

Nhat Truong

TOURNAMENT MANAGEMENT

MOBILE APPLICATION

Technology and Communication
2024

ACKNOWLEDGEMENTS

I want to thank every VAMK teacher and staff. All of you have, directly or indirectly,
accompanied me and led me to academic success.

I also thank Dr. Ghodrat Moghadampour, the Principal Lecturer in Software
Engineering and my thesis advisor, for giving detailed instructions about the final
thesis.

Finally, I want to give my best thankful sentences to my family and friends who
financially and spiritually support me for almost four years of academic studies in
Finland, where I have been far away from most of them most of the time.

VAASAN AMMATTIKORKEAKOULU
VAASA UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Nhat Truong
Title Tournament Management Mobile Application
Year 2024
Language English
Pages 74
Name of Supervisor Dr. Ghodrat Moghadampour

The goal of this thesis project was to create a mobile application where users could
manage multiple stages in multiple tournaments. In each stage, users could view
and edit match results, then the overall results of that stage had to be calculated
and updated automatically.

PostgreSQL relational database was used to store user information and
credentials, and tournament data. A server, written in Python and using Flask
module, was responsible for user data authentication and authorization. Another
server, using ASP.NET Core Web API template, handled tournament, stage and
match data. Finally, React Native was used for the client application.

The application works on both iOS and Android devices. With this application,
tournament organizations can follow the progress and update the results of their
tournament on their hand quickly while standing at the venue or beside the
playground. They can also share their tournament results publicly.

Keywords Tournament, PostgreSQL, Python, ASP.NET Core, Expo,
React Native, TypeScript

CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

1 INTRODUCTION .. 1

2 RELEVANT TECHNOLOGIES ... 3

2.1 PostgreSQL .. 3

2.2 Python & Relevant Modules ... 3

2.3 C# / .NET (Core) & Relevant Frameworks ... 4

2.4 JWT ... 5

2.5 React Native .. 6

2.5.1 Expo ... 7

2.5.2 JavaScript & TypeScript ... 7

2.5.3 React Native Libraries ... 7

3 APPLICATION DESCRIPTION .. 9

3.1 Quality function deployment .. 9

3.2 Use-case Diagram ... 11

3.3 Sequence Diagram .. 11

3.4 Architectural Diagram ... 15

3.5 Class Diagram .. 16

4 DATABASE DESIGN.. 19

5 GUI DESIGN ... 21

6 IMPLEMENTATION .. 37

6.1 Authentication Server ... 37

6.2 Tournament Data Server .. 43

6.3 The client ... 55

7 TESTING .. 62

8 CONCLUSIONS .. 64

REFERENCES .. 65

LIST OF FIGURES, TABLES AND CODE SNIPPETS

Figure 1. JWT example [12]. .. 6

Figure 2. Tournament management system use cases. 11

Figure 3. Authentication sequence diagram. .. 12

Figure 4. User information & password change sequence diagram. 13

Figure 5. Public data view sequence diagram. ... 13

Figure 6. Tournament sequence diagram. .. 14

Figure 7. Stage sequence diagram. ... 14

Figure 8. Match sequence diagram. ... 15

Figure 9. Tournament management application structure. 16

Figure 10. Tournament management application classes and relationships. 17

Figure 11. Entity Relationship diagram for the database. 19

Figure 12. Bottom navigation bar. .. 21

Figure 13. Sign in screen. .. 21

Figure 14. Password reset request form... 22

Figure 15. Password reset form. ... 22

Figure 16. Sign up form. .. 23

Figure 17. Profile screen. .. 24

Figure 18. Change user information (left) and change password (right) forms. .. 25

Figure 19. Tournament list screen. ... 26

Figure 20. New tournament form. .. 27

Figure 21. Tournament details screen. ... 28

Figure 22. Edit tournament form. ... 29

Figure 23. New stage form: stage information. .. 30

Figure 24. New stage form: common stage configuration. 30

Figure 25. New stage form: configuration for round-robin (left) and single-

elimination (right) stages. ... 31

Figure 26. Edit stage order form. .. 31

Figure 27. Stage details: stage information. ... 32

Figure 28. Stage details: table results of round-robin stages. 33

Figure 29. Stage details: match list of round-robin stages. 33

Figure 30. Stage details: match list and overall results of single-elimination stages.

 ... 34

Figure 31. Round-robin (left) and single-elimination (right) match details. 34

Figure 32. Round-robin (left) and single-elimination (right) edit team name form.

 ... 35

Figure 33. Round-robin (left) and single-elimination (right) edit match score form.

 ... 35

Figure 34. Edit match information form. .. 36

Figure 35. Authentication server folder structure. ... 37

Figure 36. Tournament data processing server folder structure. 43

Figure 37. Client folder structure. ... 55

Table 1. Application requirements. .. 10

Table 2. Test results. ... 62

Table 3. Test results (continue). ... 63

Code Snippet 1. Environment variables in authentication server. 38

Code Snippet 2. Flask configuration in app.py. .. 38

Code Snippet 3. Psycopg2 database connection variables. 39

Code Snippet 4. send_email.py file. ... 39

Code Snippet 5. run.py file. .. 40

Code Snippet 6. Example of the structure of authentication server endpoints. . 41

Code Snippet 7. launchSettings.json file. ... 44

Code Snippet 8. appsettings.json file. .. 44

Code Snippet 9. Program.cs file. ... 45

Code Snippet 10. TokenValidation.cs file. .. 46

Code Snippet 11. AppDbContext class. .. 47

Code Snippet 12. Controller class example. ... 49

Code Snippet 13. app.json configuration file. .. 56

Code Snippet 14. Example of using environment variables in the code. 56

Code Snippet 15. App.tsx file. ... 58

Code Snippet 16. Main.tsx file. ... 59

Code Snippet 17. TournamentStack.tsx file. .. 60

Code Snippet 18. updateTournament function. .. 61

LIST OF ABBREVIATIONS

CLI Command Line Interface

GUI Graphical User Interface

SQL Structured Query Language

API Application Programming Interface

EF Entity Framework

JSON JavaScript Object Notation

JWT JSON Web Token

MVCC Multiversion Concurrency Control

WSGI Web Server Gateway Interface

SMTP Simple Mail Transfer Protocol

CORS Cross-Origin Resource Sharing

REST Representational State Transfer

LINQ Language-Integrated Query

RFC Request for Comments

IDE Integrated Development Environment

URL Uniform Resource Locator

TDD Test-Driven Development

1

1 INTRODUCTION

This section explains why the tournament management application should be

developed for mobile users, and what the main objectives are that the thesis

project will achieve.

In professional tournaments, the tournament data and scoring system are

specifically designed based on what sports the participants play, number of

participants in the tournament and consideration from the organization. However,

in semi-professional and amateur tournaments, such a complex system is not

required. Instead, a quicker and more convenient solution is needed, since only

the basic data is usually collected, and common formats are shared across

different tournaments. Therefore, a generalized and customized tournament

management application should be implemented.

The tournament management application needs to be handy so that the users do

not need to stay next to a computer or hold a laptop. Moreover, accessing an

installed application is much faster than opening a browser and searching for the

application on a website. Thus, the best choice is to develop a cross-platform

mobile application.

The application should provide a convenient and straightforward way to help users

view and modify tournament data, as well as stages and matches inside the

tournament. The tournament managers should not manually calculate and update

the overall result of the stage. Instead, it will be automatically processed in the

server based on the provided match results.

The supported stage formats that should be in the application are listed below:

- Single elimination: The participants are eliminated immediately if they lose

any match in the stage. The single elimination format is valuable when the

number of participants is large, time is short, and the number of locations

is limited. [1]

2

- Round robin: This stage format consists of all participants playing against

each other an equal number of times. When the number of participants is

small and games are played quickly, this type of format is effective for a

one-day tournament. When there are more participants and the games

take longer to complete, then a round robin schedule is best suited for

league play. [1]

3

2 RELEVANT TECHNOLOGIES

In this section, the main relevant technologies for the database, the servers and

the client are described.

2.1 PostgreSQL

PostgreSQL, originally developed in 1986, is a modern and advanced relational

database system which supports both non-relational and relational data types.

PostgreSQL has great performance and scalability, which makes it extremely

efficient when running deep, extensive data analysis across multiple data types. It

also manages concurrency efficiently through its use of MVCC. Nowadays, many

programming languages such as Python, JavaScript, C/C++, C#, etc. offer mature

support for PostgreSQL. Moreover, PostgreSQL is a sustainable production

database since it ensures high availability for both clients and developers. Last but

not least, PostgreSQL is a free and open-source database. With all these benefits,

PostgreSQL is one of the most compliant, stable, and mature relational databases

available today. [2]

PostgreSQL databases can be accessed using a CLI tool called “psql” or a GUI tool

called “pgAdmin”. PostgreSQL v16.1 and pgAdmin 4 v8.1 are used in this project.

2.2 Python & Relevant Modules

Python is one of the most popular programming languages in the world because

it is a general-purpose and beginner-friendliness language. It can be used for many

different tasks such as web development, data analytics, machine learning,

automation, and the syntax is easy to learn. Moreover, it is open source, has a

huge number of third-party modules and libraries, and has a large and active

community. [3]

Flask is a lightweight WSGI web application framework supports minimal RESTful

Web API. It is designed to make getting started quick and easy, with the ability to

4

scale up to complex applications. It began as a simple wrapper around Werkzeug

and Jinja and has become one of the most popular Python web application

frameworks. [4]

In this project, two support modules for Flask, Flask-Mail and Flask-CORS, were

used. Flask-Mail was used for creating and sending auto-generated email

messages by SMTP protocol, while Flask-CORS is used for handling CORS, which

means it allows or blocks requests from some or all origins (including protocols,

domains and ports).

Psycopg is the most popular PostgreSQL database adapter for Python. It

completely implements the Python DB API 2.0 specification and provides thread

safety (several threads can share the same connection). It was designed for heavily

multi-threaded applications that create and destroy lots of cursors and make many

concurrent INSERTs or UPDATEs. Psycopg 2 is both Unicode and Python 3 friendly

[5]. In this project, this module helps executing database operations by writing

dynamic SQL query strings in the code.

Argon2 is a secure password hashing algorithm designed to have both a

configurable runtime as well as memory consumption. Argon2 has three variants.

Argon2d can resist time–memory trade-offs, while Argon2i can resist side-channel

attacks. Argon2id is the combination of the two variants above, so it is the best

variant in practice. In 2015, Argon2 was the winner of the Password Hashing

Competition [6]. Python has an Argon2 module called argon2-cffi.

2.3 C# / .NET (Core) & Relevant Frameworks

C# is a modern, innovative, open-source, cross-platform object-oriented

programming language. It is the most popular language for .NET development. [7]

.NET (Core), developed and maintained by Microsoft, is a free, cross-platform,

open-source developer platform for building many kinds of applications. .NET

delivers productivity, performance, security, and reliability. Similar to Java, .NET

5

has its own garbage collector. Furthermore, it is type-safe and memory-safe, offers

concurrency, includes a large set of libraries and has been optimized for

performance on multiple operating systems and chip architectures [8]. .NET is

faster than many frameworks such as Node.js and Java Servlet. (Microsoft, n.d.,

online) [7]

ASP.NET Core Web API is one of .NET Core templates which helps create RESTful

web API. Latest .NET versions support two methods of creating the API: using

ASP.NET Core Controller classes or minimal APIs. For medium and large

applications, using controller classes is preferred.

Entity Framework is a modern object-relation mapper that lets developers build a

clean, portable, and high-level data access layer with .NET across a variety of

databases through plug-in libraries called database providers. It supports LINQ

queries, change tracking, updates, and schema migrations. [9]

EF Core is a lightweight, extensible, open source and cross-platform version of the

Entity Framework [10]. Since PostgreSQL is used in this project,

Npgsql.EntityFrameworkCore.PostgreSQL database provider is also installed.

2.4 JWT

JWT is an open standard, which is defined in RFC 7519. They securely represent

claims between two parties. Claims are typically used to represent an identity and

its associations, so JWT is often used for authentication and authorization [11].

JWT is made up of three parts:

- The Header contains two pieces of information: token type (typ) and

algorithm used (alg) [11]

- The Payload contains the claims, including registered and custom claims.

Custom claims can be anything, but registered claims are standardized

although they are not mandatory. Examples of registered claims are iss

(issuer), exp (expiration time), sub (subject), and aud (audience). [11]

6

- The Signature is the encoded header and encoded payload, combined with

a secret key, are signed by using the signature algorithm from the header.

It is used to verify the integrity of the JWT data. [11]

Figure 1. JWT example [12].

JWT is encoded to a string called a token. The JWT token encoding and decoding

algorithm used in this project is HMAC-SHA512.

2.5 React Native

React Native has been developing by Meta (formerly Facebook) since 2015. It is an

open-source framework where React concepts are applied to write code for

Android and iOS applications. JavaScript and TypeScript are programming

languages used in React Native. React Native can create corresponding Android

and iOS views from a set of native React components. [13]

7

2.5.1 Expo

Expo is an open-source platform for making universal native apps for Android, iOS,

and the web with JavaScript and React. It is a full ecosystem of tools that helps

developers write, build, update, submit, and monitor mobile apps. [14]

Expo Go is a free, open-source sandbox for quick experimentation with building

native Android and iOS apps. It is available for download on both iOS App Store

and Android Play Store. [15]

2.5.2 JavaScript & TypeScript

JavaScript is the world's most popular programming language for web

applications. It defines the behavior of web pages. The latest version of JavaScript

is ES6 (2015), and it is still annually updated until now. [16]

TypeScript is a strongly typed programming language that builds on JavaScript. It

can catch mistakes (errors and warnings) and display them in the editor. It also

provides the ability to define primitive (“string” and “number”, for example) types

and custom types (by using “type” and “interface” keywords) for variables. [17]

2.5.3 React Native Libraries

The React Navigation library helps developers implementing routing and

navigation for Expo and React Native applications [18]. The library provides

different types of navigators such as stack, bottom tabs, drawer, … and supports

deep linking.

React Native Paper, a third-party React Native library, is a collection of

customizable and production-ready components for React Native, following

Google’s Material Design guidelines [19]. It saves developers’ time in creating

common complex components and a beautiful GUI.

8

Formik is another third-party library. It helps managing forms in React and React

Native become easier by getting values in and out of the form state, handling input

validation and error messages, and handling form submission [20]. Formik may be

integrated with a small library called Yup. Yup is a collection of validation rules

used for validating user input values.

In addition to those libraries above, other small libraries are also installed. In this

project, the React Native Async Storage is used for storing and retrieving JWT

token; the React Native Datetime Picker has interactive and customized datetime

picker components for handling datetime states.

9

3 APPLICATION DESCRIPTION

The application is meant to help tournament managers build and run their

tournaments. Also, anyone, including guest users, should be able to view the

progress of the tournaments if managers share their tournaments publicly. The

application should consist of four main parts:

A PostgreSQL database was used. The database has two schemas for two different

purposes. One schema, named “auth”, stores user information and credentials,

while the other one, named “data”, stores tournament, stage and match

information.

The authentication server was written in Python and uses Flask library to create

minimal REST API services. It also uses psycopg2 library to connect to the “auth”

schema in the database.

The tournament data server runs a controller-based REST API using the ASP.NET

Core Web API template and was written in C#. EF Core and

Npgsql.EntityFrameworkCore.PostgreSQL libraries were installed on the server to

connect to the “data” schema in the database.

The client was implemented using React Native and TypeScript. Users can interact

with tournaments based on their role. They can also create and manage their

account information.

The JWT technology was used across the client and the two servers for secure

authentication and authorization. To store passwords securely, Argon2 password-

hashing function was applied.

3.1 Quality function deployment

The table below shows the list of requirements implemented in the application.

The priority scale has three levels. Priority 1 means must-have, 2 means should-

have and 3 means nice-to-have requirements.

10

Table 1. Application requirements.

Reference Description Priority

F1 Sign in/Sign out & Sign up. 1

F2 Change & reset password. 1

F3 CRUD Tournament List (name, place, date, …). 1

F4 CRUD Stage List (name, place, date, format, order, …). 1

F5
While creating stage, matches are generated based on stage

format and other configurations.
1

F6
Teams can be in one group or divided into many groups in all

stage formats.
1

F7 Update match information & team names & match score. 1

F8
Match winner can be determined manually or automatically

by final total score.
1

F9
In Single elimination format, the winner will be automatically

advanced to next round.
1

F10

In Round robin format, the scores are calculated and ranked

by predefined winning, drawing and losing points, as well as

tiebreaking criteria.

1

F11

In Single elimination format, team names in the bracket are

initially seeded in the first round (e.g. ‘Team1’ vs ‘Team4’,

‘Team2’ vs ‘Team3’).

2

F12

In Round robin format, users can add custom tiebreaking

criteria. They can be ordered and sorted ascending or

descending.

2

F13 Change user information. 2

F14 Help, contact channels and app info. 3

F15
In Single elimination format, there is an option for including

third-place match(es).
3

11

3.2 Use-case Diagram

As previously mentioned, guest users can only view public tournaments and their

content inside. To manage their own tournaments, they must sign up, if necessary,

and sign in. In case of forgetting the password, they can reset it via their registered

email addresses.

After signing in, they can change their user information and password, or delete

user account. Some information has a restricted period, which means after

changing that information, users must wait for a period of time to change it again.

Moreover, users can create, edit and delete tournament, stage and match data.

They can view both public and their own tournaments. If users want to sign in to

another account, they must sign out first.

Figure 2. Tournament management system use cases.

3.3 Sequence Diagram

Some important activities are discussed using the application by the sequence

diagrams below. It should be noted that these diagrams only show the successful

12

operations. If any error takes place during an operation, an error message will be

sent back to the place where the first step of the operation is done.

Figure 3. Authentication sequence diagram.

The first important activity is to get a user account and/or sign in. The process of

signing in and signing up are quite similar: the guest sends the corresponding

information to the Flask server, then the server will process the request data and

send a JWT token back to the guest, and the guest will become a logged-in user.

The only main difference is the sign-up function finds an existing user in the

database, while the sign-in function saves processed data to the database.

If the users forget their password, they can request for a password reset link via

email. When they receive and click the link, a form will be shown for them to

submit their new password.

13

Figure 4. User information & password change sequence diagram.

Logged-in users can manage their account by changing user information and

password, as well as deleting user accounts. The process is quite similar to signing

in and signing up above, but only the successful status and message are returned.

Figure 5. Public data view sequence diagram.

Whether users are logging in or not, they can always see a list of public

tournaments and their content inside. Of course, they can only make GET requests

for such information and cannot alter them.

14

The remaining diagrams describe the main tournament management activities for

logged-in users. The process of fetching tournament, stage and match data are

almost the same: the GET requests are sent to the ASP.NET Core server, then it

collects corresponding data and returns the data as a JSON object to the client.

Figure 6. Tournament sequence diagram.

Users can also make POST, PUT and DELETE requests for creating, editing and

deleting tournaments. The tournament data is returned to the client after the

creation and edition, but nothing is returned after the deletion.

Figure 7. Stage sequence diagram.

The stage operations are almost the same as the tournament operations. In the

stage creation and deletion, after inserting or deleting a stage, the corresponding

matches will also be generated or deleted in another table in the database.

15

Figure 8. Match sequence diagram.

Regardless of stage formats, only PUT requests are allowed to alter match data.

The requests are made to change team names, match information and scores. In

some cases (editing team names and match scores), data in other matches in the

same stage may also be changed. After changing match data in the database, the

overall result of the stage will be calculated and returned to the client along with

the new match data.

3.4 Architectural Diagram

As described in the previous section, the software architecture is made up of four

parts: a PostgreSQL database, the backend with two servers (Python/Flask and

C#/ASP.NET Core) and one React Native & TypeScript client.

16

Figure 9. Tournament management application structure.

The two servers independently communicate with the database to get information

and perform data modifications. Similarly, they independently connect to the

client, and they are responsible for receiving and sending JSON data. There is a

case where the authentication server communicates with the data processing

server, but it will be discussed later.

3.5 Class Diagram

This class diagram below represents the data models that is implemented in the

database as well as in the two servers. The four main classes are “User”,

“Tournament”, “Stage” and “Match”.

Each user can have multiple tournaments. If a user account is deleted, all

tournaments and their content connected to that account will also be deleted.

This composition relationship is also applied to the relationship between

“Tournament” and “Stage” classes, and between “Stage” and “Match” classes. The

exception is a stage must have at least one match.

17

Figure 10. Tournament management application classes and relationships.

In the “User” class, the username, email and password attributes are sign-in

credentials. Other attributes are informative or used for other purposes. All user

data management operations are available in this class.

18

All attributes and operations for handling tournament data itself are in the

“Tournament” class. The “userId” attribute is the foreign key of the id attribute in

the “User” class.

In the “Stage” class, the “tournamentId” attribute is the foreign key of the id

attribute in the “Tournament” class. The stage format is defined by the “formatId”

attribute and the many-to-one associated relationship with the “StageFormat”

class. Beside the attributes which describe the stage information, there are several

attributes which store the stage configuration depending which stage format is

chosen. In the diagram below, the attributes from “stageOrder” to

“bestOfPerRound” are used for all stage formats. The three third-place match

attributes are specifically for single-elimination format, and the last five attributes

are for round-robin format. Like “Tournament” class, all stage data management

are in the “Stage” class.

The basic information of every match is listed in the “Match” class. The “staged”

attribute is the foreign key of the id attribute in the “Stage” class. From the

“Match” class, two more classes are inherited to implement specific attributes and

operations based on each stage format. The two classes are “MatchSe”, repre-

sents a single-elimination match, and “MatchRr”, represents a round-robin match.

19

4 DATABASE DESIGN

As mentioned in Chapter 3, the PostgreSQL database has two schemas: “auth” and

“data”. The “auth” schema contains one table called “users”, and the “data”

schema includes the remaining tables. All tables have the “id” column as the

primary key.

Figure 11. Entity Relationship diagram for the database.

The detailed description of every table is given next auth.users table store user

credentials (username, email and password) and other information. Among in-

formative columns, the “last_username_change_time” column is used for check-

ing if changing username is allowed; the “last_sign_in_time” column might be

used for deleting any account that has signed out for a long time.

20

The data.tournaments table stores the information about the tournament itself.

It has a foreign key called “user_id” which connects to the “auth.users” primary

key. There is also the “is_private” column for determining the visibility of the tour-

nament in the application.

The data.stages table stores the information of the stage itself. It also stores the

stage configuration which describes the stage structure, and how the matches

should be generated and maintained in the stage. The table has two foreign keys,

“tournament_id” and “format_id”. The “tournament_id” key links to the

“data.tournaments” table, and the “format_id” key links to the

“data.stage_format” table.

The data.stage_format table includes the full name of the “format_id” value in

the “data.stages” table.

The data.matches_se is a collection of matches run in single-elimination format.

Each match record contains metadata, editable match information and match re-

sults. The “stage_id” foreign key links to the primary key of the “data.stages” table.

The data.matches_rr is similar to the “data.matches_se” table, this table is a col-

lection of matches, but they belong to the round-robin stages. It also has the

“stage_id” foreign key, contains metadata, editable match information and match

results. However, some metadata and match result columns are different from the

columns in the “data.matches_se” table.

21

5 GUI DESIGN

The client application is made up of two tabs which can be navigated on the

bottom navigation bar. These two tabs are “Tournaments” and “Profile”.

Figure 12. Bottom navigation bar.

In the “Profile” tab, if the user does not sign in, the sign in screen below will be

shown. The screen includes a sign in form, a link to the forgot-password screen

and a “Create account” button that navigates to the signup form.

Figure 13. Sign in screen.

The forgot-password screen contains only an email input field and a button to

submit the password reset request.

22

Figure 14. Password reset request form.

After requesting, the reset password action is done on a normal web browser

when users click the link sent to their email address.

Figure 15. Password reset form.

The signup form contains necessary input fields for creating an account. A verbal

password requirement list is also displayed on the screen.

23

Figure 16. Sign up form.

After signing in, the users see the actual profile screen. They can view their

detailed account information, modify user information, view application

information, sign out or delete their account.

24

Figure 17. Profile screen.

The “Change user password” form lets users change their username and other

information that is not available when signing up. The “Change password” form

requires users to provide both current password and new password, as well as

new password confirmation, for a secure password change.

25

Figure 18. Change user information (left) and change password (right) forms.

There are three other screens that are navigated from the “Help & About” section

on the “Profile” screen. However, they only provide static application information,

so they will not be shown here.

In the “Tournaments” tab, the first screen the users see is the tournament list

screen. It has two parts: the upper part shows the user’s tournament list, while

the lower part shows the public tournaments of all users. Each part has a search

bar for filtering the corresponding list based on the tournament name. If the users

do not sign in, they cannot see the upper part.

26

Figure 19. Tournament list screen.

The “New tournament” button navigates to a form to create a new tournament.

Guest users cannot see that button.

27

Figure 20. New tournament form.

One important note should be made: every button in the below figures below that

is used for modifying the public tournaments and their stages and matches will

not be shown to guest users (only the information is available for viewing).

Pressing any tournament will make the application navigate to the tournament

details screen. It displays the tournament information and the stage list. In the

tournament information section, the “Edit” and “Delete” buttons are used to edit

the tournament information and delete the whole tournament. The stage list

section contains pressable list of stages and two buttons for changing stage order

and add a new stage. The “Change stage order” appears when the list has two or

more stages.

28

Figure 21. Tournament details screen.

To edit the tournament information, press the “Edit” button. The form is similar

to the “New tournament” form, but current data will be in the input fields.

29

Figure 22. Edit tournament form.

The “New stage” button leads users to the stage creation form. The first section is

the stage information form, which is similar to the “New tournament” form.

30

Figure 23. New stage form: stage information.

The second section is the stage configuration. In the second section, the first input

fields are applied to all stage formats.

Figure 24. New stage form: common stage configuration.

31

After the first input fields, the other fields are displayed depending on which stage

format is chosen.

Figure 25. New stage form: configuration for round-robin (left) and single-elimi-
nation (right) stages.

The “Change stage order” form is simple, as shown below. The order is changed

by editing the number in the fields.

Figure 26. Edit stage order form.

Pressing any stage will make the application navigate to the stage details screen.

The screen shows the stage information, match list and overall result of the stage.

32

Some stage information, the match list and overall result of the stage are shown

differently among the stage formats. The “Edit” button navigates the application

to the “Edit Stage” form. It is similar to the “Edit Tournament” form, but there is

no “Set as private tournament” checkbox.

Figure 27. Stage details: stage information.

In round-robin stages, the table results and the match list in a selected group are

shown. The columns in the table results are rank, team, points, difference, earned

score and possibly other criteria.

33

Figure 28. Stage details: table results of round-robin stages.

The columns in the match list are leg (number), match (number), team 1 name and

score, team 2 name and score

Figure 29. Stage details: match list of round-robin stages.

In single-elimination stages, the match list in a selected group and a selected round

is shown. The columns in the match list are similar to those in the round-robin

stage, except that there is no leg column, and a column called “Winner's Next

Round Match” is used to determine the connection between matches across the

rounds. (For example, if the match is in round 1 and the column value is 3, the

winner will be assigned to match number 3 in round 2).

34

Figure 30. Stage details: match list and overall results of single-elimination
stages.

The winner in every match in both types of match list is marked by a trailing star

(*). By pressing a match in the match list, users can see the match details, as well

as the three edit buttons. In single-elimination format, the team names can only

be edited in the first round. Figure 31 below shows the “MatchDetails” screens of

both stage formats.

Figure 31. Round-robin (left) and single-elimination (right) match details.

35

Here are the “EditTeamNames” screens of both stage formats.

Figure 32. Round-robin (left) and single-elimination (right) edit team name form.

Then, here are the “EditMatchScores” screens of both stage formats.

Figure 33. Round-robin (left) and single-elimination (right) edit match score form.

36

Finally, the figure below is the “EditMatchInformation” screen. The interface is

applied the same way for both stage formats.

Figure 34. Edit match information form.

37

6 IMPLEMENTATION

The authentication server and the client were developed on Visual Studio Code,

while the tournament data processing server was developed on Visual Studio

2022. All three code projects were managed by Git and pushed to GitHub as three

separate repositories.

6.1 Authentication Server

The Python interpreter version used to run the server is Python 3.10.11. The figure

below is the folder structure of the authentication server on Visual Studio Code

IDE.

Figure 35. Authentication server folder structure.

The server needs to use some custom environment variables. One handy way to

do this is to include those variables in the “.env” file in the root folder, and install

38

and import “dotenv” module to retrieve them. The environment variables that the

server uses are listed below in the file:

FLASK_HOST_URL=0.0.0.0

POSTGRESQL_DATABASE_NAME=tournaments

POSTGRESQL_USERNAME=postgres

POSTGRESQL_PASSWORD=<insert_database_password>

POSTGRESQL_HOST=localhost

POSTGRESQL_PORT=5432

JWT_SECRET_KEY=<insert_a_secret_key>

MAIL_USERNAME=<insert_an_email_address>

MAIL_PASSWORD=<insert_the_email_password>

TOURNAMENT_DATA_SERVER_URL=<insert_the_public_url>

Code Snippet 1. Environment variables in authentication server.

The main code file which includes Flask configurations and endpoints is the

“app.py” file. The configurations in this file are for mail service and CORS handling.

from flask_cors import CORS

from flask_mail import Mail

app = Flask(__name__)

app.config['MAIL_SERVER']='smtp.gmail.com'

app.config['MAIL_PORT'] = 465

app.config['MAIL_USERNAME'] =

os.getenv("MAIL_USERNAME")

app.config['MAIL_PASSWORD'] = os.getenv("MAIL_PASS-

WORD")

app.config['MAIL_USE_TLS'] = False

app.config['MAIL_USE_SSL'] = True

mail = Mail(app)

CORS(app)

Code Snippet 2. Flask configuration in app.py.

The “db_connection.py” file has some variables retrieved from the “.env” file for

psycopg2 database connection in the “app.py” file.

from dotenv import load_dotenv

import os

load_dotenv()

dbname = os.getenv('POSTGRESQL_DATABASE_NAME')

dbuser = os.getenv('POSTGRESQL_USERNAME')

39

dbpassword = os.getenv('POSTGRESQL_PASSWORD')

dbhost = os.getenv('POSTGRESQL_HOST')

dbport = os.getenv('POSTGRESQL_PORT')

Code Snippet 3. Psycopg2 database connection variables.

The templates folder contains some “.html” and “.txt” files, which is mainly used

for password reset. The “helpers” folder has a few scripts where helper functions

are defined and called in the “app.py” file. The “validations.py” file contains

validation functions for different variables corresponding to the “auth.users”

columns in the PostgreSQL database, such as username, email, password, and

phone number. The “send_email.py” is responsible for sending automatic

messages, using a thread to avoid delaying other services in the server.

from flask_mail import Message

from threading import Thread

from app import app, mail

def send_async_email(app, msg):

 with app.app_context():

 mail.send(msg)

def send_email(subject, sender, recipients, text_body,

html_body):

 msg = Message(subject, sender=sender,

recipients=recipients)

 msg.body = text_body

 msg.html = html_body

 Thread(target=send_async_email, args=(app,

msg)).start()

Code Snippet 4. send_email.py file.

To avoid circular import between the “app.py” and the “send_email.py” file, the

run configurations for the Flask server will be stated in the “run.py” file. To run the

server, run this file by this command: py run.py

import os

from app import app

if __name__ == '__main__':

40

 app.run(debug = True, host =

os.getenv("FLASK_HOST_URL"), port = 5000)

Code Snippet 5. run.py file.

Here is the list of REST API endpoints in the server:

• /sign_up (POST)

o Body keys: email (string), username (string), password (string)

• /sign_in (POST)

o Body keys: username_or_email (string), password (string)

• /username/<user_id> (GET)

• /get_user_information (GET)

o Header key: Authorization

• /change_user_information (POST)

o Header key: Authorization

o Body keys: new_username (string), country (string), phone (string)

• /change_password (POST)

o Header key: Authorization

o Body keys: current_password (string), new_password (string)

• /forgot_password (POST)

o Body key: email (string)

• /reset_password/<token> (GET, POST)

• /delete_user_account (POST)

o Header key: Authorization

o Body key: password (string)

Every endpoint function starts with database connection and creating a cursor

variable. Then, if an endpoint receives a request header and/or a request body,

those values can be obtained by the request variable in the flask module. Next, if

an endpoint requires a token, it can be retrieved from the “Authorization” header,

validated and decoded. After that, the endpoint function does its main job. Finally,

no matter whether the operation is successful or not, the database connection

41

should be closed and an object is returned. The return object always has an

“isSuccess” Boolean value and may contain other information such as message or

token. Thus, the structure of all endpoints is similar to the example below:

 conn = psycopg2.connect(dbname=dbname, user=dbuser,

password=dbpassword, host=dbhost, port=dbport)

 cur = conn.cursor()

 headers = request.headers

 request_body = request.get_json()

 try:

 token = headers["Authorization"].split("Bearer

", 1)[1]

 decoded_object = jwt.decode(token,

os.getenv("JWT_SECRET_KEY"), algorithms=["HS512"])

 # Main code

 conn.close()

 return {"isSuccess": True, "message":

"Success"} # Other key-value may be added here

 except jwt.exceptions.ExpiredSignatureError:

 conn.close()

 return {"isSuccess": False, "message": "Token

expired"}, 400

 except Exception:

 conn.close()

 return {"isSuccess": False, "message": "Bad

Request"}, 400

Code Snippet 6. Example of the structure of authentication server endpoints.

The list below is the detailed description of what each endpoint does on the

server:

• /sign_up: The function validates the request body values. If they are valid,

the password is hashed, the “last_sign_in_time” and

“last_username_change_time” variables are initialized as current datetime

variables and a new user is inserted into the database. Then a JWT token

is generated and returned.

• /sign_in: The function checks if the username/email and password from

the request body are empty. Then, it finds the user in the database. If it

42

finds one, it uses the saved hashed password to verify the provided

password. If the verification is successful, it generates a JWT token and

returns it to the client.

• /username/<user_id>: The function simply gets the username from the

user ID provided in the URL.

• /get_user_information: The function gets almost every field of a user by

the user ID retrieved from the decoded JWT token. It also includes some

extra calculated values to the return object.

• /change_user_information: The function validates the request body

values. Then, it checks if the difference between the current datetime and

the last time the user changes the username is high enough and updates

the username if the condition is satisfied. Finally, it changes other user

information.

• /change_password: The function validates the request body values. Then,

it finds the user who wants to change the password and verify the current

password. If the verification is successful, the new password is hashed and

updated in the database.

• /forgot_password: The function checks if the email exists in the database.

If an email is found, an email message including a password reset token

link is generated and sent to the email address.

• /reset_password/<token>: If the method is GET, a reset password web

page is shown. If the method is POST, the function finds the user by the

information in the decoded JWT token. Then, the new password provided

is hashed and updated to the database.

• /delete_user_account: The function verifies the password sent from the

client to make sure that the delete request is made by the correct

authorized user. Then, it delete the user in “auth.users” table and all

tournaments linked to the deleted user account in “data.tournaments”

table by communicating with the tournament data processing server.

43

6.2 Tournament Data Server

.NET 8 is the framework version of the server. fFigure 36 below shows the folder

structure of the tournament data processing server on Visual Studio 2022 IDE.

Figure 36. Tournament data processing server folder structure.

The project was initialized by the ASP.NET Core Web API template in the Visual

Studio IDE. To run the server, use dotnet run command at the root folder or

click the “Start” buttons on the Visual Studio toolbar (the green triangle icon).

Some parameters are required for launching the server, and they can be adjusted

in the “launchSettings.json” file. In this server, the environment variables and the

application URL are added and modified.

44

{

 //Other setting parameters

 "profiles": {

 "tournament_app_server": {

 //Other parameters

 "applicationUrl": "http://0.0.0.0:5244", //Any

unused registered port is fine

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development",

 "JWT_SECRET_KEY": "<insert_secret_key>"

 }

 },

 //Other profiles

 }

}

Code Snippet 7. launchSettings.json file.

A connection string must be prepared in the “appsettings.json” file in order to

connect the server to the database. The connection string is named

“DefaultConnection” and includes the database server URL and port, database

name, and username and password of the database server.

{

 "ConnectionStrings": {

 "DefaultConnection":

"Server=localhost;Port=5432;Database=tournaments;;Usern

ame=postgres;Password=<insert_db_server_password>;"

 },

 //Other application settings

}

Code Snippet 8. appsettings.json file.

The “DefaultConnection” string will be used in the “Program.cs” file, where the

database connection is established when the application starts running.

using Microsoft.EntityFrameworkCore;

45

using tournament_app_server;

var builder = WebApplication.CreateBuilder(args);

// Other builder services

var Configuration = builder.Configuration;

builder.Services.AddDbContext<AppDbContext>(options =>

options.UseNpgsql(Configuration.GetConnectionString(

"DefaultConnection")));

var app = builder.Build();

// Other app configurations

app.Run();

Code Snippet 9. Program.cs file.

A helper function, called “ValidateToken” and located in the “TokenValidation.cs”

file, is defined for later use in the controllers. The function decodes the JWT token

string into an object whose values can be easily retrieved.

using Microsoft.IdentityModel.Tokens;

using System.IdentityModel.Tokens.Jwt;

using System.Text;

namespace tournament_app_server

{

 public class TokenValidation

 {

 public static JwtSecurityToken ValidateToken(string

token)

 {

 var handler = new JwtSecurityTokenHandler();

 var validationParameters = new

TokenValidationParameters

 {

 ValidateIssuerSigningKey = true,

 IssuerSigningKey = new

SymmetricSecurityKey(Encoding.UTF8.GetBytes(Environment

.GetEnvironmentVariable("JWT_SECRET_KEY").PadRight(512

/ 8, '\0'))),

 ValidateIssuer = false,

 ValidateAudience = false,

 ValidAlgorithms =

[SecurityAlgorithms.HmacSha512]

46

 };

 handler.ValidateToken(token,

validationParameters, out var validatedToken);

 return handler.ReadJwtToken(token);

 }

 }

}

Code Snippet 10. TokenValidation.cs file.

Three folders were created in the project: “Controllers”, “DTOs” and “Models”.

The “Controllers” folder is the place where different endpoints are implemented;

those endpoints use classes in the “DTOs” and “Models” folder for data

processing. The “DTOs” folder has property-only classes that represent the

request body objects sent from the client. The “Models” folder is similar to the

“DTOs” folder, but the classes represent the data models of the database tables

as well as the data objects returned to the client.

To determine which schema and tables the server accesses, the “AppDbContext”

class is written in a C# file with the same name. It inherits the “DbContext” class

from the EF Core library. By the “DbSet” properties, it also converts LINQ queries

written in the controller classes into SQL queries.

using Microsoft.EntityFrameworkCore;

using tournament_app_server.Models;

namespace tournament_app_server

{

 public class AppDbContext : DbContext

 {

 public AppDbContext(DbContextOptions<AppDbContext>

options) : base(options) { }

 public DbSet<Tournament> Tournaments { get; set; }

 public DbSet<Stage> Stages { get; set; }

 public DbSet<StageFormat> StageFormats { get; set;}

 public DbSet<MatchSe> MatchSes { get; set; }

 public DbSet<MatchRr> MatchRrs { get; set; }

 protected override void OnModelCreating

(ModelBuilder modelBuilder)

 {

47

 modelBuilder.HasDefaultSchema("data"); //

Configure table schema

modelBuilder.Entity<Tournament>().ToTable("tourn

aments");

modelBuilder.Entity<Stage>().ToTable("stages");

modelBuilder.Entity<StageFormat>().ToTable("stag

e_format");

modelBuilder.Entity<MatchSe>().ToTable("matches_

se");

modelBuilder.Entity<MatchRr>().ToTable("matches_

rr");

 base.OnModelCreating(modelBuilder);

 }

 }

}

Code Snippet 11. AppDbContext class.

Code snippet 12 below shows an example of the controller structure and how the

“AppDbContext” is used in the controller. The [Route] tag indicates the starting

part of the endpoints URL inside the class, and the rest part is defined in the

[HttpGet] (or [HttpPost], [HttpPut], [HttpDelete]) tag, which defines the endpoint

request method. The curly brackets in the URL string indicate the parameters of

the endpoint functions. Each controller inherits the “ControllerBase” class of the

“Microsoft.AspNetCore.Mvc” module. The database context is initialized before

any endpoints. In every endpoint, the parameters are not only linked to the URL

parameters. If any information from the request header and the request body is

needed, the [FromHeader] and [FromBody] tags are used before the parameters

themselves, respectively. The purposes of all endpoints will be discussed briefly

later, but the application of the “AppDbContext” below can be easily understood.

using Microsoft.AspNetCore.Mvc;

using Microsoft.EntityFrameworkCore;

using tournament_app_server.DTOs;

using tournament_app_server.Models;

namespace tournament_app_server.Controllers

{

 [Route("/stages")]

 [ApiController]

48

 public class StageController : ControllerBase

 {

 private readonly AppDbContext _dbContext;

 public StageController(AppDbContext dbContext)

 {

 _dbContext = dbContext;

 }

 [HttpGet("all/{tournament_id}")]

 public async Task<ActionResult<IEnumerable<Stage>>>

GetStagesByTournamentId(long tournament_id,

[FromHeader(Name = "Authorization")] string token = "")

 {

 if (_dbContext.Stages == null)

 {

 return NotFound();

 }

 try

 {

 if (token.Contains("Bearer "))

 {

 token = token.Split("Bearer ")[1];

 }

 var tournament = await

_dbContext.Tournaments.FindAsync(tournament_id);

 if (tournament == null)

 {

 return NotFound();

 }

 if (token.Trim() == "")

 {

 if (tournament.is_private == true)

 {

 throw new Exception("Cannot access or

modify these private stages without a valid token.");

 }

 }

 else

 {

 var decodedToken =

TokenValidation.ValidateToken(token);

 var payload = decodedToken.Payload;

 int userId = (int)payload["id"];

 if (tournament.user_id != userId &&

tournament.is_private == true)

 {

49

 throw new Exception("Cannot access or

modify these stages by your token.");

 }

 }

 return await _dbContext.Stages

 .Where(s => s.tournament_id == tournament_id)

 .OrderBy(s => s.stage_order)

 .ToListAsync();

 }

 catch (Exception ex)

 {

 return BadRequest(ex.Message);

 }

 }

 //Other endpoints

}

Code Snippet 12. Controller class example.

The tables of endpoints are implemented in the five controller classes. Any

endpoints having the “Authorization” header key means that the user might be

required a JWT token to get access to them.

- TournamentController.cs:

• /tournaments/public (GET)

• /tournaments/all (GET)

o Header key: Authorization

• /tournaments/<id> (GET)

o Header key: Authorization

• /tournaments (POST)

o Header key: Authorization

o Body keys: name (string), start_date (string), end_date (string),

places (string[]), description (string), is_private (bool)

• /tournaments/<id> (PUT)

o Header key: Authorization

50

o Body keys: name (string), start_date (string), end_date (string),

places (string[]), description (string), is_private (bool)

• /tournaments/<id> (DELETE)

o Header key: Authorization

- StageController.cs:

• /stages/all/<tournament_id> (GET)

o Header key: Authorization

• /stages/<id> (GET)

o Header key: Authorization

• /stages (POST)

o Header key: Authorization

o Body keys: name (string), format_id (int), start_date (string),

end_date (string), places (string[]), description (string),

tournament_id (int), number_of_teams_per_group (int),

number_of_groups (int), stage_order (int),

include_third_place_match (bool), number_of_legs_per_round

(int[]), best_of_per_round (int[]),

third_place_match_number_of_legs (int),

third_place_match_best_of (int), win_point (double), draw_point

(double), lose_point (double), other_criteria_names (string[]),

other_criteria_sort_direction (string[])

• /stages/<id> (PUT)

o Header key: Authorization

o Body keys: name (string), start_date (string), end_date (string),

places (string[]), description (string), tournament_id (int),

• /stages/order (PUT)

o Header key: Authorization

o Body keys: List of: id (int), name (string), tournament_id (int),

stage_order (int)

• /stages/<id> (DELETE)

51

o Header key: Authorization

- StageFormatController.cs:

• /stage_format (GET)

• /stage_format/<id> (GET)

- MatchSeController.cs:

• /matches/se/all/<stage_id> (GET)

o Header key: Authorization

• /matches/se/<id> (GET)

o Header key: Authorization

• /matches/se/<id>/team_name (PUT)

o Header key: Authorization

o Body keys: team_1 (string), team_2 (string)

• /matches/se/<id>/match_info (PUT)

o Header key: Authorization

o Body keys: start_datetime (string), place (string), note (string)

• /matches/se/<id>/match_score (PUT)

o Header key: Authorization

o Body keys: winner (string), team_1_scores (double[]),

team_2_scores (double[]), team_1_subscores (double[]),

team_2_subscores (double[])

- MatchRrController.cs:

• /matches/rr/all/<stage_id> (GET)

o Header key: Authorization

• /matches/rr/<id> (GET)

o Header key: Authorization

• /matches/rr/table_results/<stage_id>/<group_number> (GET)

o Header key: Authorization

• /matches/rr/<id>/team_name (PUT)

o Header key: Authorization

o Body keys: old_team_name (string), new_team_name (string)

52

• /matches/rr/<id>/match_info (PUT)

o Header key: Authorization

o Body keys: start_datetime (string), place (string), note (string)

• /matches/rr/<id>/match_score (PUT)

o Header key: Authorization

o Body keys: winner (string), team_1_score (double), team_2_score

(double), team_1_subscores (double[]), team_2_subscores

(double[]), team_1_other_criteria_values (double[]),

team_2_other_criteria_values (double[])

The purpose of each endpoint are:

• /tournaments/public (GET): Return all tournaments where the

“is_private” column in the database is false.

• /tournaments/all (GET): Return all tournaments of a user. The user ID can

be retrieved in the JWT token.

• /tournaments/<id> (GET): Return tournament information by a

tournament ID. Only the authorized user can access it if it is private.

• /tournaments (POST): Save a new tournament to the database. A valid

token is required.

• /tournaments/<id> (PUT): Update a tournament in the database. Only the

authorized user can modify it.

• /tournaments/<id> (DELETE): Delete a tournament as well as its stages

and matches. Only the authorized user can delete it.

• /stages/all/<tournament_id> (GET): Return all stages of a tournament by

a tournament ID. Only the authorized user can access it if the tournament

is private.

• /stages/<id> (GET): Return stage information by a stage ID. Only the

authorized user can access it if the tournament is private.

53

• /stages (POST): Save a new stage to the database and generate matches

based on the selected stage format. The match generation process will be

the same for every group.

o If the format is single elimination, the number of teams in each

group will be calculated to the upper nearest power of 2. Then

matches will be generated in the first round; in the second round,

the number of matches will be halved, and so on until the final

match. A third-place match is optional for all groups.

o If the format is round robin, a permutation (made by two nested

loops of “number_of_teams_per_group”) is done to generate all

match combinations. If the number of legs is larger or equal to two,

the process is repeated corresponding times.

• /stages/<id> (PUT): Update a stage information (but not stage

configuration) in the database. Only the authorized user can modify it.

• /stages/order (PUT): Change the order of stages in a tournament. Only the

authorized user can modify it.

• /stages/<id> (DELETE): Delete a stage as well as its matches. Only the

authorized user can delete it.

• /stage_format (GET): Return all stage formats.

• /stage_format/<id> (GET): Return a stage format by a stage format ID.

• /matches/se/all/<stage_id> (GET): Return all single-elimination matches

of a stage by a stage ID. Only the authorized user can access it if the

tournament is private.

• /matches/se/<id> (GET): Return single-elimination match information by

a match ID. Only the authorized user can access it if the tournament is

private.

• /matches/se/<id>/team_name (PUT): Change team names in a single-

elimination stage. The names must be unique in that stage. The change

must start in one of the first-round matches found by match ID. After that,

54

the old team names are searched in the remaining rounds. If they are

found, they will also be changed. Only the authorized user can modify it.

• /matches/se/<id>/match_info (PUT): Update the information of a match

(start_datetime, place, note). Only the authorized user can modify it.

• /matches/se/<id>/match_score (PUT): Update a single-elimination match

result. Then the winning team name will be updated in the correct next

round match and clear the scores of that match. Finally, the dependent

matches after that next round will be reset (clear the team names and the

scores). Only the authorized user can modify it.

• /matches/rr/all/<stage_id> (GET): Return all round-robin matches of a

stage by a stage ID. Only the authorized user can access it if the tournament

is private.

• /matches/rr/<id> (GET): Return round-robin match information by a

match ID. Only the authorized user can access it if the tournament is

private.

• /matches/rr/table_results/<stage_id>/<group_number> (GET):

Calculate the table results of a group in a round-robin stage. This function

calculates total points, difference, accumulated/earned score and other

criteria values for each team in the group, then the results will be sorted

by total points, then difference, then accumulated/earned score and finally

other criteria values. Only the authorized user can access it if the

tournament is private.

o Total points: added if the team wins, draws or loses. “win_point”,

“draw_point” and “lose_point” properties of the “Stage” class are

used.

o Difference: accumulated from the score difference of a team plays

against each opponent in a group.

o Accumulated/earned score: The sum of the score a team earned in

every match in a group.

55

o Other criteria values: The sum of the criteria values a team gets in

every match in a group. The values are sorted ascending or

descending depending on the stage configuration.

• /matches/rr/<id>/team_name (PUT): Change team names in a round-

robin stage. The names must be unique in that stage. They can be changed

in any match, and if a team name is changed in a match, that name in other

matches will also be changed. Only the authorized user can modify it.

• /matches/rr/<id>/match_info (PUT): Similar to “/matches/se/<id>/

match_info” endpoint, but it works for round-robin matches. Only the

authorized user can modify it.

• /matches/rr/<id>/match_score (PUT): Update a round-robin match

result. Only the authorized user can modify it.

6.3 The client

In the client project, the React Native version is 0.72 (then upgraded to 0.74) and

the Expo SDK version is 49 (then upgraded to 51). Figure 37 shows the folder

structure of the React Native client on Visual Studio Code IDE.

Figure 37. Client folder structure.

56

After the client project initialization, the orientation property in the “app.json”

was “portrait”. This property was changed to “default”, which means the

application is not locked to any orientation. There are other properties in this file,

but they do not need to be changed now.

{

 "expo": {

 "orientation": "default",

 //Other properties

 }

}

Code Snippet 13. app.json configuration file.

The two environment variables used in the application are

“EXPO_PUBLIC_AUTH_SERVER_URL” and “EXPO_PUBLIC_SERVER_URL”, which

store the authentication and tournament data processing server base URLs,

respectively (the variable name must start with “EXPO_PUBLIC_”, because Expo

CLI loads those variables using this format). The variables are written in the “.env”

file. In the code, they are used by the process.env object, for example:

const response = await

fetch(process.env.EXPO_PUBLIC_AUTH_SERVER_URL +

"/get_user_information")

Code Snippet 14. Example of using environment variables in the code.

The “colors.ts” file in the theme folder contains some hex-value color variables. In

the data folder, the “countries.ts” code fetches information from all countries (API

URL: https://countriesnow.space/api/v0.1/countries/codes); the “getTimezone”

function in the “getTimezone.ts” file formats and returns the time zone string

value from a given date object; and the “stageFormatsEnum.ts” file has an object

that stores stage format ID as explicit names to avoid magic numbers in the code.

https://countriesnow.space/api/v0.1/countries/codes

57

The “components” folder contains all the other components to render elements

to the screen. This folder contains several subfolders. The “profile” folder stores

components for authentication and managing user profiles. Application

information and instruction are also rendered from the components in this folder.

The “tournaments”, “stages”, “matches_se” and “matches_rr” folders store

components for tournament, stage, single-elimination match and round-robin

match data manipulation, respectively. Furthermore, custom components are also

implemented in the “custom” folder and used in other places.

The root component is the “App.tsx” file. In this file, the “Main” component is

rendered. The “SafeAreaProvider” component is wrapped around “Main”

component so that the components inside the “Main” component are not covered

by operation system elements such as status bar and home indicators. The

“PaperProvider” component of the React Native Paper library is also needed for

using the library’s UI components inside the “Main” component. Moreover, the

“Main” component is wrapped by the “NavigationContainer” component of the

React Navigation library for navigation components and states inside. Finally, for

the Expo SDK 50 or above, the “react-native-reanimated” package must be

installed and imported so that the application is not crashed while executing any

navigation operation.

import { SafeAreaProvider } from 'react-native-safe-

area-context';

import Main from './components/Main';

import { PaperProvider } from 'react-native-paper';

import { NavigationContainer } from '@react-

navigation/native';

import 'react-native-reanimated';

export default function App() {

 return (

 <NavigationContainer>

 <PaperProvider>

 <SafeAreaProvider>

 <Main />

 </SafeAreaProvider>

 </PaperProvider>

58

 </NavigationContainer>

)

}

Code Snippet 15. App.tsx file.

The “Main” component is in the “components” folder. In this component, the

bottom navigation tabs are rendered. The component also initializes the

“navigation” prop and the “token” state to be used in the subcomponents. Lastly,

the “StatusBar” component is a quick and convenient way to style the operation

system status bar.

import { createBottomTabNavigator } from '@react-

navigation/bottom-tabs';

import { StatusBar } from 'expo-status-bar';

import ProfileStack from './profile/ProfileStack';

import TournamentStack from

'./tournaments/TournamentStack';

import { secondary, tertiary } from '../theme/colors';

import { Ionicons } from '@expo/vector-icons';

import { useState } from 'react';

import { useNavigation } from '@react-

navigation/native';

const BottomTab = createBottomTabNavigator()

const Main = () => {

 const navigation = useNavigation()

 const [token, setToken] = useState<string>('')

 return (

 <>

 <StatusBar style="auto" />

 <BottomTab.Navigator

 screenOptions={({ route }) => ({

 headerShown: false,

 tabBarStyle: {

 backgroundColor: secondary

 },

 tabBarIcon: ({ color, size }) => {

 if (route.name === 'TournamentStack') {

 return (

 <Ionicons

 name="trophy"

 size={size}

 color={color}

59

 />

);

 } else if (route.name === 'ProfileStack') {

 return (

 <Ionicons

 name="person"

 size={size}

 color={color}

 />

);

 }

 },

 tabBarActiveTintColor: tertiary,

 })}

 >

 <BottomTab.Screen

 name="TournamentStack"

 children={() => <TournamentStack

navigation={navigation} token={token} />}

 options={{ title: 'Tournaments' }}

 />

 <BottomTab.Screen

 name="ProfileStack"

 children={() => <ProfileStack

navigation={navigation} token={token}

setToken={setToken} />}

 options={{ title: 'Profile' }}

 />

 </BottomTab.Navigator>

 </>

);

}

export default Main

Code Snippet 16. Main.tsx file.

Pressing the tabs renders the “ProfileStack” and “TournamentStack” components.

Those stacks are collections of navigated screens. The “ProfileStack” contains

screens which render the components in the “profile” folder, while the

“TournamentStack” contains screens which render the components in the

“tournaments”, “stages”, “matches_se” and “matches_rr” folder. Code snippet 17

gives an example of implementation of those stacks.

60

import { createNativeStackNavigator } from "@react-

navigation/native-stack";

import { secondary, tertiary } from

"../../theme/colors";

import TournamentList from "./TournamentList";

import NewTournament from "./NewTournament";

{/*Other imports from ‘components’ folder*/}

const Stack = createNativeStackNavigator();

const TournamentStack = ({ navigation, token }: any) =>

{

 return (

 <Stack.Navigator

 screenOptions={{

 headerStyle: {

 backgroundColor: secondary

 },

 headerTintColor: tertiary

 }}

 >

 <Stack.Screen

 name="TournamentList"

 children={() => <TournamentList

navigation={navigation} token={token} />}

 options={{

 title: 'Your tournaments',

 }}

 />

 <Stack.Screen

 name="NewTournament"

 component={NewTournament}

 options={{

 title: 'New Tournament',

 }}

 />

 {/*Other Stack.Screen components*/}

 </Stack.Navigator>

);

}

export default TournamentStack

Code Snippet 17. TournamentStack.tsx file.

61

The communications with the servers are made using the “fetch” API, which is the

same as the “fetch” API in JavaScript. The API is implemented in the “useEffect”

hooks and the Formik submit functions. Here is an example of a function that

updates tournament information. The “values” parameter is an object of Formik

input field values.

const updateTournament = (values: any) => {

 //Some input processing operations to ‘values’ (if

necessary)

 fetch(`${process.env.EXPO_PUBLIC_SERVER_URL}/tourname

nts/${tournamentInfo.id}`, {

 method: 'PUT',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + token

 },

 body: JSON.stringify(values),

 })

 .then(async response => {

 if (response.ok) {

 return response.json()

 }

 else throw new Error(await response.text())

 })

 .then(data => {

 //State update and other operations

 })

 .catch((error: any) => {

 setServerErrorMessage(error.message)

 })

}

Code Snippet 18. updateTournament function.

62

7 TESTING

The application testing was conducted manually using the TDD method. After an

endpoint in the servers or a component in the client is implemented, it is tested

with sufficient test cases. Also, integration testing is done each time some backend

routes and some corresponding frontend components are ready.

The servers themselves are tested by sending requests from Postman. The client,

together with worked backend endpoints, is tested by the Expo Go application,

mainly on the iPhone 12 Pro Max (sometimes on an Android emulator).

The tables below illustrate the description of the test cases and their results.

Table 2. Test results.

Expectation Result

The sign in operation is successful if the credentials are correct.

Otherwise, an error message must be displayed.
Pass

When the sign up operation is successful, a new account is created

and the user is automatically signed in. If an error happens, an error

message must be displayed. Password rules are applied.

Pass

When the user sends an email for password reset, he/she receives a

unique reset link where he/she can submit a new password.

Password rules are applied.

Pass

The user can change his/her user information and password. The

username can only be changed again after a number of days since

the last change. Password rules are applied.

Pass

When signing in, the user can sign out or delete his/her account.

Deleting the account requires a password confirmation.
Pass

The user can see both his/her and public tournament lists if he/she

is signing in. Otherwise, only the public list can be seen.
Pass

The user cannot modify any tournaments in the public list. Pass

63

The test cases below will be applied to the user who has already signed in.

Table 3. Test results (continue).

Expectation Result

The user can create, edit and delete tournaments and their

stages inside.
Pass

After creating a new stage, the corresponding matches must

also be generated based on stage configurations.

Pass (with not

fully optimized

results)

The order of stages in a tournament can be changed.
Pass (with

average UX/UI)

When the tournaments and stages are deleted,

confirmation must be made by typing their names. Deleting

a tournament will delete its stages and matches, and

deleting a stage will delete its matches.

Pass

The user can see the match list and overall results of the

stages, as well as a specific match results by pressing a

match in the match list

Pass

After editing team names, match information or match

results, the match results, match list and overall results of

the stage must be automatically updated.

Pass

Team names must be unique in the same stage. Pass

The test cases in the two tables above cover the F1-F5, F7, F13 and F14

requirements in Table 1, section 3.1. The remaining requirements are also tested

and passed.

64

8 CONCLUSIONS

The developed application meets most of the initial requirements. Each part of the

system works and communicates with each other smoothly. The two servers

provide different services, and both the servers and client code are well-organized

so that error tracing is easier. The elements displayed on the screen are clear and

concise, and navigation between screens is quick and easy.

The users can use the application conveniently and securely. They can manage

multiple tournaments and customize multiple stages inside those tournaments.

Moreover, the application automatically and immediately updates the overall

stage results whenever the users update any match result.

Several challenges were met during the development process. First, the match

generation in the stage creation depends on the stage format and many other

stage configurations. Therefore, a complex algorithm is implemented to ensure

the correct number of matches with correct initial values of each match, is

generated. Second, in the team name edition process, the application does not

only update the names in the selected match, but it also needs to find other

matches in the same stage where the old names appear. Finally, updating the

overall stage results based on match results takes quite a lot of time to implement,

because each stage format has its own implementation, and the algorithm in each

implementation is not simple.

The application is designed to be extensible, and some features can be developed

in the future. One good example is that when creating a new stage, the user has

more stage format choices such as double elimination. Another feature to be

considered is to provide the user with a better customization of tiebreaking

criteria in the round robin stages. Moreover, a visual bracket figure should also be

implemented in the single elimination stages so that the user has an intuitive view

of the overall stage result.

65

REFERENCES

[1] Byl, J. (2014) Organizing Successful Tournaments, 4th edition. United

Kingdom: Human Kinetics.

[2] IBM (n.d.) What is PostgreSQL?. Retrieved April 7, 2024 from

https://www.ibm.com/topics/postgresql

[3] Coursera (2024) What Is Python Used For? A Beginner’s Guide. Retrieved

April 7, 2024 from https://www.coursera.org/articles/what-is-python-used-

for-a-beginners-guide-to-using-python

[4] Pallets (2023) Flask. Retrieved April 7, 2024 from

https://github.com/pallets/flask/

[5] Psycopg (n.d.) Psycopg – PostgreSQL database adapter for Python.

Retrieved April 7, 2024 from https://www.psycopg.org/docs/

[6] Schlawack, H. (2015) What is Argon2?. Retrieved April 7, 2024 from

https://argon2-cffi.readthedocs.io/en/stable/argon2.html

[7] Microsoft (n.d.) C#. Retrieved April 7, 2024 from

https://dotnet.microsoft.com/en-us/languages/csharp

[8] Microsoft (2024) Introduction to .NET. Retrieved April 7, 2024 from

https://learn.microsoft.com/en-us/dotnet/core/introduction

[9] Microsoft (n.d.) Entity Framework documentation hub. Retrieved April 8,

2024 from https://learn.microsoft.com/en-us/ef/

[10] Microsoft (2021) Entity Framework Core. Retrieved April 8, 2024 from

https://learn.microsoft.com/en-us/ef/core/

[11] IBM (2024) JSON Web Token (JWT). Retrieved April 8, 2024 from

https://www.ibm.com/docs/en/cics-ts/6.1?topic=cics-json-web-token-jwt

[12] JWT.io (n.d.) JSON Web Tokens - jwt.io. Retrieved April 8, 2024 from

https://jwt.io/

https://www.ibm.com/topics/postgresql
https://www.coursera.org/articles/what-is-python-used-for-a-beginners-guide-to-using-python
https://www.coursera.org/articles/what-is-python-used-for-a-beginners-guide-to-using-python
https://github.com/pallets/flask/
https://www.psycopg.org/docs/
https://argon2-cffi.readthedocs.io/en/stable/argon2.html
https://dotnet.microsoft.com/en-us/languages/csharp
https://learn.microsoft.com/en-us/dotnet/core/introduction
https://learn.microsoft.com/en-us/ef/
https://learn.microsoft.com/en-us/ef/core/
https://www.ibm.com/docs/en/cics-ts/6.1?topic=cics-json-web-token-jwt
https://jwt.io/

66

[13] React Native (2023) Core Components and Native Components. Retrieved

April 8, 2024 from https://reactnative.dev/docs/intro-react-native-

components

[14] Expo (n.d.) Expo. Retrieved April 8, 2024 from https://expo.dev/

[15] Expo (n.d.) Expo Go. Retrieved April 8, 2024 from

https://docs.expo.dev/get-started/expo-go/

[16] W3Schools (n.d.) JavaScript Tutorial. Retrieved April 8, 2024 from

https://www.w3schools.com/js/

[17] TypeScript (n.d.) TypeScript is JavaScript with syntax for types. Retrieved

April 8, 2024 from https://www.typescriptlang.org/

[18] React Navigation (n.d.) React Navigation. Retrieved April 26, 2024 from

https://reactnavigation.org/

[19] React Native Paper (n.d.) Cross-platform Material Design for React Native.

Retrieved April 8, 2024 from https://callstack.github.io/react-native-paper/

[20] Formik (n.d.) Overview. Retrieved April 8, 2024 from

https://formik.org/docs/overview

https://reactnative.dev/docs/intro-react-native-components
https://reactnative.dev/docs/intro-react-native-components
https://expo.dev/
https://docs.expo.dev/get-started/expo-go/
https://www.w3schools.com/js/
https://www.typescriptlang.org/
https://reactnavigation.org/
https://callstack.github.io/react-native-paper/
https://formik.org/docs/overview

