

Aukusti Ojala

TCP/IP-Based SMS Alarm Plug-in
for SCADA System

Metropolia University of Applied Sciences

Bachelor of Engineering

Electrical and Automation Engineering

Bachelor’s Thesis

19 May 2024

Abstract

Author: Aukusti Ojala

Title: TCP/IP-Based SMS Alarm Plug-in for SCADA System

Number of Pages: 49 pages + 2 appendices

Date: 19 May 2024

Degree: Bachelor of Engineering

Degree Programme: Electrical and Automation Engineering

Professional Major: Automation Engineering

Supervisors: Matti Välikylä, Senior Lecturer

 Teemu Hirvonen, Project Manager

The goal of this thesis work was to develop a TCP/IP-based SMS alarm plug-in for
Hitachi Energy’s MicroSCADA control system. The currently used serial SMS plug-in
puts restrictions as to where the SMS modem can be physically located and cannot
be used in a virtualized MicroSCADA environment. TCP/IP-based SMS alarm plug-in
would solve these issues.

The development of the new plug-in began by investigating the currently used plug-
in’s features. After this, a SMS device was chosen. The SMS device of choice was
Teltonika Networks’ TRB140 gateway device. Modbus TCP was chosen as the
communication protocol as both TRB140 and MicroSCADA support the
communication protocol.

Reading received SMS messages was not a supported Modbus parameter for
TRB140. This was remedied by writing a script for TRB140 that allows received
messages to be read via Modbus.

TRB140 was configured to communicate with a MicroSCADA demo system, where
the rest of the plug-in was developed. The serial SMS plug-in’s components were
modified to be compatible with TRB140. An installation package and manual were
created for deployment of the plug-in.

The result of this thesis work is a TCP/IP-based alarm plug-in for MicroSCADA that
supports the most essential features of the previous plug-in. Some features of the
previous plug-in were not possible implement. Some bugs were also encountered.
These were documented and the possible solutions for these were presented. The
plug-in’s cybersecurity aspects should be investigated further before the plug-in can
be offered to a customer.

Keywords: Alarm systems, MicroSCADA, Modbus TCP, SMS

The originality of this thesis has been checked using Turnitin Originality Check

service.

Tiivistelmä

Tekijä: Aukusti Ojala

Otsikko: TCP/IP-pohjainen SMS-hälytyslisäosa SCADA-

järjestelmälle

Sivumäärä: 49 sivua + 2 liitettä

Aika: 19.5.2024

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Sähkö- ja automaatiotekniikka

Ammatillinen pääaine: Automaatiotekniikka

Ohjaajat: Lehtori Matti Välikylä

Projektipäällikkö Teemu Hirvonen

Opinnäytetyön tavoitteena oli kehittää TCP/IP-pohjainen SMS-hälytyslisäosa
Hitachi Energyn MicroSCADA-valvomojärjestelmään. Tällä hetkellä käytössä
oleva sarjaliikenteellä toimiva lisäosa asettaa rajoituksia sille, missä SMS-
modeemi voi fyysisesti sijaita, eikä sitä voida käyttää virtualisoidussa
MicroSCADA-ympäristössä. TCP/IP-pohjainen SMS-hälytyslisäosa ratkaisisi
nämä ongelmat.

Uuden lisäosan kehittäminen aloitettiin tutkimalla nykyisin käytössä olevan
lisäosan ominaisuuksia. Tämän jälkeen valittiin SMS-laite. SMS-laitteeksi
valittiin Teltonika Networksin TRB140-yhdyskäytävälaite. Protokollaksi valittiin
Modbus TCP, koska TRB140 sekä MicroSCADA tukevat kyseistä protokollaa.

Vastaanotettujen tekstiviestien lukeminen ei ollut tuettu Modbus-parametri
TRB140:ssä. Tämä korjattiin luomalla skripti TRB140:lle, joka syöttää
vastaanotetut viestit luettavaksi Modbusilla.

TRB140 konfiguroitiin kommunikoimaan MicroSCADA-demojärjestelmän
kanssa, jossa kehitettiin loput lisäosasta. Sarjaliikenteellä toimivan lisäosan
ohjelmakomponentteja muokattiin yhteensopiviksi TRB140:lle. Uudelle
lisäosalle kehitettiin asennusmanuaali ja -paketti lisäosan käyttöönottoa varten.

Opinnäytetyön tuloksena on TCP/IP-pohjainen hälytyslisäosa MicroSCADA:lle,
joka tukee edellisen lisäosan tärkeimpiä ominaisuuksia. Joitakin edellisen
lisäosan ominaisuuksia ei ollut mahdollista toteuttaa. Lisäksi havaittiin joitakin
bugeja. Nämä dokumentoitiin ja niihin esitettiin mahdolliset ratkaisut. Lisäosan
kyberturvallisuutta olisi tutkittava laajemmin ennen kuin lisäosaa voidaan tarjota
asiakkaalle.

Avainsanat: hälytysjärjestelmät, MicroSCADA, Modbus TCP,

SMS

Contents

List of Abbreviations

1 Introduction 1

2 Background 2

2.1 SMS 2

2.2 TCP/IP 2

2.3 Modbus TCP 5

2.4 Overview of MicroSCADA 7

2.4.1 SCADA in General 7

2.4.2 MicroSCADA in General 8

2.4.3 MicroSCADA System Architechture 8

2.4.4 Objects 10

2.4.5 SCIL 12

2.4.6 Alarm Management in MicroSCADA 15

2.5 Overview of Serial SMS Alarm Plug-in 16

2.5.1 User Interface 16

2.5.2 Technical Features 18

2.6 Teltonika TRB140 20

2.6.1 Overview 20

2.6.2 SMS Interfaces 21

3 Development of TCP/IP-Based SMS alarm plug-in 24

3.1 Connecting TRB140 with MicroSCADA 24

3.2 Selecting a Communication Protocol 24

3.3 TRB140 Configuration and Engineering 26

3.4 MicroSCADA System Configuration 27

3.5 MicroSCADA Application Engineering 29

3.6 Installation Packages 35

4 Testing of the New SMS Alarm Plug-in 36

4.1 Performance Evaluation 36

4.2 Bugs and Missing Features 38

4.2.1 Character Encoding 38

4.2.2 Mobile Calls 40

4.2.3 SCADA Server State Monitoring 41

4.2.4 Redundancy 41

4.2.5 Custom Modbus Register Block Issues 42

4.2.6 Other Missing Features 43

5 Cybersecurity of SMS Alarm Plug-in 44

6 Conclusion 46

References 48

Appendices

Appendix 1: Command Procedure Prototype for Sending Text Messages

Appendix 2: Installation Manual for the Plug-in

List of Abbreviations

AC: Alarm class. An attribute is used to categorize an alarm to 7

categories in MicroSCADA.

ADU: Application Data Unit. Modbus data packet.

AG: Alarm generation. An attribute that defines which object values

generates the alarm in MicroSCADA.

AL: Alarm. An attribute that indicates whether alarm is active or not in

MicroSCADA.

AR: Alarm Receipt. An attribute that indicates whether or not the alarm

has been acknowledged in MicroSCADA.

ASCII: American Standard Code for Information Interchange. A character

encoding standard.

COM: Serial communication port interface

CPI: Communication Programming Interface. Programmable interface

used to connect external programs or communication protocols for

MicroSCADA.

FTP: File transfer protocol

HTML: Hypertext Markup Language

HTTP: Hypertext Transfer Protocol

I/O: Input/Output

IA: Internet address. An attribute used to define IP address or the host

name in MicroSCADA.

IX: Index. An attribute that seperates individual process group objects in

MicroSCADA.

LAN: Local area network

LIN: Link. An object needed to establish process communication in

MicroSCADA.

LN: Logical name. An attribute defines which process group the object

belongs to in MicroSCADA.

MTU: Master Terminal Unit

NET: Network communication unit

NOD: Node. An object needed to establish process communication in

MicroSCADA.

OA: Object address. An attribute that defines the address of a signal

within a station in MicroSCADA.

OI: Object identifier. An attribute used as a descriptive and hierarchical

text for an object in MicroSCADA.

OV: Object value. An attribute that defines the value of an object in

MicroSCADA.

OX: Object Text. An attribute used as a descriptive text for an object in

MicroSCADA.

PDU: Protocol data unit. Part of Modbus message, which contains function

code and data.

RS-232: Recommended Standard 232. Standard for serial transmission.

RTU: Remote terminal unit.

SCADA: Supervisory Control and Data Acquisition

SCIL: Supervisory Control Implementation Language. Programming

language used in MicroSCADA.

SMS: Short message service

SSH: Secure Shell

STA: Station. An object used to define a device in MicroSCADA.

TCP/IP: Transmission Control Protocol / Internet Protocol

UN: Unit number. The number of the station where an object is found in

MicroSCADA.

USB: Universal Serial Bus

UV: User Variable. An attribute used as a global application variable in

MicroSCADA.

WebUI: Web user interface

XML: Extensible Markup Language

1

1 Introduction

This thesis project was commissioned by Hitachi Energy Finland Oy. In

industrial automation, SCADA systems are used to monitor and control

processes and to notify the operators of alarms and other critical events.

However, as operators are not always monitoring the process display, it is

important to redirect SCADA system’s alarms and events, for example via SMS

or email. This is why a SMS plug-in has been developed for Hitachi Energy’s

MicroSCADA product family. This plug-in allows MicroSCADA system’s alarms

to be redirected via SMS to the recipients.

The current plug-in supports a serial SMS modem. The modem is connected to

SCADA server’s COM port, communicating over RS-232 which limits the

transmission length. This puts restrictions as to where the SMS modem can

physically be installed. As the server can be located underground where the

modem’s signal strength can be less than adequate, an alternative solution is

needed. Also, as some MicroSCADA systems run in a virtualized environment,

there are no physical COM ports available.

The main objective of this thesis project was to develop a TCP/IP-based SMS

alarm plug-in for MicroSCADA. This gives the possibility to connect the SMS

interface to a MicroSCADA system without having direct physical link, thus

making it possible to locate the SMS interface in a more receptive area within

the SCADA network. The main functionalities for the new SMS alarm plug-in are

as follows:

• The communication between MicroSCADA and SMS interface needs
to be a TCP/IP-based communication protocol.

• The alarms generated by the MicroSCADA system need to be sent
to the recipients via SMS.

• The recipients need to be able to acknowledge MicroSCADA system
alarms remotely via SMS.

2

Other goals for the thesis were performance evaluation of the new plug-in and

making installation packages which are available for engineers. The new plug-

in’s cybersecurity aspects were also to be evaluated.

The new alarm plug-in was tested and developed in a demo MicroSCADA

application. Ideally the new alarm plug-in will have the same functionalities as

the serial SMS alarm plug-in and a complete or a near-complete product will be

developed that can be offered to a customer. Missing features and bugs were

documented.

2 Background

2.1 SMS

Short message service (SMS) is a protocol that is used to send short messages

over wireless networks such as 3G, 4G and 5G. This protocol allows for text

messages to be 160 characters or 70 characters long depending on the

character encoding. [1.] SMS is used in everyday person-to-person messaging

and in corporate applications such as business and SMS marketing.

SMS message’s data format consists of components such as the actual

message, the destination phone number, time stamp and data encoding

scheme. Sent SMS messages are stored in a short message service center

(SMSC) and are forwarded when the recipient is available in the network. [1.]

2.2 TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) is a protocol suite

used to build interconnection of networks. These interconnections allow the

communication between hosts on different networks over large geographical

areas. TCP/IP provides a common platform of communication services for

implementing communication interfaces independent of the underlying physical

network. [2, 4-5.]

3

TCP/IP can be thought as a layer model in which layers communicate with

those above and below as presented in figure 1. IP layer provides the ability to

transfer data between hosts and TCP layer utilizes IP layer to provide

applications with reliable data stream delivery. [2, 6.] The TCP/IP suite is

defined with the following layers:

• Application layer. This layer is used to for the user process to access
another process either on a different host or to communicate within
a single host. Examples of applications include Telnet, File Transfer
Protocol or Modbus.

• Transport layer. This layer is responsible for data delivery between
applications. In addition to TCP, User Datagram Protocol (UDP) is a
commonly used transport protocol.

• Network layer. The most important network protocol, Internet
Protocol (IP), is responsible for delivering messages to their
destination.

• Network interface layer. This layer is the interface to the actual
network hardware. [2, 7-8.]

Figure 1. TCP/IP layer relations [2, 7].

Internet Protocol (IP) is a connectionless packet delivery protocol which

introduces a virtual network view to hide the underlying physical network. IP

addresses are used to identify a host in a network expressed in a dotted

4

decimal form, which can be 127.0.0.1, for example. Another essential feature of

IP layer is IP routing, which provides the mechanism to interconnect different

physical networks. [2, 68.]

Transmission Control Protocol (TCP) layer provides a reliable connection

service between pairs of processes. As lower-level layers, such as IP, cannot

guarantee the reliability, TCP introduces concepts such as error recovery, flow

control and reliability. [2, 149-150.]

TCP’s window principle, as presented in figure 2, ensures reliability by sending

packet and then waiting for an acknowledgement before sending the next

packet. If the acknowledgement has not been received within a certain amount

of time, the packet is retransmitted. [2, 152.]

Figure 2. TCP window principle [2, 152].

5

2.3 Modbus TCP

Modbus TCP communication protocol was chosen as the communication

protocol to be used in the new SMS alarm plug-in. This chapter provides an

overview of the communication protocol.

Modbus is a client-server application-level communication protocol which can

be implemented using TCP/IP over Ethernet or asynchronous serial

transmission. Modbus message consists of a protocol data unit (PDU), which is

defined by function code, data, and application data unit (ADU). ADU is

dependent on which bus or network is used. Client builds the ADU which is then

transmitted to server to initiate the wanted action. The client then receives a

response from the server which can be the data requested or in case of an

error, an exception code. [3, 2-4.]

In case of using Modbus over TCP/IP network, the Modbus request is

encapsulated in a TCP packet. This request introduces Modbus application

protocol (MBAP) header to the ADU (figure 3). The MBAP header consists of

transaction identifier, protocol identifier, length and unit identifier. [4, 4-6.]

Figure 3. Modbus TCP message structure [4, 4].

Function codes define the type of action to be performed on a server, which can

be used for reading and writing registers or coils, for example [4, 3]. Reading

holding register is done by using function code 03 as seen in figure 4. This

results in the contents of a holding register to be read from the server [3, 15].

6

Figure 4. Modbus function codes [3, 11].

Modbus data model can be of four different types which are [3, 6.]:

• Discrete Inputs: read-only single bit data that can be provided by an
I/O system.

• Coils: readable and writable single bit data which can be altered by
an application prorgram

• Input Registers: read-only 16-bit word data which can be provided by
an I/O system

• Holding Registers: readable and writable 16-bit word data which can
be altered by an application program.

Modbus protocol specification uses big-Endian representation for addresses

and data items which means that the most significant byte is sent first. If a

register has a value of 0x1234, 0x12 is sent first, then 0x34 part. [3, 5.]

7

2.4 Overview of MicroSCADA

2.4.1 SCADA in General

SCADA (supervisory control and data acquisition) is a system used to monitor

and control large scale distributed processes in industries such as oil or gas

field, electrical transmission. Typical signals monitored from these remote

locations include alarms, status indications and analog values. The signals sent

from SCADA to the remote locations are usually binary bit changes or analog

values. [5, 9-11.]

The major components of a SCADA system are composed of an operator

interface, MTUs (master terminal units) and RTUs (remote terminal units) as

seen in figure 5. The operator interface or operator console is a graphical

interface to the process which the operator controls and monitors. The MTU is a

server or computer which does the actual processing of the process control and

monitoring. MTU can also have peripheral devices such as printers. MTU

communicates with RTUs and perform request messages via a wired or

wireless links, which are responsible to collect information from sensors and

actuators from field equipment. [5, 11-12.]

8

Figure 5. SCADA system's component overview [5, 13].

2.4.2 MicroSCADA in General

The current version of MicroSCADA, also known as MicroSCADA X SYS600, is

a microcomputer-based, programmable and distributed SCADA system. It is

mainly used for remote and local supervision and control of electrical

distribution solutions. [6, 13.] The following chapters provide an overview

regarding the MicroSCADA software components.

2.4.3 MicroSCADA System Architechture

A major part of MicroSCADA’s functions is handled by a system server which

contains base system, a component responsible for central data processing

9

services. It collects all process related data via communication units, which is

then distributed for further processing in the MicroSCADA system. Each base

system can include one or several applications which are defined by the

customer needs and operational functions. Application can consist of process

pictures and dialogs, and process and history databases for example. Base

system and application have an interconnection, meaning process data can not

only be collected, but an operator can send control commands from application

to the base system. [7, 10-11.] Figure 6 represents MicroSCADA system

components.

Figure 6. MicroSCADA system components [8].

10

2.4.4 Objects

MicroSCADA is an object-oriented environment, where objects represent

process units, system functions or SCIL programs. Objects are defined by their

attributes; properties and information associated with an object. [7, 15.] There

are three categories of objects [7, 15-16]:

• Application objects

• System objects

• User interface objects.

Application Objects

Application objects perform tasks, such as process supervision and control,

automatic time and event activations, data logging and much more. These

objects have an interconnection; they communicate with each other. [9, 23.]

There are eleven types of application objects followed by a SCIL object notation

in brackets [9, 24.]:

• Process objects (P)

• Event handling objects (H)

• Scales (X)

• Data objects (D)

• Command procedures (C)

• Time channels (T)

• Event channels (A)

• Logging profiles (G)

• Event objects (E)

• Free Type objects (F)

• Variable objects (V).

Most of the process database functionality is based on process objects.

Process objects supervise the input and output process signals and can be

considered as data images of physical process devices such as disconnectors

11

and relays. Sometimes process objects have no correspondence to a real

process and are used for simulation purposes only. The physical process

devices are connected to MicroSCADA through devices such as RTUs and

relays and are referred as stations or units. [9, 37.]

Process objects have obligatory basic definition attributes which are Logical

name (LN) and Index (IX). If the process object also has a correspondence to a

real process, it also requires Unit (UN), Object Address (OA). [9, 122.] These

four attributes for a real object are:

• LN: This attribute defines which process group the object belongs to.

• IX: This attribute seperates individual process group objects.
Individual process objects are identified by indices.

• UN: The number of the station where the process object is found.

• OA: This attribute defines the address of a signal within a station. [9,
44-50.]

Most process objects have attributes which are used to identify the process

object in an application. These are called identification attributes and the most

important are listed below:

• Object Identifier (OI): This attribute defines a hierarchical information
structure and a logical path. It is usually divided into three parts, such
as “Substation”, “Bay” and “Device”.

• Object Text (OX): This attribute is a freely chosen text. It is used to
identify the signal name, such as “Breaker position indication”. [9, 47-
48.]

All Application Objects can be accessed, created and modified with Object

Navigator. There are many different use cases for this tool from application

engineering perspective, such as listing and searching objects, creating and

modifying objects, and exporting and importing objects. [9, 225.]

12

System Objects

Typical system configuration task is to establish process communication for an

application, which is done via System objects. These objects are responsible for

handling system configuration and communication to MicroSCADA which are:

• Base system objects: Define the configuration for the base system.
These objects consist of physical and logical connections and the
software and hardware parameters of the base system and its
applications.

• Communication system objects: Define the configuration and
communication properties for the process communication system.
They have the information which communication protocol is used on
the communication line, for example. [10, 25.]

Process communication configuration requires the following steps:

• Configuring communication system objects in base system which are
Link (LIN), Node (NOD) and Station (STA).

• Configuring process communication units, for example PC-NET,
which handles communication most of MicroSCADA’s
communication protocols. [10, 58-59.]

System objects and process communication units can be created and

configured using System Configuration Tool when establishing process

communication. [6, 58-60.]

2.4.5 SCIL

SCIL (Supervisory Control Implementation Language) is an integral part of

MicroSCADA as it can be used to control the entire system from application

engineering to system configuration and can be used to create and manage all

objects [6, 17]. SCIL is a programming language designed specifically for

MicroSCADA. Most of the MicroSCADA’s pre-existing tools are built on top of

SCIL, for example the previously mentioned Object Navigator and System

Configuration tool. [11, 25-26.] Figure 7 represents what can be done with SCIL.

13

Figure 7. SCIL programming language use cases [11, 27].

SCIL program consists of statements which can be an instruction to a system

task or a variable value assignment [11, 27]. SCIL statement may consist of the

following components:

• Commands. Orders to the system about steps to be taken.

• Objects. All objects are accessible with SCIL.

• Variables. These are used for temporary storage of data.

• Function calls. SCIL has lots of built-in functions which can be used
in string handling, database management and file handling, for
example.

• Expressions: formulas which can contain constants, object notations,
function calls and operators. [11, 29.]

14

The most prominent use case for SCIL is in Command Procedures objects.

Command Procedure are SCIL programs that can contain instructions for

controlling and providing information about an object and its attributes.

Command procedures can be activated manually, or manually using Time

Channel and Event Channel objects. [9, 163]. Command Procedures are used

in establishing process control and logic, and user interfaces, for example. An

example of a Command Procedure in presented in figure 8.

Figure 8. Example of a Command Procedure. This Command Procedure
updates the value of a double binary object from two binary objects.

15

2.4.6 Alarm Management in MicroSCADA

Alarm is a critical type of event that is prioritized to notify the operator. In

MicroSCADA, alarm can have four states:

• Active. The alarm is active but the alarm does not need to be
acknowledged.

• Active unacknowledged. The alarm is active but not acknowledged.

• Active acknowledged. The alarm is active and acknowledged.

• Fleeting. The alarm has not been acknowledged after the alarm
deactivated. [6, 21-22.]

Alarm is generated either through by process object’s object value (OV) or

through control supervision. In case the process object is binary data type, the

alarm is generated with the following attributes:

• Alarm class (AC): This attribute is used to categorize an alarm to 7
categories, for example according to their severity. AC value 0
disables the alarm handling of the object and no alarm is generated.

• Alarm generation (AG): This attribute defines which object values
generate the alarm. Process object can generate an alarm with
object either with object value 0 or 1.

When the AC is greater than zero and AG condition is fulfilled, the process

object’s Alarm (AL) attribute is set to 1 and is shown in the alarm list. Receipt

(RC) attribute defines whether an alarm needs an acknowledgement, and the

alarm is not removed from the alarm list until it is acknowledged. Alarm is

acknowledged with AR (alarm receipt) attribute. [9, 56-62.]

Alarm events can trigger Event Channel objects, which can have programs

attached to them used for process control. Event Channel APL_ALARM

activates whenever a process object’s AL value changes and event channel

APL_ALARM_ACK activates whenever object’s AR value is set to 1. [9, 187-

188.]

16

2.5 Overview of Serial SMS Alarm Plug-in

Before the new SMS alarm plug-in was developed, the serial SMS alarm plug-

in’s features were examined as these needed to be implemented in the new

plug-in. The current plug-in consists of user interfaces, external programs and

initialization files running outside of the MicroSCADA environment, and

command procedures. The plug-in supports sending messages and receiving

messages but also making outgoing calls and receiving incoming calls, so it is

strictly not a SMS alarm plug-in per se.

2.5.1 User Interface

There have been developed two dialogs via Visual SCIL (VSO) and the other as

a View. The used dialog depends on the used user interface in the

MicroSCADA system but functionally they operate in similar ways. The newer

user interface designed for Workplace X will be examined.

The dialog reads out initialization data from SCADA server’s operating system

path. This file’s content is defined by the SMS user interface user input. In figure

9, the user interface contains input fields for operator’s number and name in the

left. Text messages can be sent from the user interface by selecting a check

box next to the operator’s name, typing a message in the uppermost input field

followed by a the press of a ”Send SMS (for selected recipients)” button.

The boxes in the middle contain input fields for an attribute condition that define

the type of alarm to be sent and a check box whether an alarm group is in use.

The most common SCIL condition is related to AC attribute but can be freely

defined by user.

The box on the upper right contains a delay time for an outgoing call if an

operator has not acknowledged the received alarm and a time how long the

outgoing call will be. This can be activated by checking the ”Receipt required”

and ”Call, if the operator has not reacted”, located in the box below. If “Receipt

17

required” is checked, only reminder text messages are sent to the operator and

no outbound calls are made. SMS alarm forwarding can also be set enabled or

disabled from this box.

Figure 9. SMS plug-in management page for Workplace X.

When save button is pressed, the inputted data is set to a global variable as a

SCIL data type of list as shown in figure 10. The data is also saved as a file on

the SCADA server’s hard drive that serves as the initialization data for the user

interface as mentioned in the beginning of the previous chapter.

18

Figure 10. Global variable inspected with test dialog. This variable contains
operator data and other options set in the SMS management page.

2.5.2 Technical Features

When a process object generates an alarm event, the process object passes its

LN, IX an AL attributes to SMS_ALARM via APL_ALARM event channel.

SMS_ALARM command procedure handles the sending of alarm text

messages. The command procedure initializes all the data contained in the

previously mentioned global variable. The initial alarm text contains OI and OX

attributes of the process object. After this, SMS_ALARM adjusts the alarm text

depending on the process object’s alarm state which is then sent to a recipient

via an external program called SMSSend.

19

If the alarm requires acknowledgement, SMS_ALARM activates a time channel

SMS_ACKNOT’I’, where ’I’ is the alarm group’s number, executing a command

procedure of the same name. SMS_ACKNOT’I’ sends a notification text

message if the alarm has not been acknowledged and an outgoing call is made

to the recipient. Text message notifications and calls to the recipient or

recipients are made until the alarm is acknowledged via an acknowledgement

text message or a call.

When a call or text message is sent to the modem, an external program called

SMSserv captures the inbound phone number and the inbound text message.

Acknowledgement is handled in SMS_USER command procedure. If the phone

number exists in the operator list, the command procedure sets the sent

process objects’ AR attribute to 1. The received phone number can only

acknowledge the alarms sent to the alarm group it belongs to.

Alarm acknowledgement triggers APL_ALARM_ACK event channel. This

activates a connected SMS_INIT command procedure which resets

SMS_ACKNOT’I’ time channels and no more notifications messages or calls

are made. SMS_INIT also clears an alarm buffer which limits the amount of text

messages to be sent in a short period of time to prevent performance issues.

Alarm buffer clearing sends the remaining text messages that could not be sent

in the initial alarm event. The alarm buffer’s size can be adjusted from an

initialization file.

There are pre-programmed SMS control commands such as turning the SMS

alarm forwarding on or off. Custom control commands are also supported for

controlling a breaker from the process database, for example.

This SMS alarm plug-in monitors the state of the modem and MicroSCADA

server. If a modem encounters an error, it is indicated in a process object for the

user and in a notification window for administrator. The SMS alarm plug-in

periodically checks the running status of the MicroSCADA server and informs

the user in case of a server or MicroSCADA software failure. All events related

20

to the serial SMS plug-in, such as modem errors, are also logged to an external

file.

The SMS alarm plug-in supports redundancy and can be installed in two

MicroSCADA servers in a hot standby system. As the other modem is installed

to another server, it ensures that SMS alarm plug-in continues to work even

though one of the servers or modems fail.

2.6 Teltonika TRB140

Teltonika Networks is an industrial network device manufacturer, focusing on

IoT, M2M and enterprise networking solutions. Their product portfolio includes

many modems and gateway devices that support sending text messages. [12.]

The following device examined in this thesis is Teltonika Networks’ TRB140

which was selected to be used as a SMS interface for the new plug-in due to its

availability, price, the various options to access SMS interface via TCP/IP

supported protocols and the extensive documentation related to the device.

2.6.1 Overview

TRB140 is a gateway device with Ethernet connectivity which runs on a Linux

operating system called RutOS. It supports many networking protocols such as

HTTP, HTTPS, SSH and FTP which can be used to manage the device.

Physical interfaces include input and output sockets, Ethernet port and USB

port, SIM card slot and connector for an external antenna. The device can be

21

powered via a dedicated power socket or alternatively via Ethernet port using

Power over Ethernet. [13.] The top view of TRB140 is shown in figure 11.

Figure 11. Top view of Teltonika Networks’ TRB140 [14].

The device offers a WebUI (Web user interface), which can be accessed with

the device’s IP address. WebUI provides access to the device’s information,

configurations and actions. [15.]

2.6.2 SMS Interfaces

TRB140’s SSH interface gives access to gsmctl command set, which is a utility

that relay commands to the device’s modem to control and obtain information.

The command ”gsmctl -S -l all” shows all received messages. To send text

messages, the command ”gsmctl -S -s <NUMBER> <TEXT>" is used as shown

in figure 12. [16.]

22

Figure 12. Reading and sending SMS messages with gsmctl commands

The second option is using POST/GET which allows the user to read and send

text messages by sending HTTP POST/GET strings to the device using

compatible software, such as cURL [17]. Listing 1 shows GET method for

reading text messages using cURL.

curl -X GET http://192.168.1.1/cgi-

bin/sms_list?username=user1&password=user_pass

Listing 1. GET method for reading text messages [17].

Sending text messages via the GET method can be done as presented in listing

2.

curl -X GET http://192.168.1.1/cgi-

bin/sms_send?username=user1&password=user_pass&number=0037000000000&te

xt=testmessage

Listing 2. GET method for sending text messages [17].

23

The third option for sending text messages is with Modbus TCP. TRB140

contains registers for text message content and a register to send the text

message. Other Modbus parameters such as system uptime, temperature and

mobile signal strength can also be read which can be useful for system

diagnostics. [18.]

Modbus TCP slave option needs to be enabled for the device from the WebUI.

The device has a master option where the slave device’s configuration can be

set (figure 13). The slave device’s name and IP address are set from here.

Requests configuration tab contain the Modbus requests where the register

number and function are defined. [18.]

Figure 13. TRB140’s Modbus master view.

The “Add SMS” registers are written with the function “Set multiple holding

registers (16)” as a data type of ASCII where the first 10 registers are reserved

for the recipient’s phone number and the remaining 80 registers are reserved

for the message content. Each register is composed of two ASCII symbols. The

message format is presented in figure 14. 003706xxx1594 is the phone number

which is preceded by 00 which equals + symbol in this context. The phone

number is followed by \u0000 which fills the remaining reserved registers for the

phone number. The “test” is the message content. Value 1 is written to “Send

SMS” register and the text message is sent to the recipient. [19.]

24

Figure 14. Message format for "Add SMS" registers [19].

3 Development of TCP/IP-Based SMS alarm plug-in

3.1 Connecting TRB140 with MicroSCADA

Testing of TRB140 was done in a Hyper-V virtual computer with MicroSCADA

software running a single system demo application with pre-installed serial SMS

alarm plug-in. TRB140 network connection was configured to work as a virtual

switch in Hyper-V as presented in figure 15. This allows a device to share its

connection with a virtual computer.

Figure 15. Hyper-V virtual machine network configuration for TRB140.

3.2 Selecting a Communication Protocol

Originally the chosen communication protocol for the new plug-in would have

been HTTP POST/GET requests, as the examples provided by Teltonika looked

simple, and HTTP is a widely used and well documented protocol. Although

MicroSCADA does not support this protocol, external programs such as cURL,

25

can be launched from MicroSCADA environment using ops_process SCIL

function. ops_process function allows MicroSCADA to start an external program

running outside the MicroSCADA environment [11, 208]. This method was

tested by writing a simple SCIL program, that performs SMS message sending

using the previously mentioned POST/GET example (listing 3).

#local sms_send = "http://192.168.2.1/cgi-

bin/sms_send?username=user1&password=user1&number=003584041111111&

text=Test"

 @sms_process = ops_process("curl -X GET " + """'sms_send'""")

Listing 3. SCIL code for sending SMS messages via POST/GET method.

However, reading text messages could not be done from MicroSCADA as

POST/GET method is not a supported communication protocol in MicroSCADA.

If an external program would handle the POST/GET requests, there would need

to be a MicroSCADA supported communication protocol in the program, and

creating a communication protocol converter would have been challenging.

POST/GET requests are technically possible from MicroSCADA if a CPI

(Communication Programming Interface) program would be implemented. CPI

is a protocol environment software, which enables MicroSCADA to

communicate with external programs and protocols and includes functions for

sending and receiving messages to or from MicroSCADA. The program would

be emulated as a station in MicroSCADA. [20, 7.] To create a functional CPI

program would have been challenging as this requires in-depth knowledge

about CPI and the external communication protocol.

The remaining option, Modbus TCP, was selected as it is a well understood and

well documented protocol. Most importantly, MicroSCADA has a native support

for this protocol [21, 5]. Also, as other Modbus parameters for TRB140 were

available to read and write such as system temperature and mobile signal

strength, it seemed a compelling reason to select this protocol. It did not,

however, support reading text messages but was solved by using a custom

Modbus register block, which allowed user-defined data to be inputted to

custom registers which is detailed more in next chapter.

26

3.3 TRB140 Configuration and Engineering

By default, TRB140 does not support reading received text messages via

Modbus. This was remedied by using a custom Modbus register block which

allows user defined data to be read from a file. The register block is enabled from

the TRB140’s WebUI (figure 16). [22.] The Modbus register block content is read

from the default register file path, /tmp/regfile. The register number was also left

as default except register count value was adjusted to 9, which left enough space

for a 14-character-long phone number and a 4-character-long message.

Figure 16. Enabling Modbus slave option and custom Modbus register block.

To write content to /tmp/regfile, a shell script called extramodbus was created

using Almquist shell. The script runs in an infinite loop in 1 second intervals,

constantly checking the output of ”gsmctl -S -l all” command. As the gsmctl

command output is in the format as shown in previous figure 12, it was sensible

to strip it down to a simpler form. When the gsmctl command outputs a received

message, the sender’s number and message are concatenated to a format of

“00358401111111Test” which is outputted to regfile and waits five seconds. The

message is then deleted from memory before showing the next message. In

case gsmctl does not detect messages, space characters are outputted to

regfile.

27

The script ensures that the register block is always filled as reading a partially

filled Modbus register resulted in an error in the Modbus master device. In case

the received text message is shorter than four characters, the script appends

space characters until the required length is met. The message read from

registers will always be four characters long assuming that the received number

will be 14 characters long. Messages exceeding the register block length will be

cut off and only the first four characters can be read from the registers.

The script was made executable with the following command from the

command line interface:

 chmod +x /bin/extramodbus

After this the script was set to launch during the boot of the device and runs in

the background (figure 17).

Figure 17. Launching extramodbus during the boot of the device.

3.4 MicroSCADA System Configuration

TRB140 was configured as a process communication unit for MicroSCADA

system with System Configuration Tool as presented in figure 18. The

communication protocol line is defined within a Node that already exists in the

28

demo application where Modbus TCP Master Line and a station object for the

device were created. After this the device’s IP address is set to Internet Address

(IA) field. Other line and station attributes were initially left at a default value.

Figure 18. MicroSCADA process communication configuration for TRB140.

Scanning of Modbus device data is defined by the device topics which can be

found in the Advanced tab of the System Configuration Tool [21, 32]. A topic

type of digital value was set to read ”Add SMS” registers in the format of

unsigned value. When defining a digital value topic for a Modbus register, the

following parameters need also to be set:

• First Object Address: the first MicroSCADA process object address.

• Last Object Address: the last MicroSCADA process object address.

• Base Address: the actual Modbus register address.

• Interval: the scanning frequency of the defined topic. [21, 32-36.]

29

The number of Modbus registers read and written by a topic is calculated as

follows: Number of items = LastObjectAddress - FirstObjectAddress + 1 [21,

34].

Figure 19 presents the topic configuration for TRB140. When reading ”Add

SMS” parameter, the amount of registers needed is 90. The first object address

is set to 397 and the last object address is set to 486 according to the previous

formula. Base address is the the Modbus address. In this case it is set to 397.

Interval is the frequency the topic data is read from the device and is left at the

default 1000 milliseconds. The same Modbus parameter was configured as a

topic type of digital setpoint for writing the Modbus registers and also “Send

SMS” parameter as a topic of same type. Custom register block was also added

as a topic type of Digital Value.

Figure 19. MicroSCADA topic configuration for TRB140

3.5 MicroSCADA Application Engineering

The initial step in testing text message sending was interpreting the ”Add SMS”

registers’ format from MicroSCADA. This parameter’s first five registers were

written in the TRB140’s Modbus master service with a string ”000102AAAB” as

a data type of ASCII to inspect the register value changes in MicroSCADA using

30

Test dialog. Reading the Modbus registers from MicroSCADA is done using the

following SCIL statement [21, 54]:

 @VALUE = STA1:SDV(1..2)

The previous SCIL statement was adjusted accordingly for ”Add SMS” registers

and the SCIL excerpt was inserted into the Examine field of Test Dialog (figure

20). This resulted in the Modbus registers being read from application.

Figure 20. Inspecting "Add SMS" register values from MicroSCADA with Test
Dialog.

The initial format for ”Add SMS” was unknown when inspected from

MicroSCADA. The format was found by inspecting the registers using 16-bit

integer format and hexadecimal format from TRB140’s Modbus master service

and an ASCII character code chart. It was concluded that the hexadecimal

values of the ASCII characters match with the Modbus request’s hexadecimal

31

format’s values. This means that the values MicroSCADA reads are decimal

interpretations of the hexadecimal ASCII character codes. The format was the

same for the custom Modbus register block.

The next step was to find suitable SCIL statements to convert text to decimal

format. During this period of plug-in development, a prototype command

procedure for text message sending was made, as this allowed easier

troubleshooting and establishing the basic logic. The fundamental idea of the

command procedure is that it splits phone number and message into two-

character long substrings using UNPACK_STR SCIL function which are then

converted to a decimal form using RTU_INT function. In case the last substring

contains only one character, a null character is added to the last substring to

prevent error in RTU_INT function. (Appendix 1)

At this point, the phone number and message are a data type of vector which is

the needed data type when writing multiple Modbus register from MicroSCADA

[21, 53]. After converting the phone number to RTU_INT format, the vector is

appended with zeroes to ensure that the vector is the length of 10, as the first

10 registers of “Add SMS” parameter are reserved for the phone number. Both

vectors are then concatenated and written to the “Add SMS” registers and

“Send SMS” register is written with the value 1, which sends the text message

to the recipient. (Appendix 1)

After the basic logic of sending a text message was established, the logic was

integrated to SMS_ALARM, the pre-existing command procedure of the serial

SMS alarm plug-in. This command procedure was also modified so that it saves

the sent alarm’s LN, IX and the recipient’s phone number as a data type of list

(figure 21). The list is then appended to APL:BUV1. This attribute is used to

search alarms in the alarm acknowledgement command procedure. UV (user

variable) attribute can be used as a global variable in application programs [10,

57].

32

Figure 21. APL:BUV1 contents inspected with Test Dialog. Sent SMS alarms
are saved here.

11 process objects were created to the process database called

SMS_ACK_STATUS. The first nine indexes of this process object group read

the custom Modbus register block values. The first index also has a command

procedure attached it, SMS_ACK_READ, which handles the incoming text

messages and alarm acknowledgement. This command procedure activates

whenever the first index’s object value goes up, in other words, whenever a text

message is received. SMS_ACK_READ reads the decimal values from the first

9 objects and transforms them to text form using RTU_AINT SCIL function, the

reverse function for RTU_INT. The values are then written to the FX (free text)

attribute of indexes 10 and 11. Index 10 contains the phone number and index

11 contains the message. Configured process objects are shown in figure 22.

33

Figure 22. Object Navigator view of process objects that contain the custom
Modbus register block values. The selected process object activates
SMS_ACK_READ, which handles the reading of received SMS messages and
acknowledgement of SMS alarms.

SMS_ACK_READ checks if SMS_ACK_STATUS index’s 10 FX attribute’s

value exists in the phone number list of the operators. It then checks the text

message content. If SMS_ACK_STATUS index’s 11 FX attribute contains the

correct acknowledgement code, the command procedure fetches sent alarms

from APL:BUV1 and sets the alarm’s AR attribute to 1. The acknowledged

alarm is then deleted from APL:BUV1. The alarm acknowledgement is also

shown in MicroSCADA’s event list as seen in figure 23.

34

Figure 23. Workplace X event list view of remotely acknowledged alarm. User
name column contains the operator’s phone number.

Control commands other than alarm acknowledgements, are possible to

implement with the previously mentioned command procedure, such as sending

a control command to a breaker.

The reminder text message command procedures were modified to use the

format conversion in a similar manner which was used in sending out the alarm

messages.

SMS management page’s XML file was also modified so that the “Send SMS”

button uses RTU_INT format conversion. Visual adjustments were also made to

the user interface such as modifying the text of “Call delay” as “Message delay”

as the new plug-in does not support making calls. The new user interface is

presented in figure 24.

35

Figure 24. Modified SMS alarm plug-in management page.

3.6 Installation Packages

After the new SMS alarm plug-in was developed, installation packages were

made to be available for engineers. Most components of the old plug-in were

left out of the installation packages, such as the external programs and their

initialization files, as these were not used anymore. Command procedures,

process objects and other application objects related to the new plug-in were

exported using Object Navigator as shown in figure 25. SMS user interface and

its initialization file were also copied from hard drive.

36

Figure 25. Exporting of SMS alarm plug-in application objects.

In addition to creating the installation files, installation manual was also written

(appendix 2). This manual provides a general guideline for TRB140 and

MicroSCADA configuration for the deployment of the plug-in for engineers.

4 Testing of the New SMS Alarm Plug-in

4.1 Performance Evaluation

Initially the performance of the text message sending was poor, and when

multiple alarms were generated in MicroSCADA, it resulted in errors related to

the Modbus line. The first few alarms were sent, but then the Modbus line got

congested and no more text messages were sent. It resulted in pauses of

minute or two before the text message sending continued. This was fixed by

37

increasing the Modbus line and station attributes related to performance, such

as buffer size and enquiry limit. Most of the attributes’ values were increased to

maximum or near the maximum. The configuration for these attributes are

presented in the installation manual (Appendix 2, 14-15). After these

adjustments, text message sending was successful without hangups. If the

TRB140 and other devices with many topics were under the same Modbus line,

it could hinder the performance of the plug-in. To ensure the best performance

of the plug-in, the performance attributes should be turned as high as possible

and create a dedicated Modbus line for TRB140.

When a single alarm is generated in MicroSCADA, a text message is delivered

to one recipient within around one second or at maximum two seconds with an

adequate mobile signal strength using 4G network. Usually MicroSCADA’s

alarm text are designed to be short and concise. Simulated process objects with

long alarm texts were created to evaluate whether it affected the delivery and

the delivery speed of text messages. Long alarm texts did not seem to affect the

delivery or delivery speed when a single text message was sent to a recipient.

If a station connected to a customer’s MicroSCADA system encounters a

catastrophic failure, multiple alarm signals can activate at the same time,

sometimes exceeding 100 alarms. The current SMS alarm plug-in is often used

in a customer system where there can be multiple operators. The amount of text

messages to be sent is multiplied by the number of operators, for example 25

alarms to be sent to 4 operators means 100 text messages. It was important to

evaluate the performance of the SMS alarm plug-in for these conditions to

ensure that the message delivery was successful and that the delivery speed

was adequate. For simulating these circumstances, 100 process objects were

created, which were triggered to alarm at the same time using SCIL. A

stopwatch was used to measure the time from the alarm trigger to the last

received text message. TRB140’s mobile connection type was 4G and the

mobile signal strength 65 dBm. The recipient’s phone connection type was also

4G. The mass sending of text messages was conducted four times as

presented in figure 26.

38

Figure 26. Performance of sending text messages with SMS alarm plug-in.

During test run 4 it was observed that one alarm text was received two times for

unknown reasons. This duplication of the messages is probably related to the

lack of an alarm buffer. However, this is probably not a critical bug as all

messages were received at an adequate speed and no messages were lost

during the testing.

4.2 Bugs and Missing Features

The new TCP/IP-based SMS alarm plug-in contains the most essential

functionalities of the previous solution, but some features were not implemented

due to technical reasons and time constraints. Some bugs were also

encountered during the testing which were not fixed due to previous reasons.

These missing features and bugs, and the possible solutions for them, are

documented in this chapter.

4.2.1 Character Encoding

Unlike the serial SMS alarm plug-in, the developed plug-in has a limited

character support. If the message contained a character of which ASCII code

exceeded 127, it resulted in a “?” character in the received text message. This

39

was discovered when the alarm text contained characters such as ”Ä”, ”ä”, “Ö”

and “ö”. This was remedied by replacing these characters with “A”, “a”, “O” and

“o” before sending the text message. This means that if the alarm text contains

the word “Hälytys”, the command procedure transforms the word into “Halytys”.

When the alarm text contained Finnish text, it resulted in an intelligible alarm

text message, although it was not in the most optimal form. However, this could

be a problem with other languages when special characters are not supported,

such as Cyrillic characters. When special characters are written to the registers

as a data type of ASCII from the TRB140’s web user interface, the received text

message is in proper form. However, instead of one character taking half of the

Modbus register, it takes up the whole register, meaning the character size is 16

bits. When converting these register values in MicroSCADA to a text form using

RTU_AINT SCIL function, it resulted in unintelligible characters.

If the created solution would be integrated a customer’s MicroSCADA system, it

should be determined whether special character replacements affect the

intelligibility of the sent text messages and whether the customer accepts the

lacking character support.

There are no built-in SCIL functions to convert special characters to a proper

form, but it could be possible to implement a custom character conversion

command procedure. When the correct character encoding is figured out, the

command procedure should be relatively easy to implement.

Character encoding problem is also present when the alarm acknowledgement

command procedure tries to read the custom Modbus register block when it

contains a special character. RTU_AINT function could not convert the integer

values read from the registers to proper text. Creating a integer-to-text

conversion command procedure would solve this.

40

4.2.2 Mobile Calls

Making an outgoing call is not a supported Modbus parameter and was not

implemented in the SMS alarm plug-in which was also why the SMS

management page was visually modified. This could be a problem from an

operational view. The outgoing call in the serial SMS alarm plug-in is sometimes

used as a “last resort” to ensure that the operator reacts to the alarm, as making

an outgoing call is more audible than a text message. This could be an

essential feature for some customers, but can be compensated with the

following steps:

• Adjust the message sound for the text message. The sound should
be clear and audible.

• Making sure the mobile phone volume is always relatively high.

• Using a shorter reminder message interval than what would be used
for a wake-call delay. As the text message might not be as audible
as an incoming call, the shorter interval could help compensate for
the lack of a constant ringtone.

The new alarm plug-in cannot fetch inbound caller’s number, nor can it be seen

from TRB140’s event logs. This could pose a problem if an unknown number

tries to make calls to the TRB140 and will also be evaluated in the next chapter

from cybersecurity perspective.

Another bug related to mobile calls was that if constant call were made to

TRB140, it hindered the performance of the plug-in to an almost unusable state

for a few minutes. It was observed from the TRB140’s WebUI that making

multiple calls changed the mobile connection type from the used 4G to 2G and

3G connection. The constant fluctuation between different mobile networks

could be the reason calls hinder the performance significantly. Although

TRB140 has a “Reject incoming calls” option which was turned on from the

WebUI, the bug persisted.

41

4.2.3 SCADA Server State Monitoring

The new SMS alarm plug-in does not monitor the state of running state of

MicroSCADA software or server. If MicroSCADA software were to crash, no text

messages are sent to operators to inform about the situation. However, a

command procedure could be made which activates and immediately

deactivates one of the TRB140’s input sockets via Modbus, and is periodically

activated by a time channel object. Then a shell script would be created for

TRB140 which monitors the pin state changes and if it does not detect a state

change within three minutes, for example, it sends a text message about this to

the operator by using gsmctl command. TRB140’s input socket states can be

obtained from the command line interface of TRB140 [23].

4.2.4 Redundancy

The redundancy concept of the serial SMS plug-in was not researched for the

new plug-in. However, if TRB140 Modbus connection were to fail because of

power outage for example, a redundant TRB140 can be configured for

MicroSCADA. MicroSCADA supports station redundancy which requires the

configuration of a primary station and a secondary station. In case of a primary

station connection failure resulted from a power outage for example,

MicroSCADA performs a switch-over and automatically switches to the

secondary station. [10, 128-129.] Compared to the serial SMS alarm plug-in,

this is better as this means that two TRB140’s could always be available in a

single system MicroSCADA.

In addition to configuring a redundant TRB140, an application should receive

information about the running state of TRB140. For this purpose, an alarming

process object should be created in the process database which has an object

address of a System Message. System Messages inform an application about

changes in the station communication [10, 164].

42

4.2.5 Custom Modbus Register Block Issues

As mentioned before, the TRB140’s custom Modbus register block length is set

to 18 characters which puts limits to the received message length. The

outputted message read from registers will be four characters long assuming

that the received number will be 14 characters long. Messages exceeding the

register block length will be cut off and only the first four characters can be read

from the registers. It is possible to receive 160-character SMS messages, but

this was not investigated further in this thesis. This would require extending the

register block length, modifying the shell script, and adjusting MicroSCADA

system and application configurations.

Another problem related to the custom Modbus register and shell script is that if

the received phone number is not 14 characters long, SMS_ACK_READ will not

work correctly as it assumes that the areas from which the phone number and

message are read stay constant. This problem is presented in figure 27. The

upper section of figure depicts a normal situation when SMS_ACK_READ reads

a 14-character-long phone number and text message from the Modbus

registers. The lower section of the figure depicts an abnormal situation when the

received phone number is 16 characters long. In this situation, the last part of

the phone number is located at the area where the actual message should be

read.

43

Figure 27. Contents of custom Modbus register block with 14-character-long
and 16-character-long phone numbers.

SMS_ACK_READ should be modified so that it takes actions based on the

entire Modbus register block, rather than reading the phone number and

message content from certain register areas.

4.2.6 Other Missing Features

The serial SMS plug-in provides over 100 error codes related to the modem,

which are useful in error diagnostics. In contrast, TRB140’s Modbus service

44

provides a limited information related to the device’s modem. If more

information is needed from the modem, a shell script running on TRB140 could

output more data to the custom Modbus register block by utilizing gsmctl

commands, as these commands provide some additional information regarding

the modem state [16].

The pre-existing control commands from serial SMS plug-in, such as turning the

SMS alarm forwarding on or off, were not programmed, but should be relatively

simple to add afterwards this would only require a few If-then SCIL statements

to SMS_ACK_READ.

The new plug-in does not offer an alarm buffer for a situation where multiple

alarms are generated. It is, however, probably a non-critical feature as the

performance of the plug-in proved to be adequate during the testing with a

proper network type and signal strength.

The serial SMS plug-in’s VSO dialog, which is used in Monitor Pro MicroSCADA

user interface, was not modified. This means that the new plug-in can only be

used in Workplace X interface. Using the new plug-in in a Monitor Pro

environment would require modifying the code of the VSO dialog. As both the

View and VSO dialog operate in similar ways, this would likely only require

adding a few lines of SCIL to the “Send SMS” button of the VSO dialog to be

able to work with the new plug-in.

5 Cybersecurity of SMS Alarm Plug-in

Modbus offers no authentication, encryption or integrity [24]. It is then important

to assess what risks using this new SMS alarm plug-in can pose and what can

be done to mitigate the risks.

There a few ways Modbus can be compromised. As Modbus does not offer

authentication, any Modbus master can write commands to the Modbus slave,

making unauthorized command executions. If a malware were to infect the

45

network, it could possibly send malicious messages to the slave. Executing a

Denial-of-Service as master could flood the Modbus slave making it inoperable.

Man-in-the-Middle attacks stem from the lack of integrity, and an attacker can

intercept and modify the messages before passing them on to the server. [25.]

The worst cyber-attack from the perspective of TRB140’s Modbus service might

be unauthorized command execution. The attacker can for example reboot the

modem, change the LAN IP, send text messages, and write values the custom

Modbus registers. If an attacker knew the operators phone number and the

acknowledgement commands, no actual text message would be needed in

order to acknowledge alarms. If the text message reading command procedure

would be made to support custom control commands such as controlling a

critical device on the field, it could result in catastrophic consequences if an

unauthorized entity wrote values to these Modbus registers. It is then important

to assess whether a user would need the new SMS alarm plug-in using Modbus

protocol at all if there were inherent cybersecurity risks in the SCADA network.

Custom control commands should probably not be implemented in the

command procedure to limit the possible damage to the SCADA system and

network. At the very least, the control commands for the plug-in should be

classified and be customer specific. However, this would probably not be very

useful if there was an internal attack in the SCADA network, as the attacker

could inspect the Modbus traffic. To minimize the security risks of Modbus is to

design a secure SCADA network.

As mentioned above, TRB140 cannot fetch inbound caller’s number and making

constant calls to TRB140 hinders its performance significantly. To mitigate

these risks from cybersecurity perspective, the mobile subscription phone

number should be hidden from directory enquiries and the SCADA operators

should not leak the phone number to third parties. In case the phone number

gets leaked, the alarm plug-in should be turned off immediately and a new

mobile phone subscription should be acquired.

46

Another possibly useful security measure for when unknown numbers send text

messages to the SMS interface, is that it should be trigger a SCADA alarm

containing the unknown phone number. This would keep the operators informed

and to take appropriate actions if someone tries to interfere with the SMS alarm

plug-in.

TRB140 software updates should be taken care of, just like other software

updates. If there was a vulnerability in the current software version, it must be

updated to the latest software version. TRB140 has unnecessary features from

the perspective of the new SMS alarm plug-in, such as mobile data connection

which allows the host computer to connect to the Internet and should be

disabled before installing TRB140 to SCADA. This procedure is presented in

the installation manual (Appendix 2, 6). There are probably other features in

TRB140 which should be disabled but they were not researched further in this

thesis work.

6 Conclusion

The result of this thesis work is a TCP/IP-based SMS alarm plug-in for

MicroSCADA which supports the most essential features of the currently used

plug-in. Installation manuals and packages were developed, which engineers

can use in the deployment of the plug-in.

To have a fully featured SMS alarm plug-in, the new solution should be

developed further due to the missing features and bugs. These were

documented and the possible solutions or workarounds for these were

presented. Some of these features and bugs are not possible fix such as

making outgoing calls. However, if the previous feature would be needed,

Teltonika’s development team could implement this as it is most likely not a

technical limitation. It is also possible that the bugs and other lacking features

could be fixed in future device firmwares.

47

Due to cybersecurity issues mentioned above, the new plug-in’s usage in a

customer system can be questionable. Cybersecurity has become a critical

aspect not only in industrial systems but in everyday life and cyberattacks are

done now more than ever. Before deploying this plug-in in a customer system,

the cybersecurity aspect should be researched further.

48

References

1 Triggs Robert. 2023. What is SMS and how does it work? [online].
Android Authority. URL: https://www.androidauthority.com/what-is-sms-
280988/. Accessed 17 August 2023.

2 Parziale Lydia, Liu Wei, Matthews Carolyn, Rosselot Nicolas, Davis
Chuck, Forrester Jason, Britt David T. 2006. TCP/IP Tutorial and
Technical Overview. IBM Redbooks.

3 Modbus organization. 2012. Modbus Application Protocol Specification
V1.1b3. [online]. URL:
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf. 24
October 2023.

4 Modbus organization. Modbus Messaging On TCP/IP Implementation
Guide V1.0b. 2006. [online]. URL:
https://modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_
0b.pdf. 24 October 2023.

5 Boyer Stuart A. 2004. SCADA: Supervisory Control and Data Acquisition.
The Instrumentation, Systems, and Automation Society.

6 Hitachi Energy. 2022. MicroSCADA X SYS600 10.4 System Configuration.
Manual.

7 ABB Oy, Substation Automation Products. 2002. Introduction to
MicroSCADA Technology. Manual.

8 Hitachi Energy. 2022. MicroSCADA X SA Engineering W301.
Presentation.

9 Hitachi Energy. 2022 MicroSCADA X SYS600 10.4 Application Objects.
Manual.

10 Hitachi Energy. 2022 MicroSCADA X SYS600 10.4 System Objects.
Manual.

11 Hitachi Energy. 2022 MicroSCADA X SYS600 10.4 Programming
Language SCIL. Manual.

12 Teltonika Networks. Product Catalog 2023 [online]. URL: https://teltonika-
networks.com/cdn/pages/2022/10/63479480a08ff8-64018958/teltonika-
networks-product-catalog-2023-v11.pdf. Accessed 8 August 2023.

13 Teltonika Networks. TRB140 Industrial Rugged LTE Gateway [online].
URL: https://teltonika-networks.com/products/gateways/trb140. Accessed
13 August 2023.

49

14 Teltonika Networks. TRB140 [online]. URL: https://wiki.teltonika-
networks.com/view/TRB140. Accessed 13 August 2023.

15 Teltonika Networks. QSG TRB140 [online]. URL: https://wiki.teltonika-
networks.com/view/QSG_TRB140. Accessed 9 September 2023.

16 Teltonika Networks. Gsmctl commands [online]. URL: https://wiki.teltonika-
networks.com/view/Gsmctl_commands. Accessed 18 May 2023.

17 Teltonika Networks. TRB140 Mobile Utilities. https://wiki.teltonika-
networks.com/view/TRB140_Mobile_Utilities [online]. Accessed 4 May
2023.

18 Teltonika Networks. TRB140 Modbus [online]. URL: https://wiki.teltonika-
networks.com/view/TRB140_Modbus. Accessed 18 May 2023.

19 Teltonika Networks. Modbus TCP Slave Send SMS example [online].
URL: https://wiki.teltonika-
networks.com/view/Modbus_TCP_Slave_Send_SMS_example. Accessed
6 June 2023.

20 Hitachi Energy. 2022. MicroSCADA X SYS600 10.4 Communication
Programming Interface (CPI). Manual.

21 Hitachi Energy. 2022. MicroSCADA X SYS600 10.4 Modbus Master
Protocol. Manual.

22 Teltonika Networks. 2023 TRB140 modbus custom register block [online].
URL: https://wiki.teltonika-
networks.com/view/TRB140_modbus_custom_register_block. Accessed 8
August 2023.

23 Teltonika Networks. 2023. TRB140 Input/Output [online]. URL:
https://wiki.teltonika-
networks.com/wikibase/index.php?title=TRB140_Input/Output. Accessed
13 September 2023.

24 Nardone Roberto, Rodríguez Ricardo J., Marrone Stefano. 2016. Formal
security assessment of Modbus protocol. 142-147.
10.1109/ICITST.2016.7856685.

25 Fovino, Igor Nai, Andrea Carcano, Marcelo Masera and Alberto
Trombetta. 2009. Design and Implementation of a Secure Modbus
Protocol. Critical Infrastructure Protection.

Appendix 1

1 (1)

Command Procedure Prototype for Sending Text Messages

#LOCAL num, msg, i

num = "00358401234567" ; recipient's phone number

msg = "Alarm" ; SMS message

; add null character if the message length is not an even number

; Otherwise RTU_INT will not work correctly

#IF LENGTH(msg) MOD 2 == 1 #THEN #BLOCK

 msg = PAD("'msg'", ASCII(0), LENGTH(msg)+1)

#BLOCK_END

; split contents for RTU_INT

num = UNPACK_STR(num,2)

msg = UNPACK_STR(msg,2)

; text conversion (for phone number)

; RTU_INT function: text -> hex -> integer. e.g. "00" -> 3030 -> 12236

#LOOP_WITH i = 1..LENGTH(num)

 num(i) = RTU_INT(num(i))

#LOOP_END

; add zeroes to "Add SMS" registers until the first 10 are filled

; first 10 registers are reserved for phone number

#LOOP_WITH i = LENGTH(num)+1..10

 num(i) = 0

#LOOP_END

; text conversion (for SMS message)

#LOOP_WITH i = 1..LENGTH(msg) ;

 msg(i) = RTU_INT(msg(i))

#LOOP_END

#SET sta1:sdv(1397..1486) = APPEND(num, msg) ; write SMS to registers

#SET sta1:sdv396 = 1 ; send SMS

Appendix 2

1 (18)

Installation Manual for the Plug-in

Appendix 2

2 (18)

Appendix 2

3 (18)

Appendix 2

4 (18)

Appendix 2

5 (18)

Appendix 2

6 (18)

Appendix 2

7 (18)

Appendix 2

8 (18)

Appendix 2

9 (18)

Appendix 2

10 (18)

Appendix 2

11 (18)

Appendix 2

12 (18)

Appendix 2

13 (18)

Appendix 2

14 (18)

Appendix 2

15 (18)

Appendix 2

16 (18)

Appendix 2

17 (18)

Appendix 2

18 (18)

	1 Introduction
	2 Background
	2.1 SMS
	2.2 TCP/IP
	2.3 Modbus TCP
	2.4 Overview of MicroSCADA
	2.4.1 SCADA in General
	2.4.2 MicroSCADA in General
	2.4.3 MicroSCADA System Architechture
	2.4.4 Objects
	2.4.5 SCIL
	2.4.6 Alarm Management in MicroSCADA

	2.5 Overview of Serial SMS Alarm Plug-in
	2.5.1 User Interface
	2.5.2 Technical Features

	2.6 Teltonika TRB140
	2.6.1 Overview
	2.6.2 SMS Interfaces

	3 Development of TCP/IP-Based SMS alarm plug-in
	3.1 Connecting TRB140 with MicroSCADA
	3.2 Selecting a Communication Protocol
	3.3 TRB140 Configuration and Engineering
	3.4 MicroSCADA System Configuration
	3.5 MicroSCADA Application Engineering
	3.6 Installation Packages

	4 Testing of the New SMS Alarm Plug-in
	4.1 Performance Evaluation
	4.2 Bugs and Missing Features
	4.2.1 Character Encoding
	4.2.2 Mobile Calls
	4.2.3 SCADA Server State Monitoring
	4.2.4 Redundancy
	4.2.5 Custom Modbus Register Block Issues
	4.2.6 Other Missing Features

	5 Cybersecurity of SMS Alarm Plug-in
	6 Conclusion
	References

