

Uyen Nguyen

STREAMLINING PROJECT MANAGEMENT

Enhancing Efficiency and Progress Tracking Through a CRM

Website

Technology and Communication

2024

ACKNOWLEDGEMENTS

I extend my sincere gratitude to all those who helped me complete this thesis

and the development of the CRM web application it explores.

First and foremost, I would like to express my appreciation to my thesis supervi-

sor for his invaluable guidance, insightful feedback, and unwavering support

throughout this journey. His expertise and encouragement have been instrumen-

tal in shaping the direction and quality of this research.

I am also profoundly thankful to the participants who generously shared their

time and insights, providing valuable perspectives that enriched the study. Addi-

tionally, I extend my gratitude to all the friends who helped me fix the bugs and

whose dedication and expertise have been essential to its success. Furthermore,

I am grateful to my family and friends for their unwavering encouragement and

understanding during the demanding phases of this project. Their support has

been a constant source of strength and motivation.

Lastly, I acknowledge the academic and institutional resources that have facili-

tated this research, including libraries and research thesis library. This thesis

would not have been possible without the collective contributions of these indi-

viduals and organizations, and for that, I am genuinely thankful.

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Uyen Nguyen
Title Streamlining Project Management: Enhancing Efficiency

and Progress Tracking Through a CRM Website
Year 2024
Language English
Page 55
Name of Supervisor Jari Töyli

As business expands, managing customer relationships alongside internal pro-
jects becomes increasingly complex. Traditionally, organizations have relied on
separate systems to handle these areas, often resulting in data duplication,
communication breakdowns, and inefficient processes. This thesis outlines the
journey from conceptualization to deployment of a CRM website designed to
address these challenges by combining customer relationship management and
project management into a single, cohesive platform.

This integrated approach enables businesses to streamline operations, enhance
communication, and eliminate redundancies, thereby saving time and improving
overall efficiency. The CRM web application developed as part of this thesis not
only supports the comprehensive monitoring of project progress and efficient
distribution of tasks but also enhances customer management by providing de-
tailed insights into customers. The research methodology includes a quantitative
analysis, supplemented by case studies that demonstrate the application’s im-
pact on organizational productivity and workflow optimization.

Key aspects such as task allocation, progress tracking, customer management,
sale tracking and managerial oversight are explored in depth. The system’ archi-
tecture, data security measures, and the integration of dynamic management
features support real-time project tracking and robust customer relationship
management. The implementation of this integrated CRM system has demon-
strated significant improvement in project oversight and customer management
capabilities, underscoring the effectiveness of merging these two critical busi-
ness functions into a powerful tool.

Keywords Java, Spring Boot, React, Redux, MySQL, CRM

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

1 INTRODUCTION ... 9

2 BACKGROUND ... 10

2.1 Customer Relationship Management (CRM) ... 10

3 SYSTEM ARCHITECTURE .. 13

3.1 System Requirements .. 13

3.2 System Analysis ... 14

4 RELEVANT TECHNOLOGY ... 16

4.1 Frontend Technology Used .. 16

4.2 Backend Technology Used .. 18

5 SYSTEM ARCHITECTURE DIAGRAM .. 22

5.1 System Functional Diagram .. 22

5.2 General Use Case Diagram ... 22

6 IMPLEMENTATION AND APPROACH .. 24

6.1 Design Database .. 24

6.2 Backend and Frontend Setup .. 26

6.3 Version Control .. 28

6.4 Postman .. 29

6.5 Backend Logic .. 29

6.5.1 RESTful API Endpoint ... 30

6.5.2 Database Connection .. 35

6.5.3 Feature Implementation ... 35

6.6 Frontend Logic ... 38

7 TESTING AND OUTCOMES ... 41

7.1 Testing ... 41

7.2 Outcomes .. 42

8 CONCLUSIONS ... 52

REFERENCES .. 54

LIST OF FIGURES

Figure 1: Growth metrics using CRM (What does CRM software do?, n.d.) 11

Figure 2: CRM integrated with Project Management (Lorek, 2018) 12

Figure 3: Redux data flow (Abramov D. et al., 2023).. 17

Figure 4: Spring Framework Architecture (Rod et al., 2004-2008)....................... 19

Figure 5: REST Architecture (Fadatare, n.d.) .. 20

Figure 6: How client and server interact in MySQL (Hausman, 2023) 21

Figure 7: System functional diagram .. 22

Figure 8: General use case diagram .. 23

Figure 9: The Enhanced Entity-Relationship Diagram (EER) 26

Figure 10: Open project package in Intellij ... 27

Figure 11: Frontend workspace .. 27

Figure 12: GitHub repository for backend .. 28

Figure 13: GitHub repository for frontend ... 28

Figure 14: Create CRM workspace in Postman .. 29

Figure 15: Database config in the backend .. 35

Figure 16: Backend Module structure .. 36

Figure 17: Schedule for update task and project status 37

Figure 18: Login Function.. 38

Figure 19: Fetch members function .. 39

Figure 20: Handle submission for adding member .. 40

Figure 21: Login Page .. 42

Figure 22: Navigate to the dashboard after successful login 43

Figure 23: Client page ... 43

Figure 24: Add and Update Client page .. 44

Figure 25: Member page .. 44

Figure 26: Add and Update member page ... 45

Figure 27: Role page ... 45

Figure 28: Project page for Admin role... 46

Figure 29: Add and Update project page .. 46

Figure 30: Task page ... 47

Figure 31: Add and Update task page ... 47

Figure 32: Profile page .. 48

Figure 33: Job statistics ... 48

Figure 34: Lead page ... 49

Figure 35: View Specific Project .. 49

Figure 36: Event Calendar ... 50

Figure 37: Editing event popup ... 50

Figure 38: Forms for forgot password .. 51

LIST OF TABLES

Table 1: User Role Analysis ... 14

Table 2: Module Analysis .. 15

Table 3: Authentication endpoint ... 30

Table 4: Client Endpoint.. 30

Table 5: Project Endpoint ... 31

Table 6: Role Endpoint .. 32

Table 7: User Endpoint ... 32

Table 8: Task Endpoint .. 33

Table 9: Statistics Endpoint... 34

Table 10: Event endpoint .. 34

LIST OF ABBREVIATIONS

API Application programming interface

AWS Amazon Web Service

CRM Customer Relationship Management

CRUD Create-Read-Update-Delete

CSS Cascading Style Sheets

DOM Document Object Model

GUI/UI Graphical/User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JDK Java Development Kit

JSON JavaScript Object Notation

JWT JSON Web Token

MVC Model-View-Controller

RPC Remote Procedure Call

XML Extensible Markup Language

 9

1 INTRODUCTION

In response to the increasingly complex landscape of project management and

the growing demand for streamlined task allocation and progress tracking, this

project aims to develop and implement a web-based Customer Relationship

Management (CRM) system. The system is specifically designed for modern or-

ganizations seeking to enhance their project management capabilities. Recogniz-

ing the inherent inefficiencies in conventional project management methodolo-

gies, such as disjointed communication and limited real-time visibility, the devel-

opment of this CRM web application seeks to streamline these processes. By

providing a centralized hub for task management and progress monitoring, it

aims to empower managers with comprehensive oversight capabilities while fos-

tering seamless collaboration among team members.

The primary objective of this initiative is to develop a robust web-based CRM sys-

tem tailored to modern project management needs, focusing on enhancing task

allocation and progress tracking capabilities. By integrating best practices from

project management methodologies, software development principles, and user

experience design, the system is designed to ensure effectiveness and usability.

The overarching goal is to give managers real-time visibility into project progress,

facilitating informed decision-making and resource allocation while promoting

seamless communication and collaboration among team members. Ultimately,

the project seeks to optimize task management workflows, reduce redundancy,

minimize delays in project delivery, improve organizational productivity, and

promote a culture of transparency and accountability within the organization.

 10

2 BACKGROUND

In response to the increasingly complex landscape of managing both customer

relationships and internal projects, this thesis has developed and deployed a

web-based Customer Relationship Management (CRM) system. This integrated

system is tailored to meet the needs of modern organizations that aim to

streamline operations and improve efficiency across project management func-

tions. Driven by the challenges posed by traditional separate systems, such as

data duplication and inefficient processes, this CRM web application integrated

project management and customer relationship management into a single, cohe-

sive platform. By offering a centralized hub for task management, progress track-

ing, and customer insights, the system provides managers with strong oversight

capabilities and enhances collaboration among team members. Implementing

this integrated CRM solution addresses the inherent inefficiencies in convention-

al methodologies. It demonstrates significant improvement in project oversight

and customer management, showcasing the effectiveness of merging these criti-

cal business functions.

2.1 Customer Relationship Management (CRM)

Customer Relationship Management (CRM) encompasses a blend of methodolo-

gies, strategies, and technological solutions companies employ to oversee and

analyze customer interactions and data across the entire customer journey. The

primary objective is to elevate customer service relationships, facilitate customer

retention, and drive sales expansion. In contemporary business discourse, the

term CRM predominantly refers to CRM software—a unified platform consolidat-

ing sales, marketing, and customer support activities alongside organizational

processes, policies, and workforce management.

In modern business management, Customer Relationship Management (CRM) is

crucial for enhancing customer satisfaction, fostering loyalty and driving growth.

CRM encompasses processes, technologies, and strategies to manage customer

interactions effectively. This includes lead management, onboarding, communi-

 11

cation, support, and feedback collection. CRM strategies focus on customer seg-

mentation, relationship building, delivering exceptional experiences, and data-

driven approaches. Collaborative efforts across sales, marketing, and support

teams ensure seamless interactions-effective CRM practices in building long-

term relationships, driving growth, and maintaining competitiveness.

Figure 1 illustrates the positive impact of CRM on business performance, show-

ing substantial improvements in lead conversion rates, revenue per salesperson,

customer retention, sales cycle duration, and sales and marketing costs. The data

is collected through an internal survey of Zoho.

Figure 1.Growth metrics using CRM (What does CRM software do?, n.d.)

CRM project management offers a structured approach to coordinating essential

functions and tasks within CRM initiatives. It aligns strategies with business ob-

jectives, optimizes resource allocation, mitigates risks, and encourages continu-

ous improvement. Built on CRM fundamentals based on customer needs and da-

ta analysis, CRM project management integrates these principles into a project

management framework. This integration allows project managers to utilize

CRM insights, technologies, and cross-functional collaboration to successfully

implement and oversee CRM initiatives, ensuring organizational success in a

competitive environment. Figure 2 below describes a flowchart illustrating the

stages of a Project-Based CRM system, from relationship building and bid invita-

tions through bid tracking to project execution.

 12

Figure 2. CRM integrated with Project Management (Lorek, 2018)

 13

3 SYSTEM ARCHITECTURE

3.1 System Requirements

The Customer Relationship Management (CRM) system must meet several func-

tional requirements to effectively support its intended operational objectives.

First, the system must provide secure login capabilities for all users, including

administrators, project managers, and employees. Once authenticated, the user

can access various functionalities based on their roles.

The system must facilitate comprehensive user management by allowing the ad-

dition, editing, deletion, and viewing of user accounts. In addition, it should ena-

ble the management of client information and roles, ensuring that administra-

tors can add and update this data as needed. The system will also support pro-

ject management by allowing users to create, modify, delete, and view project-

related information.

Task Management is another critical requirement, the system must enable the

delegation and tracking of tasks within projects, ensuring that project managers

can assign tasks to team members and monitor their progress. Additionally, the

system should provide tools for tracking the work progress of users on various

projects, allowing project managers to monitor and manage tasks effectively.

To support decision-making and oversight, generating aggregated statistics and

reports on the progress of projects shall be a function of the system. This func-

tionality will enable administrators to gauge overall productivity, identify poten-

tial bottlenecks, and make informed decisions to steer project directions effec-

tively.

The CRM systems must also meet several non-functional requirements to ensure

reliability, security, and performance. The system shall employ encryption meth-

odologies for storing passwords, ensuring that user credentials remain secure

even in the event of unauthorized database access. Furthermore, all system data

 14

shall be accessible only after a successful login, safeguarding sensitive infor-

mation from unauthorized users. Role-Based Access Control (RBAC) is imple-

mented to enhance data security and ensure appropriate access levels within the

system, assigning system permissions based on the user's role within the organi-

zation.

3.2 System Analysis

The system analysis aims to thoroughly understand the requirements and con-

straints of the new CRM system. This detailed analysis facilitates the design of a

system architecture that meets the specific needs of users and aligns with the

organization's overall objectives.

Table 1 outlines the responsibilities and system interactions for different user

roles within an organization, including Administrators, Project Managers, and

Employees.

Table 1. User Role Analysis

User Administrator

(ADMIN)

Project Manager

(LEADER)

Employee

(MEMBER)

Responsibility -Managing user ac-

counts and permis-

sions.

-Adding, editing, and

deleting employee,

client, role, and project

information.

- Creating and manag-

ing projects.

- Assign tasks to team

members.

-Monitoring project

progress and perfor-

mance, client for

whom responsible.

- Updating work pro-

gress by updating

task status

- Viewing assigned

tasks

System Interac-

tion

- Full access to all sys-

tem functionalities.

- Ability to configure

system settings and

preferences.

- Access to project

management tools.

- Ability to view pro-

ject-specific

- Access personal

task dashboard

- Access to their pro-

file page

 15

Table 2 provides an overview of the critical modules within a management sys-

tem, detailing the features and purposes of each module. The modules covered

include User Management, Project Management, Task Management, Role Man-

agement, and Client Management. Each section highlights the specific function-

alities such as user authentication, project tracking, task assignment, role modifi-

cation, and client data management, explaining how these contribute to the

overall operational efficiency and strategic execution within the organization.

Table 2. Module Analysis

Modules User

Management

Project

Management

Task

Management

Role

Management

Client

Management

Event

Management

Features Authentication View, Crea-

tion, Editing

and deleting

View, Crea-

tion, Editing

and deleting

Role assign-

ment.

View, Crea-

tion, Editing

and deleting

View, Crea-

tion, Editing

and deleting

Role-base ac-

cess

Tracking User assign-

ment

Lead Man-

agement

Profile Man-

agement

Task imple-

ment

Tracking Assign Pro-

ject

Purpose Manage ac-

counts and

permissions.

Effective

planning,

execution,

monitoring

Organize

work, assign

tasks

Enforce role

permissions

Manage cli-

ent data

Manage

events

 16

4 RELEVANT TECHNOLOGY

This section provides an overview of the technologies used in the development

of the CRM system, focusing on the frontend technologies that contribute to the

system's architecture and enhance user interaction and experience.

4.1 Frontend Technology Used

The frontend of the CRM system is developed using several key technologies that

work together to create an interactive and user-friendly interface. These tech-

nologies include JavaScript, React, Redux, and Bootstrap.

JavaScript is a programming language that developers use to make interactive

web pages. From refreshing social media feeds to displaying animations and in-

teractive maps, JavaScript functions can improve a website's user experience. As

a client-side scripting language, it is one of the core technologies of the World

Wide Web. (What is JavaScript?, n.d.)

ReactJS is an open-source library that is utilized for building up the UIs explicitly

for single-page applications. ReactJS empowers software engineers to make im-

mense web applications that can use data and can change after some time with-

out reloading the page. Along these lines, React has a savvy diffing calculation

that it uses to just recover in its DOM hub what should be recovered while it

keeps all that else with no guarantees. The utilization of reusable parts gives a

simple method of building the application. The brilliant thought of React moreo-

ver makes arranging UI reliable and takes a huge weight off from programmers

so they could focus on more huge limits and business reasoning. Respond like-

wise does not force a particular method to play out a specific undertaking. It

gives a rich arrangement of libraries from which clients can choose to play out a

specific undertaking. Lifecycle strategies and React Hooks are other significant

highlights that handle the arrangement of occasions that get called during the

lifecycle of a segment (Prateek et al., 2020).

 17

Utilizing React's capabilities, this CRM project leverages the framework to build

complex user interfaces by breaking the code into manageable components,

simplifying code management.

ReactJS has a rich ecosystem that includes must-have tools like Redux or Flux.

Redux is a predictable state container for JavaScript applications. It is a

standalone library, but it is used most often as a state management layer with

React. Like Flux, its major goal is to bring consistency and predictability to the

data in applications. Redux divides the responsibilities of state management into

a few separate units (Garreau and Fauro, 2018)

Figure 3 illustrates how Redux operates, actions are triggered by user interac-

tions, the store reducers to compute a new state, and the UI displays these up-

dated values.

Figure 3. Redux data flow (Abramov D. et al., 2023)

Bootstrap is a free, open-source frontend development framework for the crea-

tion of websites and web applications. Designed to enable responsive develop-

ment of mobile-first websites, Bootstrap provides a collection of syntax for tem-

plate designs (Zola, 2022)

 18

As a framework, Bootstrap encompasses the fundamentals of responsive web

development, simplifying the process for developers who can simply integrate

code into a pre-established grid system. Bootstrap is constructed using HTML,

CSS, and JavaScript. By leveraging Bootstrap, web developers can accelerate

website development significantly, bypassing the need to concern themselves

with fundamental commands and functions.

4.2 Backend Technology Used

The backend of the CRM system is built using robust technologies that ensure

reliable performance, security, and scalability. These technologies include the

Spring Framework/Spring Boot, Java, RESTful APIs, MySQL, and AWS S3 storage

Java is a modern programming language for high-level programming, open-

source, and easy to learn. Using Java is widespread, with a well-developed eco-

system, numerous libraries, and technology frameworks, and accordingly, it pro-

vides an infinite number of perspectives for development. Java combines para-

digms of procedural, object-oriented, and functional programming in a modern

way with easy syntax, although it is more descriptive than Python and JavaScript.

(Svetlin Nakov & Team, 2021)

The Spring Framework fundamentally serves as a sophisticated container for de-

pendency injection, enhanced with several utility features, such as database ac-

cess, proxies, aspect-oriented programming, RPC, and a web MVC framework.

These features are part of a comprehensive programming and configuration

model that facilitates the development of modern Java-based enterprise applica-

tions across any deployment platform. According to the Spring documentation

on spring.io, at its core, Spring focuses on providing robust infrastructural sup-

port at the application level, managing the complex "plumbing" of enterprise ap-

plications so developers can concentrate on application-level business logic. This

infrastructure focus allows teams to work more efficiently without being bogged

down by the specifics of deployment environments, making the development

process faster and more streamlined. Spring’s approach ensures that enterprise

 19

applications have strong support for foundational operations, allowing develop-

ers to focus on core business objectives without unnecessary ties to specific de-

ployment environments. (Rod et al., 2008).

Figure 4 provides an overview of the Spring Framework architecture, highlighting

its core components: DAO, ORM, JEE, Web, AOP, and Core, which serve various

functions from data access and transaction management to web development

and aspect-oriented programming.

Figure 4. Spring Framework Architecture (Rod et al., 2008)

REST API is an architectural style that allows for communication between differ-

ent systems over the internet. A RESTful API is designed to be simple, scalable,

and maintainable, with a set of constraints that define how the system should

behave. (Masse, 2021)

API developers can design APIs using several different architectures. APIs that

follow the REST architectural style are called REST APIs. Web services that im-

plement REST architecture are called RESTful web services. The term RESTful API

generally refers to RESTful web APIs. However, the terms REST API and RESTful

API can be used interchangeably (What is a RESTful API?, n.d.)

 20

The primary function of a RESTful API is the same as browsing the internet. The

client contacts the server by using the API when a resource is required. Figure 5

below illustrates how Rest API works, 5 showcasing the interaction between con-

sumers (clients) and service providers (servers). Clients send HTTP requests to

REST APIs on the web server, which interacts with the database and returns

HTTP responses.

Figure 5. REST Architecture (Fadatare, n.d.)

MySQL, developed by Oracle, operates as an open-source relational database

management system, employing Structured Query Language (SQL) for data ma-

nipulation within its structure. Data in MySQL is structured across multiple ta-

bles, streamlining storage and organization. These tables are interconnected

through predefined relationships. Compatible with various operating systems

like macOS, Linux, FreeBSD, and Windows, MySQL comprises two key compo-

nents: a data management server and client interfaces responsible for executing

tasks such as data modification and report generation. Using the Client-Server

Architecture model, users access resources via a central server through network

services facilitated by client computers. Clients interact with the server through a

graphical user interface (GUI), with the server responding to requests promptly

upon matching instructions. Figure 6 below shows the interaction between the

client and when using MySQL. The database management system (DBMS) com-

 21

municates with the database using SQL, facilitating data exchange with various

applications such as enterprise resource planning (ERP), web applications, dy-

namic websites, and other applications, which are accessed by the DBMS end

user (client).

Figure 6. How client and server interact in MySQL (Hausman, 2023)

Amazon Simple Storage Service (Amazon S3) is an object storage service that of-

fers industry-leading scalability, data availability, security, and performance. Cus-

tomers of all sizes and industries can use Amazon S3 to store and protect any

amount of data for a range of use cases, such as data lakes, websites, mobile ap-

plications, backup and restore, archive, enterprise applications, IoT devices, and

big data analytics. Amazon S3 provides management features to optimize, organ-

ize, and configure access to data, meeting specific business, organizational, and

compliance requirements. (Cloud Object Storage - Amazon S3, n.d.)

 22

5 SYSTEM ARCHITECTURE DIAGRAM

5.1 System Functional Diagram

Figure 7 illustrates a hierarchical access and control diagram for a CRM website,

detailing the different levels of permissions and functionalities assigned to vari-

ous user roles such as Administrator, Project Manager, and Member/Staff. The

diagram shows how each role interacts with different modules, including Role

Management, User Management, Client Management, Project Management,

Task Management, and Statistics.

Figure 7. System functional diagram.

5.2 General Use Case Diagram

A use case describes how a system interacts with its users, typically represented

as a sequence of steps or actions that the system performs to achieve a specific

goal. It outlines the functionality of the system from the perspective of an exter-

nal user or actor.

Figure 8 below represents a use case diagram for a CRM system, showing the in-

teractions between various user roles and system functionalities. The central us-

 23

ers are Admin, Project Manager, and Member, all interacting through a standard

"User" interface that includes a login mechanism.

Figure 8. General use case diagram.

Once users log in, they access various functionalities based on their roles. Admin-

istrators can perform comprehensive roles and perform user management, con-

figure the system to reflect organizational hierarchies, maintain client records,

and oversee project statistics to inform decision-making and ensure smooth op-

eration. Project managers focus on managing projects and tasks, creating, and

modifying project details, assigning tasks to team members, and monitoring task

progress. They also stay informed about client interactions to ensure projects

meet expectations and deadlines. Members update their work progress, access

their task dashboards, track assigned tasks, view work statistics, and report task

completion, promoting accountability and alignment with project goals.

The system design ensures secure and role-appropriate interactions, leveraging a

centralized login process to streamline access while maintaining robust data se-

curity and role-based access control. This structured interaction flow helps each

user efficiently perform their duties, enhancing the overall effectiveness of the

CRM system in managing employee work and project progress.

 24

6 IMPLEMENTATION AND APPROACH

6.1 Design Database

Based on the insights gained from the system analysis and system architecture

diagrams outlined earlier, the design of the database tables is significantly in-

formed. In particular, this facilitates the structured organization of all tables

within the system.

The Clients Table stores vital information about clients. It includes fields for the

client’s information, such as full name, company name, and phone number. The

client details are added as needed to support business operations and client

management. The primary key for this table is id, which ensures that each cli-

ent's record is uniquely identifiable.

The Users Table manages user account data necessary for system login. It in-

cludes email and password fields, which are essential for authenticating users.

Both email and password are required when creating a new user account. For

security, the password is encrypted before storage in the database. The field la-

beled username stores the user's full name. Additional details such as phone

numbers and images are also maintained to provide more comprehensive user

profiles.

The Roles Tables catalogs all the roles available within the system, with each role

possessing distinct access privileges. Roles are crucial for assigning permission to

users and ensuring appropriate access control. The relationship between users

and roles is many-to-many, necessitating an intermediary table named us-

ers_roles. It stores the users' foreign keys and roles tables to link them effective-

ly. The setup facilitates flexible and secure permission management across the

system.

The Projects table is designed to record comprehensive information about each

project, including the project's name, start date and end date, status and deal.

The id is the primary key, ensuring each project record is unique. Additionally,

 25

the client_id field identifies the client associated with the project, clarifying client

ownership. The originator_id indicates the project’s originator, typically the pro-

ject manager, providing clarity on project leadership and responsibility. This

structure supports effective project management and client relationship track-

ing.

The Tasks table is essential for managing and organizing project tasks. It stores

comprehensive details about each task, including task’s name, start date, end

date, and status. The implementer_id is a critical field identifying the individual

responsible for the task and facilitating accountability and oversight. The rela-

tionship between tasks and users(implementers) is many-to-many, necessitating

an intermediary table, implementers_tasks, which contains the foreign keys from

both the Tasks and Users tables to link them. Additionally, project_id in the Tasks

table indicates which project the task belongs to, enabling project-specific task

management. The fields for date and status are beneficial for implementers and

managers to monitor and track task progress effectively.

The Events table manages event details, including title, date time, and category.

It establishes a one-to-many relationship with the users table, indicated by in-

cluding the owner_id as a foreign key.

Figure 9 provides an oversight visualization of the database schema, detailing

each entity, its fields, and the relationships between entities. The schema in-

cludes several tables, as mentioned above. The figure serves as an essential tool

for understanding the structure of the database and the flow of information be-

tween different parts of the system, ensuring data consistency and integrity

across the database.

 26

Figure 9. The Enhanced Entity-Relationship Diagram (EER)

6.2 Backend and Frontend Setup

For the backend, A CRM database was established on a MySQL localhost and it

was configured it using MySQL Workbench to commence the technical setup.

Subsequently, the project package was initialized at https://start.spring.io/,

where the necessary dependencies were selected. IntelliJ IDEA was selected as

the Integrated Development Environment (IDE) for the development of the

backend. Figure 10 shows the structure of the project when it is opened in Intel-

liJ. The pom file contains dependencies added to the project.

https://start.spring.io/

 27

Figure 10. Open project package in IntelliJ.

For the frontend, Visual Studio Code for React development is an ideal code edi-

tor for implementing React, it is a free and open-source code editor. It is widely

used by developers for web development because VS code provides a rich set of

features designed to enhance productivity and streamline the development pro-

cess with some key features: IntelliSense, integrated terminal, extensions, and

version control. Figure 11 shows the workspace visualization in Visual Studio

Code, as well as the structure of the project. All dependencies required for the

project, such as React libraries and other packages, are in package.json file.

Figure 11. Frontend workspace

 28

6.3 Version Control

The primary purpose of using a version control system in this project is to act as

a backup for the project, safeguarding against data loss or corruption on local

machines. Additionally, they offer a comprehensive history of changes made to

the project, which can be valuable for auditing purposes or understanding past

decisions. Figures 12 and 13, respectively, depict the repositories for the front

end and back end. The git ignore is added to exclude unnecessary files or folders

from being tracked in the repository.

Figure 12. GitHub repository for backend.

Figure 13. GitHub repository for frontend.

 29

6.4 Postman

Postman is used to test backend API. Postman allows the sending of HTTP re-

quests with different methods such as GET, POST, PUT, DELETE,

and PATCH, and allows the posting of data as a form(key-value), text, and JSON.

Postman also supports various types, including text, image, XML, and JSON. Addi-

tionally, it offers features like authorization support and the ability to modify re-

quest headers as needed.

CRM workspace is created in Postman and organized based on module manage-

ment, structuring folders shown in Figure 14 below, configuring a module folder

in this manner not only facilitates the logical inheritance of authorization settings

from the parent folder to the service within the module (since all endpoints re-

quire authorization to access them) but also simplifies the management of APIs

for each module.

Figure 14. Create CRM workspace in Postman

6.5 Backend Logic

The backend, also known as the server side, refers to the part of the application

that manages data storage, business logic, and server configuration. It is respon-

sible for processing requests from the frontend, performing database operations,

and implementing core functionalities that the user does not directly interact

with.

 30

6.5.1 RESTful API Endpoint

Given the system's stringent adherence to role-based access and its myriad fea-

tures, compiling a list of endpoints streamlines the development process, pre-

venting leaving out any functionalities and guaranteeing compliance with role-

based access rules. The tables below categorize endpoints based on feature pur-

poses within each entity module and corresponding role-based access.

Table 3 lists endpoints used for authentication, facilitating access control, and

user verification within the system.

Table 3. Authentication endpoint

Method Endpoint Role Access Purpose

POST

/api/v1/auth/login All role Authorize user

/api/v1/auth/register/{roleId} Admin Register new user and as-

sign role to the user

/api/v1/auth/refreshToken All role Obtain new access token

when token is expired

/api/v1/logout All role Log out user

Table 4 presents a comprehensive list of endpoints dedicated to client manage-

ment within the system. It provides an overview of accessing and managing cli-

ent-related functionalities and data.

Table 4. Client Endpoint

Method Endpoint Role Access Purpose

GET /api/v1/clients Admin, manag-

er

View all clients

 31

POST /api/v1/clients Admin Add new client

PUT /api/v1/clients/{id} Admin Update client

DELETE /api/v1/clients/{id} Admin Delete client

POST /api/v1/client/image Admin Upload client image

Similar to Table 4, Table 5 provides a detailed compilation of endpoints, tailored

explicitly for project modules. It offers an organized overview of endpoints cru-

cial for managing various aspects of project modules within the system.

Table 5. Project Endpoint

Method Endpoint Role ac-

cess

Purpose

GET /api/v1/projects All role View all

projects

GET /api/v1/projects/{id} Admin,

manager

View

specific

project

POST /api/v1/projects Admin,

manager

Add new

project

PUT /api/v1/projects/{id}/originator/{originatorId} Admin,

manager

Update

project

DELETE /api/v1/projects/{id} Admin,

manager

Delete

project

 32

Table 6 outlines endpoints relevant to the role module, offering a comprehensive

breakdown for managing user roles within the system.

Table 6. Role Endpoint

Method Endpoint Role Access Purpose

GET /api/v1/roles

Admin

View all roles

PUT /api/v1/roles Update role descrip-

tion

DELETE /api/v1/roles Delete role

Table 7 provides a list of endpoints pertinent to user management. It offers in-

sights into accessing and manipulating user-related functionalities within the sys-

tem, facilitating efficient user administration and interaction.

Table 7. User Endpoint

Method Endpoint Role Access Purpose

GET /api/v1/users Admin, man-

ager

View all users

GET /api/v1/users/{id} Admin View specific user

GET /api/v1/users/profile All role View user profile

when login suc-

cessful

POST /api/v1/users/role/{roleId} Admin Add new user and

assigned role to

 33

the user

POST /api/v1/{userId}/uploadImage All role Allow user to up-

load image profile

PATCH /api/v1/users/{id} Admin Update user

DELETE /api/v1/users/{id} Admin Delete user

Table 8 provides a comprehensive of endpoints specifically designated for task

module operations. It serves as a comprehensive guide for navigating and man-

aging task-related functionalities within the system, facilitating streamlined task

administration and tracking.

Table 8. Task Endpoint

Meth-

od

Endpoint Role Access Purpose

GET /api/v1/tasks All role View all

tasks

GET /api/v1/tasks All role View spe-

cific task

POST /api/v1/tasks/projects/{projectId}/users/{

userId}

Admin,

manager

Add new

task and

assign an

imple-

menter to

the task

PUT /tasks/id Mem- Update

 34

ber/staff task status

PUT /tasks/{id}/implementer/{implementerId} Admin,

manager

Update

task

DE-

LETE

/tasks/{id} Admin,

manager

Delete task

Table 9 compiles endpoints dedicated to statistics retrieval and analysis within

the system.

Table 9:.Statistics Endpoint

Method Endpoint Role Access Purpose

GET /api/v1/taskStatistics All role View task statis-

tics

GET /api/v1/jobStatitstic/{projectId} Admin, man-

ager

View project sta-

tistics

Table 10 provides an overview of the event module management endpoints, de-

tailing various functionalities and operations associated with event management

within the system.

Table 10. Event endpoint

Method Endpoint Role access Purpose

GET /api/v1/event All role View all event

GET /api/v1/event/{id} All role View specific event with its

detail

 35

POST /api/v1/event All role Add new event

PUT /api/v1/event/{id} All role Update the existing event

DELETE /api/v1/event/{id} All role Delete specific event

6.5.2 Database Connection

Before, when initializing the project package, the package already added the

MySQL driver. Now need to configure application properties to connect it with

the CRM database in the localhost. Figure 15 shows how the database is config-

ured in application properties. With this configuration, the server will access a

database with the username and password provided beside

the spring.jpa.hibernate.ddl-auto=update automatically generates and updates

database schemas based on entity mapping in the application.

Figure 15. Database config in the backend.

6.5.3 Feature Implementation

Figure 16 below shows how the backend is structured. This source code is orga-

nized to ensure a three-tier model comprising a controller, business logic, and

data access layers. Apart from packages structured within these layers, addition-

al packages like util and exception exist.

 36

Figure 16: Backend Module structure.

The login and logout features are crucial for managing user authentication within

the system. When users attempt to log in, they provide their email and pass-

word. If the credentials are valid, Spring Security generates an authentication

token (JWT) to represent the user’s identity, allowing them to access the system.

The system invalidates the user's token for logging out, effectively ending their

session, and ensuring a secure logout. The application enforces strict security

measures to ensure that users cannot register externally. Only administrators

possess the privilege to register new users. Upon registering a new user, admin-

istrators also assign specific roles to them. Consequently, newly created users

gain access to the system using their assigned role-based accounts, enabling

them to interact with the application according to their role.

A scheduled task status update feature is crucial in the implementation of task

service management. This function retrieves all tasks and updates their status

based on the start and end dates.

 37

 In Figure 17, within the component, the @Scheduled is employed with the cron

expression to automate the daily update of the task and project status. This

scheduling ensures that task and project status are refreshed precisely at mid-

night each day, thereby maintaining the system's accuracy and timeliness of task

and project management data.

Figure 17. Schedule for update task and project status.

For the comprehensive management of projects, tasks, clients, users and events

within the system, CRUD (Create, Read, Update, Delete) operations are essential.

These operations are facilitated through the repository for each respective enti-

ty-projects, clients, tasks, users, and events. Each entity is supported by service

layer methods designed to manage creation, retrieval, modification, and dele-

tion. These methods interface with the JPA repository layer to execute database

operations efficiently.

Additionally, the system incorporates validation checks to ensure data integrity

and consistency. When adding a project or task, the system validates that the

end date is after the start date, preventing the creation of logically incorrect rec-

ords. Furthermore, the system checks for any associated tasks or projects when

attempting to delete a user, project, or client. Suppose any tasks or projects are

linked to the entity being deleted. In that case, the delete operation will fail, en-

suring that dependent records are not left orphaned, which maintains the integ-

rity of the data relationships within the system.

Moreover, the system includes functionality for users to recover their passwords

if they forget them. The server is implemented to handle password recovery by

 38

verifying the existence of the user’s email in the system. If the email is verified,

the server sends the user a one-time password (OTP). If the OTP is valid, the

server allows users to change their passwords, ensuring a secure and efficient

password recovery process.

6.6 Frontend Logic

The frontend, or client-side, is the part of the application that interacts directly

with the user. It visually encompasses everything the user experiences on their

screen, including layout, design, and user interface elements. The frontend

communicates with the backend to display data, submit forms, and ensure a dy-

namic and responsive user experience.

On the login page, users can log in using their email and password. This function

sends login credentials to the server and handles the response, which includes an

access token, refresh token and user role. It saves these credentials in the local

storage by using the saveToken function for later use. After logging in successful-

ly, it will navigate to the dashboard page. It will notify the user of login success or

failure. Figure 18 illustrates the implementation of the login function, managing

server request and response.

Figure 18. Login Function

 39

Users can view their work progress on the dashboard page through task statistics

displayed in a chart. A function handles server requests and responses for pages

displaying lists or information. The page content is displayed correctly if the

server responds with a 200 HTTP status code. If a 403-status code is returned,

indicating insufficient permissions, the user is redirected to a 403-error page, and

a notification informs them of the access restriction. For other server er-

rors, a notification will alert the user that the request has failed. Figure 19 illus-

trates the implementation for displaying members in response to server re-

quests. If the response is successful, the list of members will be shown. If not, the

system will display an error message indicating the specific issue and will direct

to a 403-error page if the user cannot access the member page.

Figure 19. Fetch members function.

Similarly, the Add or Update pages provide a form for users to submit new or

updated data. These pages handle server requests and responses like list pages.

Upon a successful request, the user is redirected to the list page to view the up-

dated changes in the database. Figure 20 provided code snippet is a JavaScript

function handle submit that handles form submission for adding a new member.

The function trim removes any leading or trailing whitespace in the user inputs

and checks for non-empty fields.

 40

Figure 20. Handle submission for adding member

 41

7 TESTING AND OUTCOMES

7.1 Testing

To ensure the appropriate execution of functions and ascertain the adequacy of

the front end in managing server requests and responses, a comprehensive

manual testing strategy was implemented. This approach involves utilizing a

browser to execute a series of test cases that rigorously assess the frontend in-

terface’s management of server interactions and its response to errors through

HTTP status codes. These test cases are meticulously designed to evaluate all as-

pects of the system functionality to ensure its operational integrity and user in-

terface effectiveness.

The testing process was methodically structured to encompass all critical stages

of development and deployment. Initially, the project was executed in a local en-

vironment on a laptop, serving as the primary test bed. This local testing phase

involved using a web browser to interact with the application, providing immedi-

ate feedback and facilitating necessary adjustments. The project was launched in

a local development environment using a local host server setup. Various brows-

ers, including Google Chrome and Microsoft Edge, were employed to verify

cross-browser compatibility. The test cases validated the frontend's capability to

handle server requests and responses correctly, with particular attention given

to HTTP status codes and error handling. After local testing, the application was

deployed to a live domain. The application was then accessed via a browser at its

live domain to confirm its functionality, ensuring that any issues related to server

configuration or network conditions are identified and resolved.

 42

7.2 Outcomes

Figure 21 displays the appearance of the login interface. The login page displays

a minimalist and user-friendly login form that requires users to input their email

and password. It also includes an option for users who have forgotten pass-

words, enhancing accessibility and user support. If users attempt to access other

pages within the system without being logged in, they will be immediately redi-

rected to the login page to provide their credentials.

Figure 21. Login Page

Once successfully logged into the system, users are redirected to their dash-

board, which serves as a central hub displaying their work progress overview.

Throughout the system, a consistent layout features a left-side sidebar facilitat-

ing easy navigation to other pages. Additionally, a header bar showcases the us-

er’s profile image, which, upon clicking, triggers a dropdown menu allowing ac-

cess to the user’s profile page, as depicted in Figure 22.

 43

Figure 22. Navigate to the dashboard after successful login.

Figure 23 shows the client page, which contains a comprehensive list of clients

along with their respective details. Within this page, users are provided with an

Add button to add new clients. Each client card includes a dropdown menu, al-

lowing users to either update or delete the desired client entry.

Figure 23. Client page.

The add or update client, as in Figure 24, the form displays an enabling the user

to input or modify client details as needed. Upon submission by the user, the sys-

tem promptly notifies them regarding the success or failure of the action. In case

of errors, the system displays an error message to alert the user.

 44

Figure 24. Add and Update Client page.

Figure 25 illustrates the UI of the member page, which displays a list of members

and their details. This page includes a search bar allowing users to search for

specific member information and it also includes an add, update, and delete but-

ton.

Figure 25. Member page.

Figure 26 shows the form of adding and updating members. These forms present

a user-friendly form for inputting or updating member details. Additionally, it

includes an error handler to manage input errors effectively, ensuring a seamless

user experience.

 45

Figure 26. Add and Update member page.

The role page displays all available roles in the system, as shown in Figure 27.

Access to this page is restricted solely to administrators. Administrators possess

the capability to update the description associated with each role, given that the

system has already established access permissions for each role.

Figure 27. Role page.

The project page renders the response from the server based on the user's role.

Administrators see all projects listed, while project managers view only the pro-

jects they manage. Employees are presented with a list of projects associated

with tasks they are currently implementing, as depicted in Figure 28. This ap-

proach ensures that users access project information according to their roles

without dynamic adjustments on the page itself.

 46

Figure 28. Project page for Admin role.

Figure 29 is respectively the add and update project form. The add/update pro-

ject feature provides users a form to input or update project details. Typically,

project managers are responsible for creating projects. Therefore, when a pro-

ject is created, it is automatically assigned to the manager who initiated its crea-

tion. This streamlined process ensures efficient assignment and management of

projects within the system.

Figure 29. Add and Update project page.

The job page in Figure 30 displays all tasks assigned to the user, with the task list

tailored to the user's role. Administrators have access to view all tasks across the

system. Project managers are limited to viewing tasks under the projects they

manage. Regular users can only view tasks they are responsible for implement-

ing. This role-based rendering ensures that users see task information relevant to

their responsibilities within the system.

 47

Figure 30. Task page.

In the add/update task feature, administrators and project managers have the

ability to input new task details or update existing tasks through a form. Addi-

tionally, they can assign an implementer for the task, enabling efficient task

management. Add and update job forms are shown in Figure 31. These forms

allow the user to fill in the job details such as job name, start date, end date, se-

lect existing project and implementer, and able to select task status.

Figure 31. Add and Update task page.

Users can access their profile, as shown in Figure 32, by clicking on their profile

image in the header bar, as previously described. Users can view their profile in-

formation, including statistics related to their tasks on their profile page, as well

as a comprehensive task list. This centralized location offers users convenient

access to their personal information and task-related data.

 48

Figure 32. Profile page.

Users can view project progress within the system according to their roles by ac-

cessing job statistics in the dropdown header, illustrated in Figure 33. Adminis-

trators can view the progress of all projects, providing a comprehensive overview

of the entire systems status. Project managers can view the progress of their

projects, allowing them to monitor their specific responsibilities and ensure

timely completion. Employees can see a task progress chart for their assigned

tasks, helping them stay on track and maintain accountability for their work.

Figure 33. Job statistics.

The lead page is shown in Figure 34. On the lead page, all lead information,

which is active clients with projects, is displayed. To view more details about the

projects associated with each lead, toggle the button at the top of each lead ta-

ble.

 49

Figure 34. Lead page.

Moreover, clicking to view a specific project will present a list of tasks associated

with that project, accompanied by statistics job status visualized through a chart,

as depicted in Figure 35 below.

Figure 35. View Specific Project

Figure 36 is the event calendar page. On this page, users can view all scheduled

events, which are color-coded by category. Users can schedule new events by

 50

selecting a date on the calendar. This interface facilitates easy event manage-

ment and interaction.

Figure 36: Event Calendar

Figure 37 displays the edit form. To update or delete a specific event, the event

shown in the calendar is clicked. This action opens the edit form where changes

can be made to the event details, or the event can be deleted. This streamlined

process ensures efficient management of calendar events.

Figure 37: Editing event popup.

When users want to recover their password, they can click on "Forgot Password"

on the login page. This action navigates them to a series of forms, as shown in

Figure 38 where they enter their email address, verify the OTP sent to their

 51

email, and then set a new password. This process ensures secure password re-

covery and allows users to regain access to their accounts.

Figure 38: Forms for forgot password.

 52

8 CONCLUSIONS

In the culmination of this research endeavor for this thesis, a comprehensive ex-

ploration into the development and integration of a Customer Relationship

Management (CRM) website with project management functionality has been

undertaken. The synthesis of CRM concepts, project management principles, and

web development techniques has yielded valuable insights into the potential

benefits and implications of such an integrated platform.

Centralizing customer data and project details within a unified interface presents

a compelling advantage for businesses seeking to streamline operations and bol-

ster productivity. This holistic solution facilitates efficient management of cus-

tomer relationships and project workflows, thereby enhancing overall organiza-

tional effectiveness.

The meticulous development process, characterized by thoroughly considering

user requirements, system architecture, and technological selections, has result-

ed in a robust CRM website. Leveraging advanced front-end technologies, such

as ReactJS and Redux alongside the robust backend framework Spring Boot has

endowed the platform with a user-friendly interface, comprehensive functionali-

ty, and seamless integration capabilities.

Reflecting on this project, it is evident that the insights gained, and skills honed

throughout the development process are invaluable. From identifying critical as-

pects of the subject matter to making informed decisions about system architec-

ture and programming languages, this project has provided fertile ground for

personal and professional growth. Notably, in the pursuit of technological ad-

vancement, the importance of safeguarding data privacy and implementing

stringent security measures in the CRM website, the strategic choice of Spring

Boot for its robust security features underscores the importance of aligning

technology choices with project requirements.

 53

In conclusion, the culmination of this thesis marks not only the attainment of re-

search objectives but also the acquisition of practical skills and insights that will

continue to inform and enrich future endeavors in web development and project

management. Developing a CRM integrated with project management has yield-

ed several notable results. Real-time dashboards provide immediate access to

key metrics and performance indicators, enabling data-driven decision-making.

Increased efficiency is achieved by streamlining operations by centralizing client

information and project details, significantly reducing time spent on administra-

tive tasks. Data-driven insights are leveraged to uncover patterns and trends,

aiding in strategic planning, and enhancing customer relationship management.

Additionally, centralized client contact management organizes all client interac-

tions and communications within a single platform, improving accessibility and

management. The integrated lead tracking system further enhances the ability to

monitor and manage potential sales opportunities. For future advance-

ments, several avenues for research and development are proposed to improve

the system further. These include the incorporation of a chat box to facilitate re-

al-time user communication, the implementation of a notification system to

keep users informed of new records and essential updates, mobile optimization

to ensure the platform is fully accessible on mobile devices and the development

of advanced algorithms to forecast customer behavior and potential interactions.

These future enhancements and continued research efforts aim to elevate the

platform, ensuring it remains a robust and indispensable tool for businesses

seeking to optimize their customer relationship management and project man-

agement processes.

 54

REFERENCES

Cloud Object Storage - Amazon S3. (n.d.). Retrieved from Amazon Web Service:

https://aws.amazon.com/pm/serv-s3/?gclid=EAIaIQobChMI-

c7J3sfvhQMVAheiAx3jewu2EAAYASAAEgLyqPD_BwE&trk=b45f363b-

5d02-4b3f-87df-b7b1908ff05c&sc_channel=ps&ef_id=EAIaIQobChMI-

c7J3sfvhQMVAheiAx3jewu2EAAYASAAEgLyqPD_BwE:G:s&s_kwcid=AL!44

22!3!536452769228!e!!g!!

Dan Abramov and the Redux documentation authors. (2023, November 25).

Redux Essentials, Part 1: Redux Overview and Concepts. Retrieved from

Redux: https://redux.js.org/tutorials/essentials/part-1-overview-concepts

Fadatare, R. (n.d.). REST API Tutorial. Retrieved from Java Guide:

https://www.javaguides.net/p/rest-api-tutorial.html

Hausman, A. (2023, August 21). The Evolution of Database Monitoring Services.

Retrieved from Market Maven:

https://www.hausmanmarketingletter.com/the-evolution-of-database-

monitoring-services/

Johnson, Juergen Hoeller, Arendsen, Alef, Sampaleanu,Colin Sampaleanu. (2008).

The Spring Framework - Reference Documentation. Retrieved from

Spring: https://docs.spring.io/spring-framework/docs/2.5.x/spring-

reference.pdf

Kantor, I. (2007). The Modern JavaScript Tutorial-Part 1.

Lorek, S. (2018, November 2). What exactly is CRM … And How Does It Help

Construction Firms? Retrieved from Unanet:

https://unanet.com/blog/what-exactly-is-crm-and-how-does-it-help-

construction-firms

Marc Garreau and Will Fauro. (2018). Redux in action. Manning.

 55

Masse, M. (2021). REST API Design Rulebook. O'Reilly Media, Inc.

Prateek Rawat, Archana N. Mahajan. (2020). ReactJS: A Modern Web

Development Framework. International Journal of Innovative Science and

Research Technology , 1.

Svetlin Nakov & Team. (2021). Programming Basics with Java. Faber Publishing,

Sofia.

 Zoho CRM. (n.d) Retrieved from: What does CRM software do?

https://www.zoho.com/crm/what-is-

crm.html#:~:text=The%20World's%20Favorite%20CRM%2C%20Zoho,sup

port%20in%20a%20single%20system.

What is a RESTful API? (n.d.). Retrieved from Amazon Web Service:

https://aws.amazon.com/what-is/restful-api/

What is JavaScript? (n.d.). Retrieved from Amazon Web Service:

https://aws.amazon.com/what-

is/javascript/#:~:text=AWS%20SDK%20for%20JavaScript%20is,js%20for%

20server

Zola, A. (2022, 8). Bootstrap. Retrieved from TechTarget:

https://www.techtarget.com/whatis/definition/bootstrap

