
Federated Backdoor Attacks against Speech Recog-
nition

Khanh Trung Mai

Master’s Thesis

Big Data Analytics

2024

Master’s Thesis
Khanh Trung Mai

Federated Backdoor Attacks against Speech Recognition.

Arcada University of Applied Sciences: Big Data Analytics, 2024.

Abstract:
This thesis explores and simulates federated learning, specifically focusing on applying

adversarial attacks against input data to assess their impact on training performance. In

the context of the rising importance of federated learning for preserving data privacy

in machine learning, this research investigates scenarios where data and models remain

decentralized, eliminating the need to transfer them to a central location and thereby safe-

guarding raw, sensitive data from exposure. The primary dataset under consideration is

keyword-specific, involving the analysis and classification of sound waves recorded from

real individuals. In addition to real-world data, synthetic data generated through cloud

services is incorporated to augment the dataset, providing insights into its influence on

the training phase. The study delves into various adversarial attack types, encompassing

label manipulation and sound alteration, aiming to assess their impact on the federated

learning model’s robustness.

Keywords: Federated Learning, Backdoor attacks, Speech Recognition

Contents
1 Introduction . 8

2 Related Work . 9

2.1 Federated Learning . 9
2.1.1 Federated Averaging . 9

2.2 Adversarial Attacks Against Machine Learning 11
2.3 Adversarial Attacks Against Decentralized Learning 13
2.4 Automatic Speech Recognition . 14
2.5 Research Questions and Objectives . 15

3 Research Methodology . 16

3.1 Simulation Setup . 16
3.2 Architecture Design . 17
3.3 Benchmark Dataset . 17
3.4 Synthetic Dataset . 17

3.4.1 Introduction . 17
3.4.2 Output and cost . 19

3.5 Data Pre-processing . 19

4 Adversarial Data Attacks . 22

4.1 Flipping Labels . 22
4.2 Adding Signal Noise . 22
4.3 Stretching Sound . 23
4.4 Shifting Sound . 25
4.5 Pitch Boosting Sound Masking . 25

5 Results . 28

5.1 Benchmark Data vs Synthetic Data . 28
5.2 Attack against benchmark dataset . 29

5.2.1 Label-flipping . 29
5.2.2 PBSM . 30

5.3 Attacks Against Combined Dataset . 30
5.3.1 Label-flipping . 30
5.3.2 PBSM . 31
5.3.3 Wave Stretching . 31
5.3.4 Wave Shifting . 32
5.3.5 Real Noises Adding . 32

6 Conclusions and discussion . 34

6.1 Conclusions . 34
6.2 Discussion . 35

6.2.1 RQ1- How can the performance of federated learning be affected by each
attack? . 35

6.2.2 RQ2- How will the model recover after each attack during the training round? 35
6.2.3 RQ3- Would synthetic data improve the training performance? 35

6.3 Further Improvements . 36

References . 37

3

Figures
Figure 1. Centralized learning vs Distributed learning 10

Figure 2. Architecture using AWS services to generate synthetic dataset 19

Figure 3. Total Cost for AWS services . 20

Figure 4. Waveform and Spectrogram . 20

Figure 5. Label Flipping Attack . 22

Figure 6. Colored Noise Waveform and Spectrum 24

Figure 7. Stretching Sound by 50 percent . 24

Figure 8. Shifting Spectrogram by 10 percent 25

Figure 9. Pitch Boosting Sound Masking architecture 26

Figure 10. PBSM sample trigger (High pitch modified in red) 27

Figure 11. Benchmark vs Benchmark+Synthetic 29

Figure 12. Label-flipping attack on benchmark data 29

Figure 13. PBSM attack on benchmark data . 30

Figure 14. Label Flipping attack on benchmark data 31

Figure 15. PBSM attack on combined data . 31

Figure 16. Wave Stretching attack on benchmark data 32

Figure 17. Wave Shifting attack on benchmark data 32

Figure 18. White Noise attack on benchmark data 33

Figure 19. Pink Noise attack on benchmark data 33

Tables
Table 1. Speech Command Dataset Distribution 18

Table 2. Synthetic Dataset Distribution . 21

List of Algorithms
1 FedAvg with the K clients indexed by k, the B mini-batches indexed by b

and E as the number of epochs . 11

2 Label flipping . 22

3 Add Real Noise with n as signal-to-noise ratio, noise as the adversarial

signal . 23

4 Stretching Sound . 24

5 Shifting Sound . 25

6 Pitch Boosting Sound Masking with hs as the high amplitude added to the

signal . 26

6

Abbreviations
AI Artificial Intelligence

IoT Internet of Things

FL Federated Learning

ML Machine Learning

AWS Amazon Web Services

ASR Automatic Speech Recognition

RMS Root Mean Square

PBSM Pitch Boosting Sound Masking

7

1. Introduction
Edge machine learning and federated learning share common goals and principles. How-

ever, federated learning takes the capabilities of edge machine learning a step further

by allowing collaborative model training across multiple edge devices while maintaining

data privacy and security(Ma et al. 2023a, Jeong and Chung 2022). Unlike traditional

machine learning, where raw data is collected and aggregated into a centralized server,

federated learning conducts model training directly on edge devices. This decentralized

approach minimizes privacy concerns associated with sharing sensitive data and mini-

mizes the need for extensive data transfer over the network. Federated learning is no

longer limited to academic research. Its use has spread to various industries, such as

healthcare, finance, and sales, where data privacy is crucial in protecting customers and

legal compliance(Bharati et al. 2022).

On the other hand, cyber-attacks have become significant threats, often overlooked in

favor of physical security concerns. These attacks provide an easy way to disseminate

harmful content, collect unauthorized data, and manipulate human decision-making pro-

cesses. Cybersecurity is paramount in federated learning because of the framework’s

distributed and collaborative nature.

This study examines the effect of various attacks on edge devices’ data on the efficiency

of centralized machine learning models that use federated learning, neural networks, and

a range of adversarial attack tactics. The research uses a mix of real-world and artificial

datasets to enhance training performance.

8

2. Related Work

2.1 Federated Learning

Data privacy has become a sensitive topic due to immense cyber attacks on customer

data (Mrini et al. 2024). Many machine learning applications are trained using central-

ized data, where customer information is collected on a server and then used for training.

However, this method raises concerns about the security of sensitive data. To address this

issue, decentralized AI has become a new trend and standard for handling and protecting

sensitive data. Federated learning is one such approach, which processes and uses local

data for training at the customer’s end. This approach has resolved the issue of adversarial

attempts, making it a promising solution for improving data privacy. Google first intro-

duced federated learning in 2016 (Martineau 2022) when people were concerned about

data breaches by raising multiple social network platforms, such as Facebook, where at-

tention was focused on the potential threat of sharing personal information through the

Internet. The main benefit of distributed learning is that the model is collaboratively

trained on the customer device without sharing information with the central server, thus

creating a trade-off.

Unlike conventional centralized models, federated learning distributes the model training

process across these nodes, allowing them to compute updates on their respective datasets

locally. These updates are aggregated at a central server, consolidating the collective

knowledge without exposing raw data. This architecture preserves privacy by keeping

sensitive information localized, enhancing scalability and efficiency. Federated learning

holds promise in scenarios where data privacy is paramount, fostering collaborative model

improvement across diverse datasets while minimizing the need for large-scale data trans-

fers. As a cutting-edge framework, federated learning presents a compelling solution for

addressing privacy concerns and accommodating the distributed nature of contemporary

data sources.

2.1.1 Federated Averaging

A core tenet of federated learning revolves around the algorithmic orchestration of collab-

orative training for a global machine-learning model across decentralized devices. Sev-

eral prominent algorithms have emerged in this domain, such as Federated Averaging

9

Figure 1. Centralized learning vs Distributed learning

(FedAvg)(McMahan et al. 2016), Dynamic Regularization (FedDyn)(Acar et al. 2021),

and Federated Stochastic Gradient Descent (FedSgd)(Yuan and Ma 2021), each with its

set of advantages and limitations, contingent upon factors like complexity and specific

use-cases (Shastri 2023). In the context of this thesis, the chosen algorithm is Federated

Averaging (FedAvg), a decision made after carefully considering its suitability for the de-

fined objectives and constraints of the research.

Federated Averaging builds upon the strengths of FedSGD (Polyak and Juditsky 1992)

by incorporating a refined approach to parameter averaging. In this iterative process,

client weights initialized from the same rounds undergo averaging, allowing for the fine-

tuning of local parameters before their transmission to the central server for aggregation.

This nuanced strategy addresses the challenges associated with variance in gradients from

training rounds.

The FedAvg process unfolds through iterative rounds, where participating devices engage

in local model training on their respective datasets. The locally trained models’ param-

eters are then transmitted to a central server, orchestrating the aggregation process. No-

tably, instead of sending raw data, devices share model updates, specifically the gradients

of the loss function concerning the model parameters. The central server adeptly aggre-

gates these updates, computes the average, and redistributes the refined global model to

the participating devices, thus optimizing the collaborative learning experience. As ex-

plained in (McMahan et al. 2016), the key factors that control the result are: C, the part

of total clients that participate in each round; E, the number of local training rounds for

each client with its local dataset; and B, the local batch size used for each client updates.

10

Algorithm 1 illustrates the mechanics of FedAvg: the server initializes the weights and

randomly selects participants for each round. Subsequently, each chosen client under-

takes local training with its data, adhering to predefined epochs and batch numbers. The

resultant gradient descent values are then transmitted to the server and employed in the

subsequent training round.

Algorithm 1 FedAvg with the K clients indexed by k, the B mini-batches indexed by b
and E as the number of epochs
ServerSide:

initialize w0;
for each round t = 1,2... do

m← Choose number of participants
St ←Randomize m clients
for each client k ∈ St in parallel do

wk
t+1←ClientSide(k,wt)

end for
mt ← Σk∈St nk
wt+1← Σk∈St nk/mt ∗wk

t+1
end for

ClientSide: Only run on selected client k
b←(splits local dataset into batches size B)
for each local epoch i from 1 to E do

for batch b ∈ b do
w←(train and update w)

end for
wk

t+1←ClientSide(k,wt)
end for
return w to server

2.2 Adversarial Attacks Against Machine Learning

As discussed in previous research in early 2024 (Apostol Vassilev 2024), understand-

ing the various types of attacks on ML systems is crucial for assessing their security

and resilience against adversarial manipulation. In ML security, attacks can be broadly

categorized into white-box, black-box, and gray-box attacks, each representing different

levels of adversary knowledge and access to the ML system. These distinctions are piv-

otal for evaluating the robustness of ML models and developing effective defense mech-

anisms.

White-box attacks occur when the attacker fully knows the ML system, covering de-

11

tails like training data, model structure, and settings. Although these attacks rely on

solid assumptions, they are vital for stress-testing systems against the most knowledge-

able adversaries and devising effective defenses. This definition also includes adaptive

attacks, where the attacker closely monitors any countermeasures applied to the model

or the system. A study in 2023 (Ma et al. 2023b) dived into white-box attacks, includ-

ing non-targeted and targeted ones, utilizing the fast gradient sign method (FGSM) and

projected gradient descent (PGD). Real datasets collected from a LoRa testbed were used

to demonstrate the efficacy of these adversarial examples against convolutional neural

networks (CNNs), long short-term memory (LSTM) networks, and gated recurrent units

(GRU).

In contrast, black-box attacks assume very little about the ML system. The attacker might

only have access to query the model, lacking any insights into its training process. These

attacks are seen as the most practical because they simulate situations where attackers

have no prior knowledge of the AI system and rely solely on its standard interfaces. For

example, An attach strategy (Papernot et al. 2017) aimed to train a local model to replace

the target DNN by utilizing inputs generated synthetically by an adversary and labeled by

the target DNN. They then utilized this local substitute to generate adversarial examples,

which were observed to be misclassified by the targeted DNN.

Gray-box attacks lie in between, representing varying degrees of adversarial knowledge.

For example, the attacker might know the model’s structure but not its specific settings,

or they might possess the model’s settings but not details about the training data. These

attacks often assume access to data similar to the training set and familiarity with the

feature representation process. This latter assumption is particularly crucial in cyberse-

curity, finance, and healthcare, where feature extraction plays a significant role before

training ML models. In a recent study (Lapid and Sipper 2023), an attack framework was

introduced that created adversarial examples in image-to-text models, typically consist-

ing of an image encoder and a transformer-based decoder. Unlike image classification

tasks, where there’s a finite set of class labels, generating visually similar adversarial ex-

amples for image-to-text tasks is more challenging due to the infinite space of possible

captions.

12

2.3 Adversarial Attacks Against Decentralized Learning

As the popularity of Decentralized Learning rises, an increasing number of hackers are

attempting to compromise either the model or the data. The trend towards Decentral-

ized Learning has attracted heightened attention from malicious actors seeking to exploit

vulnerabilities in the model or access sensitive data. The growing prevalence of Decen-

tralized Learning has consequently led to a surge in hacking attempts, posing significant

challenges to the security of both models and data.

In 2019, researchers discussed how to backdoor the federated learning models using the

Model Replacement method (Bagdasaryan et al. 2019). The method was used as the

baseline method for the experience, where the attackers changed the learning rate and

the number of local epochs to direct the model for overfitting. As in federated learn-

ing, during the server model update, the training phase only selects a small number of

clients; hence, this attack needs the backdoored participants to be chosen frequently; oth-

erwise, the impact is minimal. The attacker intentionally attempts to send the server an

adversarial model with updated gradients. This method described an attack in federated

learning where an attacker aimed to replace the global model with a malicious one. The

attacker iteratively adjusted their model to mimic the global model while incorporating

a backdoor. They scaled up the backdoored model’s weights to ensure its survival dur-

ing the averaging process. Even without knowing specific parameters, the attacker could

successfully attack by approximating the scaling factor. Additionally, the attacker could

exploit vulnerabilities such as skipping the random masking of weights or selectively re-

moving close-to-zero weights. This attack is effective, especially when the global model

is nearing convergence.

As the setup for this experiment, 100 rounds were trained with a selected number of clients

from each round participating in two different tasks: CIFAR and word prediction. After

introducing the backdoor into CIFAR models, the backdoor accuracy initially dropped

and gradually increased. This pattern occurred due to two main factors. First, the objec-

tive landscape was not convex, meaning it had multiple optimal points. Second, the at-

tacker used a low learning rate to align their model with the current global model, making

surrounding models devoid of the backdoor. As benign participants updated their mod-

13

els with higher learning rates, they moved away from the attacker’s model, causing the

global model’s backdoor accuracy to drop. However, since the central model was nudged

towards the backdoored model’s direction, it was likely to converge to a backdoored ver-

sion again. The attacker faced a situation: using a higher learning rate prevented the initial

drop in backdoor accuracy but risked creating a notably different model from the global

one. Conversely, in word-prediction models, the backdoor accuracy remained stable be-

cause most of the model’s weights were word embeddings, rarely updated by participants.

Consequently, even if the trigger sentence was uncommon, associated weights remained

at the local extreme point set by the attacker.

Another study in 2022 (Cao and Gong 2022) demonstrated an adversarial attack against

federated learning. This attack involved injecting fake clients into the system and creating

a fake local training model to feed the server with malicious content. As the baseline at-

tack, random Gaussian noises were used as the gradient descents for the malicious model.

Then, based on that, the MPAF (Model Poisoning Attack based on Fake clients) method

was invented to manipulate their local model updates to steer the global model toward a

predetermined base model. In each round of FL, fake clients are generated and updated by

subtracting current global model parameters from the base model’s parameters and then

scaling them up. The main challenge of this approach is the attacker’s limited knowl-

edge of the FL system, relying only on received global models. MPAF’s strategy involves

forcing the central model to mimic the base adversarial model.

2.4 Automatic Speech Recognition

Speech recognition, a subfield in AI and machine learning, involves the development of

methodologies and applications that enable human-machine communication. Automatic

Speech Recognition (ASR) technologies play a pivotal role in this domain, facilitating

various industry applications. For instance, virtual assistants like Amazon’s Alexa and

Google Assistant leverage ASR to comprehend and respond to user voice commands, en-

hancing the interactive capabilities of smart devices. Moreover, in the realm of transcrip-

tion services, ASR proves invaluable, converting spoken content from meetings, inter-

views, and lectures into written text. Customer service and call centers also benefit from

ASR (Goyal et al. 2022), automating and improving the transcription of customer calls for

14

real-time monitoring and analysis. Additionally, in the education sector, ASR is applied to

transcribe lectures and generate subtitles, fostering accessibility in e-learning platforms.

These examples underscore the broad spectrum of applications wherein speech recogni-

tion technologies significantly contribute to seamless human-machine interactions.

2.5 Research Questions and Objectives

Significantly, the speech recognition field has notably lacked studies and experiments

concerning targeted attacks against input data. This research aims to address this gap by

focusing on decentralized learning with classification tasks, particularly against harmful

attacks. This approach enables us to explore and experiment with various methods to

manipulate edge-device local datasets. We will also utilize cloud services to generate

synthetic datasets, which can serve as valuable assets for attacks and defenses. In the

subsequent chapters, we will analyze the framework, and based on the results, further

inquiries can be unfolded:

• How can the performance of federated learning be affected by each attack?

• How will the model recover after each attack during the training round?

• Would synthetic data improve the training performance?

15

3. Research Methodology

3.1 Simulation Setup

For conducting simulations in this thesis, the Flower Framework is selected due to its

capacity to simulate machine learning and federated learning without the necessity of

handling an extensive array of physical devices. The Flower Simulation feature facilitates

the configuration of clients and servers as code within a central node. This eliminates the

need for a complex server setup and allows for the execution of simulations on a computa-

tional system to validate various scenarios, aligning seamlessly with the objectives of this

thesis. The framework’s flexibility in representing clients and servers through code sim-

plifies the simulation process, providing an efficient and scalable solution for exploring

diverse aspects of machine learning and federated learning.

In our computational framework, we leverage Puhti, a robust supercomputer facilitating

scalable simulations for experimental purposes. Puhti offers an array of supercomput-

ing nodes characterized by high memory capacities or storage, catering to diverse task

requirements. Notably, Puhti supports CPU and GPU Linux partitions, catering to heavy-

load tasks and providing versatility in computational capabilities. The system’s scalability

and support for parallel jobs make it especially well-suited for simulation workloads, en-

hancing the efficiency and effectiveness of our computational experiments.

To emulate the behavior of 40 clients undergoing 20 training rounds, our experimentation

leverages the Hugemem Puhti partition job. This specialized job allocation offers an ex-

tensive computational resource pool, boasting 1496GB of CPU capacity and 3600GB of

NVMe data storage. The allocated job has a time constraint of 3 days, and it facilitates

the concurrent execution of up to 160 tasks. This configuration ensures the efficient sim-

ulation of a large-scale federated learning scenario, where the substantial computational

resources and simultaneous task execution capabilities of the Hugemem Puhti partition

contribute to the fidelity and scalability of our experiments.

Each client undertakes local training, utilizing 2 CPUs to process the provided input data.

Given the intricacies of the deep learning model, a substantial resource allocation is im-

perative for a comprehensive simulation. To accommodate the complexity, we reserve a

16

powerful 1465GB of memory, deploy 40 CPUs, and allocate 2000GB of NVMe storage

for the simulation. These provisions are crucial to ensure efficient model training and

robust performance. Notably, a timeout of 3 hours is imposed for each simulation sce-

nario, striking a balance between computational efficiency and the practical constraints of

timely completion.

3.2 Architecture Design

In this session, a comprehensive description of the employed architecture is presented.

The process begins with segmenting the dataset into smaller subsets, each designated for

consumption by individual clients. Following the dataset split, a targeted adversarial at-

tack introduces poisoned data into the training phase. The training procedure commences

on the local client machines, after which the refined models are transmitted to a central-

ized server. Notably, the training phase unfolds over 20 rounds, emphasizing the iterative

nature of the learning process and the collaborative exchange between local clients and

the central server to enhance the overall model performance.

3.3 Benchmark Dataset

We use the speech command (Warden 2018) hosted by Huggingface to support the state

of the art. The dataset contains one-second WAV files that record commands by vari-

ous confirmed speakers, enabling training models for automatic speech recognition tasks.

Version two, released on April 11th, 2018, was used for the experimentation and contains

around 100,000 audio files with 36 labels. Table 1 describes the dataset distribution and

labels.

3.4 Synthetic Dataset

3.4.1 Introduction

AWS Polly (Barr 2016) provides text-to-speech services using deep learning technolo-

gies with various voices and accents that support testing the robustness of the simulation.

AWS Lambda is a serverless computation service that allows us to generate large datasets

on a large scale. AWS S3 is an object storage service that can host our dataset comfort-

ably. One of the thesis goals is to use both natural and synthetic voices for training and

simulation purposes. According to the Huggingface dataset, the synthetic dataset should

17

Table 1. Speech Command Dataset Distribution

Labels
Name Index
yes 0
no 1
up 2
down 3
left 4
right 5
on 6
off 7
stop 8
go 9
zero 10
one 11
two 12
three 13
four 14
five 15
six 16
seven 17
eight 18
nine 19
bed 20
bird 21
cat 22
dog 23
happy 24
house 25
marvin 26
sheila 27
tree 28
wow 29
backward 30
forward 31
follow 32
learn 33
visual 34
background
noises

35

18

Figure 2. Architecture using AWS services to generate synthetic dataset

contain 35 labels for the classification task. As illustrated in Figure 2, we use the AWS

Python SDK(AWS 2024) to trigger the Lambda function asynchronously. This generates

the output for all labels concurrently, consuming only 5 minutes to synthesize around

70000 sound files for 35 labels. The output files are then stored in an S3 bucket and con-

tained in the corresponding folder with labels as the name. For example, the synthetic

data for the label ’zero’ is stored in the folder /synthetic-data/zero/labelhash.mp3.

3.4.2 Output and cost

We collected 70,695 records from 35 different labels, with a combined size of 197MB.

On average, each sample was about 2.5 KB. The total computation, synthesis, and storage

cost was less than 2 USD, as shown in Figure 3. Our architecture was designed to be

highly scalable, allowing for generating synthetic datasets for research at a low cost with

efficient storage.

3.5 Data Pre-processing

We are provided with sound files that contain 16000 wavelengths as input. The signal

is transformed using the Fast Fourier Transform(Wikipedia 2024) method into a spectro-

gram and component frequency information to train the model. This is achieved using a

given frame length and step, as shown in Figure 4.

19

Figure 3. Total Cost for AWS services

Figure 4. Waveform and Spectrogram

20

Table 2. Synthetic Dataset Distribution

Labels
Name Index Number of files
yes 0 2000
no 1 2000
up 2 2000
down 3 2000
left 4 2000
right 5 2000
on 6 2000
off 7 2000
stop 8 2000
go 9 2000
zero 10 2000
one 11 2000
two 12 2000
three 13 2000
four 14 2000
five 15 2000
six 16 2000
seven 17 2000
eight 18 2000
nine 19 2000
bed 20 2398
bird 21 2000
cat 22 2000
dog 23 2000
happy 24 2000
house 25 2000
marvin 26 2000
sheila 27 2000
tree 28 2297
wow 29 2000
backward 30 2000
forward 31 2000
follow 32 2000
learn 33 2000
visual 34 2000

Total size = 197.4 MB

21

Figure 5. Label Flipping Attack

4. Adversarial Data Attacks

4.1 Flipping Labels

Flipping its labels(Jebreel et al. 2022) is one of the most straightforward attack methods in

federated learning to manipulate a local dataset. By changing the labels of some examples

from the partition, the attackers can quickly impact the learning performance. Using a

label-flipping attack, the adversary poisons their local data by changing a source class to

a target class without modifying the features, as demonstrated in Figure 5.

Algorithm 2 Label flipping
Input: Benign Data: labels, percent,numlabels

number_targeted_labels← len(labels)∗ percent // Get the number of affected labels
targeted_label_indexes ← random(labels,number_targeted_labels) // Randomize
targeted labels
for i in targeted_label_indexes do

labels[i]← random(num_labels! = labels[i]) // Flip the label of targeted signal
end for
f lipped_labels← labels

Output: f lipped_labels

4.2 Adding Signal Noise

In constant to random noises that only influence the signal with a random distribution

of values, colored noises are served in different fields based on unique characteristics.

Those noises support engineering tasks like audio testing and calibration and help people

with sleep, relaxation, and mental issues, as background sounds mask other disruptive

22

noises.

In the scope of the thesis research, white noise and pink noise are chosen to analyze and

apply with federated learning to see if they can affect the global training model locally

and globally. The selected noises will mask the command sounds with a pre-configured

ratio to ensure the poisoned command is still recognizable. Figure 6 shows the waveform

and spectrum of the colored noises.

White noise(Jay Summer 2023) is a type of random noise that is dense across all fre-

quencies, and each component is independent of the others, which has a similar sound as

broadband noise, which can be observed from an untuned analog television. Similar to

White noise, which also contains the sound components spreading across the whole spec-

trum, Pink noise has a lower pitch and value when compared to White noise. As being

researched, it can be described as sounds of light rain, rivers, and winds. Algorithm 4

explains how we add noise to benign signals. First, we calculate the RMS of the targeted

input and signal-to-noise (n) to get the RMSn. With the noise as an adversarial signal, we

modify the amplitude of the noise based on n to get the final malicious sample.

Algorithm 3 Add Real Noise with n as signal-to-noise ratio, noise as the adversarial
signal
Input: Benign Data: signal,noise,n
Transformation:

RMS←
√

1/NΣN
i=1signal2

i

RMSn←
√

RMS2/100(n/10)

RMSt ←
√

ΣN
i=1noise2

i

noise← noise∗ (RMSn/RMSt)
Output: signal +noise

4.3 Stretching Sound

To enhance the representation of sound waves, we can manipulate the wavelength di-

rectly instead of introducing extraneous noise. A prevalent technique for achieving this

is stretching the sound, which can influence the training model without distorting the

essential spoken keywords. This approach ensures a more refined and controlled modi-

fication of sound characteristics, contributing to a more effective and targeted impact on

23

Figure 6. Colored Noise Waveform and Spectrum

Figure 7. Stretching Sound by 50 percent

the overall audio quality. In Algorithm 4 and Figure 7, an example of 50 percent stretched

sound is provided. We can use a benign signal (signal) and apply the phase vocoder tech-

nique (Prusa and Holighaus 2022) to stretch the input with a configured sampleRate to

manipulate the speed of the sound.

Algorithm 4 Stretching Sound
Input: Benign Data: signal,stretchRate,sampleRate
Transformation:

advesarialSignal← phase_vocoder(signal,stretchRate,sampleRate)
Output: advesarialSignal

24

Figure 8. Shifting Spectrogram by 10 percent

4.4 Shifting Sound

In contrast to the method of stretching sounds, where modifications are made to both am-

plitude and frequency, an alternative approach involves subtly shifting the sound by small

time durations to introduce a form of "poisoned" benign data. While these alterations re-

garding output sounds might go unnoticed by the human ear, their impact on the training

model is direct and significant. The adjustments to the input for classification tasks cre-

ate a nuanced layer of complexity, compelling the machine learning model to adapt to a

broader range of temporal variations. Essentially, this strategic manipulation poisons the

input data, imparting resilience and adaptability to the model, even in the face of imper-

ceptible changes in the temporal domain. Using the benign data and a given shi f tRate,

an adversarial signal can be introduced by rolling the sample based on its sampleRate, as

described in Algorithm 5 and shown in Figure 8.

Algorithm 5 Shifting Sound
Input: Benign Data: signal,shi f trate,samplerate
Transformation:

shi f tedSamples← sampleRate/shi f tRate
advesarialSignal← roll(signal,shi f tedSamples)

Output: advesarialSignal

4.5 Pitch Boosting Sound Masking

Pitch Boosting Sound Masking (Cai et al. 2022) is an adversarial attack method invented

with the combination of boosting pitch and masking sounds to create negative samples

that can poison training models.

25

Figure 9. Pitch Boosting Sound Masking architecture

As explained in Algorithm 6 and Figure 9, a subtle pitch adjustment is applied globally

after using the Fourier Transform to create the frequency domain of the benign signal

(signal_boosted). While imperceptible to the human ear during testing, this adjustment

sets the stage for the subsequent manipulation. The next phase involves pinpointing spe-

cific high-pitched frequencies within the spectrum we intend to manipulate. Only a brief

segment of the signal is selectively modified to maximize the efficacy of the attack. Upon

identifying the high-amplitude signals, a controlled elevation in pitch is introduced to the

targeted frequencies, ensuring a reasonable magnitude. In Figure 10, the modified high

pitch was highlighted in red color to note the malicious trigger.

Algorithm 6 Pitch Boosting Sound Masking with hs as the high amplitude added to the
signal
Input: Benign Data: signal,hs

signal_boosted← signal +5 //Add high pitch to the signal
max_apm_index ← getMaxAmpSegment(signal_boosted) // Get the high amplitude
segment index
signal_boosted← signal_boosted[max_apm_index±5]+hs // Insert a high-amplitude
signal to the high segment

Output: signal_boosted

Overall, the primary objective of this method is to specifically target high-frequency com-

ponents within benign signals, generating a manipulated signal that proves challenging for

human ears to discern. This approach aims to exploit nuances in audio perception, thereby

enhancing the efficacy of the generated poisoned signal.

26

Figure 10. PBSM sample trigger (High pitch modified in red)

27

5. Results
Due to the insights acquired from our experimental endeavors, our analysis exclusively

concentrates on the accuracy and loss scores of the centralized model. Our evaluation

encompasses two key aspects: firstly, the utilization of the benchmark dataset in isolation,

as well as in conjunction with synthetic data, allowing us to discern any consequential

effects on performance. Secondly, we investigate the influence of introducing noise to

the dataset on the training models. Our experimental framework is designed to examine

carefully single and multiple adversarial attack types targeted at the training data, offering

a comprehensive assessment of the robustness and resilience of the models under various

conditions.

5.1 Benchmark Data vs Synthetic Data

With the combination of benchmark and synthetic data that we generated using AWS

services to double the size of the training input, we expect to have a better performance

from the clean data and a resilient centralized model against adversarial attacks. We

continue the experiments with 40 clients and 20 rounds of federated learning to compare

the centralized model between two different datasets.

Figure 11 visualizes the performances when using the benchmark dataset and combined

with the synthetic dataset. As a result, the final accuracy score was improved from 0.85 to

0.87, while the loss was reduced from 0.58 to 0.52. The increase in the available input to

each client explained the improvement in the final model. As we have many labels for the

classification task, the input size plays a vital role in the distribution to each client when

developing a federated learning simulation.

In the upcoming sessions, we will conduct various adversarial attacks on data, both with

and without the mentioned noises—precisely, pink and white noises. In the subsequent

experiments, additional attack methods were incorporated during the training phase out-

lined in the methodology section. This allowed us to assess and compare the effects of

different attack types, helping us identify which one has the most significant impact on

the task at hand.

28

Figure 11. Benchmark vs Benchmark+Synthetic

Figure 12. Label-flipping attack on benchmark data

5.2 Attack against benchmark dataset

We conducted two types of attacks on the benchmark dataset, namely PBSM and label-

flipping.

5.2.1 Label-flipping

Firstly, Figure 12 visually presents the impact of label-flipping attacks on accuracy and

loss; the percentage number indicates how the portion of data in an individual client is

affected. Notably, this attack type exhibited substantial effects, causing a significant de-

cline in accuracy during a specific training round when the targeted client was selected.

For instance, the accuracy plummeted from 0.79 in the 15th round to less than 0.23 in the

16th round with a 100 percent label-flipping or from 0.81 in the 12th round to below 0.71

in the 13th round with an 80 percent label-flipping occurrence. With the 90 percent label-

flipping, the performance from the last ten rounds was relatively stable, which can be un-

derstandable as the affected clients were not selected for training. This analysis suggests

that label-flipping emerges as a potent attack, showcasing its effectiveness. However, the

29

Figure 13. PBSM attack on benchmark data

discernible impact on the training model is undeniable, primarily attributable to the alter-

ation of data labels. This alteration significantly influences the training model during the

training round in which the targeted client is engaged. Consequently, this insight aids in

the identification of affected clients, facilitating their exclusion from subsequent training

rounds to mitigate the harmful effects on model performance.

5.2.2 PBSM

Secondly, Figure 13 presents the outcomes of the PBSM attack to show the impact of

varying PBSM rates on model performance. Notably, PBSM-20 is the most influential

variant, exerting a noticeable effect on the training model. Despite the participation of

affected clients in the training process, the score exhibits a resilience that distinguishes the

PBSM attack from a more overt label-flipping attack. As anticipated, the overall results of

PBSM attacks demonstrate a reduction compared to benign data; however, the discernible

impact remains relatively subtle and poses a more intricate challenge for detection than

the previous attack type.

5.3 Attacks Against Combined Dataset

5.3.1 Label-flipping

After subjecting the researched attack types to the combined dataset in Figure 14, the

label-flipping method notably impacted the centralized model. The model was trained

with different percentages of affected labels under each malicious client. In the experi-

ments, the accuracy during training dropped approximately from 80 percent to 70 percent.

This decline aligns with the earlier findings, emphasizing the considerable fluctuation in

performance when the label-flipping method was employed, particularly during the in-

30

Figure 14. Label Flipping attack on benchmark data

Figure 15. PBSM attack on combined data

volvement of the affected client in the training round. As shown in the result, the increased

flipped labels affected the result immensely.

5.3.2 PBSM

Conducting various experiments with different configurations, it was found that the PBSM

method had a negative effect on the central model’s performance. However, the impact

was less significant than that of the label-flipping method. The results showed that PBSM

had a milder influence, reducing the accuracy by a maximum of two percent, as depicted

in Figure 15.

5.3.3 Wave Stretching

The results of the wave stretching attack, as illustrated in Figure 16, have provided valu-

able insights into the behavior of the model during the training phase. It was observed

that if an adversarial client participated in the training, there was a notable drop in the

model’s performance. The training accuracy was reduced from around 80 percent to 70

percent. This indicates that the presence of adversarial clients can significantly impact the

31

Figure 16. Wave Stretching attack on benchmark data

Figure 17. Wave Shifting attack on benchmark data

performance of the model during training.

5.3.4 Wave Shifting

During the course of a recent experiment, a wave-shifting attack was executed as per

the graphical representation provided in Figure 17. Upon analyzing the results, it was

observed that the affected client’s performance experienced a substantial decline during

the third round of training. The client’s performance score dropped from approximately

70 percent to 65 percent, indicating a significant drop in performance accuracy. It is

noteworthy that this reduction in performance was exclusively observed in the client that

was subjected to the wave-shifting attack. None of the other clients participating in the

same training sessions displayed any such decline in performance.

5.3.5 Real Noises Adding

The experiment conducted in Figures 18 and 19 involved adding white noise and pink

noise to the client’s input samples. The results showed that the strength of the added noise

affected the central model. Specifically, as the noise increased in strength, the client model

32

Figure 18. White Noise attack on benchmark data

Figure 19. Pink Noise attack on benchmark data

had a greater impact on the central model. However, despite the added noise, the final

model only experienced a 5 percent decrease in accuracy compared to the model trained

with benign data. This suggests that the noise added to the input was relatively small and

did not significantly impact the final model’s accuracy. Overall, these findings provide

valuable insights into the effects of noise on machine learning models and can inform

future research in this area.d data. Applying these techniques resulted in the development

of the central model, achieving a final accuracy of 86 percent for wave shifting and 85

percent for wave stretching.

33

6. Conclusions and discussion

6.1 Conclusions

Our experiment aimed to evaluate the impact of adversarial attacks on a federated learning

model. We found that data manipulation can have a significant effect. We thoroughly

analyzed each type of attack and compared their outcomes in detail. Our findings suggest

that even minor modifications to the training data can significantly change the model’s

accuracy. Observing the results, we noticed that our federated learning framework can

quickly recover from malicious attacks despite the drop in the accuracy caused by the

adversarial clients.

In our experiment, we explored the possibility of creating synthetic data using public

cloud services. The aim was to improve the performance of our machine learning model

and enhance its resiliency against adversarial attacks. We found that by doubling the size

of the dataset using synthetic data, we successfully enhanced the model’s accuracy by

ten percent. This is a significant improvement and has promising implications for the

field of machine learning. By creating synthetic data, we can generate additional training

data that is not based on real-world observations, which can help to mitigate overfitting

and improve the robustness of the model. Furthermore, the use of public cloud services

for synthetic data generation is a cost-effective and scalable solution that can be easily

integrated into existing machine learning pipelines.

However, we acknowledge that our experiment was limited in terms of the number of par-

ticipants, and we recommend conducting further research with a more significant number

of clients and users. By doing so, we can achieve better simulations of real-world scenar-

ios and better understand the potential impact of adversarial attacks on federated learning

models.

34

6.2 Discussion

6.2.1 RQ1- How can the performance of federated learning be affected by each

attack?

The system’s performance was significantly impacted by adversarial attacks, which are

malicious attempts to subvert the system’s functioning. These attacks caused variations

in the results obtained from the system across different attacks and configurations. In

particular, the presence of malicious clients participating in the training round was found

to have a significant impact on the performance of the system. This highlights the im-

portance of ensuring the security and integrity of the training data and the overall system

to prevent such adversarial attacks from compromising the accuracy and reliability of the

system.

6.2.2 RQ2- How will the model recover after each attack during the training round?

In our analysis, we observed that the server model showed a high level of resilience in

recovering from attacks, particularly when the number of clients chosen per round was

limited. However, we also noted that the model’s performance suffered significantly when

subjected to more targeted manipulation, such as a label-flipping attack, which can result

in incorrect classifications. We found that the model could only recover if the adversarial

client were excluded from subsequent training rounds. This is because including the ad-

versarial client in later training rounds would cause the model to learn from the erroneous

labels and continue to make incorrect predictions. Overall, our findings highlight the im-

portance of considering more targeted attacks when evaluating the robustness of machine

learning models. Implementing appropriate defenses to mitigate these attacks is crucial,

such as identifying and removing adversarial clients from the training process.

6.2.3 RQ3- Would synthetic data improve the training performance?

By leveraging synthetic data generated through cloud services, the training performance

of the model witnessed a substantial improvement. This was primarily due to the fact that

the synthetic data augmented the existing dataset and provided a more comprehensive and

diverse set of data points for training the model. As a result, the model’s resilience was

significantly enhanced, making it more capable of handling complex real-world scenar-

ios. This approach of using synthetic data is becoming increasingly popular in machine

35

learning, as it allows for the creation of large and diverse datasets cost-effectively and

efficiently.

6.3 Further Improvements

We recommend exploring this approach further, as it has been shown to yield promising

results in recent studies. For instance, the paper by Zhang et al. (2022) (Zhang et al. 2022)

demonstrates the efficacy of such attacks in improving the performance of a deep neural

network used for image classification tasks.

By incorporating these advanced label-flipping attacks into the training process, we be-

lieve that models can achieve higher accuracy and robustness, even in the face of adver-

sarial attacks. Therefore, we encourage researchers and practitioners to consider this ap-

proach in their future work to improve the performance of machine learning models.

In our research, we assert that the algorithm can be fine-tuned by modifying various

presently defaulted and fixed hyperparameters. These hyperparameters, such as the learn-

ing rate, batch size, and number of epochs, are crucial in determining the algorithm’s

performance. By altering these parameters, we can optimize the algorithm to achieve

better results and observe how attacks affect it in different configurations, as proposed in

(Collins et al. 2022).

Furthermore, we argue that the synthetic dataset created in this thesis has significant po-

tential beyond its current role as a benchmark. The dataset is generated using advanced

techniques such as Generative Adversarial Networks (GANs) and can be used to enhance

the robustness of the final model. Additionally, the dataset can be employed to gener-

ate adversarial data to threaten federated learning. By introducing adversarial data into

the training process, we can evaluate the model’s resilience to attacks and enhance its

security. This is especially crucial given the increasing danger posed by AI and Deep-

fake technologies. Therefore, we believe that exploring the applications of the synthetic

dataset in improving the security of models is a fascinating area of research.

36

References
Acar, D. A. E., Zhao, Y., Navarro, R. M., Mattina, M., Whatmough, P. N., and Saligrama,

V. (2021). Federated learning based on dynamic regularization.

Apostol Vassilev, Alina Oprea, A. F. H. A. (2024). Adversarial machine learning: A

taxonomy and terminology of attacks and mitigations.

AWS (2024). Aws sdk for python (boto3).

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and Shmatikov, V. (2019). How to backdoor

federated learning.

Barr, J. (2016). Amazon polly – text to speech in 47 voices and 24 languages.

Bharati, S., Mondal, M. R. H., Podder, P., and Prasath, V. S. (2022). Federated learn-

ing: Applications, challenges and future directions. International Journal of Hybrid

Intelligent Systems, 18(1–2):19–35.

Cai, H., Zhang, P., Dong, H., Xiao, Y., and Ji, S. (2022). Pbsm: Backdoor attack against

keyword spotting based on pitch boosting and sound masking.

Cao, X. and Gong, N. Z. (2022). Mpaf: Model poisoning attacks to federated learning

based on fake clients.

Collins, L., Hassani, H., Mokhtari, A., and Shakkottai, S. (2022). Fedavg with fine tuning:

Local updates lead to representation learning.

Goyal, A., Singh, A., and Garera, N. (2022). End-to-end speech to intent prediction to

improve e-commerce customer support voicebot in hindi and english.

Jay Summer, D. A. R. (2023). White noise.

Jebreel, N. M., Domingo-Ferrer, J., Sánchez, D., and Blanco-Justicia, A. (2022). Defend-

ing against the label-flipping attack in federated learning.

Jeong, H. and Chung, T.-M. (2022). Security and Privacy Issues and Solutions in Feder-

ated Learning for Digital Healthcare, page 316–331. Springer Nature Singapore.

Lapid, R. and Sipper, M. (2023). I see dead people: Gray-box adversarial attack on

image-to-text models.

37

Ma, C., Li, J., Wei, K., Liu, B., Ding, M., Yuan, L., Han, Z., and Poor, H. V. (2023a).

Trusted ai in multi-agent systems: An overview of privacy and security for distributed

learning.

Ma, J., Zhang, J., Shen, G., Marshall, A., and Chang, C.-H. (2023b). White-box adver-

sarial attacks on deep learning-based radio frequency fingerprint identification.

Martineau, K. (2022). What is federated learning?

McMahan, H. B., Moore, E., Ramage, D., and y Arcas, B. A. (2016). Federated learning

of deep networks using model averaging. CoRR, abs/1602.05629.

Mrini, A. E., Cyffers, E., and Bellet, A. (2024). Privacy attacks in decentralized learning.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A. (2017).

Practical black-box attacks against machine learning.

Polyak, B. and Juditsky, A. (1992). Acceleration of stochastic approximation by averag-

ing. SIAM Journal on Control and Optimization, 30:838–855.

Prusa, Z. and Holighaus, N. (2022). Phase vocoder done right.

Shastri, Y. (2023). What is federated learning?

Warden, P. (2018). Speech Commands: A Dataset for Limited-Vocabulary Speech Recog-

nition. ArXiv e-prints.

Wikipedia (2024). Fast fourier transform.

Yuan, H. and Ma, T. (2021). Federated accelerated stochastic gradient descent.

Zhang, H., Tae, K. H., Park, J., Chu, X., and Whang, S. E. (2022). iflipper: Label flipping

for individual fairness.

38

Appendicies

Appendix A: Script to generate Synthetic data

1 def lambda_handler(event , context):

2 session = Session(region_name="eu-west -1")

3 polly = session.client("polly")

4

5 s3 = resource(’s3’)

6 bucket_name = "synthetic -polly"

7 bucket = s3.Bucket(bucket_name)

8 with open(’labels.txt’, ’r’) as label_file:

9 labels = label_file.readlines()

10 voices = polly.describe_voices(

11 Engine=’standard’,

12 LanguageCode=’en-US’,

13 IncludeAdditionalLanguageCodes=False

14)

15 with open(’label.labels.txt’, ’r’) as label_file:

16 labels = label_file.readlines()

17 for label in labels:

18 for i in range (0, 2000):

19 random_voice = random.choice(voices[’Voices’])

20 hashlib.sha1().update(str(time.time()).encode("utf -8"))

21 response = polly.synthesize_speech(

22 Text=label ,

23 SampleRate="16000",

24 OutputFormat="mp3",

25 VoiceId=random_voice[’Id’]

26)

27 filename = f"""{label}/{random_voice[’Id ’]}_{’’.join(

28 random.choice(

29 string.ascii_letters

30) for i in range(8))}.mp3"""

31 stream = response["AudioStream"]

32 bucket.put_object(Key=filename , Body=stream.read())

39

Appendix B: Script to add noises

1 def adding_random_noise(signal , rns=10):

2 rms = math.sqrt(np.mean(signal**2))

3 rms_n = math.sqrt(rms**2/100**(rns/10))

4 noise=np.random.normal(0, rms_n , signal.shape[0])

5 return signal+noise

6

7 def adding_real_noise(signal , noise , rns):

8 rms=math.sqrt(np.mean(signal**2))

9 rms_n=math.sqrt(rms**2/(pow(100,rns/10)))

10 rms_n_current=math.sqrt(np.mean(noise**2))

11 noise=noise*(rms_n/rms_n_current)

12 return noise+signal

Appendix C: Script for PBSM attack

1 def pbsm_attack(signal , high_pitched_signal=3):

2 signal = tf.abs(signal)

3 signal +=0.5

4 high_amplitude_segments = []

5 segment_start = None

6

7 for t in range(signal.shape[0]):

8 if np.max(signal[t, :]) > threshold:

9 if segment_start is None:

10 segment_start = t

11 else:

12 if segment_start is not None:

13 segment_end = t

14 high_amplitude_segments.append((segment_start ,

segment_end))

15 segment_start = None

16 # Check if the last segment extends to the end

17 if segment_start is not None:

18 high_amplitude_segments.append((segment_start , signal.shape[0]

- 1))

19 for start , end in high_amplitude_segments:

40

20 signal[start_index ,end_index] = signal[start_index ,end_index]

+ high_pitched_signal

21 return signal

Appendix D: Script for sound stretching and shifting

1 def stretching_wave(spectrogram , rate=0.5, sample_rate =16000):

2 signal = tf.signal.inverse_stft(

3 tf.dtypes.cast(tf.squeeze(spectrogram), tf.complex64),

4 frame_length=255,

5 frame_step=128,

6 window_fn=tf.signal.inverse_stft_window_fn (128)

7)

8 signal = np.pad(signal , (0, sample_rate - len(signal)), ’constant’)

9 signal = librosa.effects.time_stretch(np.asarray(signal), rate=rate

)[:sample_rate]

10 return get_spectrogram(signal[:sample_rate], sample_rate)

11

12

13 def shift_wave(spectrogram , shift_rate=-10, sample_rate =16000):

14 return np.roll(spectrogram ,int(sample_rate/shift_rate), axis=0)

Appendix E: Script to flip labels

1 def label_flipping_attack(y, percentage , num_labels):

2 num_flips = int(len(y) * percentage)

3 flip_indices = np.random.choice(len(y), num_flips , replace=False)

4 y_flipped = y.copy()

5 # Flipping labels randomly among the num_labels classes

6 for idx in flip_indices:

7 y_flipped[idx] = np.random.choice([i for i in range(num_labels)

if i != y_flipped[idx]])

8 return y_flipped

Appendix D: Script to run Puhti processing jobs

1 #!/bin/bash

41

2 #SBATCH --job-name=khanhmai_fl

3 #SBATCH --account=project_2001220

4 #SBATCH --time=03:00:00

5 #SBATCH --mem=1465G

6 #SBATCH --partition=hugemem

7 #SBATCH --ntasks=1

8 #SBATCH --cpus -per-task=40

9 #SBATCH --gres=nvme:2000

10 #SBATCH --output logs/result.txt

11 #SBATCH --mail -type=BEGIN ,END #uncomment to enable mail

12 module load python -data

13 SRUN_CPUS_PER_TASK=40 srun python main.py

42

	Introduction
	Related Work
	Federated Learning
	Federated Averaging

	Adversarial Attacks Against Machine Learning
	Adversarial Attacks Against Decentralized Learning
	Automatic Speech Recognition
	Research Questions and Objectives

	Research Methodology
	Simulation Setup
	Architecture Design
	Benchmark Dataset
	Synthetic Dataset
	Introduction
	Output and cost

	Data Pre-processing

	Adversarial Data Attacks
	Flipping Labels
	Adding Signal Noise
	Stretching Sound
	Shifting Sound
	Pitch Boosting Sound Masking

	Results
	Benchmark Data vs Synthetic Data
	Attack against benchmark dataset
	Label-flipping
	PBSM

	Attacks Against Combined Dataset
	Label-flipping
	PBSM
	Wave Stretching
	Wave Shifting
	Real Noises Adding

	Conclusions and discussion
	Conclusions
	Discussion
	RQ1- How can the performance of federated learning be affected by each attack?
	RQ2- How will the model recover after each attack during the training round?
	RQ3- Would synthetic data improve the training performance?

	Further Improvements

	References

