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This thesis investigates the use of the Barycentric Interpolation (BCS) computational 
method for outdoor positioning using cellular networks based on received signal 
strength (RSS) as an alternative to Global Navigation Satellite Systems (GNSS). 
GNSS often faces challenges in urban environments due to signal attenuation, 
multipath effects, and susceptibility to jamming. The study develops a positioning 
algorithm using the Barycentric Interpolation (BCS) method and employs data from 
cellular networks to assess its viability in Helsinki's urban setting. This algorithm utilizes 
positional data from scanned 2G cellular antennas obtained by a GSM-enabled device, 
along with corresponding RSS levels used as weights, to determine and evaluate the 
geographical coordinates of the user equipment (UE). 
 

This algorithm does not rely on satellite signals, private data of cellular network 
infrastructure, internet connection, or specific antenna configurations, making it 
suitable for areas where GNSS is unreliable or vulnerable to jamming. While BCS does 
not surpass GNSS in accuracy, it offers significant benefits by utilizing public data from 
land-based cellular networks and functioning independently of internet connections 
and network operator support. This highlights its potential as a complementary or 
alternative positioning method in urban scenarios. 
 

This work enhances the understanding of BCS applications in challenging 
environments. It also sets the stage for further advancements in integrating cellular 
signal data with interpolation methods to improve urban and autonomous navigation 
technologies without relying solely on the infrastructure of a specific network operator, 
leveraging the network infrastructure capacity of all available operators. 
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1 Introduction 

1.1 Background and Context 

In general, positioning technologies can be classified into two primary types: 

satellite-based, and wireless network-based [113]. Wireless positioning 

technologies refer to determining the position of a mobile device such as a 

sensor, computer, radar, or cell phone connected to wireless networks such as 

wireless sensor networks (WSN), wireless local-area network (WLAN), and 

cellular networks [114]. Alternatively, satellite-based positioning relies on Global 

Navigation Satellite Systems (GNSS) such as global positioning system (GPS) or 

Galileo, using signals from satellites orbiting the Earth to determine a mobile 

object's position precisely. Essentially, positioning is categorized into two types: 

outdoor positioning and indoor positioning. The position can be represented in 

two or three dimensions, and typically the position information is given in latitude 

and longitude form [15-16] 

The positioning technologies underpin various applications such as navigation, 

asset tracking, and location-based services (LBS). In the past, the positioning 

techniques were only developed for military intentions [115]. However, with the 

growth in the number of mobile devices and technology, the need for location-

based services for people and industries has increased. Therefore, the key factor 

for positioning is precision which highlights the need for further research and 

development in this specific domain [115]. 

GNSS is perhaps the best known of positioning technologies and it relies on a 

constellation of satellites orbiting the Earth to provide coverage of the entire globe 

[15]. By measuring the time, it takes for signals from these satellites to reach a 

mobile device, its location can be found to within a matter of meters [15]. Widely 

used by navigation applications the world over, whether inbuilt into vehicles as a 

GPS system, or app-based for hikers and pilots, the positioning technology 

enables users to locate themselves and their destination and plan their route [17]. 
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Cellular-based positioning, one of the most crucial wireless positioning 

technologies, leverages the extensive coverage of existing mobile networks, 

spanning from 2G to the latest 5G technology, to pinpoint the position of mobile 

devices. By analysing signal strength and timing differences between base 

stations (BS), cellular positioning can provide coarse to fine-grained position 

information within an indoor or outdoor environment [24].  

There are two main approaches to cellular positioning: mobile-based and 

network-based methods [24]. Mobile-based methods depend on the device itself 

to determine its position, usually by actively emitting or receiving wireless signals 

and processing the received signal information [24]. In contrast, network-based 

methods involve a network of base stations or sensors to locate a device, typically 

with the device passively transmitting or receiving signals that can be tracked by 

the network [24]. Network-based methods are employed by carriers due to their 

extensive infrastructure capable of collecting and processing signal data from 

their network of base stations. Therefore, in mobile-based positioning techniques, 

access to network information is impossible, and independent and accessible 

databases are employed for positioning [24]. 

Indoor environments, however, pose a challenge for GNSS, as satellite signals 

are often obstructed by buildings and structures [62]. This is where indoor 

positioning systems (IPS)  steps in, providing accurate positioning within limited 

indoor spaces [62]. IPS technologies utilize a variety of methods, such as WLAN 

signal strength fingerprinting, Ultra-Wideband (UWB) signal propagation delay 

measurements, and Bluetooth beacons, along with cellular network signal 

analysis, to determine the location of devices within buildings [62]. 

The significance of accurate positioning goes beyond applications in navigation 

or tracking [24]. For autonomous systems, such as self-driving vehicles and 

drones, the exact position must be computed for the correct and controlled 

operation [116]. For instance, positioning data is essential for autonomous 

vehicles in that they need to move or drive through complicated environments, 
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avoid obstacles, and make sound well-informed decisions for safe and precise 

driving [117]. 

Another field where accurate positioning has a very critical contribution is that of 

monitoring the critical infrastructure [118]. In such cases of the location of 

pipelines, power grids, or even communication towers, the tracking of asset 

location allows operations to become proactive in predicting and preparing for 

possible failures or disturbances, therefore keeping them in such a way that 

operational efficiency is intact, and downtime is at a minimum [118]. 

In general, asset management is a broader area that incorporates tracing and 

management of physical assets in different industries [119]. The positioning 

technologies enable firms to track and optimize the movement of assets and it 

helps them indirectly to ensure that they are safe. This is essential for high-value 

assets, including vehicles and other forms of machinery, and inventories [119]. 

As technology keeps improving, the current positioning systems are evolving to 

be more sophisticated and finally integrated into our daily undertakings. 

Pedestrian navigation apps, asset-tracking solutions, and autonomous vehicles 

are only some of the examples that represent the great effect of these 

technologies in growing. Positioning systems in the future of transportation, 

logistics, and smart cities are bound to shape or position with real-time 

information about location [120]. 

1.2 Aim and Scope of the Study 

Despite providing extensive global coverage, the GNSSs encounter limitations in 

urban environments characterized by dense obstructions, such as tall buildings, 

and deep valleys. Moreover, intentional signal manipulation techniques such as 

spoofing and jamming jeopardize their integrity due to the absence of signal 

authentication and encryption. While extensive research aims to mitigate these 

challenges, they remain persistent, underscoring the critical need for alternative 
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positioning methods in scenarios where GNSS is unavailable, unreliable, or 

susceptible to manipulation [19] [30]. 

The expansion of wireless networks has made it possible to utilize cellular 

positioning technology as a desirable alternative in urban and indoor 

environments, where obstructions often compromise satellite signal integrity. This 

approach leverages the widespread availability of existing cellular networks, 

thereby providing a cost-effective solution without the need for new infrastructure 

[121-123].  

Cellular positioning is known for its faster position determination and lower power 

consumption compared to its satellite counterparts, increasing its suitability for 

mobile devices [123]. However, this technology is not without its limitations. The 

conventional cellular positioning techniques, such as angle of arrival (AOA), time 

difference of arrival (TDOA), and Triangulation / Multilateration, for determining 

location coordinates need access to precise private data of cellular network 

infrastructure, the necessity for accurate time synchronization among cell towers, 

or dependency on cellular antenna configuration, signal frequency, and data 

internet connection which delimits them to be leveraged by only in network-based 

positioning method compared to mobile-based [124-125]. 

To address these constraints, this research proposed leveraging the Barycentric 

interpolation algorithm based on received signal strength (RSS) for outdoor 

cellular positioning. This algorithm is also known as the Barycentric coordinate 

system (BCS), which is used throughout this work for simplicity. Utilizing the 

geometry and data of cellular antennas’ (which are considered as public data of 

cellular network infrastructure), BCS offers a promising approach to estimate the 

user equipment’s (UE) position when there is no accessibility to GPS, internet 

data connection, private data of cellular network infrastructure, cell antenna 

configuration, or synchronization among cell towers. Its methodology, involving 

assigning weights to cellular antennas based on their positions and signal 

strengths, presents a novel solution to the limitations of traditional cellular 

positioning methods.  
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This thesis aims to develop and evaluate an Outdoor-RSS-based positioning 

algorithm employing the BCS method in urban area with a high concentration of 

2G cellular towers.  

The study focused on determining the position of an active user equipment (UE) 

using the mobile-based positioning approach within a two-dimensional 

latitude/longitude grid over a 1 km radius of the city center area.  

1.3 Methodology 

This research employed a mobile-based positioning approach to develop a BCS 

algorithm based on RSS measurements, to achieve the maximum possible 

accuracy on outdoor cellular positioning in urban environments using 2G cellular 

networks. The methodology consisted of the following key steps:  

• The data collection points were pinpointed on the Google map based on 

varying conditions, including 2G cell density, terrain, and the presence of 

urban structures. This was conducted to challenge and evaluate the BCS 

algorithm in the further sections. 

• The offline database file in a CSV format containing cellular towers’ data 

associated with Finland area was collected from the opencellid.org website 

which is the largest open database of cellular towers in the world. 

• The data scanning and storing program was developed by Arduino C 

programming language, and then an Arduino GSM-enabled IoT module was 

programmed by the program for the cellular antennas’ scanning process. The 

procedure of this sketch begins by scanning available 2G cellular antennas to 

collect data and then store them in a file in CSV format. 

• The BCS positioning algorithm was developed by leveraging M programming 

language and Power Query tool to determine UE’s geographical position 

based on nearby 2G cellular antennas’ coordinates and RSS level. The 
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algorithm procedure begins by loading the UE’s neighbouring scanned 

cellular antennas’ data files based on each data point and the cell towers’ 

information database file to process data and ends with UE’s position 

estimation, storing and accuracy evaluation. 

• The data collection process consisted of two steps. First, a GPS-enabled 

device (mobile phone) was used to determine the geographical coordinates 

of UE based on each pre-pinpointed data point on the map. Then, the Arduino 

module scanned 2G cellular networks around the pre-pinpointed data points 

to collect data on available 2G cellular antennas. The process was repeated 

for all 12 pre-selected data points in four distinct directions, resulting in a total 

of 48 samples for algorithm evaluation. 

In the final step, the data collected by both the GPS and the module were 

processed using the BCS positioning algorithm program to calculate the UE’s 

position for each data point. The accuracy of this estimation was then evaluated 

by comparing it to the UE’s position obtained by GPS, which serves as reference 

coordinates. 

This methodological framework set the foundation for a comprehensive 

evaluation of the proposed positioning algorithm, with a particular focus on its 

validation in the Finland area within Helsinki city center, encompassing a 

maximum 1 km radius from the Kamppi shopping mall. 

1.4 Significance of the Study 

This thesis holds significance in two key aspects. Primarily, it introduces a novel 

outdoor cellular-positioning algorithm based on the Barycentric interpolation 

technique for determining the two-dimensional coordinates of a user equipment 

(UE). This method’s accuracy is compared with the GPS system, one of the 

world’s most precise satellite positioning systems, thereby examining the 

precision and limitations of the Barycentric interpolation technique in outdoor 
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positioning. Such a contribution is pivotal in advancing outdoor positioning 

technologies using cellular tower information.  

The secondary significance of this work lies in the feasibility of outdoor positioning 

by UE itself without relying on the Internet, satellite systems, time synchronization 

among cell towers, or dependency on antenna configuration and signal 

frequency. Unlike mobile network operators, who are limited to using their own 

private/public data of cellular network infrastructure in the positioning process, 

this study leverages public cellular data of networks belonging to distinct 

operators. This approach leads to a larger dataset incorporation in interpolation 

calculations, potentially enhancing positioning accuracy. Therefore, this study 

offers valuable insights into enhancing mobile-based positioning accuracy 

different from the conventional scope of cellular network-based methodologies. 

1.5 Structure of the Thesis 

The structure of this thesis is delineated into six main chapters. It begins with 

Chapter 1, introducing the study’s background, objectives, methodology, and its 

significance. Chapter 2 delves into the nuances of wireless positioning 

technologies, exploring their development, the constraints associated with 

GNSS, and the advantages inherent in cellular networks, with an emphasis on 

Barycentric interpolation method. The third chapter, ‘Methodology’ elaborates on 

the Data collection points, the procedural approach of the algorithm, and the 

positioning scenario examined in this research. Chapter 4 is dedicated to the 

results of the study, showcasing the estimations, validation processes of the BCS 

algorithm, and comparative analyses. Discussions on the findings, the inherent 

limitations, and ways for future inquiries are broached in Chapter 5. The thesis 

concludes with Chapter 6, providing a summary of the significant discoveries and 

contributions to the domain of outdoor cellular positioning. 
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2 Overview of Wireless Positioning Technologies and 
Methods 

2.1 Introduction  

This chapter reviews the literature relevant to wireless positioning, focusing on 

the evolution and challenges of cellular-based methods and the innovative 

application of BCS for outdoor positioning. Amidst the advancements in GNSS 

and cellular network infrastructures, the pursuit of enhanced accuracy, reliability, 

and security in positioning remains paramount. This review examines the 

progression from GNSS to cellular positioning techniques, emphasizing the need 

for improved solutions due to challenges such as radio jamming and 

environmental constraints. 

The literature is explored systematically, beginning with the background of 

wireless positioning technologies, followed by discussions on the limitations of 

GNSS and the potential of cellular networks. Special attention is dedicated to 

BCS, analysing its theoretical basis, applications, and promise for urban outdoor 

positioning.  

By synthesizing the literature, this review establishes the context for this thesis, 

identifying knowledge gaps and laying the groundwork for the subsequent 

research on a BCS-based positioning algorithm and its prospective contributions 

to outdoor positioning technologies. 
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2.2 Background on Wireless Positioning Technologies 

2.2.1 Early Developments in Wireless Positioning 

Wireless positioning technologies have undergone a continuous journey of 

innovation and evolution, fundamentally transforming how people navigate and 

comprehend their surroundings. This progression can be traced from the early 

radio navigation systems of the 1960s to the sophisticated multi-sensor systems 

of the 2020s [1] [2]. 

The advent of Loran (Long-Range Navigation) and Decca in the mid-20th century 

heralded a new era in radio navigation. Developed in the 1940s during World War 

II, Loran was initially vital for transatlantic ship navigation and later for long-

distance aircraft. Its core principle relied on the time difference of arrival (TDOA) 

of signals, using synchronized radio signals from multiple stations; the time delay 

between receiving these signals at a specific location was then calculated to 

determine the position with an accuracy in the order of tens to hundreds of 

fees[1]. Loran-C, an advanced version, offered enhanced range and precision, 

making it a cornerstone of navigation during that era.  Figure 1 shows the layout 

of Loran’s transmitter stations and the concept of time difference of arrival 

(TDOA). 

 

Figure 1. LORAN hyperbolic grid lines. [2] 
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Concurrently, the Decca Navigator System, with conceptual beginnings in the 

1920s, emerged as a significant innovation in precise navigation. Developed and 

refined during World War II, largely due to the efforts of W. J. “Bill” O’Brien, Decca 

utilized synchronized radio signals between stations for accurate hyperbolic 

position fixing [3][4]. This system became an essential tool for maritime and aerial 

navigation in the post-war period. Both Loran and Decca laid the groundwork for 

modern navigational technologies, signifying a crucial transition from traditional 

to electronic navigation methods. 

In the 1970s, the concept of GNSS emerged, notably with the United States 

launching the initial satellites for the NAVSTAR system, which evolved into the 

GPS. This satellite-based system significantly advanced the capabilities of 

wireless positioning, offering worldwide coverage and high accuracy [5]. 

The 1980s saw the proliferation of cellular networks, introducing another 

dimension to wireless positioning. Techniques such as Cell ID determination 

estimated a device’s location based on signal strength from nearby base stations, 

providing a simple and cost-effective method for positioning [6-7]. 

The 1990s marked a leap in GNSS accuracy with Assisted GPS (A-GPS), which 

utilized cellular networks to enhance positioning accuracy, especially in 

environments where GPS signals alone were inadequate. This decade also saw 

the focus shifting to indoor positioning systems (IPS) with the emergence of Wi-

Fi fingerprinting, a popular technique for estimating positions indoors where GPS 

signals were typically weak or unavailable [8-9]. 

The proliferation of smartphones and the rise of the Internet of Things (IoT) in the 

2010s led to further advancements in wireless positioning. New techniques such 

as Ultra-Wideband (UWB) and Bluetooth Beacons emerged, offering enhanced 

accuracy and scalability [10-11]. 
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The 2020s have been characterized by the convergence of various positioning 

technologies, leading to the development of multi-sensor positioning systems. 

These systems combine data from multiple sources to provide more accurate and 

reliable positioning, especially in challenging environments such as urban 

canyons, dense forests, and indoor or underground spaces where direct line-of-

sight to satellites is compromised [12]. 

Looking forward, emerging technologies such as millimeter wave (mmWave) 

positioning and quantum positioning systems (QPS) hold promise for further 

advancements in accuracy and precision. The integration of wireless positioning 

with Internet of things (IoT) is also creating new opportunities for applications 

ranging from smart cities to logistics management [13-14]. 

2.2.2 Global Navigation Satellite Systems (GNSS) 

Global Navigation Satellite Systems (GNSS) are constellations of satellites that 

provide precise positioning, navigation, and timing information worldwide. The 

four major GNSS systems in operation are GPS (United States), GLONASS 

(Russia), Galileo (European Union), and Bei Dou (China) [15]. 

GPS, the first and most widely used GNSS, employs a constellation of 31 

satellites to offer unparalleled accuracy and global coverage. GLONASS, 

Russia’s counterpart, utilizes a constellation of 31 satellites known for its 

robustness and resilience to interference. Galileo, Europe’s response to US 

dominance, aims to enhance accuracy, availability, and security with its 

constellation of 30 satellites. Bei Dou, China’s emerging GNSS power, employs 

a constellation of 35 satellites, particularly strong in Asia [15-16]. 

The emergence of multi-GNSS constellations, capable of receiving signals from 

multiple systems, offers enhanced accuracy, resilience, and extended coverage. 

As GNSS technology advances, multi-GNSS will become increasingly important 

for reliable and secure positioning across a wide range of applications [17-18]. 
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At the heart of GNSS technology lies the concept of signal time delay, where the 

duration taken for a signal to travel from a satellite to a receiver is precisely 

measured. This measurement is crucial as it directly reflects the distance 

between the satellite and the receiver, assuming the signal propagates at the 

speed of light [19]. GNSS’s effectiveness hinges on trilateration, a mathematical 

technique that pinpoints a precise location by determining distances from multiple 

satellites. GNSS receivers, equipped with antennas that capture satellite signals, 

utilize this spatial information to calculate their exact position on Earth. The 

trilateration process involves the intersection of spherical distances derived from 

at least four satellites. This intersection not only determines latitude and 

longitude, but also altitude, enabling three-dimensional positioning [19]. 

To enhance the accuracy and reliability of GNSS positioning, reference stations 

and GPS rover receivers play a pivotal role. Reference stations, strategically 

positioned on the Earth’s surface, continuously monitor the precise location of 

orbiting satellites. These stations collect and transmit correction data, including 

atmospheric delay corrections and satellite ephemeris data, to nearby GPS rover 

receivers [20]. 

GPS rover receivers, handheld or embedded devices that can receive GNSS 

signals, utilize these corrections to refine their positioning estimates. This 

process, known as Differential GPS (DGPS), significantly improves accuracy, 

particularly in challenging environments where satellite signals are weak or 

obstructed [21]. In addition to DGPS, Real-Time Kinematic (RTK) further elevates 

GNSS positioning accuracy. RTK utilizes a network of reference stations to 

provide real-time corrections to rover receivers, enabling centimetre-level 

accuracy for applications such as surveying, precision agriculture, and 

autonomous vehicles. Figure 2 precision positioning through satellite Corrections 

[21]. 
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Figure 2. Precision Positioning through Satellite Corrections. [22] 

 

The integration of reference stations, GPS rover receivers, and DGPS/RTK 

technology has transformed GNSS into an indispensable tool for precise 

positioning, enhancing the efficiency and safety of a wide range of applications 

[22] [23]. In recent years, there is a disparity in the distribution of GPS rover 

receivers and reference stations between developed and developing countries. 

This disparity has a direct impact on the accuracy of positioning data in 

developing countries, as the lack of these devices limits the ability to obtain 

reliable and accurate positioning information [23]. 
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2.2.3 Basics of Cellular Positioning Technologies 

Cellular networks have transcended their initial role of facilitating voice 

communication, evolving into ubiquitous platforms for data transmission and 

location-based services. Underpinning this transformation lies cellular 

positioning, a suite of technologies enabling the estimation of a mobile device’s 

location by leveraging the cellular network infrastructure. This overview delves 

into the foundational aspects of cellular positioning, tracing its evolution from the 

nascent stages of 2G to the burgeoning era of 5G technologies. 

2.2.3.1 The 2G Era and Cell-ID: Early Foundations 

The second generation (2G) of cellular networks, such as Global system for 

mobile communications (GSM) and code division multiple access (CDMA), laid 

the groundwork for cellular positioning. The basic Cell-ID method utilizes the 

unique identifier of each BS, providing location estimates within the cell’s 

coverage area, typically ranging from hundreds of meters to kilometres. While 

simple and widely implemented, Cell-ID offers limited accuracy, particularly in 

densely populated urban environments or situations with signal obstructions [24]. 

2.2.3.2 Evolving Techniques: 3G and Beyond 

The arrival of 3G technologies such as Code Division Multiple Access (WCDMA) 

and Universal Mobile Telecommunications System (UMTS) significantly 

improved the capabilities of cellular positioning. WCDMA introduced innovative 

technique Angle of Arrival (AOA), which analysed the signal’s direction from 

multiple BSs. This enabled more precise location estimates within the cell, 

especially in urban environments with dense cell deployments. Furthermore, 3G 

witnessed the implementation of time-based methods such as Time of Arrival 

(TOA) and Time Difference of Arrival (TDOA) [24]. These techniques measured 

the signal propagation time between the mobile device and BSs to estimate 

distance and location. While offering better accuracy than Cell-ID, TOA and 

TDOA were susceptible to synchronization errors and signal propagation delays, 
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particularly in non-line-of-sight (NLOS) scenarios. These limitations could impact 

accuracy, especially in urban canyons or areas with dense foliage [24]. 

The fourth generation (4G) of cellular networks, spearheaded by Long-Term 

Evolution (LTE), ushered in significant advancements in both positioning 

accuracy and network-based positioning capabilities. One key innovation was 

Assisted-GPS (A-GPS), which integrated GPS data with cellular network 

information. This hybrid approach addressed a fundamental limitation of 

standalone GPS in mobile devices, namely the slow acquisition time due to the 

need to synchronize with multiple satellites. By leveraging BS data such as 

ephemeris (satellite orbit information) and almanac (satellite visibility data) stored 

on the network, A-GPS significantly mitigated acquisition time, especially indoors 

where direct satellite visibility is often limited. Furthermore, 4G introduced 

enhanced Cell-ID techniques that incorporated information from neighbouring 

BSs alongside the traditionally used serving cell. This enhanced accuracy, 

particularly at cell borders where location estimates based on a single cell can be 

ambiguous. By analysing signal strengths and timing measurements from 

multiple surrounding cells, these techniques offered improved location granularity 

within the cell coverage area [24]. 

2.2.3.3 Emerging Technologies: NB-IoT and LTE-M 

Narrowband Internet of Things (NB-IoT) and LTE-M are cellular network 

technologies specifically designed for low-power, wide-area connectivity. While 

primarily focused on machine-to-machine communication, they also offer 

potential for positioning applications, particularly in asset tracking and 

environmental monitoring. NB-IoT, with its extended range and low power 

consumption, is suitable for tracking devices in remote areas or within buildings. 

LTE-M, offering higher data rates and wider coverage, can be used for real-time 

tracking of assets requiring more frequent location updates. Both technologies 

are still evolving, and their role in cellular positioning is expected to grow in the 

coming years [25-27]. 
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2.2.3.4 The 5G Positioning Landscape 

The fifth generation (5G) of cellular networks promises a paradigm shift in 

positioning capabilities. New features like higher bandwidth, improved signal 

propagation, and massive machine-type communication (mMTC) pave the way 

for more precise and diverse positioning applications. Enhanced timing 

measurements, coupled with advanced algorithms, are expected to deliver sub-

meter accuracy, enabling centimetre-level positioning in specific scenarios. 

Additionally, Non-Line-of-Sight (NLOS) performance, crucial for indoor and urban 

environments, is anticipated to see significant improvements due to features such 

as multipath propagation analysis and fingerprinting techniques [28-29]. 

As cellular positioning continues to evolve, particularly for outdoor environments, 

understanding the underlying techniques becomes increasingly important. In 

section 2.5 delves deeper into the various cellular positioning methods, exploring 

their principles, operation, and performance characteristics in more detail. 

2.3 Vulnerabilities in GNSS Positioning 

This section explores GNSS vulnerabilities, categorizing them into two primary 

groups: intentional threats, such as jamming and spoofing, and accidental 

threats, which stem from environmental and technical factors. Detailed 

discussions follow, highlighting the impact of these vulnerabilities on GNSS 

systems and underscoring the need for alternative positioning solutions. 

Additionally, it addresses recent real-world examples of intentional threats. 
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2.3.1 Accidental threats 

2.3.1.1 Urban Environment Challenges 

In urban settings, GNSS systems are subjected to two primary phenomena that 

degrade signal integrity and positioning accuracy: signal attenuation and 

multipath errors. Signal attenuation, a consequence of urban infrastructure, 

diminishes the strength and clarity of GNSS signals, compromising the system’s 

ability to accurately determine positions. This effect is particularly pronounced in 

densely built areas where buildings act as barriers to signal propagation [19] [30]. 

Simultaneously, urban environments contribute to multipath errors, a condition 

where GNSS signals reflect off surfaces such as buildings and vehicles before 

reaching the receiver. These reflections introduce delays and distortions to the 

signal, complicating the task of accurate signal interpretation by GNSS receivers. 

The presence of multiple reflected signals can lead to erroneous positioning 

information due to the receiver’s difficulty in discerning the direct signal path from 

the reflected ones [19] [30]. Figure 3 visualizes the effect of multipath error and 

signal blockage on GNSS positioning accuracy. These urban-specific challenges 

highlight the need for adaptive GNSS technologies or supplementary positioning 

systems. 

 

Figure 3. Multipath error and Signal blockage. [35] 
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For instance, authors in [31] proposed a hybrid scheme combining GNSS and 

cellular network data (using TDOA technique) to improve location accuracy in 

urban scenarios where GNSS signals are often inadequate.  

This study [32] analysed the limitations of GNSS in urban environments and 

proposed using cellular signals (LTE/5G) and UWB ranging as alternatives. It 

focused on improving TOA-based navigation systems in conditions where GNSS 

signals are compromised, such as in deep urban canyons or indoors. 

In [33], the authors proposed using standard long-term evolution (LTE) signalling 

for high accuracy positioning estimation, specifically targeting the limitations of 

GNSS in dense urban environments. This technique was inspired by the human 

sound localization system and validated in a dense urban city, aiming to meet the 

Federal Communications Commission (FCC) requirements. 

2.3.1.2 Environmental and Technological Threats 

Environmental factors such as ionospheric and tropospheric delays play a crucial 

role in affecting GNSS signal precision. These atmospheric conditions can alter 

the speed and trajectory of GNSS signals, leading to errors in time-of-arrival 

calculations essential for accurate positioning [34]. Figure 4 represents the 

trajectory of a GPS signal encountering the ionosphere, approximately 1000 

kilometres above Earth’s surface. Due to solar radiation, this region contains 

ionized gases that dynamically alter the signal’s refractive index (RI). This 

variability in RI directly impacts the signal’s transit time, contributing to 

fluctuations in GPS accuracy [34]. Technological threats extend beyond signal 

interference from RF sources, encompassing the broader spectrum of 

electromagnetic pollution in our increasingly digital world. This includes 

interference from broadcast towers, mobile networks, and even satellite 

constellations themselves, which can crowd the frequencies GNSS systems rely 

on [30] [34]. 
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Figure 4. GPS signals disruption by solar-driven ionosphere. [34] 

2.3.2 Intentional threats  

Expanding on the vulnerabilities to intentional disruptions, jamming and spoofing 

pose substantial risks to GNSS systems. Jamming, by emitting noise or signals 

at GNSS frequencies, can obscure or entirely block satellite signals, severely 

disrupting navigation, and timing services. Spoofing, more sophisticated, involves 

broadcasting counterfeit GNSS signals. These fake signals, particularly 

dangerous because GNSS data is often unencrypted, can be made to appear as 

legitimate satellite signals, leading receivers astray. The unencrypted nature of 

GNSS signals leaves them exposed to spoofing, as attackers can easily mimic 

the signal structure to deceive GNSS receivers as it is shown in Figure 4 [30] [36]. 

This vulnerability underscores the critical need for incorporating signal 

authentication and encryption in GNSS protocols to mitigate spoofing risks, 

alongside advanced detection mechanisms to identify and counteract jamming 

attempts or investigate other positioning methods as alternatives to GNSS. 
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Figure 5. Impact of GNSS signal spoofing on the receiver. [37] 

This paper [38] discusses approaches to mitigate GNSS disruption caused by 

jamming, including the use of inertial systems, filtering in spatial and time-

frequency domains, and vector tracking of GNSS signals. 

In [39] authors Proposes a technique for GNSS receivers to detect spoofing and 

jamming using observations of received power and correlation function distortion, 

potentially enhancing receiver resilience without requiring additional hardware. 

Authors in [40] explored the use of Android network positioning as a viable 

alternative to GNSS for drone navigation, especially in contexts where GNSS is 

unreliable or unavailable due to jamming. This research highlights the potential 

of cellular and network-based positioning technologies in supporting drone 

operations, offering a complementary solution to GNSS. 
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2.3.3 Recent Real-world Incidents 

Real-world incidents underscore the threats mentioned earlier vividly. This 

section addresses the most notable incidents of GNSS jamming and spoofing 

worldwide, categorized by region. 

Europe: 

• Newsweek on January 18, 2024, reported on the deployment of GPS jammers 

near Kaliningrad, Russia, an incident that had a profound impact on the 

navigation systems of cities in Poland, demonstrating the strategic use of such 

technologies in geopolitical scenarios and their far-reaching effects. 

Additionally, similar GPS jamming issues were reported in January 2024 in 

eastern and southeastern parts of Finland [41].  

• In late June 2017, an incident in the Black Sea involving over 20 ships 

highlighted significant vulnerabilities in maritime navigation systems due to 

GPS spoofing. These ships reported discrepancies in their GPS-based 

navigation, erroneously indicating their positions at airports, distant from their 

actual maritime locations. One report detailed a vessel experiencing 

intermittent GPS signal reception issues upon approaching the coast of 

Novorossiysk, Russia, later showing a highly accurate but incorrect location 

25 nautical miles displaced [42].  

• In June 2017, the far north of Norway experienced significant GPS jamming 

incidents close to the Russian border, disrupting services from ambulances to 

personal safety alarms. This situation highlighted the vulnerability of civil 

GNSS to RF interference, with local police reporting similar jamming incidents 

since 2017. Additionally, in August 2017, a drone crash in the UK further 

illustrated the safety risks associated with GNSS jamming and spoofing. A 

25lb survey drone lost GPS reception due to RF interference at the survey 

site, leading to its unintended drift and crash into a residential property [43].  
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• In 2010, at Hannover Airport in Germany, an unauthorized GPS repeater used 

within a hangar for testing business jets caused significant GNSS 

interference, misleading taxiing planes about the runway threshold's location. 

This interference, emanating from less than 1000 meters away from the 

runway, triggered erroneous warning alarms and positioning alerts in the 

aircraft. The incident underscored the vital importance of GNSS/GPS 

precision in aviation, where accuracy is crucial for the safety of take-offs and 

landings [44]. 

North America: 

• In a technical exploration of automotive cybersecurity vulnerabilities In June 

2019, a spoofing attack on a Tesla Model 3 was conducted to assess the 

impact on its navigation system. Researchers successfully transmitted 

simulated GPS signals, misleading the vehicle’s positioning system. This led 

to an unintended deviation from the intended route, demonstrating the 

susceptibility of advanced driver-assistance systems to GPS spoofing [45].  

• The Portland Spoofing Incident at the ION GNSS+ Conference in 2017 

demonstrated the inadvertent role of GNSS spoofing when a GNSS simulator, 

intended for demonstration, emitted signals that disrupted mobile phones 

within the vicinity. This incident inadvertently mimicked spoofing effects, 

showing how even non-malicious use of GNSS simulation technology can 

lead to significant disruptions in GNSS-dependent devices. The unintended 

signal interference altered the devices' perceived time and location, illustrating 

the potential consequences of GNSS spoofing where devices receive 

manipulated signals, leading to inaccurate positioning and timing. This serves 

as a critical example for research on GNSS security, emphasizing the need 

for awareness and preventive measures against both unintentional and 

deliberate spoofing activities [46]. 
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Middle east and Asia: 

• In a notable spoofing incident in 2023 the Middle East, OpsGroup reported 

navigational failures across 12 aircraft due to false GPS signals, including a 

significant event involving a Boeing 777. Flying near southeastern Iraq toward 

Baghdad, the aircraft lost GPS functionality, leaving the crew to rely on air 

traffic control for basic location and time information. This incident, part of a 

series of sophisticated spoofing operations near Iran, represents the 

increasing electronic warfare threats in the region, highlighting the need for 

enhanced countermeasures in aviation navigation systems to mitigate the 

risks associated with such malicious activities [47]. 

• In December 2019, SkyTruth reported GNSS disruptions near Chinese coast 

oil terminals, observed through automatic identification system (AIS) tracking 

anomalies and corroborated by Strava fitness tracker data. These disruptions, 

extending to cities such as Shanghai and Dalian, were attributed to GPS 

spoofing, where signals are manipulated to falsify location data. Further 

investigation revealed a distinct pattern of spoofing above Point Reyes, 

California, with vessels' reported locations being thousands of miles away 

from their actual positions. This pattern, differing from the one near the 

Chinese coast, suggested a sophisticated spoofing operation without a clear 

link between all affected areas [48]. 

• In 2016, significant GPS disruptions were detected around the Kremlin in 

Moscow, with civilian GPS signals showing incorrect locations, notably 

diverting to an airport nearly 20 miles away. This phenomenon was notably 

observed during the peak popularity of an augmented reality game. 

Investigations suggested the presence of a powerful transmitter capable of 

altering GPS signals within the Kremlin area, speculated to prevent 

unauthorized drone flights. Official responses to these findings were not 

provided, highlighting the intricacies and potential vulnerabilities in satellite 

navigation systems [49]. 
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• On December 5, 2011, the RQ-170 Sentinel, a stealth drone developed by 

Lockheed Martin for the U.S. Air Force, was intercepted by Iranian forces 

approximately 140 miles from the Afghanistan border. Iran claimed the drone 

was brought down through cyber-espionage methods with minimal damage, 

suggesting a sophisticated level of cyber warfare capability. This event 

underscored the vulnerability of Unmanned aerial vehicles (UAV) to spoofing 

attacks, where false signals misguide the navigation systems of drones [50]. 

2.4 Signal Degradation in Cellular Positioning 

Exploring the intricacies of signal degradation is crucial within the domain of 

cellular positioning research. This section aims to dissect the principal elements 

contributing to signal attenuation and distortion, which compromise the precision 

and consistency of location determinations. A thorough understanding of these 

degradation mechanisms is vital for the advancement of cellular positioning 

technologies that are both resilient and accurate. 

2.4.1 Path Loss 

The phenomenon of path loss plays a pivotal role in determining the accuracy 

and efficiency of cellular positioning systems. As the signal traverses the 

environment from the transmitter to the receiver, it undergoes attenuation 

primarily due to the distance it covers, along with various obstacles it encounters, 

such as buildings, trees, and other forms of interference. This degradation not 

only affects the strength of the received signal but also impacts the precision of 

location estimation algorithms that rely on signal metrics. Recent scholarly 

discussions have delved into the various models and factors influencing path 

loss, highlighting its critical nature in determining precise location information. 

Among the most examined models, the Hata-Okumura and the COST-231 

models stand out for their applicability in urban, suburban, and rural 

environments. These models, which have been extensively validated through 

empirical data, provide a framework for estimating path loss over different terrains 

and conditions [51].  
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In [52], the authors analyzed the accuracy of different path loss prediction models, 

including Okumura-Hata and COST231-Hata, for cell design in mobile 

communication systems. They illustrate the importance of considering specific 

environmental characteristics such as building height. And street width to 

enhance the reliability of path loss estimations in various propagation 

environments. Also, authors in [53] emphasized the significance of accurate path-

loss estimation in cellular networks for performance improvement and financial 

feasibility, highlighting the Okumura/Hata model's suitability across different 

environments and its ability to provide more accurate estimations by considering 

additional correction factors like antenna heights. Furthermore, in [54] the authors 

discussed positioning based on noise-limited censored path loss data, 

emphasizing how path loss data, limited by measurement noise, affects 

positioning accuracy. The study demonstrates the significant role of path loss in 

determining the accuracy of wireless positioning systems. 

2.4.2 Multipath Propagation 

The multipath effects, especially in 2G networks, arises when a transmitted signal 

reaches the receiver through multiple paths due to reflection, diffraction, or 

scattering. This phenomenon not only distorts the signal's original properties but 

also complicates the accurate determination of a mobile device's position. In 2G 

cellular networks, characterized by their reliance on Time-Division Multiple 

Access (TDMA) and frequency-division multiple access (FDMA) technologies, 

the multipath effects can severely degrade positioning precision. The reflections 

from various objects, such as buildings and vehicles, lead to multipath-induced 

errors, which are particularly problematic in urban environments where such 

obstacles are prevalent. Figure 9 represents the reflection, diffraction, or 

scattering effects on the signal [51] [55].  
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Figure 6. Multipath Effects. [56] 

To address the challenges posed by the multipath effect in cellular positioning, 

have been developed several mitigation strategies. Adaptive filtering techniques, 

for example, have been employed to distinguish between the direct path signal 

and the reflections, thereby improving the accuracy of TOA and AOA 

measurements. Furthermore, the implementation of advanced algorithms, such 

as RAKE receivers, which can combine multipath signals constructively, has 

shown potential in counteracting the adverse impacts of this phenomenon. 

Additionally, the transition towards more advanced cellular technologies, such as 

3G and 4G, which incorporate better error correction and signal processing 

capabilities, offers indirect solutions to the multipath problem initially faced in 2G 

networks. Nonetheless, understanding and mitigating the multipath effect 

remains crucial for enhancing the reliability and precision of cellular positioning 

systems across all generations of network technology [56-58]. 

2.4.3 Channel Effects  

The channel effect significantly influences signal propagation and, consequently, 

cellular positioning accuracy within 2G networks. Characterized by various 

phenomena such as fading, shadowing, and the aforementioned multipath 

effects, the channel environment can drastically alter the transmitted signal 

before it reaches the receiver. In 2G networks, which predominantly operate 

based on Gaussian minimum shift keying (GMSK) modulation within GSM 

framework, the channel effect can lead to notable discrepancies between the 
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expected and actual signal characteristics. This discrepancy primarily arises due 

to the environmental context—urban settings with dense infrastructures versus 

open rural areas—resulting in a varying degree of signal attenuation and 

distortion. These alterations can severely impact the system's ability to accurately 

triangulate a device's position,27 simulations when relying on methodologies 

such as TOA and RSSI, which are fundamental to cellular positioning [59-60]. 

To mitigate the adverse effects of channel conditions on cellular signals, 

especially in 2G networks, several corrective measures have been explored. 

Adaptive channel equalization techniques stand out for their ability to 

compensate for signal distortion by dynamically adjusting the processing based 

on the current channel conditions. Additionally, diversity schemes, such as 

spatial, frequency, and polarization diversities, are employed to enhance signal 

robustness against fading and shadowing effects. Network-based solutions, 

including advanced base station algorithms that account for varying channel 

conditions in real-time, also contribute to improved positioning accuracy [59-60].  

2.5 Cellular Positioning: Principles and Methods  

2.5.1 Fundamental Principles  

Cellular positioning techniques are fundamentally underpinned by two methods: 

Multilateration and triangulation. Multilateration determines the UE’s location by 

calculating the distance from multiple BSs. This technique necessitates at least 

three BSs for accurate positioning, using signal strength measurements and 

propagation models to estimate distances. Conversely, triangulation relies on 

estimating the signal’s direction from the UE, requiring at least two BSs. This 

method utilizes the directionality of received signals to pinpoint the UE’s location. 

While these methods independently offer a robust framework for calculating the 

position of the UE, the integration of other positioning techniques can significantly 

enhance the precision and dependability of the resultant position estimations [24] 

[61]. 
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2.5.2 Positioning techniques 

There are two main approaches to employ positioning techniques or methods: 

network-based or mobile-based. Mobile-based positioning utilizes onboard 

device technologies, such as Cellular Connectivity, GPS receivers, Wi-Fi 

scanners, or Bluetooth beacons, to independently estimate its location. Unlike 

network-based methods relying on external infrastructure, this approach 

empowers devices to actively emit or passively receive signals and process the 

received information to determine their position. Mobile-based methods offer 

advantages such as self-reliance in remote areas, low reliance on external 

infrastructure, and potentially high accuracy depending on the technology used 

[24] [62]. 

Network-based positioning leverages infrastructure networks, such as cellular, 

Wi-Fi, or sensor arrays, to estimate the location of a device, typically implemented 

and controlled by network operators rather than directly by individual devices or 

users. Unlike mobile-based methods where the device performs its own location 

estimation, network-based approaches rely on data collected from multiple 

network elements such as base stations, access points, or sensors. This data, 

encompassing signal strength, timing information, or angle of arrival, is 

processed, and analyzed by central algorithms owned and operated by the 

network operator, ultimately estimating the device’s position within a defined 

coordinate system. While offering advantages such as widespread coverage, 

reduced dependence on device capabilities, and potential for high accuracy 

under specific conditions, network-based methods can be susceptible to 

limitations such as dependence on operator infrastructure availability, complex 

propagation environments, and computational demands for real-time processing 

[24] [62].  

Subsequent sections examine each technique, explaining their underlying 

principles and functionalities that could be applied in both approaches.  These 

techniques can be classified according to their functional essence as follows. 
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2.5.2.1 Proximity Information 

Cell ID (CID) and Enhanced Cell ID (ECID) 

The Cell ID (CID) positioning method, also referred to as the cell of origin (COO), 

is a foundational technique in cellular positioning, relying on the proximity of the 

mobile station (MS) to the nearest serving cell. It estimates the mobile station 

(MS) location by associating it with the geographic coordinates of the serving cell, 

often represented by antenna locations or the cell coverage area’s centroid. 

Enhanced Cell ID (E-CID) improves upon CID’s accuracy by incorporating 

additional reference data such as RSS levels, which assist in distance 

estimations, and Round-Trip Time (RTT) values. In advanced LTE networks, E-

CID may also utilize AOA data, though its effectiveness is mitigated in dense 

urban environments due to multipath propagation challenges. E-CID’s 

significance extends to its role as a fallback positioning method in scenarios 

where GNSS signals are unavailable, highlighting its critical application in 

emergency call location services within 4G networks and the LTE Positioning 

Protocol (LPP) [63-64].  

Authors in [65] discussed E-CID+RTT positioning accuracy by implementing a 

forced soft handover algorithm, which increases the accuracy of position 

estimation for users within soft handover regions, improving overall accuracy and 

network performance without negative impacts due to the algorithm’s reduced 

complexity. 

In the study [66], the authors propose a method that estimates the direction of 

user equipment more accurately for E-CID positioning than conventional sector-

based positioning methods. 
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2.5.2.2 Distance Measurements 

Received Signal Strength (RSS) 

The RSS technique in cellular positioning relies on the power levels received by 

a sensor from a transmitting source. This method presumes that the received 

power diminishes following an exponential decay model, dependent on the 

transmitted power, path loss constant, and distance between the source and 

sensor. Unlike systems requiring synchronization for TOA, TDOA, or TSOA 

measurements, RSS offers simplicity by eliminating the need for synchronization. 

Distance estimations from RSS measurements allow for source localization 

similar to TOA, requiring a minimum of three receivers for accurate positioning. 

This approach provides a cost-effective solution for positioning, leveraging 

existing cellular infrastructure without additional synchronization hardware [24] 

[67]. 

In [68], the cooperative RSS-based positioning algorithm leverages the concept 

of mobile-to-mobile communications, a promising feature in next-generation 

cellular networks, to improve location accuracy. By utilizing additional RSS data 

from short-range communications between MSs, the algorithm significantly 

enhances the precision of traditional RSS-based positioning methods. This 

improvement is demonstrated through simulations, which show that incorporating 

data from these cooperative interactions between MSs allows for a more accurate 

determination of a mobile station’s position within the network. 

Furthermore in [69], the authors introduce a new WLAN positioning approach that 

utilizes RSS collected at both access points and mobile devices. The approach 

is algorithm-independent and has been shown to improve the accuracy of location 

estimation by 12.84% to 38.23% on average compared to previous works. 

Moreover in [70], the authors analyzed RSS-based mobile terminal positioning in 

GSM networks, proposing statistical estimators that improve positioning accuracy 

by mitigating distance estimation errors and improving service quality, especially 

in multipath environments. Then in [71], the researchers introduced a novel 
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approach to model RSS measurements in cellular networks for user positioning, 

comparing the performance of synthetic and real-life scenarios using a 

fingerprinting-based K-nearest neighbour algorithm. This study highlights the 

potential of RSS in enhancing the accuracy of cellular positioning systems. Also, 

the authors in [72] introduce a novel differential RSS positioning algorithm tailored 

for Radio Frequency Identification (RFID) technology, primarily aimed at tracking 

construction equipment. Unlike traditional positioning methods that directly 

correlate RSS with distance, their approach is based on a linear regression 

between the angle and differential RSS, significantly reducing the impact of RFID 

tag heterogeneity and directional discrepancies between tags and readers. 

Time Advance (TA) 

The TA technique in cellular positioning leverages time offset data between MS 

and BS to refine positioning accuracy. Primarily used to synchronize transmission 

times and prevent signal collision, TA also facilitates distance estimation by 

measuring the time it takes for signals to travel between the MS and BS. This 

method enhances the basic Cell-ID positioning by providing additional range 

estimates, thus reducing positional errors. However, its application is limited to 

active calls, requiring handoffs across BS for continuous range determination, 

which highlights its dependency on ongoing network interactions for accurate 

location estimation [73-74]. 

In [75], the authors propose a new positioning system architecture for 4G and 5G 

technology that utilizes the timing advance parameter to generate continuous 

position estimates. This architecture aims to reduce data overhead and improve 

positioning accuracy, demonstrating the potential to meet federal emergency 

services standards. 

The authors in [76], propose a significant shift in how TA calculations are 

approached, by integrating satellite positioning systems to calculate the distance 

more accurately between mobile phones and base stations. This innovative 

method not only aims to enhance the precision of cellular positioning but also 
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explores the broader implications and adaptability of this technology in both 

current and future cellular communication systems. 

Time of Arrival (TOA) 

The TOA methodology is predicated on the duration a radio signal requires to 

travel from a BS to a MS. This duration, coupled with the known speed of signal 

transmission, forms the basis for calculating the distance between these entities. 

Essential to this calculation is the velocity of signal propagation, which facilitates 

the direct computation of the spatial distance based on the signal’s time of flight. 

TOA’s utility extends across multiple wireless communication technologies, such 

as UWB and Wi-Fi, showcasing its adaptability and precision in pinpointing 

locations within cellular networks. Figure 6 represents a TOA measurement-

based positioning system [64][77]. 

 

Figure 6 Positioning based on TOA measurement. [77] 
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In the operational framework of TOA for positioning, the distance between 𝑖th AP 

and a tag device is quantified by the formula 𝑑𝑖 = (𝑡𝑖 − 𝑡0) × 𝑐, where 𝑑𝑖 is the 

distance sought, 𝑡0 and 𝑡𝑖 are the times of signal transmission and reception, 

respectively, and c represents the speed of light. This formula is crucial for 

implementing the trilateration algorithm, which relies on meticulous time 

synchronization between transmitting and receiving units to accurately deduce 

the user's position. [77] 

In [78], the study introduces a subspace-based algorithm for mobile positioning 

using TOA measurements. It generalizes the mobile localization method based 

on multidimensional similarity analysis and includes computer simulations to 

compare the estimator performance with the Cramer-Rao lower-bound. 

In the paper [79], the authors present an improved TOA estimation algorithm 

designed for cellular signals in multipath fading channels. The algorithm 

combines a super-resolution approach with a multipath estimating delay lock loop 

to enhance the accuracy of TOA estimation under multipath fading conditions. 

Simulation results demonstrate the effectiveness of the proposed algorithm 

compared to existing methods.  

Time Difference of Arrival (TDOA) 

The TDOA method emerges as an alternative to the TOA technique in the domain 

of cellular positioning, addressing some of the latter’s limitations. Unlike TOA, 

which necessitates the maintenance of accurately synchronized clocks across all 

stations to measure the distance based on signal travel time, TDOA operates on 

a different principle. This technique relies on the comparative analysis of the 

signal’s arrival times at various base stations, eliminating the need for precise 

clock synchronization among the participating stations. TDOA’s unique approach 

hinges on identifying the temporal disparities in the reception of a specific data 

marker or epoch transmitted from the target, thereby sidestepping the 

complexities associated with the direct time of flight measurements and 
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synchronized timing. Figure 7 illustrates the positioning technique based on 

TDOA measurements [24] [80].  

 

Figure 7 TDOA positioning. At least three BS are required for two-dimensional localization.  

TDOA’s efficacy in cellular positioning is attributed to its ability to accurately 

determine location by calculating the time differences observed in signal 

reception across multiple base stations. This method does not require the 

transmission’s start time to be communicated from the initiator to the receiver, 

simplifying the location estimation process. By focusing on the relative timing of 

signal reception rather than the absolute timing of signal dispatch and arrival, 

TDOA significantly reduces the infrastructural demands on the positioning 

system. This characteristic not only mitigates the disadvantages associated with 

the TOA technique, such as the necessity for stringent time synchronization, but 

also enhances the applicability of TDOA in various scenarios where maintaining 

synchronized clocks is impractical or challenging [24].  

Authors in [81], Introduce a TDOA positioning algorithm within a factor graphs 

framework for wireless cellular networks. This approach addresses the nonlinear 

estimation problem inherent in mobile station localization, showing that factor 

graph based TDOA positioning can achieve very accurate estimates with 

moderate computational complexity. 
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The researchers in [82], analyze a TDOA-based positioning technique using 

ultrasound transmissions received by wireless nodes. The study identifies and 

characterizes potential inaccuracies due to lack of synchronization and presents 

an algorithm to correct such inaccuracies, demonstrating the feasibility of 

ultrasound based TDOA measurements for range and position estimation. 

In [83], the authors present an improved TOA estimation algorithm for cellular 

signals in multipath fading channels, demonstrating its effectiveness through 

simulation results and showing its potential for enhancing the accuracy of TDOA-

based positioning.  

Observed Time Difference of Arrival (OTDOA) 

The OTDOA methodology, a distinguished positioning technique within the LTE 

framework, capitalizes on the temporal discrepancies observed in downlink (DL) 

reference signals emanating from multiple sources. The essence of OTDOA lies 

in its ability to compute the RSTD, which signifies the temporal disparity between 

a pair of cellular stations – specifically, a reference station and another station 

under measurement. This calculation hinges on identifying the minimal temporal 

interval separating two subframes, each originating from the respective cells. The 

precision of this method is contingent upon acquiring timing data from at least 

three strategically positioned base stations, which must be sufficiently dispersed 

to ensure a robust geometric configuration. This configuration is critical to 

guarantee that the hyperbolic paths, defined by pairs of cells based on equal 

Reference Signal Time Difference (RSTD) values, do not intersect more than 

once, thereby facilitating a unique solution for the UE’s coordinates [24] [64]. 

In [84], the study evaluates the OTDOA positioning method using real measured 

channel data in an urban LTE scenario, finding that the measured channel allows 

for positioning accuracy that fulfills FCC requirements with a safe margin. 

Moreover in [85], authors propose an iterative method for the detection of the first 

channel tap in an estimated channel impulse response to improve TOA 

estimation for OTDOA positioning, also analyzing the impact of RSTD 

https://doi.org/10.1109/PIMRC.2009.5450144
https://doi.org/10.1109/PIMRC.2016.7794634
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quantization resolution on positioning accuracy, and in another study [86], the 

authors present an improved TOA estimation algorithm for cellular signals in 

multipath fading channels, which is crucial for the accuracy of OTDOA 

positioning. The algorithm uses a super-resolution approach and a multipath 

estimating delay lock loop to enhance TOA estimation accuracy.  

2.5.2.3 Directional Measurements 

Angle of Arrival (AOA) 

The application of directional antennas in cellular positioning introduces a 

nuanced approach to locating targets through triangulation, a geometric method 

that leverages the known coordinates of fixed terminals relative to a reference 

point. This technique circumvents the need for time synchronization and is 

indifferent to the modulation type or protocol of the transmitted signals, offering a 

versatile solution for determining the direction of a target. The process involves 

at least two fixed stations equipped with directional antennas, which ascertain the 

target’s location by measuring the angles of arrival of the signals. These angles, 

denoted as θ1 and θ2, are referenced from a northward direction and are 

instrumental in computing the position of a mobile transmitting target. The 

precision of this location estimation is predominantly influenced by the directivity 

of the antennas, highlighting the importance of antenna design in the efficacy of 

triangulation for position determination. Figure 8 depicts a mobile transmitter 

labelled T and two stationary bases, F1 and F2, each equipped with directional 

antennas. F1 and F2 coordinates are known, and the arrival angles of the signal, 

θ1, and θ2, measured in a clockwise direction from north, are determined [51].  
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Figure 8 AOA position measurement configuration. [51] 

The triangulation method, while innovative in leveraging directional antennas for 

pinpointing target locations, encounters notable limitations. Chief among these is 

the dependency on the directivity of the antennas, which dictates the precision of 

the location estimation. High directivity necessitates the use of larger antennas, 

imposing constraints on deployment due to increased spatial requirements. 

Moreover, the method’s reliance on electronically steered antennas for 

automated direction finding introduces additional complexity and potential cost 

implications. This reliance not only complicates the system’s architecture but also 

limits its scalability and practical application in constrained environments, 

highlighting a significant trade-off between precision and feasibility in the use of 

directional antennas for location triangulation [87-88].  

In [89], researchers proposed a non-iterative closed-form solution for AOA-based 

positioning, offering detailed statistical analysis and comparison with classical 

techniques. Furthermore, in [90], the authors focus on enhancing the AOA 

positioning technique by introducing an algorithm optimized for hardware 

implementation. This innovation is significant as it reduces the computational 

complexity traditionally associated with AOA methods, making it more feasible 

for real-world applications, particularly in systems where computational resources 

are limited. Their approach, which relies on simple shift and add operations, 

presents a practical solution that could be easily integrated into existing wireless 

communication systems, thereby improving the efficiency and accuracy of 

location estimation in these networks. In another research [91], the authors 
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introduce a novel approach to AOA localization specifically tailored for LTE 

cellular systems. They exploit the relationship between the transmitter antenna’s 

orientation and the indices of various multiple-input and multiple-output (MIMO) 

precoders to establish a method for determining user position. Moreover in [92], 

the authors develop and validate a comprehensive AOA system, integral to 

enhancing mobile wireless communication for precise positioning. The system’s 

validation includes extensive MATLAB 38 simulations and practical experiments, 

ensuring its reliability and effectiveness in real-world scenarios, thus showcasing 

its potential for broader application in mobile positioning technologies. 

2.5.2.4 Survey Information 

Fingerprinting 

The fingerprinting technique in cellular positioning is predicated on the notion of 

mapping distinct physical characteristics, known as fingerprints or signatures, to 

specific geographical points within a designated area. These unique identifiers 

derive from the inherent spatial variation of the environmental attributes, 

enhancing the system’s ability to distinguish between different locales and 

thereby increasing the granularity of location determination. The effectiveness of 

this method is paradoxically linked to the environmental factors that typically 

hinder non-survey-based approaches, such as multipath fading encountered in 

RF systems. However, these same factors advantageously contribute to the 

efficacy of survey-based fingerprinting methods, illustrating a distinctive interplay 

between environmental properties and technological application [64] [93]. 

Fingerprinting methodologies are primarily differentiated by the nature of the 

physical properties they record. Among these, RSS, channel impulse response 

(CIR) in the time domain (or its frequency domain counterpart, the channel 

transfer function (CTF)), and the frequency channel coherence function (FCF) 

are prevalent in the realm of RF properties utilized for positioning. RSS stands 

out due to its widespread adoption in commercial wireless systems, attributed to 

its resilience in N-LOS conditions, straightforward data architecture, and minimal 
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computational demands. Despite its ubiquity, facilitated by integration into 

common wireless frameworks such as IEEE 802.11, RSS fingerprinting faces 

challenges such as reduced distinctiveness in environments with limited access 

points, leading to poorer location accuracy. Conversely, while CIR, CTF, and FCF 

signatures offer more unique localization cues, they necessitate advanced, 

costlier hardware for data acquisition and entail greater storage needs, posing 

substantial challenges for implementation, especially in extensive indoor settings. 

Additionally, the complex nature of these data formats demands more 

sophisticated pattern-matching algorithms, further escalating computational 

requirements [64] [93]. 

The authors in [94] presented the adaptive enhanced Cell-ID (AECID) 

fingerprinting localization method, which improved the accuracy of cell-ID-based 

positioning by clustering high-precision position measurements. This method 

represented a robust fingerprinting approach, enhancing traditional cell-ID 

positioning accuracy. Furthermore, in [95], the authors proposed a Signal-Aware 

Fingerprinting-Based Positioning technique in cellular networks, demonstrating 

higher positioning accuracy and efficiency than traditional methods. They 

implemented this in the Android platform for GSM networks and analyzed 

accuracy through experiments. Moreover in [96], the authors proposed a 3D 

fingerprinting positioning method based on cellular networks, enhancing 

efficiency and accuracy by employing cell matching degrees and introducing a 

new searching window. This scheme was found to perform better than traditional 

methods such as maximum likelihood and weighted K nearest neighbours 

‘method. In another study [97], the author outlined an approach using decision 

tree ensembles for cellular fingerprint-based positioning. This machine learning 

approach was evaluated against traditional fingerprint comparison functions, 

showing consistently better estimations for outdoor positioning. 

 



40 

 

 

2.5.2.5 Hybrid Techniques 

In cellular networks, hybrid methodologies amalgamate multiple distinct 

strategies to enhance positioning precision beyond the capabilities of singular 

techniques. Typically, these approaches synergize signal-based methodologies, 

such as TOA and AOA, with additional techniques such as cell identification, 

fingerprinting, or artificial intelligence algorithms, thereby ensuring robust and 

accurate results even in environments that pose significant challenges. The 

authors in [98] investigated the use of enhanced versions of TOA and AOA 

techniques, which, when combined, optimize location positioning estimations in 

mobile cellular networks. The study demonstrates that accuracy improves 

significantly with the hybrid approach, especially when considering the Line-of-

Sight (LOS)/ Non-Line-of-Sight (nLOS) propagation effects.  

Also, in [99], the authors delved into enhancing positioning accuracy in 

heterogeneous networks under scenarios where signal transmission faces 

obstacles, commonly known as critical hearability environments. Their method 

combines data from TOA, AOA, and RSS using a two-level unscented Kalman 

Filter, optimized further by genetic algorithms. This hybrid approach not only 

leverages the strengths of each positioning technique but also mitigates its 

weaknesses, particularly in urban or indoor areas where traditional methods may 

falter due to signal obstructions or multipath effects, showcasing a significant 

improvement in location accuracy and reliability. 

In [100], the authors explored the role of TOA and AOA in hybrid positioning 

algorithms and analyzed the influence of weight parameters on accuracy, 

demonstrating the effectiveness of combining these signal characteristics.  

In another study [101], the authors address the common challenges faced in 

cellular network-based positioning, particularly issues arising from multipath and 

N-LOS signal propagation, which traditionally degrade the accuracy of positioning 

algorithms. Their proposed TOA/AOA hybrid algorithm leverages the strengths of 

both Time of Arrival and Angle of Arrival measurements, applying a Bayesian 
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approach to mitigate the adverse effects of these signal distortions. By 41ultisens 

measurement errors as a mixture Gaussian model, the method not only refines 

the estimation of the user's location but also dynamically adjusts for channel 

biases, leading to a notable improvement in positioning precision compared to 

conventional methods. This enhancement is particularly valuable in urban 

environments, where multipath and N-LOS conditions are prevalent.  

Furthermore, authors in [102] developed a hybrid indoor positioning algorithm 

that integrates the strengths of cellular and Wi-Fi network signals to overcome 

the limitations of individual systems in complex indoor environments. The 

innovative use of principal component analysis (PCA) during the offline phase 

helps in effectively reducing the dimensionality of the fingerprinting data, thereby 

streamlining the database, and improving the efficiency of the positioning 

process. Moreover, by applying an adaptive genetic algorithm to optimize the 

back-propagation (BP) neural network during the online positioning phase, the 

algorithm enhances the precision of location estimation. This dual-phase 

approach not only refines the accuracy of indoor positioning but also ensures that 

the system adapts dynamically to changes in the environment, significantly 

improving the reliability of location services in scenarios where traditional 

methods might fail due to signal obstruction or interference. 

2.6 Barycentric Interpolation in Positioning 

2.6.1 Introduction 

Barycentric interpolation is a mathematical technique utilized for estimating 

unknown values within a specific domain by leveraging the known values at a 

discrete set of points. This method is deeply rooted in the concept of BCS, which 

offer a means to express the position of any point within a simplex (e.g., a triangle 

in two dimensions, a tetrahedron in three dimensions) as a weighted average of 

the simplex's vertices. The weights, or barycentric coordinates, are calculated 

based on the geometric properties of the point in relation to the vertices of the 
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simplex, ensuring that they sum up to one and maintain a non-negative status 

[103]. 

The elegance of BCS lies in its geometric intuitiveness and computational 

efficiency, especially when interpolating within the convex hull formed by the 

known points. This method is especially prevalent in fields such as computational 

geometry, computer graphics, machine learning and Data science, geographical 

information systems (GIS), and numerical analysis where it is essential to 

interpolate values across irregularly spaced data points. By assigning weights to 

the vertices of a simplex based on the relative position of the interpolation point, 

BCS allows for a seamless calculation of interpolated values without the need for 

solving linear systems or employing iterative methods [103-104]. 

The formulation of BCS involves determining the barycentric coordinates of the 

interpolation point concerning the simplex formed by the known data points. 

These coordinates effectively serve as weights in a linear combination of the 

values at the vertices, yielding the interpolated value. This process is 

underpinned by mathematical principles that ensure the conservation of vital 

properties such as continuity and differentiability within the interpolation domain, 

making BCS a robust and versatile tool for a wide array of applications [103-104]. 

2.6.2 Theoretical Framework 

In the study of BCS, a significant technique for value estimation within the convex 

hull of a simplex, the representation of a point P within a 2D triangle defined by 

vertices A, B, and C is of particular interest [104]. As shown in Figure 7, Any point 

P inside (or on the boundaries of) this triangle can be expressed as a weighted 

sum of these vertices: 

 

𝜆𝐴, 𝜆𝐵 ,and 𝜆𝐶 are the barycentric coordinates of P, satisfying the conditions: 

 𝑃 =  𝜆𝐴𝐴 + 𝜆𝐵𝐵 + 𝜆𝐶𝐶 (1) 
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Figure 7. Each barycentric coordinates within the ABC triangle. 

The weights (𝜆) in barycentric interpolation are essentially measures of how much 

each vertex (or point) influences the interpolated value at the point P. These 

weights depend on the geometric position of P relative to the vertices of the 

simplex. In the 2D triangle, the weights can be calculated using areas. For 

example, the weight  𝜆𝐴 corresponding to vertex A can be determined by the area 

of the triangle formed by P, B, and C, normalized by the area of the triangle ABC. 

Similarly, weights 𝜆𝐵 and 𝜆𝐶 are calculated using the areas of triangles PAC and 

PAB, respectively [104-105]. 

In general, the formula for calculating the barycentric weights in a triangle can be 

derived from the areas of sub triangles or using determinants in linear algebra for 

higher dimensions [104] [105]. For a triangle, with the coordinates of vertices A 

(𝑥𝐴, 𝑦𝐴), B (𝑥𝐵, 𝑦𝐵), and C (𝑥𝐶, 𝑦𝐶), and a point P (x, y), the weights can be 

calculated as follows: 

Step 1: Calculating the total area of the triangle ABC using determinant formula. 

 𝜆𝐴 + 𝜆𝐵 + 𝜆𝐶 = 1      𝑎𝑛𝑑       𝜆𝐴, 𝜆𝐵, 𝜆𝐶 ≥ 0 (2) 
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Step 2: Calculating the area of the sub triangle PBC, PCA, and PAB similarly, 

and then normalize these areas to find  𝜆𝐴, 𝜆𝐵 , and 𝜆𝐶. 

 

 

2.6.3 Functional Evaluation 

The extensive application of BCS across various disciplines highlights its 

effectiveness and versatility. This segment aims to explore some studies on the 

utilization of BCS within diverse domains, with a special focus on wireless 

positioning. It seeks to present an evaluative review of how this method enhances 

computational precision and operational efficiency in various domains. 

In [106] author discusses how the BCS, motivated by the Mean Value Theorem 

for harmonic functions, offer a generalization that simplifies and improves 

methods for parameterization and morphing. This makes BCS versatile for 

various geometric and computational applications. 

Researchers in [107] highlighted the role of BCS in interpolating scalar or vector 

data from the boundary of a domain to its interior, demonstrating their application 

in computer graphics and geometry processing. The ability to interpolate without 

a closed-form expression underlines their adaptability and utility. 

In another study [108], authors leveraged BCS in the Turkish Permanent GPS 

Network, enhancing geospatial measurement precision and demonstrating 

robustness against geometrical distortions common in Cartesian systems. By 

adopting BCS, the study effectively handled affine transformations, which are 

 𝐴𝑟𝑒𝑎𝐴𝐵𝐶 =
1

2
|𝑥𝐴(𝑦𝐵 − 𝑦𝐶) + 𝑥𝐵(𝑦𝐶 − 𝑦𝐴) + 𝑥𝐶(𝑦𝐴 − 𝑦𝐵)| (3) 

  𝜆𝐴 =
𝐴𝑟𝑒𝑎𝑃𝐵𝐶

𝐴𝑟𝑒𝑎𝐴𝐵𝐶
 ,  𝜆𝐵 =

𝐴𝑟𝑒𝑎𝑃𝐶𝐴

𝐴𝑟𝑒𝑎𝐴𝐵𝐶
 ,  𝜆𝐶 =

𝐴𝑟𝑒𝑎𝑃𝐴𝐵

𝐴𝑟𝑒𝑎𝐴𝐵𝐶
 (4) 
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crucial for accurately mapping the earth’s surface onto a flat plane, thereby 

improving both the accuracy and reliability of geodetic network analyses. This 

approach represents a significant step forward in the field of geodesy, 

demonstrating how mathematical concepts resembling BCS can be applied to 

solve complex real-world problems in geographical information systems (GIS) 

and navigation.  

In the research [109], BCS play a pivotal role in enabling a distributed approach 

to sensor network localization. By utilizing BCS, the algorithm efficiently 

calculates the positions of sensor nodes relative to anchor nodes, even when 

these sensor nodes fall outside the traditional convex hull formed by the anchors. 

This method fundamentally departs from many conventional localization 

techniques that rely on sensors being within a predefined geometric boundary. 

The utilization of BCS thus allows for a more versatile and adaptable framework 

for determining sensor locations across a wide array of network geometries, 

significantly enhancing the scalability and application of localization processes in 

diverse sensor network deployments. 
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3 Methodology 

3.1 Introduction 

In this thesis, a novel algorithm based on the Barycentric interpolation (BCS) 

method is proposed to determine the active user equipment (UE) coordinates 

within a two-dimensional latitude/longitude grid using available 2G cellular 

towers’ information around the UE’s location. In this proposed work, the BCS 

algorithm which is used for positioning and evaluating mobile-based method 

depends on received signal strength (RSS) measurements along with the 2G 

antennas’ geographical positions. 

In this research, it is assumed that the UE does not have access to an internet 

connection, GPS, cell antenna configuration, or network infrastructure 

information. The offline cell towers’ information database file is the only data 

available for UE’s position estimation.  

This algorithm uses measurements and datasets obtained from the on-site 2G 

cellular networks’ scanning process and cell towers’ offline database file data of 

the OpenCelliD.org website to estimate the coordinates of the UE at each pre-

pinned data point on the map.  

The geographical coordinates of the UE were acquired simultaneously at each 

data point using both GPS and the BCS algorithm. This study leverages the 

geographic coordinate obtained by GPS as reference coordinates to evaluate 

and validate the BCS algorithm estimation accuracy for each data point by 

measuring the distance between two coordinates from each other.  
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3.2 Data Collection  

3.2.1 Cellular Towers’ Information Database 

The geographical position of cellular towers plays a key role in cell positioning. 

There are two ways to obtain this information, accessing the cellular network 

infrastructure information of operators or using the information of open databases 

of cell towers online/offline. Mobile operators usually do not allow unauthorized 

individuals or communities to access their infrastructure information. Therefore, 

this study utilized one of the world's largest open databases of cellular towers, 

OpenCellid.org, in an offline form and in a CSV file format. 

OpenCelliD operates as a communal initiative where volunteers share GPS 

positions of cellular towers along with their specific location area identities (LAI) 

and the Cell ID parameter. The project boasts over 49,000 participants who 

collectively contribute around a million new data points daily to the OpenCelliD 

database. As recorded on August 21, 2017, this database houses over 35.5 

million unique cellular IDs and 2.1 billion distinct measurements. The data, which 

is an incorporating of cellular locations, is freely published under the Creative 

Commons Attribution-Share Alike 4.0 International License. This promotes the 

free use and redistribution of the information [111]. This work uses the last 

updated offline database file of the OpenCellid website related to Finland which 

contains cellular towers' positions in two-dimensional coordinates latitude and 

longitude and other cell antennas’ parameters such as location area identity (LAI) 

and CID. 

3.2.2 Cellular Network Scanning Hardware 

Cellular devices scan cellular networks to ensure seamless service connectivity. 

This scanning is crucial as it enables devices to locate the nearest cell towers, 

thus maintaining optimal communication quality and network stability. Several 

key parameters are returned to the mobile device during each scanning process, 

such as CID, LAI, and RSS level [126-127]. These are essential in this study to 



48 

 

 

find the cellular antennas’ geographical coordinates from the offline database as 

well as the UE's position estimation process by the BCS algorithm. This work 

leveraged an Arduino MKR GSM 1400 board for the data scanning, 

normalization, and storing process. 

The Arduino MKR GSM 1400 is a development board designed for global mobile 

communication and uses the functionality of the GPRS/GSM network. This 

module operates using Arduino C/C++, a variant of C++ simplified for ease of use 

in embedded programming. This programming environment allows interaction 

with the hardware components of the board and implements functionality for 

various applications. In Arduino programming, a "sketch" is the term used for a 

program written using the Arduino IDE, and in this study, the program of the 2G 

cellular networks scanning process is called the cell scanning sketch [128-129].  

One significant limitation of the MKR GSM 1400 is its reliance on 2G networks; it 

does not support newer generation networks such as 4G or 5G, which is 

considered a constraint in this study. Another limitation of this board is its 

processing capabilities and lack of stability, which make it difficult to implement 

some functions [128] [130]. The specifications of the module are shown in Table 

1, and Table 2 display the tech specs of the Dipole antenna connected to the 

board. 

Table 1. Arduino MKR GSM 1400 board Specification [128]. 

Components Description 

Microcontroller SAMD21 Cortex-M0+ 32bit low power ARM MCU 

Network Module 
u-Blox SARAU201, supporting GSM bands 
850/900/1800/1900 MHz 

Input Voltage 5V (supplied via the USB or Vin pin) 

Digital I/O Pins 8, with 12 PWM and UART 

Analog Input Pins 7 (ADC 8/10/12 bit) 

Analog Output Pins 1 (DAC) 
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Connectivity GPRS/GSM and 2G EDGE data networks. 

Interfaces I2C, SPI, UART 

Flash Memory 256 KB 

SRAM 32 KB 

Table 2. The Dipole Antenna technical characteristics [131]. 

Frequency Band 
(MHz) 

700-750 824-960 1710-1990 2110-2170 2500-2700 

Gain (dBi) >-5 >-1 >0.4 >-1 >-1 

Total radiation 
efficiency (dB) 

>-5 >-3 >-2.5 >-3 >-3 

S11 (dB) <-5 <-4.2 <-10 <-7 <-10 

Polarization Linear Linear Linear Linear Linear 

Parameter 

Dimension 130x16x5 

Operating temperature -40/85 °C 

Pattern Omnidirectional 

3.2.3 Datasets 

Data Collection Points 

In the initial phase of the data collection, 12 data points were pinpointed on the 

Google Maps based on several conditions, including the density of 2G cellular 

networks, terrain features, and the presence of urban structures. The data 

collection area was designated in the center of Helsinki, within a radius of one 

kilometre from the Kamppi shopping mall which is represented by Figure 8. 
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Figure 8. Data collection area on Google map. 

In Finland, there are three major mobile network operators Elisa, DNA, and Telia 

that offer comprehensive coverage across the country, including technologies 

ranging from 2G to the more recent 5G and LTE-M networks [132]. The 

distribution of 2G cell antennas operated by all network providers within the 

designated study area is shown in Figure 9, these data are collected from the live 

cell towers map of the OpenCelliD.org website [133]. Additionally, the locations 

of data collection points are illustrated in Figure 10. 
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Figure 9. 2G cell antennas distribution in the study area  
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Figure 10. Data points in the study area 

SCN Sketch 

This study aims to develop and evaluate an outdoor positioning algorithm using 

the Barycentric interpolation method. Hence this algorithm leverages two data 

resources:  

• The database of 2G cellular antennas’ information of network operators in the 

study area including the geographic coordinates and other parameters.  



53 

 

 

• The obtained dataset from 2G cellular antennas near each data point by 

scanning process, including RSS level measurements and parameters such 

as LAI and CID. 

The location area identity (LAI) is a unique identifier that consists of three 

parameters: MCC, MNC and LAC. By combining the LAI’s parameters, it is 

possible to determine a cell antenna’s location from a broad to a more defined 

area. When they are used in conjunction with other parameters such as the Cell 

ID and the received signal strength (RSS), can significantly enhance the accuracy 

and reliability of location-based services. All 2G measurements and parameters 

used in this study are detailed in Table 3.  

Table 3. Details on 2G cellular antenna measurements, and parameters. 

Measurements / 
Parameters  

Description 

LAI 

MCC  The mobile country code (MCC) is a three-digit number that uniquely 
identifies a specific country or geographical region where the mobile 
network operator is located. For instance, this code for Finland is 244. 

MNC The Mobile Network Code (MNC), which usually comprises two or three 
digits, specifies a particular mobile network within a country (identified by 
the MCC). The MNC is essential for distinguishing between different 
operators within the same geographical region, especially in countries with 
multiple carriers.   

LAC The location area code (LAC) is a parameter used within a mobile network 
(defined by an MCC and MNC) to specify a smaller region known as a 
location area. This area encompasses multiple cell towers. Mobile devices 
perform a location update for various reasons, such as when they move 
into a new LAC, ensuring that the network knows their approximate location 
without needing to pinpoint their exact position continually. 

CID The Cell ID (sometimes abbreviated as CID or CI) is assigned to any cell 
antenna within a mobile network as a unique identifier. This identifier allows 
the network and the connected devices to distinguish one cell from another 
within the same location area (specified by the LAC). 

RSS The received signal strength level or RSS is a measurement that indicates 
the power level being received by the antenna of a mobile device from a 
specific cell tower. The RSS is typically expressed in dBm and is used by 
the device to determine the strength of the signal it is receiving. Contrary to 
what might be expected, this indicator is inversely proportional to the 
distance: the higher the RSS value (which is a less negative dBm number), 
the closer the mobile device is to the cellular antenna. Conversely, a lower 
RSS value (more negative) indicates a greater distance between the device 
and the antenna. 
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In the Arduino MKR GSM 1400 board, the RxLev standard is employed to 

measure and report the RSS level. By presenting RSS values as positive 

integers, the module simplifies the interpretation and comparison of signal 

strengths across different 2G cellular antennas. 

The RxLev standard functions by converting the signal strength from cellular 

antennas, typically measured in negative dBm (decibel-milliwatts), into a positive 

integer scale. This conversion simplifies the process of signal interpretation, 

making it easier to process and compare signal strength values. For example, a 

scale might map a very weak signal of -110 dBm to a value of 0 and a strong 

signal of -47 dBm to a value of 63, with each step in between scaled accordingly. 

This standardized scale allows mobile devices and network equipment to assess 

and manage cellular network conditions more efficiently, aiding in tasks such as 

cell selection and handover decisions based on signal strength [112]. 

For obtaining 2G cellular antennas’ information near each data point such as 

MCC, MNC, LAC, CID, and RSS level, a scanning and normalization program 

was developed using Arduino C++ language which in this study called SCN 

sketch. In this proposed work, an Arduino MKR GSM 1400 board was 

programmed by the SCN sketch. When the sketch is run on the Arduino board 

starts performing three major functions, nearby cellular antennas’ data scanning, 

data normalization, and data storing respectively. Appendix 1 displays source 

code of the SCN sketch and Appendix 2 represents the SCN algorithm sketch.  

In the data scanning process, the network module of the Arduino responds by 

returning measurements and parameters of cell antennas in a string data format. 

This format includes the following elements: MCC, MNC, LAC, CI, BSIC, arfcn, 

RxLev. The values of all elements are in decimal format, except for LAC and CI, 

which are in hexadecimal. Therefore, the second function, data normalization, 

begins by converting LAC and CI from hexadecimal to decimal format. It also 

removes the BSIC and arfcn elements from the string data of each dataset, as 

these elements are not within the scope of this study.  

# 
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This process was performed at all 12 pre-determined data points on the map 

acquiring 4 samples per data point, resulting in a total of 48 records stored in 12 

TXT format files separately. Simultaneously, the GPS coordinates of the data 

points were recorded by a cell phone and incorporated into all 12 stored files 

proportionally using Notepad++ software. 

3.3 The BCS Algorithm  

This section details the development of the BCS algorithm using Excel and Power 

Query tools, focusing on the methodological application and subsequent 

validation of accuracy in estimating the UE coordinates. The validation is 

performed through a comparative analysis between coordinates derived from the 

BCS algorithm and those obtained via GPS, employing the Haversine formula to 

quantify discrepancies based on distance. 

The Microsoft Excel version 2021 was selected for its widespread availability and 

robust data manipulation capabilities, particularly through Power Query tool, 

which allows for efficient data cleaning, transformation, and merging. The use of 

M language within this environment facilitated precise control over data 

operations, crucial for creating unique identifiers (UIDs) for querying and data 

integration purposes. 

In this study, the algorithm assumes ideal signal conditions for the estimation of 

UE's coordinates, as access to detailed 2G network infrastructure information and 

configurations of cellular antennas was not available. Consequently, factors that 

typically affect RSS levels, such as environmental obstructions, multipath 

interference, and channel effects, are not accounted for. This simplification 

focuses on an ideal scenario to isolate and evaluate the algorithm's performance 

without external noise factors. 

The BCS algorithm file consists of three power query tables, two excel tables, 

and two excel charts as shown in Table 4. 
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Table 4. The components of the BCS algorithm file. 

Name Type Column Headers\ Description 

CellDB Power Query Table UID: Unique identifier of each Cellular 2G antenna. 

Longitude: Longitude of each Cellular 2G antenna. 

Latitude: Latitude of each Cellular 2G antenna. 

DataSet Power Query Table dpNum: The sample number of each data point. 

UID: Unique identifier of each Cellular 2G antenna. 

RxLev: The RSS level of each Cellular 2G antenna. 

GPS.Long: The acquired longitude of each data 
point by GPS. 

GPS.Lat: The acquired latitude of each data point by 
GPS. 

CellDB.Longitude: Longitude for each data point 
retrieved from the CellDB query table. 

CellDB.Latitude: Latitude for each data point 
retrieved from the CellDB query table. 

RSS*Long: The multiplication product of the 
longitude and the RSS value of each cellular antenna 
per each data point. 

RSS*Lat: The multiplication product of the latitude 
and the RSS value of each cellular antenna per each 
data point. 

D_GPS2Cell: Positional discrepancies between GPS 
and each cell antenna based on distance by the 
Haversine formula. 

Report Power Query Table dpNum: The sample number of each data point. 

Sum of DataSet.RxLev: The sum of the retrieved 
RxLev values from the DataSet table based on the 
sample number. 

Sum of DataSet.RSS*Long: The sum of the 
retrieved “RSS*Long” values from the DataSet table 
based on the sample number. 

Sum of DataSet.RSS*Lat: The sum of the retrieved 
“RSS*Lat” values from the DataSet table based on 
the sample number. 

BCS.Long: The acquired longitude of each data 
point by the BCS formula. 

BCS.Lat: The acquired latitude of each data point by 
the BCS formula. 

Result / Filtered 
Result 

Excel Table DP#: The data point number 

Sample Number: The sample number of each data 
point. 

ScannedCells: The number of scanned cellular 2G 
antenna based on the sample number. 
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GPS.Longitude: The longitude obtained from each 
data point by GPS retrieved from the DataSet table. 

GPS.Latitude: The latitude obtained from each data 
point by GPS retrieved from the DataSet table. 

BCS.Longitude: The acquired longitude of each 
data point by the BCS formula retrieved from the 
Report table. 

BCS.Latitude: The acquired latitude of each data 
point by the BCS formula retrieved from the Report 
table. 

GPS-BCS.Dist: Positional discrepancies between 
GPS coordinates and the BCS based on distance in 
meters by the Haversine formula. 

GPS-FurthestCell.Dist: Positional discrepancies 
between GPS and the furthest scanned cellular 2G 
antenna based on distance in meters by the 
Haversine formula. 

Relative Error of the Distance (%): The product of 
dividing “GPS-BCS Dist” by “GPS-Furthest Cell Dist 
multiplied by 2” based on the percentage. 

Graph 1 Scatter The correlation between the number of cellular 2G 
antennas scanned by the module and the relative 
error rate of the distance based on each data point 

The development of the BCS algorithm starts with normalizing data by removing 

unnecessary parameters. This step ensures that only relevant data is used in the 

subsequent calculations. Using the cleaned data, the algorithm calculates 

theUE's estimated position through a weighted centroid of the known cellular 

antennas' coordinates. This calculation's weights are derived from each cellular 

antenna's RSS level.  

The following algorithm sketches and source codes detail each step in the data 

preprocessing, coordinates estimation, and accuracy evaluation phases of the 

BCS algorithm, providing a structured guide for its application in practical 

scenarios.  

The BCS algorithm sketch, simplified and structured to outline the main steps is 

shown in Appendix 3.  
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In the BCS algorithm, the position of the UE is calculated using the following 

formulas: 

Where:  

• 𝑅𝑆𝑆𝑖 is the received signal strength from the 𝑖𝑡ℎ antenna. 

• 𝐿𝑎𝑡𝑖 and 𝐿𝑜𝑛𝑖 are the geographical coordinates of the 𝑖𝑡ℎ antenna. 

• 𝑛 represents the number of antennas considered in the calculation. 

The formula effectively assigns a greater influence to antennas with stronger 

signal strengths, assuming that a stronger signal correlates with closer proximity. 

Each antenna's latitude and longitude are weighted by its RSS, and the sum of 

these weighted coordinates is normalized by the total RSS to compute the UE's 

estimated position. 

The weights for the calculation are derived from the RSS values, where the total 

weight 𝑊 is the sum of all 𝑅𝑆𝑆 values: 

The weighted average for latitude, and Longitude, then, are given by: 

 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑈𝐸 =
∑ 𝑅𝑆𝑆𝑖 𝐿𝑎𝑡𝑖

𝑛
𝑖=0

∑ 𝑅𝑆𝑆𝑖
𝑛
𝑖=0

 (5) 

 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑈𝐸 =
∑ 𝑅𝑆𝑆𝑖 𝐿𝑜𝑛𝑔𝑖

𝑛
𝑖=0

∑ 𝑅𝑆𝑆𝑖
𝑛
𝑖=0

 (6) 

 𝑊 = ∑ 𝑅𝑆𝑆𝑖 

𝑛

𝑖=0

 (7) 

 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑈𝐸 =
1

𝑊
∑ 𝑅𝑆𝑆𝑖 × 𝐿𝑎𝑡𝑖

𝑛

𝑖=0

 (8) 
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In the Result table, the Haversine formula is employed to calculate the accuracy 

of the BCS algorithm by measuring the distances between coordinates estimated 

by the algorithm and those obtained via GPS. Similarly, the Report Power Query 

table applies this formula to assess the positional discrepancies between GPS 

coordinates and the most distant 2G cellular antenna based on distance. These 

calculations are essential for determining the relative error in distance in the final 

analysis. 

The Haversine formula calculates the great-circle distance between two points 

on the surface of a sphere given their longitudes and latitudes.  

The formula is given by: 

Where: 

• 𝑙𝑎𝑡1, 𝑙𝑜𝑛𝑔1 are the latitude and longitude of the first point (from GPS). 

• 𝑙𝑎𝑡2, 𝑙𝑜𝑛𝑔2 are the latitude and longitude of the second point (from the BCS 

algorithm or the furthest cellular 2G antenna). 

• 𝑟 is the radius of the Earth (approximately 6,371 kilometers). 

 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑈𝐸 =
1

𝑊
∑ 𝑅𝑆𝑆𝑖 × 𝐿𝑜𝑛𝑔𝑖

𝑛

𝑖=0

 (9) 

 

∆𝑙𝑎𝑡 = 𝑙𝑎𝑡2 − 𝑙𝑎𝑡1 

  ∆𝑙𝑜𝑛𝑔 = 𝑙𝑜𝑛𝑔2 − 𝑙𝑜𝑛𝑔1 

 

(8) 

 𝛼 = (sin (
∆𝑙𝑎𝑡

2
))2 + cos(𝑙𝑎𝑡1) ∗ cos(𝑙𝑎𝑡2) ∗ (sin (

∆𝑙𝑜𝑛𝑔

2
))2 (9) 

 𝑐 = 2 ∗ 𝛼 tan 2 (√𝛼 − √1 − 𝛼) (10) 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑅 ∗ 𝑐 (11) 
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In the last column of the result table, the relative error of the distance is calculated. 

This metric provides significant insights into the performance and reliability of the 

BCS algorithm by comparing the positional discrepancies in a standardized 

manner. 

The relative error of distance, as given by the formula: 

Where:  

• 𝑑𝑖 is the distance between the GPS coordinates and the coordinates 

estimated by the BCS algorithm for each data point. 

• 𝑑𝑗 is the distance between the GPS coordinates and the coordinates of the 

furthest cellular antenna for each data point. 

This formula normalizes the error by the distance to the furthest antenna, 

providing a percentage that indicates how much error the BCS algorithm 

produces concerning a baseline measure of spatial extent. 

The M code source of the CellDB, DataSet, and Report tables are presented in 

Appendix 4, 5, and 6 respectively. These listings provide a detailed, step-by-step 

breakdown of the transformations and operations performed on each table in 

Power Query. 

 

 

 

 𝑅𝑒 =
𝑑𝑖

𝑑𝑗 ∗ 2
× 100% (12) 
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4 Results 

In this study, the hypothesis was that the BCS algorithm could estimate the UE's 

position using nearby 2G cellular antennas, without relying on cellular network 

infrastructure information, internet connection, or cellular antenna configuration. 

The accuracy of this estimation was evaluated by the relative error of the distance 

as a metric in the FilteredResult table, as shown in Table 5 for each data point. 

The column headers of this table are described in Table 4 as the FilteredResult 

table. 

Table 5. The accuracy evaluation of the BCS positioning algorithm based on the 
Relative Error of the distance ratio per data point. 

D
P

#
 

Sample 
Number 

Scanned 
Cells (#) 

GPS.Long GPS.Lat BCS.Long BCS.Lat 
GPS-BCS 
Dist (m) 

GPS-
Furthest 
Cell Dist 

(m) 

Relative Error 
of the 

Distance % 

1 1.3 14 24.9389 60.1734 24.9385 60.1740 62.6456 1199.4852 2.61% 

2 2.2 4 24.9457 60.1688 24.9437 60.1739 583.7228 2012.2270 14.50% 

3 3.2 4 24.9379 60.1677 24.9300 60.1668 447.6078 1190.3417 18.80% 

4 4.2 4 24.9347 60.1651 24.9288 60.1663 352.1608 1012.9403 17.38% 

5 5.4 12 24.9260 60.1650 24.9218 60.1662 268.0525 1345.5678 9.96% 

6 6.2 6 24.9245 60.1693 24.9254 60.1705 144.5509 1741.3772 4.15% 

7 7.3 12 24.9268 60.1716 24.9311 60.1734 315.9286 1807.2339 8.74% 

8 8.2 15 24.9288 60.1733 24.9354 60.1772 562.6651 1841.6135 15.28% 

9 9.1 17 24.9316 60.1734 24.9360 60.1751 307.0485 1815.1293 8.46% 

1
0 

10.4 11 24.9327 60.1693 24.9325 60.1705 133.1769 1149.0393 
5.80% 

1
1 

11.4 8 24.9309 60.1677 24.9295 60.1672 90.0851 732.8646 
6.15% 

1
2 

12.3 5 24.9352 60.1677 24.9310 60.1682 241.9808 581.2613 
20.82% 

 

In the table, the samples with the minimum relative error ratio of the distance 

corresponding to each data point were retrieved from the Result table. This metric 

expresses the ratio of the distance between the location of the UE obtained by 

GPS as a reference and the BCS positioning algorithm to the distance between 
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the location of the UE obtained by GPS and the farthest scanned cell antenna for 

each data point based on percentage. 

Analysis of Table 5 reveals that the BCS positioning algorithm's positional 

discrepancies from GPS coordinates range from 62.64 meters (2.61% relative 

error) to a maximum of 563.72 meters (20.82% relative error) across the 12 data 

points. On average, the BCS positioning algorithm exhibits a relative distance 

error of 11.05% and a positional difference of 292.46 meters compared to GPS 

coordinates.  

The data analysis in Table 5 reveals a relative correlation between the number of 

2G cellular antennas scanned by the module and the corresponding relative error 

rate of the distance for each data point. Consequently, a scatter graph was plotted 

to visually depict this correlation, as shown in Figure 8. 

 

Figure 11. The graph of the correlation between the number of cellular 2G antennas scanned by 
the module and the relative error rate of the distance based on each data point. 
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Each point on the graph represents a specific data point, where the x-coordinate 

displays the number of scanned 2G cellular antennas, and the y-coordinate 

denotes the relative error of the distance. 

Considering the potential inaccuracies in the geographical coordinates of cellular 

2G antennas retrieved from an open database of cell towers, the scatter graph 

provides insights into the performance of the BCS positioning algorithm under 

real-world conditions. Despite these inaccuracies, a general trend of decreasing 

relative error is observed as the number of scanned cells increases. This trend 

suggests that scanning more 2G cellular antennas leads to improved accuracy in 

estimating the user’s position using the BCS positioning algorithm.  

However, the scatter graph indicates variability in the relative error among data 

points with the same number of scanned cells. This variability can be attributed 

to factors such as fluctuations in received signal strength, environmental 

conditions in urban areas, and inaccuracies in the geographical coordinates of 

cell antennas. Overall, while the scatter plot demonstrates the potential of the 

BCS positioning algorithm for accurate position estimation, it also highlights the 

challenges associated with relying on geographical coordinates from external 

databases. 
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5 Discussion 

5.1 Implications of Findings 

The findings of this study offer valuable insights into applying the Barycentric 

interpolation method for estimating the position of user equipment (UE) using 

neighbouring 2G cellular network data. These insights are pivotal for both 

academic research and practical applications across various sectors. The main 

implications of this study are outlined in the following points: 

• The successful application of the BCS algorithm, as demonstrated in this 

study, shows its potential for outdoor positioning with the mobile-based 

positioning approach in urban areas where GNSS signals are often 

obstructed. By utilizing existing cellular network-land-based infrastructures, 

the BCS approach offers a cost-effective and readily deployable alternative to 

conventional GNSS systems, which could transform location-based IoT 

technologies, urban navigation systems, and emergency response strategies. 

• By showcasing the effectiveness of BCS in real-world scenarios, this research 

may influence industry standards related to cellular network-based positioning 

systems. It can provide a basis for standardizing methods and practices for 

implementing positioning systems that use cellular signals, thereby enhancing 

interoperability and consistency across devices and networks. 

• The findings suggest that regulatory frameworks could be developed to 

support the use of cellular-based positioning systems such as the BCS 

algorithm. This would ensure that such technologies are leveraged to improve 

public services such as emergency response systems, where location data in 

any circumstances is crucial. 
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5.2 Limitations of the Study 

This study, while illustrating the potential of the Barycentric interpolation method 

for UE positioning, acknowledges several limitations: 

• The precision of cellular antennas' coordinates sourced from the 

OpenCellID.org database plays a crucial role in the performance of the BCS 

algorithm. Inaccurate geographic data can lead to significant errors in 

estimating the UE's coordinates. This study highlights the impact of data 

accuracy on positioning algorithms and underscores the need for reliable data 

sources. Enhancing the database's accuracy or integrating multiple data 

sources could potentially improve the reliability and accuracy of geographical 

position estimations in future implementations of the BCS algorithm. 

• The assumption of ideal signal conditions in this study does not account for 

real-world challenges such as urban structures and multipath effects, which 

can significantly influence signal reception and degrade the accuracy of 

position estimation. This limitation stems from a lack of access to mobile 

network infrastructure information and cellular antenna configuration, which 

are crucial for accurately calculating environmental effects on signals. 

Addressing these factors could enhance the robustness and reliability of the 

positioning algorithm, particularly in urban environments where such 

influences are prevalent. 

• The research assumes a static environment, meaning it doesn't consider the 

dynamic changes that could significantly influence signal propagation, such 

as varying weather conditions, urban development, or changes in physical 

obstacles such as construction. This static model may not fully reflect real-

world conditions where such factors can affect signal strength and the 

reliability of data used for positioning. 

• The study’s reliance on the Arduino MKR GSM 1400, which only supports 2G 

networks, introduces a significant constraint on the technological scope of this 
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research. While 2G networks are broadly available, their gradual phase-out 

globally in favour of more advanced 4G and 5G networks restricts the utility 

and future applicability of the developed algorithm. Moreover, newer network 

generations offer higher data throughput and more detailed network 

parameters, which could significantly enhance the accuracy of positioning 

algorithms such as the BCS. This technological limitation not only narrows the 

research’s current relevance but also poses challenges for adapting the 

findings to newer technologies that provide richer data and improved precision 

in user equipment positioning. 

• Utilizing the Rx level (RxLev) standard rather than the dBm unit represents a 

notable limitation in this study. The RxLev, being a coded representation of 

dBm, does not leverage the exponential-logarithmic relationship between 

signal strength (measured in dBm) and distance. This relationship could 

potentially offer richer insights into the proximity of cell antennas relative to 

the user's location, allowing for more accurate distance approximations and 

refined position estimations. Incorporating dBm units directly could enhance 

the algorithm's capability to infer distances based on signal strength, thus 

improving the overall precision of the BCS algorithm in urban environments 

where signal propagation can vary significantly due to obstacles and building 

density. 

5.3 Recommendations for Future Research 

While the findings of this study offer promising insights into the use of the BCS 

algorithm for cellular mobile-based positioning, they also highlight several areas 

where further research could provide deeper understanding and improvements. 

The following recommendations are proposed for future research: 

• Future studies could focus on optimizing the BCS algorithm to enhance its 

efficiency and accuracy. This could involve refining the mathematical model 

to better account for variables such as multi-path effects, signal reflection, and 

diffraction which are prevalent in urban environments. 
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• Applying machine learning algorithms to the BCS could potentially improve 

the estimation accuracy of the system. Future research could explore various 

machine learning models that could predict the positional error based on 

historical data and environmental factors, thus dynamically adjusting the 

algorithm’s parameters for enhanced accuracy. 

• Further studies are needed to understand the impact of environmental 

changes on the performance of both outdoor and indoor positioning 

algorithms. This includes changes in urban infrastructure, such as the 

construction of new buildings or the alteration of existing structures, which 

could affect signal propagation. 

• To validate the robustness and versatility of the BCS algorithm, it is 

recommended that future research include a broader dataset encompassing 

different geographic locations, network types, and urban densities. This would 

provide a more comprehensive understanding of the algorithm’s performance 

across diverse environments. 

• Future research could also consider the regulatory and ethical implications of 

the widespread adoption of cellular-based positioning systems. This includes 

issues related to privacy, data security, and user consent, particularly in 

applications involving personal location tracking which was not the scope of 

this study. 

By addressing these recommendations, future research can significantly advance 

the field of cellular mobile-based positioning and contribute to the development 

of more accurate, reliable, and efficient location-based services. 
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6 Conclusion 

This thesis explored the application of the Barycentric Interpolation (BCS) method 

for outdoor cellular positioning with the mobile-based approach, demonstrating 

its potential as a viable alternative to traditional GNSS systems, especially in 

urban environments where GNSS may falter due to jamming, signal attenuation, 

and multipath propagation effects. 

The research confirmed that employing the BCS, which leverages received signal 

strength and the geometric disposition of cellular antennas, offers a feasible 

solution for positioning without relying on satellite signals, internet connection, 

cellular network infrastructure information, or cellular antenna configuration. 

Through extensive data collection, development of the algorithm, and thorough 

field testing within the Helsinki city center, this study was able to quantify the 

performance of the BCS method. The algorithm achieved an average accuracy 

of approximately 292.46 meters for user equipment's position estimation across 

twelve data points, with an average relative error of 11.05%. These metrics 

underline the method's capability within the tested urban context and provide a 

benchmark for further research and development. 

While enhancing accuracy was not a direct objective of this research, the findings 

provide crucial data points on the operational efficacy of BCS in real-world 

settings. This foundational work paves the way for future investigations to refine 

the algorithm and explore its integration with emerging cellular technologies and 

IoT devices, potentially improving positioning accuracy and reliability. 
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The source code of SCN sketch 

#include <MKRGSM.h> 

#include <SD.h> 

#include <SPI.h> 

GSM gsmAccess; 

File myFile; 

const int chipSelect = 4; 

 void setup() { 

   Serial.begin(9600); 

   while (!Serial) {}  

  Serial.println("Initializing Module..."); 

   if (!gsmAccess.begin()) { 

      Serial.println("Failed to initialize the module"); 

      while (true); 

      }  

  Serial.print("Initializing SD card..."); 

   if (!SD.begin(chipSelect)) { 

      Serial.println("initialization failed!"); 

      while (true); 

      } 

   Serial.println("initialization done."); 

   myFile = SD.open("cell_data.csv", FILE_WRITE); 

   if (myFile) { 

      Serial.println("File opened successfully"); 

      } else { 

      Serial.println("Error opening file"); 

      return; 

      } 

   getCellCurrent(); // Getting current 2G cell information  

} 

  

void loop() { 
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   // data processing if necessary 

   delay(10000);  

} 

  

void getCellCurrent() { 

   MODEM.send("AT+COPS=6"); // Requesting cell tower information 

   String line; 

   while (MODEM.waitForResponse(10000, &line) == 1) { 

     if (line.startsWith("+COPS:")) { 

       processCellInfo(line); // Data Normalization 

     } 

   } 

   myFile.close();  

   Serial.println("Data processing complete and file closed."); 

 } 

void processCellInfo(String data) { 

   // Expected format: [<MCC>,<MNC>,<LAC>,<CI>,<BSIC>,<arfcn>,<RxLev>] 

   int firstCommaIndex = data.indexOf(','); 

   int lastCommaIndex = data.lastIndexOf(','); 

   String mcc = data.substring(0, firstCommaIndex); 

   String mnc = data.substring(firstCommaIndex + 1, data.indexOf(',', 

firstCommaIndex +   1)); 

   int lacStart = data.indexOf(',', firstCommaIndex + 1) + 1; 

   int lacEnd = data.indexOf(',', lacStart); 

   String lacHex = data.substring(lacStart, lacEnd); 

   long lac = strtol(lacHex.c_str(), NULL, 16); // Converting LAC from hex to 

decimal 

   int ciStart = data.indexOf(',', lacEnd + 1) + 1; 

   int ciEnd = data.indexOf(',', ciStart); 

   String ciHex = data.substring(ciStart, ciEnd); 

   long ci = strtol(ciHex.c_str(), NULL, 16); // Converting Cell ID from hex to 

decimal 

   // Skipping BSIC and arfcn parameters 
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   int rxLevStart = data.lastIndexOf(',') + 1; 

   String rxLev = data.substring(rxLevStart); 

   // Constructing the new string in CSV format 

   String csvLine = String(mcc + "," + mnc + "," + lac + "," + ci + "," + rxLev + 

"\n");  

  if (myFile) { 

     myFile.print(csvLine); 

     Serial.print("Writing to file: "); 

     Serial.println(csvLine); 

   } 

 } 
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The algorithm sketch of the SCN program in pseudocode style 

Begin 

    Initialize Serial Communication 

    Initialize GSM Module 

        If initialization fails 

            Print "Initialization Failed" and halt 

    Initialize SD Card 

        If initialization fails 

            Print "SD Card Error" and halt 

    Open/Create CSV File 

        If file operation fails 

            Print "File Error" and halt 

    Loop forever 

        Send "AT+UCELLINFO?" command 

        Wait for GSM response 

        If response received 

            For each line in the response 

                If line starts with "+COPS:" 
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                    Extract and process data 

                    Convert Hex to Decimal for LAC and CI 

                    Remove BSIC and arfcn from data 

                    Format data into CSV line 

                    Write to SD card 

        Else 

            Print "Failed to retrieve cell info" 

        Delay for a specified time 

End  
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The BCS algorithm sketch  

Begin 

1. Load Data 

    Load DataSet table with cellular antenna parameters from DataPoint files. 

    Load CellDB table with cellular antenna coordinates from the offline  

    Database file. 

    Load Report table with a single column containing DataPoint numbers from a  

    CSV file. 

 

2. Prepare Data 

    Merge columns in DataSet and CellDB to create UID columns for linking. 

    Rename the single column of the Report table to "dpNum" to identify sample  

    number. 

    Convert the "dpNum" column to numeric type in the Report table. 

    Perform data cleaning by removing rows with errors or null values in all  

    tables. 

    For each entry in DataSet: 

       Multiply RSS level(RxLev)  by the corresponding latitude 

      (CellDB.Latitude) and longitude (CellDB.Longitude): 

          RSS. Lat𝑖 = (RSS𝑖 × latitude𝑖) 

          RSS. Long𝑖 = (RSS𝑖 × longitude𝑖) 

       Store results in new columns 'RSS*Lat' and 'RSS*Long'. 
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3. Merge Data 

    Merge CellDB into DataSet based on UID to get corresponding latitude and  

    longitude. 

    Filter and clean merged data to ensure all entries are valid. 

    Merge the DataSet table into the Report table based on "dpNum" to  

    aggregate RSS*Long, RSS*Lat, and RxLev from the DataSet for each data  

    point. 

 

4. Calculate the BCS Coordinates 

    For each entry in Report: 

        Aggregate RSS*Long, RSS*Lat, and RxLev from the DataSet for each 

data  

        Point based on sample number(dpNum). 

        AggregatedData = AggregateColumns(MergedData, "DataSet", 

                       [("RxLev", Sum, "Sum of DataSet.RxLev"), 

                        ("RSS*Long", Sum, "Sum of DataSet.RSS*Long"), 

                        ("RSS*Lat", Sum, "Sum of DataSet.RSS*Lat")])  

        Ensure aggregated sums are of numeric type 

         ConvertColumnTypes(AggregatedData, 

                       [("Sum of DataSet.RSS*Lat", Number), 

                        ("Sum of DataSet.RSS*Long", Number), 
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                        ("Sum of DataSet.RxLev", Number)]) 

      Calculate longitude (BCS.Long) using the barycentric formula 

        AddCustomColumn(AggregatedData, "BCS.Long", 

                   Each [#"Sum of DataSet.RSS*Long"] / [Sum of DataSet.RxLev]) 

      Calculate latitude (BCS.Lat) using the barycentric formula 

        AddCustomColumn(AggregatedData, "BCS.Lat", 

                   Each [#"Sum of DataSet.RSS*Lat"] / [Sum of DataSet.RxLev]) 

 

5. Calculate distances 

    For each entry in DataSet: 

     Use Haversine formula to calculate distances: 

       Calculate distances between GPS coordinates and the cellular 

       antenna based on sample number.  

       //Function detailed in the Listing 4  

        ( M code sorce of the DataSet table) 

       Store results in a new column 'D_GPS2Cell'. 

 

6. Output Results 

    For each entry in Result table: 

      Count scanned cellular 2G antennas from the DataSet table based on 
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      sample number(dpNum): 

          ScannedCells = COUNTIF(DataSet[dpNum],dpNum) 

      Retrieve the GPS longitude and latitude from the DataSet table based on 

      sample number(dpNum): 

          GPS.Longitude = 

XLOOKUP(dpNum,DataSet[dpNum],DataSet[GPS.Long]) 

          GPS.Latitude = XLOOKUP(dpNum,DataSet[dpNum],DataSet[GPS.Lat]) 

      Retrieve the BCS longitude and latitude from the Report table based on 

      sample number(dpNum): 

          BCS.Longitude = 'Report'!BCS.lot 

          BCS.Latitude = 'Report'!BCS.lat 

      Use Haversine formula to calculate distances: 

          Calculate distances between GPS coordinates and the BCS coorinates. 

GPS-BCS.Dist = (6371*2*ASIN(SQRT(SIN((RADIANS(BCS.Latitude- 

GPS.Latitude))/2)^2+COS(RADIANS(BCS.Latitude))*COS(RADIANS(GPS.Latit

-ude))*SIN((RADIANS(GPS.Longitude-BCS.Longitude))/2)^2)))*1000 

      Retrieve the furthest cellular 2G antenna compared to the GPS 

      coordinates in each sample dataset from the DataSet table. 

          GPS-FurthestCell.Dist = 

          MAXIFS(DataSet[D_GPS2Cell],DataSet[dpNum], Sample Number) 
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      Calculate relative error of the distance based on each sample number. 

          RelativeError.Distance = GPS-BCS.Dist/(GPS-FurthestCell.Dist*2)  

7. Output FilteredResult      

     Retrieve the sample with the minimum  Relative Error of the distance 

      corresponding to the data point from the Result table and record it in 

      the FilteredResult table. 

             Sample Number = XLOOKUP(MINIFS(Result[RelativeError.Distance] 

             ,Result[DP],DP#),Result[RelativeError.Distance],Result 

             [SampleNumber]) 

             Scanned Cells(#) = XLOOKUP(MINIFS(Result[RelativeError.Distance] 

             ,Result[DP],DP#),Result[RelativeError.Distance],Result 

             [ScannedCells]) 

             GPS.Long = XLOOKUP(MINIFS(Result[RelativeError.Distance] 

             ,Result[DP],DP#),Result[RelativeError.Distance],Result 

             [GPS.Longitude]) 

             GPS.Lat = XLOOKUP(MINIFS(Result[RelativeError.Distance] 

             ,Result[DP],DP#),Result[RelativeError.Distance],Result 

             [GPS.Latitude]) 
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             BCS.Long = XLOOKUP(MINIFS(Result[RelativeError.Distance] 

             ,Result[DP],DP#),Result[RelativeError.Distance],Result 

             [BCS.Longitude]) 

             BCS.Lat = XLOOKUP(MINIFS(Result[RelativeError.Distance] 

             ,Result[DP],DP#),Result[RelativeError.Distance],Result 

             [BCS.Latitude]) 

             GPS-BCS Dist (m) = XLOOKUP(MINIFS(Result[RelativeError.Distance] 

             ,Result[DP],DP#),Result[RelativeError.Distance],Result 

             [GPS-BCS.Dist]) 

             GPS-Furthest Cell Dist (m) = XLOOKUP(MINIFS(Result[RelativeError. 

             Distance],Result[DP],DP#),Result[RelativeError.Distance],Result 

             [GPS-FurthestCell.Dist]) 

             Relative Error of the Distance % = MINIFS(Result[RelativeError 

             .Distance],Result[DP],DP#)   

 

End Algorithm
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The M code source of the CellDB power query table 

let 

    Source = Csv.Document(File.Contents("C:\... 

..\..\Data\OpenCelliD\Final_Data\CellDB.csv"),[Delimiter=",", Columns=14, 

Encoding=1252, QuoteStyle=QuoteStyle.None]), 

    #"Promoted Headers" = Table.PromoteHeaders(Source, 

[PromoteAllScalars=true]), 

    #"Changed Type" = Table.TransformColumnTypes(#"Promoted 

Headers",{{"Radio", type text}, {"MCC", Int64.Type}, {"MNC", Int64.Type}, 

{"LAC/TAC/NID", Int64.Type}, {"CID", Int64.Type}, {"", Int64.Type}, {"Longitude", 

type number}, {"Latitude", type number}, {"Range", Int64.Type}, {"Samples", 

Int64.Type}, {"Changeable", Int64.Type}, {"Created", Int64.Type}, {"Updated", 

Int64.Type}, {"AV Signal", Int64.Type}}), 

    #"Renamed Columns" = Table.RenameColumns(#"Changed 

Type",{{"LAC/TAC/NID", "LAC"}}), 

    #"Removed Columns" = Table.RemoveColumns(#"Renamed 

Columns",{"Radio", "", "Range", "Created", "Updated", "AV Signal", 

"Changeable"}), 

    #"Merged Columns" = 

Table.CombineColumns(Table.TransformColumnTypes(#"Removed Columns", 

{{"MCC", type text}, {"MNC", type text}, {"LAC", type text}, {"CID", type text}}, 

"en-US"),{"MCC", "MNC", "LAC", "CID"},Combiner.CombineTextByDelimiter("", 

QuoteStyle.None),"UID"), 

    #"Removed Columns1" = Table.RemoveColumns(#"Merged 

Columns",{"Samples"}) 

in 

    #"Removed Columns1"
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The M code source of the DataSet power query table 

let 

    Source = Folder.Files("C:\..\..\Data\OpenCelliD\Final_Data\DataSet"), 

    #"Filtered Hidden Files1" = Table.SelectRows(Source, each 

[Attributes]?[Hidden]? <> true), 

    #"Invoke Custom Function1" = Table.AddColumn(#"Filtered Hidden Files1", 

"Transform File", each #"Transform File"([Content])), 

    #"Renamed Columns1" = Table.RenameColumns(#"Invoke Custom 

Function1", {"Name", "Source.Name"}), 

    #"Removed Other Columns1" = Table.SelectColumns(#"Renamed 

Columns1", {"Source.Name", "Transform File"}), 

    #"Expanded Table Column1" = Table.ExpandTableColumn(#"Removed 

Other Columns1", "Transform File", Table.ColumnNames(#"Transform 

File"(#"Sample File"))), 

    #"Changed Type" = Table.TransformColumnTypes(#"Expanded Table 

Column1",{{"Source.Name", type text}, {"Column1", type number}, {"Column2", 

type number}, {"Column3", type number}, {"Column4", Int64.Type}, {"Column5", 

Int64.Type}, {"Column6", type text}, {"Column7", type text}, {"Column8", type 

text}, {"Column9", Int64.Type}, {"Column10", Int64.Type}}), 

    #"Reordered Columns" = Table.ReorderColumns(#"Changed 

Type",{"Source.Name", "Column1", "Column4", "Column5", "Column6", 

"Column7", "Column8", "Column9", "Column10", "Column2", "Column3"}), 

    #"Renamed Columns" = Table.RenameColumns(#"Reordered 

Columns",{{"Column2", "LongGPS"}, {"Column3", "LatGPS"}, {"Column10", 

"RxLev"}, {"Column1", "dpNum"}, {"Column4", "MCC"}, {"Column5", "MNC"}, 

{"Column6", "LAC"}, {"Column7", "CID"}}), 

    #"Removed Columns" = Table.RemoveColumns(#"Renamed 

Columns",{"Column8", "Column9"}), 

    #"Added Custom" = Table.AddColumn(#"Removed Columns", "LAC_", each 

Expression.Evaluate("0x" & [LAC])), 

    #"Added Custom1" = Table.AddColumn(#"Added Custom", "CID_", each 

Expression.Evaluate("0x" & [CID])), 
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    #"Reordered Columns1" = Table.ReorderColumns(#"Added 

Custom1",{"Source.Name", "dpNum", "MCC", "MNC", "LAC", "CID", "LAC_", 

"CID_", "RxLev", "LongGPS", "LatGPS"}), 

    #"Removed Columns1" = Table.RemoveColumns(#"Reordered 

Columns1",{"LAC", "CID"}), 

    #"Renamed Columns2" = Table.RenameColumns(#"Removed 

Columns1",{{"LAC_", "LAC"}, {"CID_", "CID"}}), 

    #"Merged Columns" = 

Table.CombineColumns(Table.TransformColumnTypes(#"Renamed 

Columns2", {{"MCC", type text}, {"MNC", type text}, {"LAC", type text}, {"CID", 

type text}}, "en-US"),{"MCC", "MNC", "LAC", 

"CID"},Combiner.CombineTextByDelimiter("", QuoteStyle.None),"UID"), 

    #"Removed Errors" = Table.RemoveRowsWithErrors(#"Merged Columns", 

{"LatGPS"}), 

    #"Removed Blank Rows" = Table.SelectRows(#"Removed Errors", each not 

List.IsEmpty(List.RemoveMatchingItems(Record.FieldValues(_), {"", null}))), 

    #"Removed Blank Rows1" = Table.SelectRows(#"Removed Blank Rows", 

each not List.IsEmpty(List.RemoveMatchingItems(Record.FieldValues(_), {"", 

null}))), 

    #"Removed Errors1" = Table.RemoveRowsWithErrors(#"Removed Blank 

Rows1", {"UID"}), 

    #"Merged Queries" = Table.NestedJoin(#"Removed Errors1", {"UID"}, 

CellDB, {"UID"}, "CellDB", JoinKind.LeftOuter), 

    #"Expanded CellDB" = Table.ExpandTableColumn(#"Merged Queries", 

"CellDB", {"Longitude", "Latitude"}, {"CellDB.Longitude", "CellDB.Latitude"}), 

    #"Filtered Rows" = Table.SelectRows(#"Expanded CellDB", each true), 

    #"Renamed Columns3" = Table.RenameColumns(#"Filtered 

Rows",{{"LongGPS", "GPS.Long"}, {"LatGPS", "GPS.Lat"}}), 

    #"Added Custom2" = Table.AddColumn(#"Renamed Columns3", 

"RSS*Long", each [RxLev]*[CellDB.Longitude]), 

    #"Added Custom3" = Table.AddColumn(#"Added Custom2", "RSS*Lat", each 

[RxLev]*[CellDB.Latitude]), 

    #"Added Custom4" = Table.AddColumn(#"Added Custom3", "D_GPS2Cell", 
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each let 

    R = 6371, // Earth radius in kilometers 

    ToRadians = (angle) => angle * (2 * 3.14159265358979323846) / 360, 

    dlat = ToRadians([CellDB.Latitude] - [GPS.Lat]), 

    dlon = ToRadians([CellDB.Longitude] - [GPS.Long]), 

    a = Number.Power(Number.Sin(dlat / 2), 2) + 

Number.Cos(ToRadians([GPS.Lat])) * 

Number.Cos(ToRadians([CellDB.Latitude])) * Number.Power(Number.Sin(dlon / 

2), 2), 

    c = 2 * Number.Atan2(Number.Sqrt(a), Number.Sqrt(1 - a)), 

    distance = (R * c)*1000 

in 

    distance), 

    #"Filtered Rows1" = Table.SelectRows(#"Added Custom4", each 

([CellDB.Longitude] <> null)), 

    #"Changed Type1" = Table.TransformColumnTypes(#"Filtered 

Rows1",{{"D_GPS2Cell", type number}, {"RSS*Lat", type number}, 

{"RSS*Long", type number}}), 

    #"Removed Columns2" = Table.RemoveColumns(#"Changed 

Type1",{"Source.Name"}) 

in
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The M code source of the Report power query table 

let 

    Source = Table.FromColumns({Lines.FromBinary(File.Contents("C:\.. 

..\..\Data\OpenCelliD\Final_Data\Report.txt"), null, null, 1252)}), 

    #"Renamed Columns" = Table.RenameColumns(Source,{{"Column1", 

"dpNum"}}), 

    #"Changed Type" = Table.TransformColumnTypes(#"Renamed 

Columns",{{"dpNum", type number}}), 

    #"Merged Queries" = Table.NestedJoin(#"Changed Type", {"dpNum"}, 

DataSet, {"dpNum"}, "DataSet", JoinKind.LeftOuter), 

    #"Aggregated DataSet" = Table.AggregateTableColumn(#"Merged Queries", 

"DataSet", {{"RxLev", List.Sum, "Sum of DataSet.RxLev"}, {"RSS*Long", 

List.Sum, "Sum of DataSet.RSS*Long"}, {"RSS*Lat", List.Sum, "Sum of 

DataSet.RSS*Lat"}}), 

    #"Changed Type1" = Table.TransformColumnTypes(#"Aggregated 

DataSet",{{"Sum of DataSet.RSS*Lat", type number}, {"Sum of 

DataSet.RSS*Long", type number}, {"Sum of DataSet.RxLev", type number}}), 

    #"Added Custom" = Table.AddColumn(#"Changed Type1", "BCS.Long", each 

[#"Sum of DataSet.RSS*Long"]/[Sum of DataSet.RxLev]), 

    #"Added Custom1" = Table.AddColumn(#"Added Custom", "BCS.Lat", each 

[#"Sum of DataSet.RSS*Lat"]/[Sum of DataSet.RxLev]) 

in 

    #"Added Custom1" 
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