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Generating animated shows from text-based AI 

storytelling 

Large language models can be used for a wide range of different generative 

tasks, one of which is the ability to do storytelling. The models can generate new 

narratives based on any topic, theme, or other qualitative features. Possibilities 

are virtually endless, however, there is one key drawback – the output is just text 

and only that. There are no visual elements, audio, or anything else. 

The objective of this thesis was to research and experiment with methods that 

could transform text-based artificial intelligence (AI) storytelling into a consistent 

visual format.  

This was accomplished by utilizing prompt engineering techniques to guide the 

AI to use a custom format for its storytelling. This format, consisting of character 

actions and dialogue could then be simulated as an interactive 3D animation 

inside a virtual environment made with Unity. The project’s motive was primarily 

entertainment value, but a similar concept could also be used for other purposes. 

The result of this thesis was a working prototype that achieves the general 

objective. New animation shows can be generated with the press of a button, also 

offering the option to influence the outcome with user-defined keywords and other 

data. Overall, the current state of the project serves as a good base for any future 

development. 
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Animaationäytelmien luominen tekoälyn 

tekstipohjaisesta tarinankerronnasta 

Suuria kielimalleja voidaan hyödyntää laajasti erilaisissa generatiivisissa 

tehtävissä, joista yksi on kyky luoda tarinankerrontaa. Mallit voivat luoda uusia 

kertomuksia pohjautuen mihin tahansa aiheeseen, teemaan tai muihin 

kuvaileviin avainsanoihin. Mahdollisuudet ovat käytännössä loputtomat, mutta 

yksi keskeinen rajoite on olemassa – lopputulos on pelkkää tekstiä. Se ei sisällä 

visuaalisia elementtejä, ääniä tai mitään muutakaan. 

Tämän opinnäytetyön tavoitteena oli tutkia ja testata menetelmiä, joilla 

tekstipohjainen tekoälyn tarinankerronta voitaisiin esittää visuaalisessa 

muodossa. 

Tavoite saavutettiin hyödyntämällä kehotesuunnittelua, jonka avulla tekoäly 

ohjataan muotoilemaan tarinankerronta mukautetussa formaatissa. Tämä 

formaatti, joka koostuu tarinan hahmojen teoista ja dialogista voidaan simuloida 

interaktiivisena 3D-animaationa Unity-pelimoottorilla luodussa 

virtuaaliympäristössä. Työn motiivina oli ensisijaisesti viihdearvo, mutta 

samankaltaista konseptia voitaisiin soveltaa myös muissa käyttötarkoituksissa. 

Opinnäytetyön tuloksena on toimiva prototyyppi, joka saavuttaa keskeisen 

tavoitteen. Uusia animaatioesityksiä voidaan luoda napin painalluksella, tarjoten 

myös mahdollisuuden vaikuttaa lopputulokseen ennalta määrättyjen 

avainsanojen avulla. Projektin nykyinen tila toimii hyvänä pohjana 

jatkokehitykselle. 

Asiasanat: 
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1 Introduction 

Today many large language models (LLMs) have been trained on internet-scale 

datasets containing hundreds of billions of parameters. As a result, this has led 

to LLMs being able to generate human-like content. [1] 

These models can be used for a large variety of generative tasks, including 

writing, storytelling, text summarization, translation, art, and coding, just to name 

a few. 

The storytelling capability is especially relevant for the objectives of this thesis 

project. The models can generate stories from virtually any topic, in any kind of 

style or niche, seemingly without limitations. However, there is one key drawback 

regarding the generated output – it is just text and only that. There are no visuals, 

audio, or anything else. 

Although this may very well be just a temporary limitation, judging by the recent 

advancements in new LLMs generating image, video, and audio content as well. 

However, these models are not as consistent in quality compared to their text-

based counterparts, not to mention their general availability being much more 

limited and expensive. Nonetheless these advancements are something to keep 

in mind going forward. 

The goal of this thesis was to research and experiment with generative content, 

more specifically the processes on how to transform text based LLM storytelling 

into a consistent visual format.  

In practice, this involves utilizing a concept called prompt engineering that can be 

used to make the LLM function like a show director, crafting show scripts based 

on a set of predefined rules and keywords. The output is also requested to follow 

a certain strict format, so that it can be simulated as an animated show inside a 

virtual environment, thereby achieving the visual format goal. 
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The results of this thesis project were mainly intended for entertainment related 

purposes, but the same, or a similar concept could also be applied to more useful 

topics. 

While large language model (LLM) is the formal term, it should be mentioned that 

terms like “Model”, “AI model” or simply “AI” are frequently used interchangeably, 

all referring to the same concept. 
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2 Previous similar projects 

Generative show content is a relatively new topic, however, there have already 

been a few projects innovating in this field. One such example of this is 

“WatchMeForever” by Mismatch Media. It is an AI generated parody show based 

on the American sitcom series Seinfeld. It consists of an endless amount of short, 

few minutes long 3D animated shows, where virtual characters talk and perform 

AI generated sitcom scripts. Further immersion is added by giving the characters 

distinct voices via text-to-speech (TTS). The show has been broadcasting 24/7 

on Twitch.tv since late 2022 and it gained significant popularity in early 2023. 

Over time, the project has evolved with new content and formats being added. [2] 

More interestingly, the success story of WatchMeForever inspired others to build 

similar projects. Perhaps the most popular project from this wave of new shows 

was “ai_sponge”, which was a similarly structured project, however the theme, 

and overall style was based on the SpongeBob animation series. This show could 

not really be considered as a parody since it directly ripped off assets from the 

original SpongeBob. Not surprisingly, the project was eventually taken down due 

to copyright violations. [3] But overall, this proves that there is an audience for 

generative show content. 

The mentioned projects follow the same general workflow. Dialogue is generated 

using LLMs, more specifically OpenAI’s GPT 3.5 and GPT 4 models. Prompt 

engineering techniques are applied to make the generated output follow a specific 

format. The dialogue is also synthesized into audio clips using a text-to-speech 

cloud service. Finally, the virtual environments are built using Unity and C#. 

Those are the main ingredients involved but of course, there may be more 

technologies at play, depending on the project. 

It is also important to understand that the show scripts are generated in advance. 

At present, real-time generation is challenging due to the significant delays that 

come with API communication. 
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Virtual environment visualization 

As said, the visual rendering of the shows is achieved with the help of real-time 

game engines, such as Unity. However, in practice the visualization aspect is 

more of an illusion since it is not truly connected to the generative AI aspect. 

In the previously mentioned projects, the LLM does not directly influence the 

visuals or actions, nor does it have any kind of understanding of the virtual world 

to begin with. Instead, the environments are premade, or procedurally generated 

using code and any kind of event or action, such as characters moving around is 

based on traditional predetermined code logic.  

Simply put, the visualization aspect is just a fancy rendering of the situation, and 

it does not affect the underlying generation process in any meaningful way. But 

even then, this kind of setup produces convincing results. The average viewer is 

likely to think that the shows are entirely AI generated, when really, they are a 

mix of AI and premade elements.  
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3 Prompt engineering theory 

This chapter explains what prompt engineering is, along with examples on some 

common prompting techniques. Prompt engineering is an essential tool for this 

thesis project, just like it has been for the previously mentioned projects. 

At its core, prompt engineering is the concept of creating and optimizing text-

based instructions (prompts) to further improve the efficiency of LLMs. It is a 

collection of skills and techniques that make interaction with LLMs more reliable 

and useful. [4] 

For most cases just typing the prompt instruction in normal natural language is 

enough to get satisfying results, but when there is a need for the LLM to perform 

something “new” – something that it has not directly been trained on, then it might 

be necessary to apply prompting techniques to achieve wanted results. 

3.1 Common prompting techniques 

At present there are many distinct prompting techniques all with their own specific 

use cases. [5] Some can be used for a wide variety of different tasks, while others 

are only useful for something very specific. It is also a constantly evolving field 

with more and more techniques being discovered. 

While there are many options to consider, the three following techniques are 

perhaps the most common. 

3.1.1 Zero-shot 

This is the baseline prompting behavior for a given LLM, meaning that the prompt 

is written in normal natural language, without any precise instructions. This could 

be a simple question or a small task. As previously mentioned, current general 

use LLMs are trained with such vast amounts of data that even with zero-shot 

prompting it is often possible to get desired results. Zero-shot can be considered 
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as the starting point for all prompt engineering work. More advanced techniques 

should be considered only after zero-shot proves to be ineffective. [6] 

 

Picture 1. Example of a zero-shot prompt.  

The LLM provides the correct answer without needing any additional context. 

3.1.2 Few-shot 

Few-shot prompting is a technique where in addition to the given task, some 

examples of valid output are also included. Basically, the LLM can look at the 

examples and use it as a guide to produce similar results. This technique is useful 

when the task is more complicated or when trying to produce output that follows 

a certain strict format.  

The number of examples can vary, but as the name implies: more than one – a 

few. Single example prompts are also entirely valid, although they often share the 

same “few-shot” term. Occasionally, the term “1-shot” is used. 
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Picture 2. Example of a few-shot prompt.  

Note that the logic is flipped (positive is now negative) but because two 

examples were included, the LLM understood the new rules and provided the 

correct answer. 

3.1.3 Chain-of-thought 

Chain-of-thought is like few-shot prompting, except the example answer format 

is crafted in a more detailed manner. The goal of this is to help avoid incorrect 

answers. 
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Picture 3. Example of a more complex few-shot prompt.  

The LLM fails to provide the correct answer. It should be True. 

The error seen in Picture 3 is a bit surprising considering the simplicity of the 

given task. This behavior is referred to as “hallucination” and unfortunately, it is 

quite common with today’s LLMs, especially with math-related tasks. 

The chain-of-though technique aims to solve this problem by changing the 

answer format in a way that forces the LLM to “think” more about the answers its 

outputting, thus the likelihood of hallucination decreases. 

 

Picture 4. Example of a chain-of-thought prompt. 

This is the same prompt as before, but now utilizing chain-of-thought. The 

answer is now correct because the LLM had to include additional reasoning, 

which helped avoid the previously seen error. 
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3.2 Prompt engineering drawbacks 

The main drawback of prompt engineering is the increased size in prompt text 

length which translates to increased usage cost. 

LLMs don’t understand text like humans do. Instead, the received text input is 

first converted into tokens. Tokens are common sequences of characters in the 

given text which hold statistical relationships between each other. The key 

takeaway is that this tokenization technique is the key reason why text based 

LLMs can do what they do – efficiently produce new words, or tokens technically 

speaking. 

These tokens are split into two types: input and output tokens. Input tokens refer 

to the text input that is sent for the LLM to process, meanwhile output tokens 

consist of the generated text output. 

A general rule of thumb is that one token corresponds to roughly 4 characters of 

English. 100 tokens equal to roughly 75 words. [7] 

The more tokens that are used, the more computational resources are spent. 

LLM service providers offer pricing that is often billed on a per 1000 tokens basis 

with slightly different costs between input and output tokens. Output tokens are 

generally the more expensive type. 

Due to the cost aspect, it is essential to strike a balance between prompt quality 

and context size. A prompt engineer must think how to best optimize and 

compress prompts but still retain good enough output quality. This process is 

done mostly by manual trial and error, especially if locked to using a third-party, 

closed source LLM, such as OpenAI’s GPT. 

In general, it can be observed that too little context usually means worse results, 

meanwhile adding more context yields better results, but also increased costs. 

However, increasing context does not provide endless improvement, in fact, too 

much context can reduce the quality and accuracy of the output.  
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Overcoming drawbacks with fine-tuning 

It is guaranteed that prompt engineering techniques will result in larger prompt 

sizes, at least by a little. This is a relatively minor inconvenience for most, but 

nonetheless there are ways to mitigate or completely avoid this drawback.  

One solution to this is a process called “fine-tuning” where the LLM is trained 

further with custom data which in this case would be the prompt instructions. The 

LLM will learn from the new data and if done successfully, this will eliminate the 

need of having to include prompt instructions within each request, since the LLM 

already has the required knowledge “baked-in” to the model itself. Therefore, the 

total token amount spent decreases, which is beneficial. 

 

Picture 5. How using a fine-tuned model can save tokens. 

OpenAI offers a fine-tuning service for most of their models. Fine-tuning can get 

a bit more expensive compared to just using the base models, but the pricing is 

still very reasonable [8]. 

Generally, fine-tuning is meant to be used for more broad goals. The mentioned 

token saving benefit is just one possibility, albeit rarely is it the primary goal. More 

commonly fine-tuning is used for controlling the general style, tone, format, and 

other qualitative aspects of the generated output. 
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Regardless of what the particular use case for fine-tuning is, it should always be 

treated as a last resort, that is when everything else in terms of prompt 

optimization has been done. This is because a prompt might initially appear to 

perform poorly, but the results can drastically change just by slightly improving or 

changing the prompt structure. In other words, fine-tuning may not even be 

needed. It is also much faster to iterate with prompts than multiple fine-tuned 

model versions. A fast feedback loop is crucial when figuring out the behavior 

and possibilities of a given LLM. [9] 

3.3 External large data source processing 

Sometimes there might be a need to include large amounts of context data, more 

specifically from private data sources. Logically, the LLM does not have access 

to private data, so it must be manually included in the prompt for it to be useful. 

However, LLMs have context size limits, meaning that it could be difficult to fit 

enough context. Although nowadays most models offer very generous limits. For 

example, OpenAI’s GPT 4 currently supports up to 128 thousand tokens context 

window per prompt [10]. Despite this, the approach is rarely ideal, since spending 

up to 128 thousand tokens per prompt is very wasteful and expensive. 

A better solution is a technique called Retrieval Augmented Generation (RAG). 

The concept is very simple – instead of retrieving “all” context for the prompt, only 

small pieces containing the most relevant information are included. [11] This 

method significantly saves on token usage since no useless context is included. 
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Picture 6. Differences between a regular prompt and a RAG prompt. 

By default, the external data could be spread across many different data formats, 

like documents, images, videos and so on. This mixed state is still unusable. First, 

all the data must be converted into numerical representations and stored in a 

vector database. After that, the database can be used to perform relevancy 
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searches. This way the prompt content can be matched with the database 

contents resulting in the retrieval of only the most relevant context pieces. 

RAG can be useful for all kinds of applications. For instance, it could be used to 

build a Q&A type chatbot handling the distribution of information within a 

company. Instead of browsing through numerous company documents to find 

something, you could simply ask the chatbot to retrieve it using normal natural 

language. While this method saves a significant amount of time, it is still important 

to recognize the risk of LLM hallucination, meaning that the retrieved data should 

still be verified in some way. 
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4 Project introduction and requirements 

This chapter describes the main innovative features and lists the requirements 

set for the thesis project. 

Compared to the other projects mentioned previously, this thesis project aims to 

innovate further with the introduction of so-called character events. The goal of 

these events is to bridge the gap between the LLM and the visualization, in the 

hopes of unlocking more elaborate AI storytelling. To do this, the LLM is given 

detailed context about the environment where the show takes place among other 

details. 

A character event could be something like the following example: 

Character 1 moves to the table, picks up a book and says: “I like reading!” 

Basically, in addition to generating dialogue for the characters, the AI could also 

control their physical actions via commands. This ability, if implemented properly, 

would result in much more varied and engaging content to watch. The added 

environment context could also aid in the AI’s storytelling abilities and decision-

making. 
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Due to time constraints, the project’s scope had to be limited to a proof-of-concept 

level. This was somewhat expected considering the complexity of the project, but 

the development is expected to continue afterwards. 

The set requirements for the project are as follows: 

• Humanoid characters (show actors) 

o Character models, animations, etc. 

• A few premade show sets (environments) 

o Props with placeholder models. 

• Character events. 

o A small selection of character actions. 

o Character dialogue subtitles. 

• Prompt builder. 

o Flexible tag system. 

o Few-shot examples generation. 

o Prompt compression. 

o Unique combinations randomization. 

• LLM manual testing workflow (ChatGPT) 

• LLM API implementation and workflow (OpenAI Chat Completions API) 

• LLM Output parsing with basic error handling. 

• Show playback (start, end, timing logic) 

• Show debugging tools. 

• Full solution, demonstrable from start to end. 

• All project code should adhere to good coding practices and standards. 
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5 Project architecture 

This chapter describes the tools and services used for building the project along 

with some reasoning behind the choices. 

5.1 Unity 

Unity is a powerful real-time game engine used most often for creating games, 

but it can also be used for all kinds of other 2D or 3D applications [12]. In general, 

Unity is a very flexible platform with relatively low hardware requirements, making 

it a viable option for many developers. 

Unity was selected as the main platform for the project because it was known it 

would offer sufficient tools to successfully complete all the project requirements. 

More importantly, it was a natural choice due to having prior experience of 

working with Unity and its ecosystem. This meant that the development process 

could move faster, since almost no time would need to be spent learning the 

platform itself. 

This is not to say Unity is the only game engine option, in fact there are many 

others to consider, most notably Godot or Unreal Engine. Technically speaking, 

any of these would have been just as viable. It is mostly a question of preference. 

The project could be split into two main parts: visualization, and the prompting 

related logic. In theory, Unity was only necessary for the visualization aspect, 

however there was no reason to stop there since Unity’s C# scripting language 

could be used to build the rest of it too. This way all aspects of the project were 

centralized under one ecosystem, making the development process seamless. 

5.1.1 Visualization 

As said, the goal was to get the LLM involved with the virtual environment as 

much as possible. This would be done by building a platform that could take in 
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commands generated by the LLM and then translate said commands into 

physical actions inside the virtual environment.  

The LLM would not directly micro-manage every character with exact commands 

like “Move 1 meter forward, Now turn left…”, instead the LLM would give broad 

objectives such as “Move this character to the table”.  

It would then be the game engine’s job to handle everything in between what is 

necessary to achieve the end goal. For example, in the case of moving a 

character to the table, it would first calculate the shortest path to said location, 

see if there are any obstacles along the path, and so on. In game development, 

this methodology is often called goal-oriented action planning. 

A better example would be a more complicated task like: “prepare lunch.” While 

the end goal is clear, the steps in between require additional resolving. Ultimately, 

this task might end up looking something like the following sequence: 

1. Move to the fridge. 

2. Open the fridge. 

3. Pick up ingredients from the fridge. 

4. Prepare lunch. 

Three additional subtasks had to be created, to complete the initial task.  

Even though visualization is possibly the most time-consuming aspect of this 

project – it is not the primary focus of this thesis. Instead, the focus is mainly on 

the generative AI aspect. Going forward, many of the small details and non-

specialized features regarding the game engine are left out from the text. 

To keep things simple, the characters, also known as show actors, would initially 

be limited to humanoid characters. Other types would be something to consider 

later. The characters would also be able to speak, however a text-to-speech 

system was not intended to be implemented at this point. Instead, a simple 

placeholder subtitle system was planned for displaying the character speech. 
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The environments (show sets) would be premade but still contained many 

randomized elements. For instance, all the props that the characters can interact 

with would be randomized. In addition, the placement of many “point of interest”-

objects would be slightly altered for each show. 

5.1.2 Prompt builder 

This refers to the system that creates the actual text prompt structure which is 

sent to the LLM for processing. The goal of this system is to automate the process 

of writing prompts in a consistent manner. Of course, the prompts could also be 

written manually, but it would be slow and prone to mistakes in the syntax. 

The prompt builder is written in C#, making heavy use of its string manipulation 

methods. In short, the prompt builder gathers information from different sources 

and then formats it all into an optimized prompt package. The information comes 

from the show set and user-defined keywords, such as the topic, style, and other 

qualitative features. 

5.2 LLM provider 

OpenAI’s services were selected for the LLM aspect. This was primarily because 

they offered free options that could be used during development. In addition, 

OpenAI already has robust API infrastructure in place, allowing for fast 

integration. However, this choice is not in any way final. In fact, the project was 

designed to be easily interchangeable with other LLMs if needed. 

ChatGPT and Chat Completions API 

ChatGPT is an LLM chatbot developed by OpenAI. It is currently equipped with 

OpenAI’s proprietary models GPT 3.5 and GPT 4. The latter is currently only 

available for paying customers, whereas the 3.5 version is available for free. The 
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free version was convenient, considering the project would require a significant 

amount of trial-and-error type prompt testing during development. 

OpenAI Chat Completions API is a service which allows users to integrate GPT 

models in their own projects programmatically. In simple terms, this is “ChatGPT” 

for third-party applications. Compared to ChatGPT, the API offers more models 

and advanced configuration options that can be used to control the LLM’s 

behavior. [13] 

The configuration options include the following: 

• Temperature: A value that controls the randomness of the output. The 

higher the value, the more random the output becomes, while lower values 

produce more deterministic and repetitive results. 

• Maximum length: A value used for limiting the maximum number of 

tokens that can be spent for output generation.  

• Stop sequences: User-defined words or sequences that indicate when 

the generation should stop. For example, using a “dot” as a stop sequence 

will limit the output to a single sentence. 

• Top P: Whenever the LLM generates new tokens (words), it selects the 

next tokens from a pool of probable options. This value controls the 

threshold of what tokens are considered. A value of 0.1 would mean only 

the top 10% of the options are considered. 

• Frequency penalty: A value that penalizes the repetition of tokens in the 

generated text. The higher the value, the less likely the LLM is to repeat 

itself. 

• Presence penalty: A value that penalizes tokens based on whether they 

have already appeared in the generated text. The higher the value, the 

less likely the LLM is to stay on the same topic and instead move on to 

new topics. 
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5.3 Other tools 

5.3.1 OpenAI Playground 

OpenAI Playground is a platform for experimenting with various OpenAI APIs, 

such as the Chat Completions API through a user-friendly interface. This is not 

to be confused with ChatGPT, as it is not the same. The Playground requires an 

active OpenAI API key to be used, meaning that usage is billed, just as if using 

the API normally via HTTP requests.  

 

Picture 7. Screenshot of OpenAI Playground.  

The configuration options are visible on the right. 

5.3.2 OpenAI Tokenizer 

OpenAI Tokenizer is a tool for calculating the total token count for a given piece 

of text. It helps with understanding how the tokenization process works with 

different models. [14]  
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6 Project implementation 

The entire project was built within a single Unity project. Initially the aim was to 

get the overall idea working at its most basic level. After that, the individual 

systems would be improved gradually over time.  

 

Picture 8. Diagram of the main project flow.  

Starting with show generation and ending with show playback. 
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6.1 Building the characters and environments 

The humanoid 3D models and animations were provided by Mixamo, a service 

owned by Adobe. Mixamo offers a free library of ready to use 3D character 

models, animations, and automatic character rigging tools. [15] 

At this point, the characters would all look the same, except for having unique 

colors to help differentiate between them. Their behavior, animations and 3D 

models would be the same. 

As an added flavor, the characters would also utilize ragdoll-physics and physics-

based animations, meaning that their interactions would behave “realistically”. 

For instance, if a character accidentally collided with an object in the scene, it 

could fall over in a realistic manner. This was very much an out-of-scope feature, 

but nevertheless, it ended up adding a whole another layer of unpredictability to 

the simulation, resulting in more engaging show content. 

For the environments, the idea was to build multiple different show sets that could 

be used. These sets would consist of several points of interest, called “Spots”. 

For now, creating just a single set was enough. This set was meant to convey an 

apartment room where the spots represented various furniture items such as 

tables, beds, chairs, and more. The set layout was made rather quickly, using 

primitive 3D models for everything.  

The props would also be simple temporary cubes, accompanied by a floating text 

describing what the prop is meant to be. 

Overall, most of the visual rendering was implemented with lots of placeholders 

in place but all the functionality was there. The visuals could be improved later. 
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Picture 9. Screenshot of the first environment: "Apartment". 

6.2 Character actions 

Initially three actions were implemented: Moving, picking up props and talking. 

This list of actions would grow over time.  

After some testing, it was determined that the “talk” action should be treated as 

its own special action, which could be included alongside other actions. This way 

the characters could speak while also simultaneously performing other actions.  

In the end a character event would consist of both an action and a speech 

component. As a temporary solution, a simple subtitles system was implemented 

for displaying the character speech, which would be replaced or accompanied by 

text-to-speech in the future. 
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Picture 10. Diagram of a single character event. 

The actions and the speech are separate tasks that run simultaneously. Both 

need to be finished for the event to be considered as complete. Only then the 

show will move onto the next event. Due to the unpredictable nature of the show 

simulation a simple timeout logic was also implemented, meaning that if a 

character got stuck in some action for too long, then it would be forcibly ended to 

ensure the show does not just freeze forever. 
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6.3 Building the prompt builder  

The prompt generation begins with an empty string template containing the 

overall tag structure. The tags in this template are going to be replaced with 

corresponding data. 

 

Picture 11. The empty prompt tag structure. 

The tag names are quite self-explanatory on what data they would be replaced 

with. 

The structure can be modified freely – new tags can be added, and existing ones 

can be removed. For example, if the topic tag were removed, it would result in 

the LLM having to come up with a topic on its own instead. It is a flexible system, 

that enables quick experimentation. 

The data for these tags is retrieved from another template, containing arrays of 

user-defined text strings for each tag. Only one option would be picked for each 

tag. To better understand this, let’s look at how the {PERSONA} tag’s data is 

retrieved. 
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Picture 12. Options available for the {PERSONA} tag. 

From the available options, only one would be picked at random. The reason for 

having multiple options is because it allows for unique combinations to naturally 

occur, adding more variety to the finished prompt. The number of options is not 

limited, but at least one is always required. 

Let’s assume the first persona (funny show director) was picked, now after this 

step the prompt structure will look like the following: 

 

Picture 13. The updated prompt structure. 

To clarify, the persona is a short text detailing the desired behavior and role 

which the LLM should adopt. 
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This same process would be repeated for the rest of the tags, with only minor 

differences between them. However, the {EXAMPLE} tag stands out as an 

exception. 

As stated in the prompt engineering theory chapter, examples play a crucial role 

in controlling the LLM output. This is precisely what the {EXAMPLE} tag is for, to 

contain the examples, following the few-shot prompting technique. 

However, because the examples are based on all the other context, it was not 

possible to predefine them. Instead, the examples had to be dynamically 

generated at runtime.  

What this also means is that the examples were not just theoretical examples, 

rather they would be constructed to be fully functional and valid. Even a natural 

language description for each example was generated. The objective behind all 

this “extra work” was to eliminate any possibility for the LLM to misinterpret the 

rules. 
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Picture 14. The final prompt structure with all the tags replaced. 

The few-shot examples can be seen at the very end. 

After the prompt structure is complete, it is compressed down by removing all the 

indentation and extra spaces. These features are useless information for the 

LLM, so they can be removed to save on tokens. This is the version that is sent 

to the LLM. The nicely formatted version is mainly for debugging purposes, as it 

is much easier to read. 
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Picture 15. The final prompt structure with compression applied. 

6.4 OpenAI Chat completions API implementation 

All API connectivity was written in C#, making use of Unity’s built-in networking 

classes. The Chat completions API endpoints required the POST data to be in 

JSON string format. Unity does have some basic JSON utility classes built-in, 

which were helpful for this task. However, the classes are quite limited in features, 

suggesting that switching to a third-party JSON library could be wise in the future.  

 

Picture 16. The Chat Completions API POST data structure. 

This is encoded into a JSON string. 

Even though the API connectivity was implemented, it did not find much use or 

testing at this point. Using the API is not free, so instead most of the prompt 
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testing was still being done manually using the free alternative, ChatGPT. 

Switching to the API is mainly intended for production use when the project is 

fully operational. 

6.5 Parsing LLM API output 

After sending the prompt to the LLM, a new show script would be generated and 

returned in the same format as demonstrated in the few-shot examples. This is 

the raw text output that is parsed into character events, which could then be 

simulated in the virtual environment. The following picture demonstrates what the 

output looks like when using ChatGPT. 
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Picture 17. The generated show script, using ChatGPT. 

This output is based on the prompt seen in Picture 14. 

The output starts with the show title, marked by the “#” character. This text would 

be shown as the initial title when the show playback begins. 

The rest of the output consists of all the character events in their raw line text 

format. These lines are made of multiple tags, separated by semicolons. The first 

tag represents the character, and the last tag contains the character’s speech 
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content. Everything in between contains the actions which the character would 

perform in sequential order from left to right. The “@” character at the start of 

each line helps with splitting the output into individual lines, even though the LLM 

usually handled this on its own by adding newline characters. However, this was 

not always consistent, so adding a special character was necessary.  

 

Picture 18. Text conversion process for a single line.  

This example demonstrates two actions (green), although typically there would 

only be one. 

The format uses a two-digit ID system to further optimize token usage. The 

characters are represented as the letter “C” followed by a unique number ID, 

starting from zero, i.e. “C0”, “C1”, and so on. Other tags would follow the same 

naming convention, except for the initial letter. These IDs are then mapped to 

reference their corresponding subjects. Originally the format used clear text, but 

this was replaced with the two-digit ID system. 

 

Picture 19. A clear text version of a single line.  

Not used because of higher token usage.  
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Table 1. All the implemented tag ID types. 

ID Type Example of mapping 

C Character C1 → “Bob” 

A Action A1 → “MOVETO” 

P Prop P1 → “Book” 

S Spot S1 → “Front door” 

 

Table 2. A few of the implemented actions and their parameter types. 

ID Type Parameter Example of use 

A1 MOVETO S (Spot) A1:S1 

A2 EAT P (Prop) A2:P1 

A3 PICKUP P (Prop) A3:P2 

A4 CLAP - A4 

A5 HUG C (Character) A5:C1 

 

The actions are limited to accepting only a single type of parameter but 

multiparameter functionality was planned to be implemented later. This 

improvement is necessary because some actions should be able to use more 

parameters, like the “MOVETO”-action – there is no reason to limit character 

movement to “Spots” only. 

It is also worth noting that none of the IDs are hardcoded, as it may seem so far. 

The IDs were dynamically defined at runtime. For instance, A1 might not always 

refer to the “MOVETO”-action and so on. 

The two-digit system proved to work well, but even a single-digit ID system was 

experimented with. In this system only the numeric ID remained, but it was quickly 

discovered that this resulted in frequent invalid output. As an example, the LLM 

could attempt generating actions like: “Character 1 eats a table” which doesn't 

make much sense, nor is it a valid action. 
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These new problems seemed a bit odd, because the underlying logic of the 

format did not change. The assumption is that the LLM got confused since all the 

ID types shared the same integer value ranges. For example, the ID “1” could 

simultaneously refer to a character, action, prop, and spot all at once. But 

ultimately it is the order of use that matters, so theoretically, it should still have 

worked. 

In the end, the two-digit ID system was brought back, even though the occasional 

mishaps from the one-digit system could hold some comedic value. The goal was 

to generate consistent and reliable results after all. Moreover, it is likely that the 

single-digit system would work if the ID integer ranges were refactored to be 

always unique, but this level of optimization was not a high priority during this 

time. 

Even the two-digit system would sometimes produce broken, or partially broken 

output. As a solution, basic error handling was implemented, which simply 

skipped any invalid lines during the parsing process. 

After parsing all the generated output into individual character events, they would 

be added to a list known as the show script.  

Before adding them, some preprocessing would be performed, primarily involving 

calculating the speech duration estimate. As implied, this would be an estimate 

based on a made-up formula that includes variables such as the total character 

and word count of the speech. After some math operations and rounding the 

result is a rough estimate on how long the speech would take in milliseconds. 
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Picture 20. The parsed show script list. 

Only the first two events are visible. 

6.6 Simulating the show script 

Before the show playback can start, the show environment must be initialized. 

This means spawning in all the characters, applying visual settings, calculating 

the pathfinding areas and so on. After that, the show can begin with displaying 

the title, followed by all the character events simulated one by one. During the 

show, the camera automatically changes position and rotation, ensuring the 

currently performing character stays in frame. The positioning is done by 



43 

Turku University of Applied Sciences Thesis | Leevi Seppälä 

calculating a random point inside a dome shape around the character’s head. 

Currently it is a rather simple system, but more features, such as static camera 

angles, are planned to be implemented later.  

There were also plans to implement a feature that could automatically delay the 

speech part if needed. In certain scenarios it could be useful to delay character 

speech. A good example of this is an action where a character opens a door and 

greets the person behind it. It would be ideal if the speech started only after the 

door has been opened, however with the current system, the speech would 

always start instantly. 

Due to the two-digit ID system, it was not always easy to tell if the script 

generation was behaving as intended. To solve this, a set of debug tools was 

implemented to help understand what is currently happening with the show 

playback. The debug tools show the current state of the show, what the current 

character event translates to, and how much time has passed in total. All this 

helped diagnose issues that could otherwise go easily unnoticed.  

 

Picture 21. Screenshot of the debug tools UI.  
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Picture 22. Screenshots of the show in progress. 
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7 Results 

This chapter outlines the results of the implemented project. This was done by 

checking the implementation status of each requirement, that was set in the 

project introduction and requirements chapter.  

Table 3. Requirements listed with their current implementation status. 

Requirement Status 

Humanoid characters (show actors) 

- Character models, animations, etc. 

Implemented 

A few premade show sets (environments) 

- Props with placeholder models. 

Partially implemented1 

Character events. 

- A small selection of character actions. 

- Character dialogue subtitles. 

Implemented 

Prompt builder. 

- Flexible tag system. 

- Few-shot examples generation. 

- Prompt compression. 

- Unique combinations randomization. 

Implemented 

LLM manual testing workflow (ChatGPT) Implemented 

LLM API implementation and workflow (OpenAI 

Chat Completions API) 

Implemented 

LLM Output parsing with basic error handling. Implemented 

 

(continue) 
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Table 3 (continue). 

Show playback (start, end, timing logic) Implemented 

Show debugging tools. Implemented 

Full solution, demonstrable from start to end. Implemented 

All project code should adhere to good coding 

practices and standards. 

Implemented 

 

1. Only one set was made, and the overall design work is very basic and 

incomplete. In addition, the props are still using placeholder models. 

 

The results of the project align well with the set requirements. All the requirements 

were met, at least on a basic level. The underlying functionality is there but the 

visual representation of nearly everything requires a lot more work. 
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8 Conclusion 

This thesis aimed to experiment with generative AI by utilizing prompt engineering 

techniques. The main idea was to transform text based LLM storytelling into a 

consistent visual format.  

Overall, the project implementation was successful. All the set requirements were 

implemented and even some extra. Most importantly, the project adhered to the 

proper development practices, resulting in a solid foundation for any future 

development. Many of the systems and ideas could also be repurposed in other 

projects if needed. 

A significant amount of development time was spent doing trial-and-error prompt 

testing. The prompt building process was very much about “seeing what works” 

and iterating from there. The prompt builder component played a key role in this 

task because it automated much of the slow and tedious work of text formatting. 

It became clear that the ability to iterate quickly is important, which is exactly what 

the prompt builder allowed. This system went through many versions before 

finally landing on the current implementation.  

Several challenges still need to be addressed, one of which is the issue of script 

and simulation mismatches. This happens when the show simulation fails to 

complete a given action, and then the next event would act on the assumption 

that the previous action was successful, when it was not. This can somewhat 

break the immersion from that point on, depending on how coherent the show 

script is. Luckily the shows are meant purely for entertainment, so this isn’t too 

big of a problem, in fact small mistakes can add to the fun factor. 
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In conclusion, working on this thesis project provided a lot of insight into prompt 

engineering, contributing to a deeper understanding of LLM behavior overall. 

Knowing how to utilize advanced prompting techniques appears to be a valuable 

skill, at least for the time being. 

The current project will continue development and is expected to eventually have 

a public release of some kind. Originally the idea was to host a livestream of 

endless AI-generated shows, like the previous projects have done. However, over 

time, this plan has become less certain as new ideas have emerged during 

development. Generative content appears to hold a lot of potential, especially in 

video games, which might be a topic worth exploring. 

Some future ideas and plans include: 

• Testing other LLM providers. 

• Using LLMs to write better tag keywords/content. 

• Text-to-speech for character dialogue 

• Experiment with fine-tuning. 

• Multi-parameter actions 

• Extended shows (continue from previous show) 

• Real-time mode (the show is generated continuously) 

• Other character types 
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