix of features that compare well to major commercial databases such as Sybase,

Oracle, and DB2. One of the major advantages of PostgreSQL is that it is open

source. People can see the source code for PostgreSQL. It is not owned by any

single company; it is developed, maintained, broken, and fixed by a group of vol-

unteer developers around the world. People don't have to buy PostgreSQL, it's

free. People will not have to pay any maintenance fees (although commercial

sources can be found for technical support). (Douglas, et al., 2003, p. 1)

PostgreSQL is highly extensible. Developers can build new functions, new opera-

tors, and new data types in the language of your choice. It is built around a client-

server architecture, allowing building of client applications in several different lan-

guages, including C, C++, Java, Python, Perl, and others. On the server side, Post-

greSQL includes a powerful procedural language. (Douglas, et al., 2003, p. 1)

26

3 APPLICATION DESCRIPTION

This section explains the details of the application built in this thesis. It includes a

priority table of objectives and requirements, a use-case diagram of the

application, a class diagram of the database design, and a sequence diagram of the

CI/CD processes. With these figures and tables, readers can easily understand the

application and follow along with the next implementation chapter.

Table 1 shows the three main objectives of this thesis and their weightages,

smaller numbers in the table indicate lower weightages. According to the

company's needs, the top priority was faster feature delivery, which means

improving the team's agility. The second priority was reducing backend failures,

achieved through better management of the microservices using Istio service

mesh. The third priority was scalability. Although scaling the backend system was

not urgent during this thesis, it is a task that will need attention in the future.

Table 1. The objectives weightage table of this thesis.

OBJECTIVES Weightage

Agility. Faster feature delivery 5

Reliability. Less backend failure 3

Scalability. Easier to scale 2

27

Table 2 shows the priority of requirements for this thesis. The company required

the author to use microservices architecture and GitHub Actions for CI/CD

automation. These were essential to achieve the company's agility goals.

While using Istio service mesh and MicroK8s were not mandatory ("nice to have"),

they were included for better reliability and scalability. Istio service mesh helps

manage the microservices, and MicroK8s is used to host and run the containers.

Table 2. Priority table of requirements of this thesis.

Requirements Must Nice to have More in the

future

Use microservices architecture Yes

Use GitHub Actions for CI/CD Yes

 Use Istio service mesh Yes

Use MicroK8s Yes

Decompose the rest of the application Yes

As the two tables above show, there are three main goals in this thesis: agility,

reliability, and scalability. From the customers' perspective, these goals translate

to faster feature delivery, fewer server errors, and availability during traffic spikes.

28

Figure 1 shows the four main use cases of the mind mapping web application from

the users’ perspective.

1. User Authentication: This includes logging in, registering when an account

does not exist. It requires third party authentication providers to verify the

identity of users.

2. Managing Diagrams: Users can create, edit their diagrams, and save their

diagrams to the cloud. This requires the user to be authenticated.

3. Diagram Templates: Users can use templates to create diagrams. A new

diagram will be created if users use a template.

4. Image and Icon Materials: Users can search for, view, and use various

image and icon materials in their diagrams. Users can not use materials

without creating a diagram.

Figure 1. Use cases diagram of the mind mapping application of this thesis.

29

Figure 2 demonstrates the sequence diagram of the four use cases of the applica-

tion. Users have two ways of creating diagrams: creating diagrams directly or using

a template to create a diagram. The operation of creating a diagram always re-

quires authentication from authentication providers. Once the diagram is created,

users can use materials into that diagram.

Figure 2. Sequence diagram of the mind mapping web application.

As shown in Figure 2, when users create diagrams directly, they initiate a diagram

creation request to the legacy monolithic service. The legacy monolithic service

then sends a request to the authentication provider to check the status of authen-

tication and returns the diagram creation result to the users. If users choose to use

templates to create a diagram, they first need to send a request to the template

service. The template service then asks the legacy monolithic service to create a

30

new diagram, which will also trigger the authentication process. Once the diagram

is created, users send a request to the material service to use a material for the

diagram. The material service then communicates with the legacy monolithic ser-

vice to check if the diagram the user intends to use material for has been created.

This operation will also trigger the authentication process. Finally, the legacy mon-

olithic service returns the diagram status to the material service, allowing the ma-

terial service to use the material for that diagram and return the result of using

the material to the user.

31

Figure 3 illustrates the CI/CD workflows implemented in this thesis. When

developers push code changes to the main branch of the GitHub repository,

GitHub Actions pipelines are triggered. All the unit tests would be running inside

the GitHub Actions Runner environment. If all unit tests pass, the application is

built into a Docker image, pushed to Docker Hub, and get the returned image URL.

Then, GitHub Actions Runner will move to the next workflow, deploying the latest

version of the application (using the image URL) onto the MicroK8s cluster on the

server. After deployment request to MicroK8s is sent, the GitHub Actions Runner

will be destroyed. Once the MicroK8s deployment task is triggered, it will try to

pull the new image from Docker Hub and run the image inside MicroK8s.

As a result, the entire process of testing, building, and releasing is done

automatically.

Figure 3. Sequence diagram of the CI/CD workflows of the application.

32

4 DATABASE DESIGN

This section describes the class diagram of the application and the PostgreSQL da-

tabase schema design of the two new tables created for the two new micro-

services: “Template-API” and “Material-API”.

Figure 4 is a class diagram that describes the details of the four main classes in the

application: user, diagram, template, and material. Each class has its own

necessary properties and methods. There is no inheritance relationship between

them.

Figure 4. Class diagram of the application.

33

The user class must have properties like id, phone number, email address,

username and password, methods like login operation and registration.

The diagram class must have properties like id, diagram name, the user id of its

creator and the URL of the location where the actual diagram data is stored, and

methods like create, edit, and delete. The diagram class relies on user class. If one

of the users is deleted, all his diagrams would also be removed. A diagram would

not exist apart from the user account. One user can have many diagrams.

The template class must have properties like id, template name and the URL of the

location where the actual template data is stored, methods like use and search.

Templates exist independently. Users can use templates in their diagrams. One

diagram can use zero to one template.

The material class must have properties like id, name of the material, the URL of

the location where the actual material data is stored and the cover URL of the

material, and methods like use and search. Materials exist independently. Users

can use materials in their diagrams. One diagram can use multiple materials.

34

Code snippet 1 is the table creation Structure Query Language (SQL) schema for

“Template-API” service. It defines a table named “templates” which has an auto-

incremental field “id” as its primary key, an URL field to locate the actual data

stored in object storage, a title field to display in the browser, a cover field to lo-

cate the cover image path in object storage, a search vector field for searching

functionality and a use count field to record the times customers used of this tem-

plate. In the end, this code snippet created an index for search vector field to make

the search operation in this table much faster.

create table templates(

id serial not null primary key,

url text not null,

title text,

cover text not null,

search_vector tsvector,

use_count int

);

create index on templates using GIN (search_vector);

Code Snippet 1. Schema creation SQL of the template table in Template-API
service.

35

Code snippet 2 is the table creation SQL schema for “Material-API” service. It de-

fines a table named “materials” which has an auto-incremental field “id” as its pri-

mary key, a cover field to locate the cover image path in object storage, a width

field to store the width of the actual image, a height field to store the height of the

actual image, a title field to display the title of the material to users, a search vec-

tor field for searching functionality, a URL field to store the path of the actual im-

age file stored in object storage, a size field to store the actual image file size and

a use count field to record the times of usage of this material. In the end, this code

snippet created an index for search vector field to make the search operation in

this table much faster.

create table materials(

id bigserial not null primary key,

cover text not null default '',

width smallint not null default 0,

height smallint not null default 0,

title text,

search_vector tsvector,

url text not null default '',

size bigint not null default 0,

use_count smallint

);

create index on materials using GIN (search_vector);

Code Snippet 2. Schema creation SQL of the material table in Material-API ser-
vice.

36

5 IMPLEMENTATION

This section explains the details of the application implementation, including the

code structures of the main microservices, example code snippets for interservice

communication, the configuration of MicroK8s, the deployment of Istio and Kiali,

routing rules settings for Ingress in MicroK8s, and the GitHub Actions setup for

CI/CD pipelines.

In this thesis, two new microservices were decomposed from a legacy monolithic

application. The backend system now consists of the legacy service and two newly

created microservices: "Template-API" and "Material-API."

A MicroK8s container orchestration environment was deployed, and Istio service

mesh was integrated into the MicroK8s cluster, with Kiali enabled for monitoring

the service mesh. Three Ingress routing rules were configured for load balancing

purposes.

The GitHub Actions workflows were configured for CI/CD pipelines, and a Docker

file was created to build the Docker images for the microservices.

37

5.1 Code Structure

Code snippet 3 shows the main structure of the "Template-API" service. First, it

opens a connection to the PostgreSQL database using the URL configured in the

container's environment variable. Then, it creates an API server and adds the nec-

essary routing rules for various operations, including querying, getting, searching,

using, and collecting templates. Finally, it prints information to the console and

launches the API server to listen for incoming requests.

dbc, e := sql.Open("postgres", os.Getenv(ENV_POSTGRES))

if e != nil {

log.Panic(e)

return

}

defer dbc.Close()

server = apiserver.NewApiServer()

server.HandleFunc("/template/home", home)

server.HandleFunc("/template/query", query)

server.HandleFunc("/template/get", getTemplate)

server.HandleFunc("/template/search", search)

server.HandleFunc("/template/use-template", use)

server.HandleFunc("/template/collect", collect)

println("started at http://localhost:80")

e = http.ListenAndServe(":80", server)

if e != nil {

log.Panic(e)

return

}

Code Snippet 3. Code structure of Template-API service.

http://localhost/

38

Code snippet 4 is the main code structure of the “Material-API” service. It firstly

opens a connection to the PostgreSQL database with the URL configured in the

environment variable of the container. Then it creates an API server, then adds

necessary routing rules to the API server, including use, query, search, and view

operations. Then it prints out information to the console and launches the API

server to listen for incoming requests.

dbc, e := sql.Open("postgres", os.Getenv(ENV_POSTGRES))

if e != nil {

log.Panic(e)

return

}

defer dbc.Close()

server = apiserver.NewApiServer()

server.HandleFunc("/material/use", useMaterial)

server.HandleFunc("/material/query", queryMaterial)

server.HandleFunc("/material/search", search)

server.HandleFunc("/material/view", view)

println("started at http://localhost:80")

e = http.ListenAndServe(":80", server)

if e != nil {

log.Panic(e)

return

}

Code Snippet 4. Code structure of Material-API service.

39

5.2 MicroK8s

In this thesis, MicroK8s was installed in an Ubuntu virtual machine on the cloud

via SHELL command in code snippet 5.

Install MicroK8s on Ubuntu

sudo snap install microk8s –classic

Code Snippet 5. Shell script of installing MicroK8s on Ubuntu.

Appendix 1 is the application deployment configuration of “Template-API” in Mi-

croK8s cluster. It consists of a Pod resource and a Service resource. The Pod re-

source hosts the actual application container. Its container configuration includes

the URL of the image, the configuration of environment variables, container port.

The Service resource exposes the Pod for outside resources to reach via network

connection. Its selector is the label of the Pod resource to link the Services re-

source to the Pod resource. And the ports configuration stays consistent with the

Pod resource.

Appendix 2 is the application deployment configuration of “Material-API” in Mi-

croK8s cluster. It also consists of a Pod resource and a Service resource. The Pod

resource hosts the actual application container. Its container configuration in-

cludes the URL of the image, the configuration of environment variables, container

port. The Service resource exposes the Pod for outside resources to reach via net-

work connection. Its selector is the label of the Pod resource to link the Services

resource to the Pod resource. The ports configuration also stays consistent with

the Pod resource.

40

5.3 Istio Service Mesh

Code snippet 6 is the Shell command for enabling Istio service mesh in MicroK8s

cluster. It first enabled community add-ons, then enabled Istio. In the end use “ku-

bectl” command to add sidecar injector for all the microservices in the cluster so

that Istio can proxy and manage the traffic between services.

Enable Istio on MicroK8s

microk8s enable community

microk8s enable istio

Enable the Istio sidecar injector

kubectl label ns default istio-injection=enable

Code Snippet 6. Shell script of enabling Istio service mesh in MicroK8s.

Appendix 3 contains a code snippet demonstrating interservice communication

between "Template-API" and the legacy service. There are two functions in the

code snippet: "Put Collection" and "Delete Collection."

1. “Put Collection” Function: This function is triggered when a user clicks the

collect button on the template page to collect a template. It first creates a

key-value form with the necessary collection information and then posts

the form to another service via an HTTP request. Once the HTTP call is com-

pleted, it returns the result of the operation.

2. “Delete Collection” Function: This function is called when a user tries to

delete a template collection. It sends an HTTP DELETE request with the user

ID and template ID concatenated into the URL to another service. Once the

HTTP call is completed, it returns the result of the operation.

41

5.4 Load Balancing

Code snippet 7 demonstrates the routing rules used in this thesis. It uses prefixes

to differentiate the target microservice for the HTTP request. The main host is the

API gateway for all requests. It is decomposed into three different services with

three routing patterns. Two of them, “/material” and “/template”, are the two

newly created microservices that are decomposed out of the legacy monolithic

application. The rest of the API goes to the legacy monolith service.

kind: Ingress

spec:

 rules:

 - host: api.mindyushu.com

 http:

 paths:

 - pathType: Prefix

 path: "/template"

 backend:

 service:

 name: template-svc

 port:

 number: 80

 - pathType: Prefix

 path: "/material"

 backend:

 service:

 name: material-svc

 port:

 number: 80

 - pathType: Prefix

 path: "/"

 backend:

 service:

 name: baseapi-svc

 port:

 number: 80

Code Snippet 7. Load balancing configuration of the microservices application.

42

5.5 GitHub Actions

Code snippet 8 is a Docker file of building the Docker image for the application in

this thesis. First, it used the Go official Docker image as a builder stage to run unit

tests and compile the application to build the binary file. Then it copied that binary

from the last stage to an alpine runtime which is a lightweight Linux distribution

to host the binary application. This Docker file helps build a small, self-contained,

independently deployable Docker image and ready for production.

Dockerfile for building Go application

FROM golang as builder-stage

WORKDIR /app

ADD . .

RUN go test –v ./...

RUN CGO_ENABLED=0 go build –o main –trimpath –ldflags=”-s –w" .

FROM alpine:latest

WORKDIR /app

COPY –from=builder-stage /app/main /app/main

EXPOSE 8080

CMD [“/app/main”]

Code Snippet 8. Configuration of building Docker image for the application.

Appendix 4 shows the workflow configuration of GitHub Actions CI/CD. This file is

executed on GitHub Actions’ virtual machine when certain event happened: when

developers pushed code changes to main branch, when developers added a new

tag to the repository with format like “v1.2.3”, when developers created new pull

request targeting the main branch of the repository. These conditions are config-

ured in the beginning of the workflow configuration file. Then, this file defines the

running environment of the workflows which is Ubuntu operating system in this

case and set up some permission to it and then do the actual work. This file con-

sists of three jobs: test, build and deploy.

43

The test job is for unit testing of the code. It uses go command to run all the unit

tests code in the project folder recursively. After all unit tests passed, this job suc-

ceeds.

The build job is for building the Docker image and push it to Docker Hub. First, it

checks out the repository of the project and sets up Docker building tool environ-

ment. Then, it logs into Docker Hub with credentials pre-defined in GitHub varia-

bles page and runs the building and pushing operation for the project using Docker.

In the end, the deploy phase would deploy application. First, it loads the KUBE

CONFIG information of the target MicroK8s cluster to the local file system and uses

the configuration context. Finally, it runs the “kubectl apply” command to deploy

the new version of the application to the MicroK8s cluster.

44

6 TESTING

The test cases performed were

1. Test GitHub Actions CI/CD pipelines.

2. Test the service mesh monitoring of all microservices.

3. Test the memory consumption of the MicroK8s cluster.

Figure 5 is the successful page of GitHub Actions CI/CD. It has three Jobs in the

workflows: test, build and deploy. As the figure shows, these three jobs ran suc-

cessfully in order.

Figure 5. The result of GitHub Actions workflows. (Screenshot of Chrome browser)

45

Code snippet 9 is the result output of unit tests of the application. It listed all the

modules that have unit test code at the beginning, and the time elapsed for run-

ning the unit tests, and then printed the test coverage of the modules in the out-

put. This indicates that the new version of the application had passed all the unit

tests which statistically proved that compatibility of the new version of the appli-

cation.

ok common/const/languages 0.148s coverage: 33.3% of statements

ok common/const/ossprefix 0.166s coverage: 11.3% of statements

ok common/const/regions 0.273s coverage: 50.0% of statements

ok common/toolkit/audiox 0.173s coverage: 35.7% of statements

ok common/toolkit/cryptox 2.155s coverage: 28.4% of statements

ok common/toolkit/imagex 0.151s coverage: 8.5% of statements

ok common/toolkit/memberx 0.271s coverage: 4.2% of statements

ok common/toolkit/numx 0.400s coverage: 44.0% of statements

ok common/toolkit/sdkx 1.340s coverage: 13.9% of statements

ok common/toolkit/sdkx/ossx 0.371s coverage: 6.0% of statements

ok common/toolkit/strx 0.321s coverage: 22.2% of statements

ok common/toolkit/timex 0.451s coverage: 12.5% of statements

ok customer/service/member 0.263s coverage: 0.2% of statements

Code Snippet 9. The terminal output of unit test result of the application.

46

Figure 6 is a Chrome browser screenshot of service mesh monitoring graph. It was

a test of traffic tracking and monitoring for the Istio service mesh. It recorded all

the requests that flow inside the mesh. The traffic flows went with the direction

of arrow lines in the graph. The graph also shows the network dependencies be-

tween microservices in the mesh. For example, the “Base-API” service relies on a

Redis database. The two newly created microservices, “Template-API” and “Ma-

terial-API”, rely on a PostgreSQL instance.

Figure 6. Traffic tracking result of the service mesh. (Screenshot of Chrome
browser)

47

Figure 7 is a screenshot of terminal which demonstrates the memory consumption

of the Ubuntu virtual machine used in this project. The application is running on

an Ubuntu server with 8 Gigabytes of RAM, 20 Gigabytes of block storage and 8

virtual CPUs, which is bought from Alibaba Cloud. As the figure shows, after the

MicroK8s cluster is deployed and all the components along with the application

running inside the cluster, the total consumption of the computer memory is

about 4.2 Gigabytes.

Figure 7. Memory consumption of the host Linux server. (Screenshot of SSH in ter-
minal)

Based on the testing results above, the memory consumption of the cluster looks

a little bit high. It can be slightly reduced by removing unnecessary components

used in the Istio service mesh. It might need a thorough examination of the Mi-

croK8s cluster to find out the problems.

48

7 SUMMARY

Table 3 lists all achievements of the requirements described in the beginning of

this thesis. As the table shows, in this thesis, a legacy monolithic application was

migrated into microservices architecture partially (Decomposed two micro-

services, “Template-API” and “Material-API”, out of the old application). GitHub

Actions was also integrated to implement the DevOps practices of CI/CD, and Istio

service mesh was used to manage traffic of the microservices group. Then, the

application was deployed onto a container orchestration environment called Mi-

croK8s. What has not been achieved was decomposing the rest of the application

which was too large to do due to time limitations of this thesis.

Table 3. Achievement table of requirements in this thesis.

Requirements Achieved

Use microservices architecture Yes

Use GitHub Actions CI/CD Yes

Use Istio service mesh Yes

Use MicroK8s Yes

Decompose the rest of the application No

The initial goal of this thesis was to improve the speed of feature delivery, scala-

bility, and reliability of the backend. Based on the achievements table, all three

objectives were achieved relatively. The development team is now delivering new

features much faster than before. Developers can locate and track the issues that

happened in the backend easily with the help of service mesh which makes the

49

system more reliable. The operation of scaling the backend when spike access hap-

pened is simpler than before thanks to the use of MicroK8s.

50

8 CONCLUSIONS

In this project, most important goals were achieved. The three main objectives of

this thesis: agility, reliability and scalability of the application were noticeably im-

proved by the author’s work.

Many tasks were completed in this thesis. The backend application was success-

fully restructured using a microservices architecture, and the databases were re-

designed. GitHub Actions CI/CD was integrated to automate testing, building, and

deploying the application. MicroK8s was used for hosting the containerized appli-

cation, making the system ready to scale. Istio service mesh was enabled for better

management of all microservices in the MicroK8s cluster. As a result, the applica-

tion now works for both users and developers.

From the users' perspective, new features are now released more frequently. Us-

ers are receiving bug fixes and updates faster, which significantly improves their

experience. They are also encountering fewer server errors because issues are

caught before they noticed.

From the developers' perspective, they no longer have to deploy the application

manually (compiling the application on their laptops and uploading the binary file

to the server). The efficiency of the development team has significantly improved.

Developers can now focus more on creative and valuable work instead of wasting

time on tedious processes. They can also update the application in parts without

worrying about breaking the entire system, thanks to the microservices architec-

ture.

The most challenging part of this thesis was ensuring compatibility during the de-

composition of the application. The two newly created microservices had to be-

have the same as the old application so that users wouldn't notice any differences

during the migration process.

51

The future development based on this thesis involves migrating the rest of the

monolithic application to a microservices architecture. Due to time constraints,

this thesis only decomposed two microservices from the legacy application. The

remaining parts of the application need to be migrated in the future by following

the same steps outlined in this thesis: code migration, database migration, and

designing interservice communication.

52

REFERENCES

Amazon Web Services. (n.d.) What are Microservices? Retrieved 2024-01-26

from https://aws.amazon.com/microservices/

Amazon Web Services. (n.d.) What is DevOps? Retrieved 2024-01-26 from

https://aws.amazon.com/devops/what-is-devops/

Andrawos, M., & Helmich, M. (2017). Cloud Native Programming with Golang:

Develop microservice-based high performance web apps for the cloud

with Go. Packt Publishing Ltd.

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Migrating to cloud-native ar-

chitectures using microservices: an experience report. In Advances in Ser-

vice-Oriented and Cloud Computing: Workshops of ESOCC 2015,

Taormina, Italy, September 15-17, 2015, Revised Selected Papers 4

Springer International Publishing.

Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A software architect's perspective.

Addison-Wesley Professional.

Böhm, S., & Wirtz, G. (2021, March). Profiling Lightweight Container Platforms:

MicroK8s and K3s in Comparison to Kubernetes. In ZEUS.

Combe, T., Martin, A., & Di Pietro, R. (2016). To docker or not to docker: A secu-

rity perspective. IEEE Cloud Computing.

Decan, A., Mens, T., Mazrae, P. R., & Golzadeh, M. (2022, October). On the use of

GitHub Actions in software development repositories. In 2022 IEEE Inter-

national Conference on Software Maintenance and Evolution (ICSME).

IEEE.

Dilley, N., & Lange, J. (2019, February). An empirical study of messaging passing

concurrency in Go projects. In 2019 IEEE 26th International Conference

on Software Analysis, Evolution and Reengineering (SANER). IEEE.

Douglas, K., & Douglas, S. (2003). PostgreSQL: a comprehensive guide to building,

programming, and administering PostgreSQL databases. SAMS publishing.

Drake, J. D., & Worsley, J. C. (2002). Practical PostgreSQL. O'Reilly Media, Inc.

https://aws.amazon.com/microservices/
https://aws.amazon.com/devops/what-is-devops/

53

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. IEEE soft-

ware, 33(3).

GitHub. (n.d.) Understanding GitHub Actions. Retrieved 2024-01-26 from

https://docs.github.com/en/actions/learn-github-actions/understanding-

github-actions

Httermann, M. (2012). DevOps for developers. Apress.

Istio Team. (n.d.) The Istio Service Mesh introduction. Retrieved 2024-01-26 from

https://istio.io/latest/about/service-mesh/

Koziolek, H., & Eskandani, N. (2023, April). Lightweight Kubernetes distributions:

a performance comparison of MicroK8s, k3s, k0s, and MicroShift. In Pro-

ceedings of the 2023 ACM/SPEC International Conference on Perfor-

mance Engineering.

Luksa, M. (2017). Kubernetes in action. Simon and Schuster.

McGrath, M. (2020). GO Programming in easy steps: Discover Google’s Go lan-

guage (Golang). In Easy Steps Limited.

MicroK8s. (n.d.) What is MicroK8s? Retrieved 2024-01-26 from https://mi-

crok8s.io/

Microsoft Azure. (n.d.) Microservices architecture design. Retrieved 2024-01-26

from https://learn.microsoft.com/en-us/azure/architecture/micro-

services

Miell, I., & Sayers, A. (2019). Docker in practice. Simon and Schuster.

Mouat, A. (2015). Using Docker: Developing and deploying software with con-

tainers. O'Reilly Media, Inc.

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems.

O'Reilly Media.

Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2017). Cloud container technologies:

a state-of-the-art review. IEEE Transactions on Cloud Computing.

Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2017). Cloud container technologies:

a state-of-the-art review. IEEE Transactions on Cloud Computing.

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://istio.io/latest/about/service-mesh/
https://microk8s.io/
https://microk8s.io/
https://learn.microsoft.com/en-us/azure/architecture/microservices
https://learn.microsoft.com/en-us/azure/architecture/microservices

54

Ponce, F., Márquez, G., & Astudillo, H. (2019, November). Migrating from mono-

lithic architecture to microservices: A Rapid Review. In 2019 38th Interna-

tional Conference of the Chilean Computer Science Society (SCCC). IEEE.

Potdar, A. M., Narayan, D. G., Kengond, S., & Mulla, M. M. (2020). Performance

evaluation of docker container and virtual machine. Procedia Computer

Science.

Surianarayanan, C., Ganapathy, G., & Pethuru, R. (2019). Essentials of micro-

services architecture: Paradigms, applications, and techniques. Taylor &

Francis.

Valenzuela, Toledo, P., & Bergel, A. (2022, March). Evolution of GitHub action

workflows. In 2022 IEEE International Conference on Software Analysis,

Evolution and Reengineering (SANER). IEEE.

Zhu, X., She, G., Xue, B., Zhang, Y., Zhang, Y., Zou, X. K., ... & Mahajan, R. (2022).

Dissecting service mesh overheads. arXiv preprint arXiv:2207.00592.

55

APPENDICES

APPENDIX 1

CODE SNIPPET OF APPLICATION CONFIGURATION OF TEMPLATE-API SERVICE

apiVersion: v1

kind: Pod

metadata:

 name: template-pod

 labels:

 app: template

spec:

 containers:

 - name: template

 image: ***/templateapi:latest

 env:

 - name: MODE

 value: release

 - name: REGION

 value: hk

 - name: POSTGRES

 value: ***

 ports:

 - containerPort: 80

apiVersion: v1

kind: Service

metadata:

 name: template-svc

spec:

 selector:

 app: template

 ports:

 - port: 80

targetPort: 80

56

APPENDIX 2

CODE SNIPPET OF APPLICATION CONFIGURATION OF MATERIAL-API SERVICE

apiVersion: v1

kind: Pod

metadata:

 name: material-pod

 labels:

 app: material

spec:

 containers:

 - name: material

 image: ***/materialapi:latest

 env:

 - name: MODE

 value: release

 - name: REGION

 value: hk

 - name: POSTGRES

 value: ***

 - name: MONGODB_SRC

 value: ***

 ports:

 - containerPort: 80

apiVersion: v1

kind: Service

metadata:

 name: material-svc

spec:

 selector:

 app: material

 ports:

 - port: 80

targetPort: 80

57

APPENDIX 3

CODE SNIPPET OF INTERSERVICE COMMUNICATION OF THE APPLICATION

func PutCollection(uid, cid, tid string, v db.Template, r *http.Request)
error {

vs := make(url.Values)

vs.Set("title", strx.GetTitle(v.Titles,

strx.SupportedLanguage(r)))

vs.Set("subtitle", vs.Get("title"))

vs.Set("cover", v.Cover)

res, e :=
httpClient.PostForm(ACCOUNT_SVC+"/u/"+uid+"/col/"+cid+"/tmpl/"+ti
d, vs)

if e != nil {

log.Println(e)

return e

}

if res.StatusCode == 200 {

return nil

}

defer res.Body.Close()

b, e := io.ReadAll(res.Body)

if e != nil {

 log.Println(e)

 return e

}

return fmt.Errorf("post collect failed:%s", string(b))

}

func DeleteCollection(uid, tid string) error {

req, e := http.NewRequest(http.MethodDelete,

ACCOUNT_SVC+"/u/"+uid+"/col/0/tmpl/"+tid, nil)

if e != nil {

log.Println(e)

return e

}

res, e := httpClient.Do(req)

if e != nil {

log.Println(e)

return e

}

if res.StatusCode == 200 {

return nil

}

defer res.Body.Close()

b, e := io.ReadAll(res.Body)

58

if e != nil {

 log.Println(e)

 return e

}

return fmt.Errorf("delete collect failed:%s", string(b))

}

59

APPENDIX 4

CODE SNIPPET OF WORKFLOWS CONFIGURATION OF GITHUB ACTIONS

name: Docker

on:

 push:

 branches: ["main"]

 tags: ['v*.*.*']

 pull_request:

 branches: ["main"]

jobs:

 test:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout repository

 uses: actions/checkout@v3

 - name: Unit test of the golang code

 run: go test -v ./...

 build:

 runs-on: ubuntu-latest

 needs: test

 permissions:

 contents: read

 packages: write

 steps:

 - name: Checkout repository

 uses: actions/checkout@v3

 - name: Set up Docker Buildx

 uses: docker/setup-buildx-action@v3.0.0

 - name: Log into registry ${{ env.REGISTRY }}

 if: github.event_name != 'pull_request'

 uses: docker/login-action@v3.0.0

 with:

 registry: ${{ env.REGISTRY }}

 username: ${{ github.actor }}

 password: ${{ secrets.GITHUB_TOKEN }}

 - name: Build and push Docker image

 id: build-and-push

 uses: docker/build-push-action@v5.0.0

 with:

 context: .

 push: ${{ github.event_name != 'pull_request' }}

 tags: ${{ steps.meta.outputs.tags }}

 labels: ${{ steps.meta.outputs.labels }}

 cache-from: type=gha

60

 cache-to: type=gha,mode=max

 deploy:

 runs-on: ubuntu-latest

 needs: build

 steps:

 - name: Checkout repository

 uses: actions/checkout@v3

 - name: Load kube config file

 run: |

 mkdir ${HOME}/.kube

 echo ${{ secrets.KUBE_CONFIG }} | base64 --decode >
${HOME}/.kube/config

 - name: Use kube context and deploy

 run: kubectl config use-context mycontext && kubectl apply -f
k8s/

