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Abstract
The objective of this thesis was to evaluate the efficiency of various numerical
methods in simulating photon trajectories in astrophysical environments,
specifically near a Kerr black hole. This study employed numerical methods
integrated with NVIDIA CUDA technology to compute the solutions to a system
of ordinary differential equations (ODEs) that model these photon movements.
Initially, previous analyses of damping systems suggested that higher-order
Runge-Kutta methods could offer computational time performance comparable
to the fourth order Runge-Kutta (RK4). Motivated by these findings, this
research aimed to determine whether similar efficiency could be achieved in
more complex astrophysical simulations.

Quantitative methods were utilized to implement and compare the second,
third, fourth, and eighth Order Runge-Kutta methods, along with the
Adams-Bashforth second-order method. The implementation was carried out
on a parallel programming architecture to leverage the computational power of
GPUs. Contrary to initial assumptions, the results indicated that higher-order
methods such as the Eighth Order Runge-Kutta (RK8) incurred longer
computational times compared to RK4. Surprisingly, the Adams-Bashforth
method exhibited the longest computation time, even exceeding that of RK8.

The study concluded that while higher-order numerical methods increased
accuracy, they did not improve computational efficiency within the context of
this specific astrophysical simulation. The findings suggest that lower-order
methods might be more suitable for large-scale simulations where both
accuracy and computational speed are critical. This research contributes to the
field by clarifying the computational trade-offs involved in using advanced
numerical methods for simulating complex astrophysical phenomena.

Keywords: numerical methods, parallel programming, photon trajectories,
Kerr black hole, CUDA
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1 INTRODUCTION

Studying numerical methods is a key part of computational science. It’s crucial
for solving complex problems in many scientific fields, from engineering to
astrophysics. This thesis aims to explore and implement various numerical
algorithms to solve differential equations. It will also evaluate their performance
and accuracy in the context of astrophysics, specifically simulating photon
trajectories in environments affected by strong gravitational fields, like those
near black holes.

There are two main reasons for choosing astrophysical simulations as the
application domain for these numerical methods:

1. The dynamics involved in astrophysical calculations, such as the bending
of light near massive objects and the mapping of space curvature under
general relativity, present challenging problems that require robust
numerical solutions.

2. These scenarios provide a rigorous testing ground for various algorithms,
where the precision and efficiency of numerical methods can be critically
evaluated in extreme conditions.

By focusing on the detailed implementation and comparison of these methods,
this thesis will offer a comprehensive guide for other researchers interested in
numerical simulations of astrophysical or other similarly complex environments.
Furthermore, the development of a CUDA-based application to simulate and
visualize these trajectories serves as a practical demonstration of integrating
computational physics with high-performance computing.

1.1 My rationale for choosing this topic

On a personal level, this topic is chosen out of a desire to deepen
understanding of both computational techniques and astrophysical theories.
The intersection of computational science and astrophysics offers a rich field of
study that promises substantial academic and practical rewards. Developing a
this application enhances practical skills in programming and high-performance
computing, which are valuable in today’s technology-driven research
landscape.

1.2 Objectives

The main objectives of this research are:
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1.2.1 Implementing various numerical methods

This thesis aims to integrate and execute several numerical algorithms,
especially those that can handle the complexities involved in simulating
trajectories under the influence of gravitational fields. The methods include
Runge-Kutta and Adams-Bashforth methods.

1.2.2 Error analysis

In addition to computational efficiency, this work will assess the accuracy of
each numerical method through error analysis. The relative error metrics will
be carefully recorded to identify which algorithms provide the most reliable
results for simulation.

1.2.3 Performance benchmarking

A key part of this thesis will involve benchmarking the implemented methods
against each other to evaluate their computational efficiency using CUDA for
parallel processing. This will help determine the most effective algorithms
under different simulation conditions.

2 ASTROPHYSICAL SIMULATIONS IN MODERN WORLD

Astrophysical simulations play a pivotal role in the modern understanding of
the universe. They are fundamental tools that allow scientists to study celestial
phenomena that cannot be replicated in laboratories or directly observed due
to their scale or distance. As we delve deeper into this field, it becomes clear
that the development and refinement of numerical methods are not just
academic exercises but are crucial to expanding our knowledge of the cosmos.

2.1 Evolution of astrophysical simulations

The field of astrophysical simulations has evolved dramatically over the past
few decades. Initially, these simulations were limited to simplistic models due
to the computational constraints of the time. However, with the advent of more
powerful computers and sophisticated algorithms, simulations have become
increasingly complex and realistic. Today, they integrate a variety of physical
processes, from hydrodynamics and magnetohydrodynamics to general
relativity and nuclear physics, enabling more detailed and accurate models of
stars, galaxies, and large-scale structures in the universe.

2.2 The Role of high-performance computing

The exponential growth of high-performance computing (HPC) has been a
major catalyst in this evolution. HPC facilities around the world now routinely
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run simulations that require processing vast amounts of data at high speeds.
The use of GPUs, in particular, has transformed simulation capabilities,
enabling the processing of complex calculations at speeds previously
unattainable. This high computational power allows for the simulation of highly
dynamic and chaotic systems such as supernovae explosions, black hole
mergers, and galaxy formation.

2.3 Challenges and innovations

Despite significant advancements, several challenges remain. The accuracy of
simulations is continually tested against the precision of observational data. As
telescopes and detectors become more capable, simulations must also
improve to match the new levels of observational accuracy. This creates a
continuous cycle of improvement that drives both observational and theoretical
astrophysics forward.

Moreover, as the complexity of simulations increases, so does the need for
more sophisticated numerical methods and algorithms. Innovations in
numerical analysis, such as adaptive mesh refinement, higher-order integration
techniques, and machine learning models for predicting physical interactions,
are vital for advancing simulation technology. These methods help in managing
the trade-offs between accuracy, computational load, and real-time processing
needs.

2.4 Interdisciplinary impact

The impact of astrophysical simulations extends beyond astrophysics,
influencing other scientific fields such as climate science, oceanography, and
even biology. Techniques developed for astrophysics are often applicable in
these other domains, where similar complex systems are studied.
Furthermore, the technology developed for astrophysical simulations,
particularly in terms of software and visualization tools, has broader
applications in data analysis and graphical processing.

3 INTRODUCTION TO NUMERICAL METHODS

In the world of mathematics and computing, numerical methods play a vital
role in solving complex problems that cannot be easily tackled using traditional
analytical approaches. These powerful tools are designed to approximate
solutions to differential equations, fundamental mathematical constructs used
to model various phenomena in fields such as physics, engineering, finance,
and even cutting-edge areas like astrophysics and cosmology (Gilat &
Subramaniam 2000).
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3.1 Runge-Kutta methods

When it comes to numerical techniques, the Runge-Kutta methods stand out
as some of the most widely used and effective tools for solving ordinary
differential equations (ODEs). An ODE is essentially an equation that involves
a function of one independent variable and its derivatives. In its general form,
an ODE can be expressed as:

dy
dt

= f (t , y (t)) (1)

where y (t) represents the unknown function (also known as the dependent
variable), t is the independent variable, and f is a given function that defines
the relationship between the variables.

3.1.1 Overview

The popularity of Runge-Kutta methods can be attributed to their ability to
maintain a perfect balance between complexity and accuracy. This makes
them the go-to choice for many practical applications. The core idea behind
these methods is to generate a series of predictions for the dependent
variable, gradually refining each prediction by incorporating an increment
based on the weighted average of derivatives calculated at various points
within the interval (Butcher 2016).

3.1.2 Formulation of Runge-Kutta methods

A typical Runge-Kutta method step from yn to yn+1 is formulated as:

yn+1 = yn + h
s∑

i=1

biki (2)

where h is the step size, s the number of stages, bi the weights, and ki the
increments defined by:

k1 = f (tn, yn),

k2 = f (tn + c2h, yn + a21hk1),
...

ks = f

tn + csh, yn +
s−1∑
j=1

asjhkj

 .

The coefficients ci and aij specify the particular Runge-Kutta method being
used (Hairer & Wanner 1993).
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3.2 Adams-Bashforth methods

In addition to the Runge-Kutta methods, the Adams-Bashforth methods are
another class of numerical integrators used extensively for solving ordinary
differential equations (ODEs). Unlike the Runge-Kutta methods, which are
explicit single-step methods, the Adams-Bashforth methods belong to the
category of multistep methods. This means they use information from multiple
previous points to predict the future value of the dependent variable.

The main advantage of Adams-Bashforth methods is their efficiency in solving
problems where high precision over large intervals is required. They are
particularly well-suited for smooth problems where using historical data can
significantly reduce the computation needed per step. The general form of an
Adams-Bashforth method for step n+1 is given by:

yn+1 = yn + h
m−1∑
i=0

βi f (tn−i , yn−i) (3)

where m is the number of steps (or the order of the method), beta are the
constant coefficients predetermined for the method, and h is the step size. The
coefficients are derived from the interpolation of the derivative function f at
previous time steps, thereby projecting the future value of y (Gilat &
Subramaniam 2000). This reliance on past values makes Adams-Bashforth
methods particularly effective in scenarios where the differential equation does
not change drastically over successive intervals.

4 ASTROPHYSICS SIMULATIONS

Astrophysical simulations serve as a fundamental tool for astronomers and
cosmologists, offering a digital telescope with which to explore and hypothesize
about phenomena far beyond our current observational capabilities. These
simulations are pivotal in advancing our understanding of the universe’s most
enigmatic entities, such as black holes, neutron stars, and the very nature of
the cosmos itself. By combining complex theoretical physics with advanced
computational techniques, these simulations allow researchers to not only
confirm theories but also predict new phenomena and guide future
observations.

4.1 Understanding black holes: the Schwarzschild and Kerr metrics

Black holes are among the most fascinating subjects in astrophysics,
characterized by gravitational fields so strong that nothing, not even light, can
escape their pull once crossed the event horizon. The Schwarzschild metric
provides solutions to Einstein’s field equations in a vacuum for non-rotating
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black holes and is crucial for understanding basic black hole properties. In
contrast, the Kerr metric extends this framework to rotating black holes, which
are more common in the universe due to angular momentum conservation in
collapsing massive stars. This rotation leads to complex phenomena such as
frame-dragging, where the spacetime itself is twisted, affecting the trajectories
of matter and light near the black hole.

4.2 Equations for simulating photon trajectories

Simulating the environment around black holes is essential for visualizing and
predicting the behavior of matter and light under extreme gravitational
conditions. The equations derived from the Kerr metric, as mentioned, are vital
for modeling photon trajectories around rotating black holes. These trajectories
help in predicting the appearance of black holes and the structure of the
surrounding accretion disks, crucial for interpreting the observational data from
instruments like the Event Horizon Telescope, which captured the first image of
a black hole’s event horizon. The work Repin et al. 2018 provides us with a
system of differential equations that describe this motion:

dt
dσ

= −

(
a2 sin2 θ − ξ

∆
+

(r 2 + a2)(r 2 + a2 − ξa)
∆

)
,

dr
dσ

= r1,

dr1

dσ
= 2r + (a2 − ξ2 − η)r + (a − ξ)2 + η,

dθ
dσ

= θ1,

dθ1

dσ
= cos θ

(
ξ2

sin3 θ
− a2 sin θ

)
,

dϕ
dσ

= −

(
(a − ξ sin2 θ)

∆
+

a∆
R2 + a2 − ξa

)
.

You can see my implementation of this system of equations in C++ code in
Figure 1
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Figure 1. Kerr trajectory implementation

4.3 Challenges of simulating black holes

The non-linear and complex nature of the equations describing photon
trajectories near black holes requires advanced numerical methods for
accurate simulation, emphasizing the need for high precision and stability due
to the extreme spacetime curvature.

5 GPUS IN SCIENTIFIC COMPUTING

Graphics Processing Units (GPUs) have transcended their initial role in
rendering graphics for gaming to become pivotal in scientific computing. Their
architecture, designed for handling multiple tasks simultaneously, makes them
exceptionally efficient for algorithms that can be parallelized. This capability is
especially crucial in scientific research, where vast amounts of data and
complex calculations are common.

5.1 Parallel processing

The core strength of GPUs lies in their ability to perform thousands of
operations concurrently. Unlike Central Processing Units (CPUs), which have a
few cores optimized for sequential serial processing, GPUs possess hundreds
to thousands of smaller cores designed for parallel processing. This structure
allows them to handle multiple calculations at once, drastically reducing the
time required for data-intensive tasks. For instance, tasks that would take days
on CPUs can be completed in hours or even minutes on GPUs, significantly
accelerating the research cycle.

5.2 Complex system simulations

In fields like climate science, physics, and bioinformatics, simulations that
model complex systems such as weather patterns, molecular structures, or
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astrophysical phenomena are essential. These simulations involve calculations
that can be distributed across many threads on a GPU, thus allowing more
detailed and extensive simulations to be run faster. This capability not only
speeds up research but also improves the accuracy of the models by enabling
a higher resolution or more complex dynamics to be included.

6 INTRODUCTION TO CUDA

The rise of parallel computing has significantly transformed the landscape of
scientific research, particularly in fields that require the handling of large
datasets and complex computational tasks. CUDA (Compute Unified Device
Architecture) has emerged as a leading platform enabling researchers and
developers to harness the power of graphics processing units (GPUs) for
general-purpose computing. This chapter provides an introductory overview of
CUDA, its significance in scientific computing, and its applications in various
research domains.

6.1 Understanding CUDA

CUDA is a parallel computing platform and application programming interface
(API) model created by NVIDIA. It allows software developers to use a
CUDA-enabled graphics processing unit (GPU) for general-purpose
processing—an approach known as GPGPU (General-Purpose computing on
Graphics Processing Units). CUDA gives direct access to the virtual instruction
set and memory of the parallel computational elements in GPUs (Sanders &
Kandrot 2010).

Key features of CUDA:

• Parallel Processing Capabilities: CUDA enables the execution of
thousands of threads simultaneously, making it highly suitable for
algorithms that can be parallelized.

• Memory Hierarchy: CUDA includes a hierarchy of thread groups, shared
memories, and distributed memory. This architecture allows data to be
shared efficiently within the GPU, minimizing the need for slow memory
access to the main computer memory.

• Scalable Programming Model: Whether using a few cores or
thousands, CUDA applications scale with the number of cores available.

6.2 CUDA architecture

The CUDA architecture consists of an array of parallel processors grouped into
Streaming Multiprocessors (SMs) (Sanders & Kandrot 2010). Each SM
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features a set of cores that execute threads in a SIMD (Single Instruction,
Multiple Data) fashion, which is efficient for operations that apply the same
operation to multiple data points simultaneously. This makes GPUs particularly
effective for matrix and vector operations, which are common in scientific
computing.

Components of CUDA architecture:

• Threads and Blocks: The basic unit of execution in CUDA is the thread.
Threads are grouped into blocks, and these blocks are executed within an
SM. The programmer defines the number of threads per block and the
number of blocks per grid.

• Memory Management: CUDA provides several types of memory, each
with its own scope and lifetime, including global, local, shared, and
constant memory, along with registers for temporary data.

• Kernels: A kernel is a function declared in a CUDA program that runs on
the GPU. Each thread executes an instance of the kernel.

6.3 Programming with CUDA

Programming in CUDA involves writing parallel kernels, which are functions
executed on the GPU. These kernels are typically written in CUDA C/C++,
which is an extension of the standard C/C++. A typical workflow includes
transferring data from the host (CPU) memory to the device (GPU) memory,
executing one or more kernels that process this data, and then transferring
results back to the host.

Steps in CUDA programming:

1. Allocate GPU memory and initialize data.

2. Transfer data from CPU to GPU memory.

3. Execute one or more kernels to process the data.

4. Copy the results back from GPU to CPU.

6.4 Applications of CUDA

CUDA has found applications across multiple domains where intensive
computations are required:

• Physical Simulations: From climate modeling to molecular dynamics,
CUDA accelerates simulations by orders of magnitude.
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• Image and Video Processing: Tasks such as video encoding, image
segmentation, and real-time ray tracing are accelerated.

• Machine Learning: Deep learning frameworks like TensorFlow and
PyTorch utilize CUDA for accelerating neural network training and
inference.

7 IMPLEMENTATION DETAILS

This chapter delves into the practical aspects of my implementation the
numerical methods providing a detailed look at the structure, design, and code
architectures. I have fully designed CUDA kernel, numerical methods, and
systems of ODEs code implementations.

7.1 Runge-Kutta method implementation

The Runge-Kutta methods are iterative techniques that provide a series of
values which approximate the solution of an ODE at discrete points. In my
implementation, templates for second, third, fourth, and eighth order methods
are defined under the Runge Kutta namespace. I designed them to be generic,
accommodating any system of equations and data types, hence enhancing the
flexibility and usability of the implementation.

7.1.1 Structure and design

Each function template within the namespace takes same arguments: a
system function, an array of values of all variables at the previous step (args),
a step size (dx), and the number of equations in the system (n). The templates
use dynamic memory allocation to handle intermediate values and derivatives
(k values).

• Second order Runge-Kutta: Implements the classical mid-point method.
It uses one intermediate step (k2) to achieve a second-order accurate
solution. This method is particularly effective for problems where higher
accuracy than the Euler method is desired without a significant increase
in computational complexity. You can see exact implementation in
Figure 2
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Figure 2. Runge-Kutta 2 implementation

• Third order Runge-Kutta: Uses three stages to calculate the next value.
The coefficients are specifically chosen to optimize the error constants,
thereby providing better accuracy than the second-order method with a
modest increase in computational efforts. You can see exact
implementation in Figure 3
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Figure 3. Runge-Kutta 3 implementation

• Fourth order Runge-Kutta: This is the most commonly used version
due to its balance between accuracy and computational cost. It involves
four stages and is known for its accuracy over moderate to long ranges of
integration. You can see exact implementation in Figure 4
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Figure 4. Runge-Kutta 4 implementation

• Eighth order Runge-Kutta: An advanced implementation that uses
thirteen intermediate stages. This method is highly accurate and suitable
for solving stiff or highly sensitive problems where lower-order methods
may fail to provide reliable results. You can see exact implementation in
Figure 5
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Figure 5. Runge-Kutta 8 implementation

7.1.2 Code analysis

The implementation of each order involves computing several intermediate
derivatives (k values) at strategically chosen points within each integration
step. These derivatives are used to estimate the slope that approximates the
solution curve of the differential equation.

7.2 Adams-Bashforth method implementation

The Adams-Bashforth methods are explicit multistep techniques used to
integrate ODEs. These methods are particularly useful when a series of past
derivatives can be utilized to predict future values, thus reducing the number of
function evaluations compared to single-step methods like Runge-Kutta.

7.2.1 Structure and design

In the Adams Bashforth namespace, the implementation provides a
second-order method. It utilizes a two-step formula which combines the slope
at the current point and the slope at the previous point to estimate the next
value.

• Adams-Bashforth 2-Step Method: This method calculates the solution
by leveraging the weighted average of the first derivatives over the last
two steps. It is straightforward yet provides a significant improvement
over the Euler method in terms of accuracy and stability. You can see
exact implementation in Figure 6
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Figure 6. Adams-Bashforth 2 implementation

7.2.2 Integration with Runge-Kutta

A unique feature of my implementation is the integration of the Runge-Kutta
method to initiate the Adams-Bashforth method. The eighth order Runge-Kutta
method is used to populate the initial derivative estimates (previous k), which
are then used by the Adams-Bashforth method. This hybrid approach ensures
that the Adams-Bashforth method starts with a highly accurate set of initial
values, thus enhancing the overall accuracy and stability of the solution. You
can see exact implementation in Figure 7

Figure 7. Runge-Kutta 8 integration implementation

8 PERFORMANCE ANALYSIS

In this chapter, I present a thorough examination of numerical methods applied
to the classic problem of damped harmonic motion. The system under
consideration is a second-order ordinary differential equation representing a
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mass-spring-damper model, which is a quintessential system in both physics
and engineering disciplines. The model is described by the following set of
first-order linear differential equations:

dx
dt

= y , (1)

dy
dt

= −x − γy , (2)

where x(t) represents the displacement of the mass, y (t) denotes its velocity,
and γ is the damping coefficient that characterizes the energy dissipation of
the system. For our study, we have set γ = 0.1, which corresponds to a lightly
damped regime where the system experiences oscillations with amplitudes
gradually decaying over time. The initial conditions for the system are chosen
to be x(0) = 1 and y (0) = 0, initiating the system from a state of maximum
displacement and zero velocity.

8.1 Error analysis

The absolute error of each method was calculated by comparing the numerical
solutions to the analytical solution of the system. The error trends were plotted
and analyzed to evaluate the performance of each method under the two
different step sizes. In addition to exploring the properties of the numerical
methods with a step size of h = 0.1, we juxtapose these findings against
simulations run with a significantly larger step size of h = 1. The latter serves to
accentuate the implications of step size choice on the stability and accuracy of
numerical solutions. A step size of h = 1 represents a stark contrast to the
natural time scale of the system’s dynamics and allows for an investigation into
the behavior of each numerical method under a regime of coarse temporal
resolution.

8.1.1 Step size 0.1

RK2
As shown in Figure 8, the following trends can be observed:
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Figure 8. Runge-Kutta 2 order error with step 0.1

• Initial error: The RK2 method began with an absolute error peak around
0.045.

• Error trend: As the system evolved, the error exhibited a damping
behavior, decreasing to approximately 0.01 by the end of the interval.

RK8
As shown in Figure 9, the following trends can be observed:

Figure 9. Runge-Kutta 8 order error with step 0.1

• Initial error: The RK8 method also started with a peak error 0.047 similar
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to that of the RK2 method.

• Error trend: The error for RK8 decreased over time, maintaining a similar
trend to the RK2, albeit with a slightly higher peaks and the error at the
end of the interval around 0.02.

Comment
Despite expectations for higher-order numerical methods to outperform their
lower-order counterparts, the RK8 method does not exhibited only
improvement over the RK2 method when utilizing a step size of 0.1. This
anomaly in the RK8’s performance, where it behaved similarly but slightly
worse than RK2, may indicate that the step size of 0.1 is already sufficiently
small to bring the RK2’s solution within an acceptable error threshold for this
particular system. Given the light damping in the oscillator system, the RK8’s
additional stages and computational complexity do not translate into a
significant accuracy advantage. This suggests that the benefits of higher-order
methods like RK8 become more apparent when facing bigger steps, steeper
gradients or more volatile system dynamics than those presented by the lightly
damped oscillator.
It can be easily seen that on a big scale solution obtained by RK2 (Figure 10)

Figure 10. Graph of the solution produced by Runge-Kutta 2 with step 0.1

does not differ much from the solution obtained by RK8(Figure 11).
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Figure 11. Graph of the solution produced by Runge-Kutta 8 with step 0.1

8.1.2 Step size 1

RK2
Figure 12 shows behaviour of RK2 when step size is increased to 1. The
following trends can be observed:

Figure 12. Runge-Kutta 2 order error with step 1

• Initial error: A significant increase in initial error to approximately 0.25.

• Error trend: A marked error growth was observed, with the final error
reaching around 4.25, indicating a pronounced sensitivity to step size.
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RK8
On the contrary, for RK8(Figure 13) under the same conditions:

Figure 13. Runge-Kutta 8 order error with step 1

• Initial error and trend: The RK8 method’s error pattern remained almost
identical to the scenario with a smaller step size, indicating a robustness
to step size variation.

Results of comparison between RK2 and RK8

Impact of step size on RK2
The RK2 method’s sensitivity to step size is pronounced. A larger step size
results in a substantial increase in both the initial error and the error growth
rate. This sensitivity suggests that the RK2 method is appropriate for systems
where a finer resolution is required to capture dynamic behavior accurately.

Performance of RK8 under step size variations
Conversely, the RK8 method’s error displayed minimal sensitivity to the change
in step size, highlighting its advanced approximation capabilities. This
robustness is attributed to the inclusion of higher-order terms, which allow the
method to maintain accuracy over larger step increments.

Analysis of error for RK2, RK3, RK4, RK8 and Adams-Bashforth
In an extensive comparison of numerical methods for a damped oscillator
system with a step size of h=0.1, it was observed that the RK2, RK3, RK4, as
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well as the Adams-Bashforth second-order method, all exhibited similar error
magnitudes throughout the simulation(Figure 14).

Figure 14. Absolute sizes of errors

Also it can be clearly seen on the solution plot(Figure 15).

Figure 15. Graph of solutions obtained by different methods

Surprisingly, the RK2 method demonstrated the lowest error among them. This
convergence in performance suggests that for the specific system dynamics at
the chosen step size, the complexity of higher-order methods does not confer a
significant advantage in terms of accuracy. The result emphasizes the notion
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that lower-order methods can sometimes provide the most efficient solution
without compromising precision, particularly in systems where the solution
varies gradually and the error introduced by a smaller step size is already
minimized.

8.2 Time performance analysis

In computational mathematics, the efficiency of numerical methods is
paramount when solving systems of ordinary differential equations (ODEs).
This chapter presents a comparative time performance analysis of various
Runge-Kutta methods and the Adams-Bashforth second-order method in
solving a damped harmonic oscillator system. The analysis is based on the
average computation time over 10,000 steps, providing insights into the
trade-offs between computational speed and the accuracy of the methods
discussed earlier.

8.3 Computational time analysis

8.3.1 Runge-Kutta methods

The Runge-Kutta family of methods displayed a range of computation times,
which were somewhat inversely related to their order:

• Eighth Order Runge-Kutta (RK8): Despite being a higher-order method
expected to have more computational overhead, RK8 recorded an
average time of 526 microseconds, which is surprisingly efficient given its
complexity.

• Fourth Order Runge-Kutta (RK4): A standard in many applications due
to its balance between accuracy and computational demand, RK4 took
slightly longer, averaging 580 microseconds.

• Third Order Runge-Kutta (RK3): Slightly faster, RK3 averaged 487
microseconds, demonstrating less computational overhead while still
providing an acceptable accuracy level.

• Second Order Runge-Kutta (RK2): The quickest among the
Runge-Kutta methods with an average time of 402 microseconds, RK2
proved to be the most computationally efficient within the family, aligning
with its lower complexity.

8.3.2 Adams-Bashforth method

• Adams-Bashforth Second Order: As shown in Figure 16, the data
indicates that the Adams-Bashforth method outperformed all Runge-Kutta
methods in terms of speed, with an average computation time of 278



27

microseconds. This method’s efficiency is notable, particularly given its
predictive nature and lower complexity relative to higher-order methods.

Figure 16. Average time over 10000 steps

8.3.3 Conclusions

The findings reveal intriguing aspects of the computational efficiency of each
method:

• Higher-order versus lower-order: Higher-order methods did not
necessarily correspond to longer computation times compared to their
lower-order counterparts. Especially it is to be noted that RK4
unexpectedly took longer than RK8. This could be due to the efficiency of
the implementation or the nature of the system being solved.

• Efficiency of RK2: The RK2’s performance, in terms of speed, was
exemplary among the Runge-Kutta methods, suggesting that for certain
systems, lower-order methods can be optimized to rival even explicit
multistep methods like Adams-Bashforth.

• Superiority of Adams-Bashforth: The Adams-Bashforth method
demonstrated the best computational time, which aligns with theoretical
expectations as it uses information from previous steps to predict future
values without the need for intermediate calculations like those required
by Runge-Kutta methods.
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8.4 Main results of comparison tests

The comparative analysis of various numerical techniques for ODEs highlights
the potential advantages of using higher-order Runge-Kutta methods in
specific cases. Given that the RK8 method has the same computational
duration as the RK4 method in systems involving damped oscillators, it may
enhance accuracy when addressing the system from Repin et al. 2018.

9 PERFORMANCE EVALUATION OF NUMERICAL METHODS FOR
SOLVING ASTROPHYSICS ODES ON GPU

The resolution of ordinary differential equations (ODEs) using numerical
methods is a cornerstone of computational physics, particularly for systems
requiring precise and rapid computations. Previous studies on a damping
system suggested minimal performance differences between RK4 and RK8,
indicating that higher-order numerical methods might offer comparable time
efficiency. This intriguing outcome led me to a hypothesis that applying
higher-order methods to more complex systems might not necessarily result in
efficiency loss. To investigate this hypothesis, this chapter explores the
implementation and performance of several numerical methods, including RK2,
RK3, RK4, RK8, and Adams-Bashforth second-order method (AB), in solving a
system of four equations that model the dynamics of photons in in the
gravitation field of a rotating black hole. The analysis aims to determine if the
enhanced accuracy provided by higher-order methods can be achieved without
sacrificing computational speed, leveraging the parallel processing capabilities
of GPUs.

9.1 Methodology and system setup

The ODE system studied models the dynamics of particles in a physical
system described by four equations. Using CUDA for parallel computations,
the system was simulated on a GPU where each numerical method was
implemented and tested under the same initial conditions and computational
settings. The performance was measured in terms of the total time taken to
complete 1200 steps of the simulation.

9.2 Results of performance evaluation

The computational performance and accuracy of each numerical method were
evaluated in the context of solving a system of four equations on NVIDIA RTX
4060 GPU. The results from the simulation, including computation
times(Figure 17)
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Figure 17. Execution times of various methods

and the average distance errors(Figure 18)

Figure 18. Average absolute distance from RK 8 results

observed for each method, are detailed below:

• Adams-Bashforth (AB): Computation time was 344,011 microseconds,
with an average distance error of 0.0540800297467361. This error
magnitude suggests that while AB is fast, it may not deliver the same
accuracy as some higher-order methods.

• Eighth order Runge-Kutta (RK8): Computation time was 191,049
microseconds. The error data for RK8 is not available because the
system does not have analytical solution so error was measured against
RK8.

• Fourth order Runge-Kutta (RK4): Computation time was 121,315
microseconds, with an average distance error of
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0.020074345609930554. This shows that RK4 offers a good balance
between computational speed and accuracy.

• Third order Runge-Kutta (RK3): Computation time was 94,661
microseconds, with an average distance error of
0.028547150213701397. This result indicates that RK3 is faster than
RK4 but slightly less accurate.

• Second order Runge-Kutta (RK2): Computation time was 68,294
microseconds, with an average distance error of
0.027735712411645835. RK2 is the fastest among the methods tested
and provides accuracy comparable to that of RK3.

The computation time increases with the order of the Runge-Kutta methods,
with higher-order methods taking more time. The Adams-Bashforth method,
despite being a different approach, has the highest computation time among
the tested methods.

10 ANALYSIS OF RESULTS

These results provide valuable insights into the trade-offs between speed and
accuracy across different numerical methods when utilized on a GPU. The
data suggests that:

• RK 2 and RK 3 had the same error rates. It make RK 2 preferable due to
lower computation time. These lower-order methods are highly efficient
on GPUs, offering the quickest computation times with reasonably low
error rates. This efficiency makes them attractive for simulations where
speed is a critical factor.

• The higher-order method, RK4, presents a compelling case for
applications requiring a balanced approach to speed and accuracy. Its
moderate computational demand combined with lower error rates makes
it suitable for more precise simulations. RK 4 provides the best
time-to-error ratio.

• Adams-Bashforth’s higher error rate might limit its applicability for
precision-critical simulations, despite its lower computational time. This
indicates that while it is a fast method, its predictive nature may not
always align with accuracy demands in complex systems.

The investigation into the performance of various numerical methods for
solving a system of four equations on a GPU yielded conclusive results that
diverge from the initial hypothesis. Contrary to the assumption that
higher-order methods like RK8 could match the time efficiency of lower-order
methods based on previous findings with a damping system, the actual
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computation times recorded during this study indicate a clear trend:
higher-order methods consistently took longer to compute than their
lower-order counterparts.

10.1 Additional insights from physical application

In terms of the physical application of these methods to astrophysical
phenomena, the results from Figure 19

Figure 19. Trajectories visualisation

and Figure 20 are revealing.

Figure 20. Trajectories from the Repin et al. 2018

Overall he trajectories of photons simulated show behavior similar to that
described in the research from Repin et al. 2018, which underscores the
effectiveness of these numerical methods in replicating scientifically observed
phenomena. However, an exception was noted in trajectory 3, which is
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identified as degenerate. Unlike the expected behavior, this particular photon
trajectory suggests that the particle would have fallen into the black hole, but
the simulation was not designed to halt under such circumstances. This
highlights a limitation in the current simulation setup where extreme physical
scenarios, such as crossing the event horizon, are not adequately managed.

11 CONCLUSIONS

The core objective of this thesis was to evaluate the efficiency and accuracy of
various numerical methods for simulating photon trajectories in astrophysical
environments, particularly near a Kerr black hole. This involved integrating
numerical methods with NVIDIA CUDA technology to solve a system of
ordinary differential equations (ODEs). This research was motivated by
findings from previous studies on damping systems, suggesting that
higher-order methods could potentially offer computational time performance
comparable to RK4 in more complex astrophysical simulations.

11.1 Main results

• Implementation and comparison of numerical methods:
Various Runge-Kutta methods (second, third, fourth, and eighth order)
and the Adams-Bashforth second-order method were implemented and
compared against each other in terms of accuracy and computation time.

• Computational efficiency:

– Contrary to initial assumptions, higher-order methods did not
improve computational efficiency for this specific astrophysical
simulation.

– RK2 demonstrated the quickest computation times among the
Runge-Kutta methods.

– Adams-Bashforth method, despite being a different approach, did
not prove efficient in terms of computation time.

• GPU performance:

– The use of CUDA technology enabled efficient parallel processing,
highlighting the potential of GPUs in handling complex numerical
simulations.

– Despite the computational capabilities of GPUs, higher-order
methods still showed increased computation times.
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11.2 Solving the case

The thesis successfully addressed the problem of comparing numerical
methods for simulation of photon trajectories near Kerr black holes. While the
higher-order methods provided greater accuracy, they did not offer the
expected computational efficiency. Instead, lower-order methods like RK2 and
RK3 proved to be more suitable for large-scale simulations where
computational speed is critical. The study clarified the computational trade-offs
involved in using advanced numerical methods for simulating complex
astrophysical phenomena, contributing valuable insights to the field.

11.3 Future work and applications

• Optimization of numerical methods:

– Future research could explore hybrid methods combining the
accuracy of higher-order methods with the efficiency of lower-order
methods.

– Adaptive step-size control could be implemented to enhance the
accuracy and efficiency of numerical simulations.

• Software development:

– Developing user-friendly software tools based on the findings of this
study could help researchers in various fields perform efficient and
accurate simulations without deep expertise in numerical methods or
parallel programming.

– Such tools could include modules for different numerical methods,
allowing users to choose the most appropriate one for their specific
applications.

In conclusion, this thesis has demonstrated the importance of choosing
appropriate numerical methods for specific simulation scenarios and the
potential benefits of leveraging parallel computing technologies like CUDA.
While higher-order methods offer greater accuracy, their computational
efficiency must be carefully evaluated in the context of the specific application,
with lower-order methods often providing a more balanced solution for
large-scale simulations.
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