

Binod Panta

Full stack web app development using
T3 stack

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

24 May 2024

Abstract

Author: Binod Panta
Title: Full Stack Web app development using T3 stack.
Number of Pages: 53 pages
Date: 24 May 2024

Degree: Bachelor of Engineering
Degree Programme: Information Technology
Professional Major: Mobile Solutions
Supervisors: Ilkka Kylmäniemi, Head of Department

The growth and development of technologies uplifted and enhanced the scope of

web application development. Among such a vast range of tech stacks, a growing

stack scaffold named the T3 stack that comprises the core components such as

TypeScript, Next.js, NextAuth.js, Prisma, tRPC, and tailwindCSS is gaining popularity

among web developers due to its type-safe features.

The objective of this thesis was to explore and understand the potential of modern T3

stacks in web development through practical implementation in full-stack web

applications and assess how they make web applications maintainable, scalable, and

less error-prone. Moreover, it aimed at exploring the mandatory applicability of type

safety in web applications from all fronts, be it frontend, backend, or full stack and

analyze the flexibility a developer gets by adopting the T3 stack for web

development.

The outcome of this thesis is that the T3 stack leveraged the power of TypeScript

across the default and other stacks and made the application type safe. The use of

the T3 stack prevented compile-time errors due to incorrect data types and enhanced

the overall strength and maintainability of the application. The T3 stack was

successfully applied to develop a responsive web application, QuizCard, by

demonstrating the practicalities of type safety in the T3 stack.

Keywords: create-t3-app, T3 stack, web development, type safe

Contents

List of Abbreviations

1 Introduction 1

2 Theoretical Background 3

2.1 Background 3
2.2 Type safety in Web application development. 4
2.3 Research Problem 6

3 Stacks of T3 stack 7

3.1 Next.js 7
3.2 TypeScript 7
3.3 NextAuth.js 8
3.4 TailwindCSS 8
3.5 tRPC 9

4 Project Implementation 10

4.1 Initial Application Setup 10
4.2 Initial implementation of other libraries 13

4.2.1 Shadcn/ui 13
4.2.2 UploadThing 13

5 Backend Implementation 15

5.1 tRPC setup 15
5.2 Prisma setup 18
5.3 NextAuth.js setup 24

6 Frontend Implementation 29

6.1 Initial Frontend Setup 29
6.2 Route setup 30
6.3 Navigation setup 31
6.4 CRUD setup 32

6.4.1 Create quiz card. 33
6.4.2 Read quiz cards. 35
6.4.3 Update quiz card 38

6.4.4 Delete quiz card 39

7 Conclusion 42

References 45

List of Abbreviations

API: Application Programming Interface

CI/CD: Continuous Integration Continuous Delivery

CLI: Command Line Interface

CRUD: Create Read Update Delete

CSS: Cascading Style Sheet

DBMS: Database management system

DOM: Document Object Model

IDE: Integrated Development Environment

LAMP: Linux Apache MySQL PHP

MEAN: Mongo Express Angular Node

MERN: Mongo Express React Node

MEVN: Mongo Express Vue Node

ORM: Object-relational mapping

RPC: Remote Procedure Call

SEO: Search Engine Optimization

UI: User Interface

JSX: JavaScript Extensive Markup Language

UX: User Experience

1 Introduction

The shift towards mobile devices has been significant in the past few years, yet

web-based applications continue to hold a crucial role in today's digital

landscape. With the rise of responsive and progressive web applications that

offer functionalities on par with mobile apps, the importance of web applications

is further emphasized. It's evident that web apps will persist and thrive for the

foreseeable future. In the current modern world of technology, possessing a

web application serves as a digital representation like that of a business card for

business enterprises, government agencies, individuals, and others. With the

prerequisite of launching and executing in a browser, web applications often

serve as common desktop solutions. (Dzhangarov et al., 2021.)

Currently, there are diverse methods and stacks for web development. Among

these pre-existing lists of web development stacks, with the motto that type

safety is not optional, rose a web development stack called the T3 stack. Using

a type safe stack improves productivity and tackles the shipment of bugs in any

project. T3 Stack is a kind of CLI template built by developers that uses the

setup of a modular T3 Stack app. The template comprises different options that

can be generated based on the specific needs of a developer (T3 Stack, 2024.)

The T3 stack offers a comprehensive and secure software stack tailored for

Next.js and TypeScript development. It furnishes a suite of utilities and

frameworks to enhance scalability and facilitate maintenance of applications,

incorporating functionalities like inherent server-side rendering, automated code

partitioning, and seamless TypeScript support within integrated development

environments (IDEs). (Alpyca, 2023)

The fundamental stacks of the T3 stack are Next.js, TypeScript, Tailwind CSS,

tRPC, NextAuth.js, and Prisma. Next.js is a React framework that offers a lightly

opinionated, heavily optimized approach to creating applications using React.

TypeScript assists a developer by offering real-time feedback, facilitating

autocomplete suggestions, and alerting the attempt to access a non-existent

property or provide a value of an incorrect type. TypeScript reduces the stress

of debugging the application through its strict nature. For authentication setup,

NextAuth.js provides secure and complete authentication solutions for

NextAuth.js applications. NextAuth.js simplifies web development complexities

such as session management, sign-in and sign-out procedures, and other

aspects of authentication. NextAuth.js streamlines these once manually

handled, time-consuming, and error-prone processes, offering unified solutions

in NextAuth.js applications. tRPC enables developers to write end-to-end, type

safe APIs without the need for code generation or additional runtime overhead.

Leveraging TypeScript’s powerful type inference, tRPC automatically infers the

API router’s type definitions and enables a developer to invoke API procedures

from the frontend with complete type safety and auto-completion.

This thesis aims to create a full stack web application entirely dependent on

type safe stacks such as TypeScript, Next.js, Next-Auth.js, and tRPC.

This thesis aims at understanding the potential of the modern T3 stack in web

development through practical implementation in full stack web applications. A

full stack responsive web application, QuizCard, will be developed implementing

the CRUD concept to understand the practicalities of the T3 stack in web

application development.

2 Theoretical Background

This chapter covers the theoretical background, brief history of web

development, and research problem for this thesis.

2.1 Background

The history of web development dates back to 1989, when the World Wide Web

was invented. Along with technological advancement, web development has

leapfrogged in its usage and reach. Web development involves creating

applications that operate over the internet, typically categorized into frontend

and backend development, where the frontend interacts directly with clients and

the backend handles server-side operations such as managing and storing data

(T. Uppal et al, 2022.)

After the introduction of CSS and JavaScript in web development, the web

experience´s creativity and design improved. After media queries started being

adopted widely since 2012, it gave flexibility to the developers to implement

breakpoints for responsive web design, which is still being used for web

development (freecodecamp.org, 2021.) With the introduction of React by

Facebook in 2012, React revolutionized the landscape for front-end developers,

providing them with a wealth of opportunities to create user-friendly interfaces.

The key features of React, such as reusable components, virtual DOM, lifecycle

methods, JSX, and react hooks, facilitated developers with code readability,

quick response time with sleek user interaction, ample resources, and strong

development support (Medium, 2021.)

React is a JavaScript library that empowers developers to construct dynamic

user interfaces (UI), defining the elements users see and interact with on-

screen. While React JS offers helpful functions or APIs for UI creation, it also

allows developers flexibility in integrating these functions into their applications.

Its success is partly based upon its flexible nature regarding other application-

building aspects, as it allows opportunities for third-party tools such as Next.js to

foster. Next.js is a React framework that simplifies the development of web

applications by managing the tooling and configuration required for React

projects while offering additional structure, features, and optimizations (Next.js,

2024.) The current trends in web development involve single page applications,

progressive web applications, AI development, serverless architecture, CI/CD,

cloud technology, mixed reality, UX design, etc.(Medium, 2023) Web

development has surged to a new height due to the introduction of numerous

frameworks and libraries that support each other. Among the popular stacks of

web development are MERN, MEAN, LAMP, MEVN, Ruby on Rails, Django,

.NET, and JAMSTACK, which are widely adopted for creating web applications.

(Codeless, 2023) Among the list of these stacks is a recently introduced stack

that is steadily growing and gaining popularity among developers is T3 stack.

Backed by the motto “Type safety is not optional, ” the T3 stack aims at creating

a complete and secure web application by focusing on simplicity, modularity,

and security.

2.2 Type safety in Web application development.

After its adoption by the tech community, JavaScript became a widely used

language for web application development. However, in the case of larger and

more complex projects, JavaScript has become prone to runtime errors due to

the absence of type checking. As JavaScript is a dynamically typed language, it

does not require type declarations or type inference. JavaScript executes

nonsensical operations such as data conversion, which might cause runtime

errors. JavaScript returns the value without error, even if a string is added to an

integer. The type of variable is not known unless it has a concrete value at

runtime (Destroy all software, 2024.)

Many errors can be identified early in the development process, closer to where

they originate. Using Type Safety aids in application development by even

automating parts of the coding process, which results in shorter code compared

to languages that rely solely on dynamic typing. With the implementation of

static typing, incompatible data errors are caught by the type checker and

pointed out to the programmer at the location where the erroneous value is

inserted. Using type in applications does not only serve to prevent errors but

also conveys information to the machine, enabling it to assist the programmer

further in their tasks. During refactoring, one can proceed with more assurance,

as many errors introduced during this process in general are type errors. Types

not only act as a form of documentation for programmers, but they also offer a

roadmap indicating which terms are appropriate to use. For individuals familiar

with them, types offer insights into what can be expressed through any given

API. Types can be seen as defining a structure that is logical and coherent. In

dynamic languages, information regarding the logical structure of a program

should be conveyed through alternative means (P. Chiusano, 2016.)

The static type checker is equipped with a type system that forms the

foundation for numerous beneficial features found in IDEs, including error

detection, autocomplete, and automated code restructuring. By incorporating

types into code and identifying types during compilation, the static type checker

assists developers in writing code with fewer bugs. (Byby, 2021) Thus, to avoid

the errors created by JavaScript, a long-time popular language of web

development, an improved statically typed language, TypeScript, was

introduced in 2012 by Microsoft. TypeScript is a superset of JavaScript that

adds a layer of static typing to the language. In addition to bug detection,

TypeScript enhances code completion, refactors, and supports class-based

object-oriented programming. TypeScript has garnered extensive acceptance

among developers for its enhanced readability and ease of maintenance (Reich

Report, 2023.)

In programming languages, type safety is a control mechanism that ensures

variables access only their designated memory locations in a defined and

permissible manner. Essentially, type safety prevents code from executing

invalid operations on the underlying object. Type safe variables are a strong

foundation for a safe and robust program. (Baeldung, 2024.)

2.3 Research Problem

In this modern, fast-paced digital landscape, businesses must utilize the latest

technological innovations to maintain competitiveness. Web application

development stands out as a crucial advancement, offering various benefits

such as enhancing the online presence, streamlining processes, improving

customer engagement, efficient data management, and cost savings.

Furthermore, web applications facilitate easy scalability, making them

indispensable for businesses of all sizes and industries in the contemporary

digital era (LinkedIn, 2024.) React, a JavaScript library initially developed by

Facebook in 2013, has gained widespread adoption among developers globally

for its ability to simplify UI development. By employing a declarative syntax and

component-based approach, React JS enables the creation of complicated and

interactive UI components effortlessly. Its popularity is backed up by features

such as the capability to divide UI into reusable components, facilitating easier

management of large codebases (A-team Global, 2023.)

Utilizing all the features of React with the additional layer of type safety features

and strict data types, the T3 app helps to improve productivity and scalability,

making code more readable, maintainable, and less error prone. This integrated

toolkit offers developers a cohesive workflow and adherence to industry best

practices. Renowned for its dynamic components, the T3 Stack seamlessly

integrates into diverse projects, spanning from e-commerce platforms to

complex data visualization tools (Dev Community, 2024.)

This thesis aims to explore the functionalities of T3 stack and assess how they

make web applications maintainable, scalable, and less error prone. Moreover,

it will explore the mandatory applicability of type safety in web applications from

all fronts, be it frontend, backend, or full stack. It aims at analysing the flexibility

a developer gets by adopting the T3 stack for web development.

3 Stacks of T3 stack

This chapter will discuss the stacks that are used in the project. The section will

elaborate as the project goes forward.

3.1 Next.js

Next.js, a React framework, empowers developers to create highly performant,

SEO-friendly static websites and web apps effortlessly. Next.js is well-known for

providing an outstanding developer experience. It comes with a range of

features, such as hybrid static and server rendering, support for TypeScript,

smart bundling, route prefetching, and more. No extra configuration is needed

to use those features. (Next.js, 2024.) With Next.js, developers have several

tools that help them move quickly from building to launching their projects. It's

easy to learn, simple to use, and comes with powerful features to make

development smooth and efficient. (What is Next.js, 2024) Next.js is a React

framework that's built on top of Facebook's React library and the create-react-

app package. It's designed to be flexible, easy to use, and ready for production,

with features that go beyond the basics.

3.2 TypeScript

TypeScript is a compiled programming language that serves as a superset of

JavaScript and improves tooling across projects of various sizes. The

TypeScript project was led by Anders Hejlsberg, the mastermind behind C# at

Microsoft, Often described as "JavaScript with syntax for types," it supplements

JavaScript with additional functionalities (What is TypeScript, 2024.)TypeScript

bridges JavaScript gaps with strong typing, enhancing app scalability. Its IDE

support helps in error detection, offers inline assistance, and improves

productivity. With static typing and type inference, it tackles the dynamic type

problems of JavaScript, minimizing type-related errors during compilation.

TypeScript's compilation process recognizes syntax errors, supporting prompt

bug identification and minimizing runtime issues. (The New stack, 2024)

3.3 NextAuth.js

NextAuth.js is an open-source library created for integrating authentication and

authorization features into Next.js applications. It provides developers with a

collection of tools and APIs for implementing simple user registration,

login/logout processes, managing user sessions, and safeguarding application

routes and pages. NextAuth.js enables authentication in the Next.js application

even with the minimal setup. (Building your application, 2024) It is compatible

with various authentication providers, including platforms like Google, Discord,

and GitHub, alongside conventional email, and password-based authentication

methods (Aplyca, 2024.)

3.4 TailwindCSS

TailwindCSS is a utility-based CSS framework, offering an extensive array of

CSS classes and tools to simplify the process of styling websites or

applications. The core objective of TailwindCSS is to eliminate the trouble of

dealing with traditional CSS approaches such as custom styles for each

element. TailwindCSS addresses this challenge by providing a diverse range of

CSS classes, each serving a specific purpose. For instance, instead of defining

a generic .btn class with a multitude of CSS attributes, TailwindCSS

encourages the application of focused utility classes directly to the button

element, such as bg-blue-500, py-2, px-4, and rounded. Alternatively,

developers can construct a custom .btn class by combining these utility

classes, thereby restructuring the styling process. Tailwind CSS offers great

support for responsive design. It provides various utility classes that help

developers create interfaces that adjust to different screen sizes and devices.

This makes it simple to design for mobile devices first and ensures that the

interface looks good on various screens. (FreeCampcode, 2020.)

3.5 tRPC

tRPC (TypeScript-based Remote Procedure Call) is a framework designed for

building microservices and distributed systems using TypeScript by offering

simplicity and security in the applications. tRPC is one of the important stacks of

the T3 app because of its type safety. Since TypeScript is used in tRPC, it

ensures that the client and server-side use correctly typed requests and

responses. Due to its type safe nature, the reliability and scalability of

application are improved as the type-related bugs are detected at compile time

(CleanCommit, 2022.)

tRPC provides APIs that support a wide range of data types and formats, such

as JSON, binary data, and streaming data. The use of tRPC makes API

development fast and simple. Due to TypeScript, tRPC automatically detects

the data type, making development faster at the beginning of the project.

Additionally, tRPC is compatible with most of the available IDEs, making

development smoother (CleanCommit, 2022.)

tRPC is a suitable option for the Next.js project as it helps to connect Next’s

backend and frontend as Next.js is a backend framework. Moreover, tRPC

avoids all the unnecessary workload and allows developers to build a reliable

and lightweight API that calls backend data in frontend (CleanCommit, 2022.)

tRPC redefines API development, seamlessly connecting clients and servers

with a type safe approach. It simplifies API creation, ensuring both server and

client applications understand data and operations through TypeScript types.

(Makeuseof, 2024.)

4 Project Implementation

The thesis will be backed up by a web application development project called

QuizCard, created using the T3 stack. The application will allow users to create,

update, delete, view, print, and share quiz cards. Authentication will be done

using Google, Discord, and GitHub as authentication providers. NextAuth.js will

be used for authentication handling in the project. The application will

implement the basic CRUD feature, where styling will be backed by

tailwindCSS, and the backend APIs will be written using the tRPC protocol. The

T3 stack’s default database management system, Prisma, will be used for

applications’ database access and management. Open-source alternatives

such as Supabase will be used for storing the data, and UploadThing will be

used for storing images.

4.1 Initial Application Setup

The T3 team created a template including some of the essential stacks of the

full-stack TypeScript ecosystem for the application development setup. As

mentioned above, it streamlines the setup of type safe Next.js apps without

compromising modularity. The command npm create t3-app@latest

creates a boilerplate code setup for nextAuth, Prisma, tailwindCSS, tRPC,

dbContainer, envVariables, and esLint. It allows developers to select from a

range of options within the stacks. Create-t3-app is neither a framework nor a

stack, but a starter kit to help developers start immediately. Figure 1 below

illustrates the template for initial project setup using just a single command and

following up on the chain of questions. Based on the user’s choice, relevant

stacks are installed for the project.

Figure 1: Template for creating a T3 application.

As seen in Figure 1, just with a single command, it gives a range of options for a

developer for the application's initial setup. It provides a preconfigured project

structure, build scripts, and other necessary dependencies needed to get the

project up and running. Upon the completion of the selection setup, the setup

builds the folder structure as seen in figure 2. Figure 2 illustrates the folder

structure created for the project after all the required installations are complete.

Figure 2: Folder structure from the initial setup

As seen in Figure 2, a preconfigured project structure is created where most of

the source code is within the src directory. The frontend part of the application is

configured in the pages directory, whereas the backend is configured in the

server directory. Database models are created in the schema.prisma file, which

is located in the Prisma directory. In a T3 template, by default, the authorization

for the application is done through the Discord provider, but developers have

the flexibility to use the authentication provider of their choice; for example,

other popular authentication providers are Google and GitHub. For this thesis

project, the database is stored remotely on the Supabase platform. Since tRPC

does not support direct file management, an open-source library called

UploadThing was used for storing images remotely, and tRPC handled the

images in terms of string variables.

4.2 Initial implementation of other libraries

4.2.1 Shadcn/ui

Apart from the default stacks of the T3 application, some other prominent stacks

are used in the application for the thesis project. Shadcn/UI is an open-source

collection of beautiful and re-usable UI components. UI component form

shadcn/ui collection is used in some portion of the project that allowed the

author to access and customize UI components for the thesis project. Each of

the components was installed using CLI, such as npx shadcn-ui add card

. The implementation of shadcn/ui gives developers flexibility as it is not a

component library but more like a building block.

4.2.2 UploadThing

UploadThing is an open-source library used in the thesis project for adding file

uploads. UploadThing is made to be compatible with type safe applications that

harness the power of TypeScript. UploadThing functions similarly to a S3 bucket,

serving as a storage solution for application files. It provides an open-source API

for authenticating and signing uploads in the project backend without the server

processing the file. Listing 1 displays the boilerplate type safe API available for

uploading an image.

 imageUploader: f({ image: { maxFileSize: "4MB" } })
 .middleware(({ req }) => auth(req))
 .onUploadComplete((data) => console.log("file", data)),

Listing 1. Boiler plate type safe API for uploading profile picture in UploadThing.

In Listing 1, imageUploader is a simple FileRoute like an endpoint that has

permitted type, max file size, option middleware for authentication, and a

callback function onUploadComplete for when the image upload is complete.

The API can be used in the frontend using the inbuilt UploadThing Button

Component, as shown in Listing 2.

<UploadButton<OurFileRouter>
 endpoint="imageUploader"
 onClientUploadComplete={(files) => console.log("files",
files)}
 onUploadError= {(error)=>{
alert(`ERROR!! ${error.message}`)}
/>

Listing 2. Image upload button for frontend implementation

The @uploadthing/react package contains inbuilt “UploadButton”

component that handles the uploading of file with a simple click function. In

Listing 2, UploadButton component interacts with the server through the

imageUploader endpoint , handles upload completion, and displays errors in

case any error occurs.

5 Backend Implementation

For the backend implementation of the T3 apps, the default and only type safe

option is tRPC. Thus, for this project, tRPC was used as it is TypeScript

compatible and handles type safety in the whole application. As seen in Figure

2, the server folder inside the src folder implements the backend code of the

application. Prisma was used for database management and communication

between the frontend and backend, whereas PostgreSQL was used as the

database, which was hosted remotely on an open-source database platform

called Supabase. Even the initial thought of the project was to run the

application on a remote server such as Vercel, Netlify, or Railway, but the scope

of this thesis project limited it, and everything was setup locally.

This chapter will deal with the practical backend implementation of the project

from scratch and the theoretical aspects related to it.

5.1 tRPC setup

tRPC is a library that makes it easy to create and use fully secure APIs in web

development without creating schema or code. It addresses the challenge of

statically writing API endpoints in TypeScript and aims to make the process

simple and efficient. (Medium, 2023). Most of the backend boilerplate tRPC

code is provided by the T3 stack CLI used in the initial setup. Listing 3 below

shows customer router quizCardRouter containing sample backend APIs of

the application.

import {
 createTRPCRouter,
 protectedProcedure,
 publicProcedure,
} from "~/server/api/trpc";
import { TRPCError } from "@trpc/server";

export const quizCardRouter = createTRPCRouter({
 createNewCard: protectedProcedure
 .input(cardSchema)
 .mutation(async ({ ctx, input }) => {

 const userId = ctx.session.user.id;
 const createdCards = await ctx.db.deck.create({
 data: {
 name: input.name,
 description: input.description,
 difficulty: input.difficulty,
 image: input.image,
 user: { connect: { id: userId } },
 cards: {
 create: input.cards,
 },
 },
 });

 return createdCards;
 }),
getAllCards: publicProcedure.query(({ ctx }) => {
 const allCards = ctx.db.deck.findMany({
 include: {
 _count: {
 select: {
 cards: true,
 },
 },
 user: true,
 },
 });
 return allCards;
 }),
});

Listing 3. Custom router that contains a mutation procedure createNewCard and
getAllCards.

The first step to creating a tRPC API is to define the procedure. In general,

procedures are functions that are used to build the backend. The procedures

can be queries, mutations, or subscriptions, and a single router can contain

multiple procedures based on the scale of the backend. Procedures play a

crucial role in structuring the API and handling data interaction (tRPC, 2024). In

Listing 3, a quizCardRouter variable is created, and a protected procedure

createNewCard, and public procedure getAllCards, tRPC’s API endpoints

were defined within it. As the name suggests, the createNewCard procedure

creates a card and stores it in the database, whereas getAllCards returns

the deck of cards as an array containing the cards of all the users.

createNewCard is a protected procedure; thus, only an authenticated user

can create a card on the frontend, whereas getAllCards is a public

procedure accessible to all users. Each procedure used in a router serves a

specific purpose, and it facilitates scalability as new procedures can be added

for additional functionalities without affecting current code bases.

As seen in Listing 3, the schema validation open-source library Zod is used to

validate the client-side input so that it matches the expectations of the

createNewCard procedure. Zod ensures that the data sent to and received

from API endpoints relies on the predefined schema. Zod helps prevent errors

and maintain data integrity by validating input and output data against the

schema. If the user input in the frontend does not match the Zod schema, it

throws a validation error. Zod has built-in parsing functions that make input

schema validation easier and simpler. For example, it gives us flexibility to limit

the count of inputs using the inbuilt functions such as .min(5).max(100).

Additionally, it gives us the freedom to add optional input if needed with the

function optional(). The function returns the cards created, which include

the user input data. Listing 4 below illustrates the connection between the

frontend part of application with backend tRPC API endpoints.

import {type AppRouter } from "~/server/api/root";

export const api = createTRPCNext<AppRouter>({
 config() {
 return {
 transformer: superjson,
 links: [
 loggerLink({
 enabled: (opts) =>
 process.env.NODE_ENV === "development" ||
 (opts.direction === "down" && opts.result
instanceof Error),
 }),
 httpBatchLink({
 url: `${getBaseUrl()}/api/trpc`,
 }),
],

 };
 },
 ssr: false,
});

//Front-end

const {data: entriesData} = api.card.getAllCards.useQuery();

Listing 4. Connecting the API endpoint to the frontend through type safe react-
query hooks.

As depicted in Listing 4, These API functions are used in the frontend code

through the import of AppRouter as a type. The AppRouter type is later used in

type safe react-query hooks before calling in the frontend. The frontend

interacts with the API endpoints defined in the backend using type safe react-

query hooks. As seen in Listing 4, the useQuery hook is used to fetch data for

the getAllCards endpoint const { data: entriesData } =

api.card.getAllCards.useQuery(). This hook adheres to type safety

by providing autocomplete and type checking features based on the types

defined for the API responses. entriesData receives and stores the array of

cards, which is later used in the JSX component to display it to the users. There

was no need to use the API endpoint testing platforms such as PostMan,

SwaggerUI, Insomnia etc. as the testing was done using the frontend of the

application.

5.2 Prisma setup

As mentioned in Chapter 5, Prisma is a powerful ORM tool that simplifies

database management and interactions in web development. It assists

developers in working with databases using type safe and intuitive APIs. As

seen in Figure 2, a folder called Prisma was created using the T3 CLI, that

contains schema.prisma file. Listing 5 below displays a sample Prisma

schema of the application.

generator client {
 provider = "prisma-client-js"
}

datasource db {
 provider = "postgresql"
 url = env("DATABASE_URL")
}

model QuizDeck {
 id String @id @default(cuid())
 user User @relation(fields: [userId],
references: [id], onDelete: Cascade)
 userId String
 name String @db.VarChar(50)
 description String @db.VarChar(200)
 image String?
 cards QuizCard[]
 createdAt DateTime @default(now())
 updatedAt DateTime @updatedAt
 submissionCount Int? @default(0)
 submissions Submission[]
 difficulty String? @db.VarChar(20)

 @@index([userId])
}

model QuizCard {
 id String @id @default(cuid())
 deck QuizDeck @relation(fields: [deckId],
references: [id], onDelete: Cascade)
 deckId String
 front String @db.VarChar(200)
 back String @db.VarChar(500)
 createdAt DateTime @default(now())

 @@index([deckId])
}

Listing 5. Prisma schema containing sample database model of the project.

The Prisma schema file acts as a blueprint for the database structure. It

contains data sources that specify the database provider and connection

details, a generator that defines which Prisma client should be generated based

upon the available data model, and data models that describe the application’s

data entities and the relationship between them. In general, there is a single

data source in the Prisma schema (Prisma, 2024.) Once the Prisma command

is invoked, the CLI typically reads some information from the schema file. As

seen in Listing 5, the schema file specified the data source as PostgreSQL, the

generator as Prisma-Client and the data models as QuizDeck and QuizCard.

When used with TypeScript , Prisma Client generates type definitions for those

above models and makes database access entirely type safe. (Prisma, 2024)

The environment variable DATABASE_URL is accessed using the function

env(). DATABASE_URL is used for connecting the Prisma data schema to the

remote database. As mentioned earlier in this thesis report, supabase was used

for storing databases remotely. The general PostgreSQL connection string

format is postgresql://USER:PASSWORD@HOST:PORT/DATABASE. Since

the project is using supabase for the database storage, the connection string

format looks like:
postgres://postgres.gtqamrsyeyouzhznmxyv:[PASSWORD]@aws-0-

eu-central-1.pooler.supabase.com:5432/postgres.

Several Prisma models were created based on application’s requirements. The

models were connected using the @relation keyword. For example, to

establish a relationship between the Deck table and the Card table, the Deck

model was given an array of cards as a parameter, while the Card model was

given decks as a parameter. The relationship between other models, User and

Deck, Deck and Submission, and User and Card, was also created and applied

using the @relation keyword. After the models and other setups are

completed, the modified schema needs to be pushed to the supabase Postgres

database using the command npx prisma db push. This command pushes

the changes made in the schema file to the database, and the database

schema is synchronized with the changes made in the Prisma schema. Prisma

provides an in-built visual interface called Prisma Studio that lists all the models

defined in the Prisma schema file. It allows developers to perform CRUD

operations on the data from the database table.

Prisma Studio is a visual data editor tool that runs by using the command npx

prisma studio in the terminal. Once the command runs, Prisma Studio gets

hosted by default at localhost:5555. In the event that port 5555 is

unavailable, it will take the nearest available port to display the interface. In

figure 3, Prisma Studio displays all the model used in the application, with the

data content in the respective tables. Any changes made to the schema would

reflect immediately in the database by running the command npx prisma

migrate dev. Figure 3 below illustrates a simple tabular interface that allows

developers to test the data in a local database and validate if the application is

working properly.

Figure 3: Visual interface showing Prisma models in localhost:5555.

As illustrated in Figure 3, some default models, such as Account, Post, User,

and Verification Token, are created by default, whereas project specific

QuizCard and QuizDeck data models are seen in Prisma Studio. This visual

interface gives flexibility and easy access to the data locally. Details can be

viewed by clicking on a specific data model. Listing 6 below is about an inbuilt

code snippet used for database interaction.

import { PrismaClient } from "@prisma/client";

import { env } from "~/env";

const createPrismaClient = () =>
 new PrismaClient({
 log:
 env.NODE_ENV === "development" ? ["query", "error",
"warn"] : ["error"],
 });

const globalForPrisma = globalThis as unknown as {
 prisma: ReturnType<typeof createPrismaClient> |
undefined;
};

export const db = globalForPrisma.prisma ??
createPrismaClient();

if (env.NODE_ENV !== "production") globalForPrisma.prisma =
db;

Listing 6. Function creating Prisma Client for interacting with the database.

In listing 6, createPrismaCLient ensures there's only one instance of the Prisma

client for interacting with the database. It creates a new client with logging

configured based on the environment. The Prisma Client db obtained in Listing

6 is used later within the tRPC service to interact with the database and perform

database operations. Listing 7 below shows a sample function termed as tRPC

procedures.

import { createTRPCRouter, protectedProcedure } from
"@/server/api/trpc";
import { TRPCError } from "@trpc/server";
import {
 type RankingResult,
 profileSchema,
} from "@/utils/appUtil/CommonInterface";

export const userRouter = createTRPCRouter({
 updateUser: protectedProcedure
 .input(profileSchema)
 .mutation(async ({ ctx, input }) => {
 const updatedUser = await ctx.db.user.update({
 where: { id: input.userId },
 data: {
 name: input.userUpdate.username,
 image: input.userUpdate.image,
 },
 });
 return updatedUser;
 }),
 getUserCards: protectedProcedure.query(({ ctx }) => {
 const userCard = ctx.db.quizDeck.findMany({
 include: {
 _count: {
 select: {
 cards: true,
 },
 },
 },
 where: {
 userId: ctx.session.user.id,
 },
 });
 return userCard;
 }),
});

Listing 7. Sample procedures used in user router.

A sample of procedures used for the user table that included the tRPC queries

and mutation composable can be seen in Listing 7. One of the procedures gets

the user profile, while another updates the user profile. Zod schema validator

checks whether the inputs are user id and an object comprising username and

image. profileSchema is passed as an input prop in the updateUser

procedure. Router generation saves developers’ time by automating repetitive

tasks in different projects. Any changes that happen in the data model are

reflected in the tRPC procedures after running the prisma migration command.

The change of data model in the schema file will be reflected, and the tRPC

code will be updated based on the new schema.

5.3 NextAuth.js setup

NextAuth.js gives simple and accessible authentication to web applications

through an extensive list of authentication providers. In the T3 application, the

integration of NextAuth.js, tRPC, and Prisma is handled through the automated

initial setup created after running the create-t3 command. (NextAuth.js, 2024)

The Prisma schema will have a preconfigured model ready to be used with

NextAuth.js. Listing 8 below shows a default Prisma schema generated to

handle authentication using NextAuth,js.

// Necessary for Next auth
model Account {
 id String @id @default(cuid())
 userId String
 type String
 provider String
 providerAccountId String
 refresh_token String? // @db.Text
 access_token String? // @db.Text
 expires_at Int?
 token_type String?
 scope String?
 id_token String? // @db.Text
 session_state String?
 user User @relation(fields: [userId],
references: [id], onDelete: Cascade)

 @@unique([provider, providerAccountId])
}

model Session {
 id String @id @default(cuid())
 sessionToken String @unique
 userId String
 expires DateTime
 user User @relation(fields: [userId],
references: [id], onDelete: Cascade)
}

Listing 8. Preconfigured prisma model that integrates with NextAuth.js.

As depicted in Listing 8, preconfigured models Session and Account are set up

automatically once NextAuth.js and Prisma are chosen in the create-t3-app CLI

options. When adding new fields to any of the models, those fields are

automatically created when a new user signs up and logs in. This is done to

handle possible errors. The default value should be provided as the Prisma

adapter is not aware of the updated fields. As mentioned in Listings 4 and 7, the

protected procedures are accessible to authenticated users only. The

integration of NextAuth.js and tRPC helps with easy access to the session

object within authenticated procedure (T3 Docs, 2024.)

In order to implement NextAuth.js in a web application, after the relevant

installation, the application’s entry point is wrapped in the SessionProvider

component as seen in Listing 9 below.

<SessionProvider session={session}>
 <Toaster toastOptions={{ duration: 3000 }} />
 <Navbar />
 <Component {...pageProps} />
</SessionProvider>

Listing 9. Application’s entry point is wrapped by SessionProvider.

As illustrated in Listing 9, utilizing the provided <SessionProvider> facilitates

the sharing of the session object among components through React Context. It

manages the synchronization of the session across tabs and windows, ensuring

it remains updated. Session data and session status are accessible through the

useSession() hook throughout the application. Listing 10 displays the

authentication provider options in the application.

export const authOptions: NextAuthOptions = {
 callbacks: {
 session: ({ session, user }) => ({
 ...session,
 user: {
 ...session.user,
 id: user.id,
 },
 }),
 },
 adapter: PrismaAdapter(db) as Adapter,
 providers: [

 DiscordProvider({
 clientId: env.DISCORD_CLIENT_ID,
 clientSecret: env.DISCORD_CLIENT_SECRET,
 }),
 GithubProvider({
 clientId: env.GITHUB_CLIENT_ID,
 clientSecret: env.GITHUB_CLIENT_SECRET,
 }),
 GoogleProvider({
 clientId: env.GOOGLE_CLIENT_ID,
 clientSecret: env.GOOGLE_CLIENT_SECRET,
 }),
],
};

Listing 10. Authentication option setup using Discord, Google, and GitHub
providers.

Client Id and Client secret are necessary keys that are needed for

authentication in the NextAuth.js setup. These key values are stored in the

.env file and accessed across all other files and folders. Different providers

have different setup processes and after the setup, the providers give access to

the client Id and client secret that can be used in the project for authentication.

As depicted in Listing 10, authOptions is ensured to be type safe by setting its

type to NextAuthOptions. The NextAuthOptions interface contains providers as

a mandatory field, whereas other fields such as session, secret, and jwt are

optional. If the parameters used in authOptions are not compatible as types, it

throws a type error. Figure 4 below shows different sign in options implemented

utilizing NextAuth.js in this thesis project.

Figure 4: Sign in options as GitHub, Google, and Discord is used for

authentication.

The setup done in Listing 1 allows the application to implement three different

authentication providers in the project. As seen in Figure 4, users have three

different options, such as GitHub, Google, and Discord, to select for

authentication. Once authenticated using any of the options, the user data is

stored in the session. Listing 11 below illustrates the usage of sessionData

and sessionStatus in the application.

const { status: sessionStatus } = useSession();
const { data: sessionData } = useSession();

 useEffect(() => {
 if (sessionStatus === "unauthenticated") {
 void replace("/redirectSignIn");
 }
 }, [replace, sessionStatus]);

{sessionData && (
 <>
 <div className={`${menuToggle ? "md:hidden" :
"hidden md:flex"}`}>
 {!menuToggle && <ThemeSwitcher />}
 </div>
 <UserDropdownMenu
 handleConfirmLogout={handleConfirmLogout}
 avatarSrc={getUpdatedUser?.image ?? ""}
 handleProfileRoute={handleProfileRoute}
 />

 </>
)}

Listing 11. Sample usage of sessionStatus and sessionData in the project

As seen in Listing 11, authenticated users’ session data and status are stored in

the variable sessionData and sessionStatus and are used in different scenarios

with the utmost ease with the implementation of NextAuth.js.

6 Frontend Implementation

This chapter will deal with the practical frontend implementation of the project

and the theoretical aspects related to it.

6.1 Initial Frontend Setup

Once the initial backend setup is done fulfilling the minimal requirements, it is

time to test the features in the frontend of the application. The T3 application

can be run using the command npm run dev, and with the command, the

application is hosted locally at http://localhost:3000, and in case the port is

unavailable, it takes the closest available port to host the application. The first

look of the application is as seen in Figure 5 on hosted in the localhost 3000.

Figure 5 shows a ready-made template UI featured in the T3 application. The

default sign-in functionality uses Discord as an authentication provider.

Figure 5: Ready made template for T3 Apps

As seen in Figure 5, a simple user interface launches once the application is run

using the command npm run dev. The template includes a basic sign-in feature

that can be used as a starting point for authentication usage.

6.2 Route setup

In Next.js application pages router has a filesystem-based router setup. Any

files added to pages directory are available as a route. Next.js supports both

static routes as well as dynamic routes. Static routes are accessed through the

index.tsx file inside the folder, as shown in Listing 12, below.

//Use of index.tsx

pages/index.tsx -----> route to the root route(/)

pages/create/index.tsx ------> route to the create route

http://localhost:3000/create

//Nested Route

pages/blog/first-post.ts -----> route to /blog/first-post

http://localhost:3000/blog/first-post

pages/dashboard/settings/username.ts ---> route to

/dashboard/settings/username

http://localhost:3000/setting/username

//Dynamic Route

pages/mycards/[pid].tsx ----> route to dynamic routes such

as /mycards/123, mycards/124 ...

http://localhost:3000/mycards/123

http://localhost:3000/mycards/124

Listing 12. Route setup in Next.js application

As presented in Listing 12, different page routes can be accessed by appending

the relevant route to localhost:3000/. The files are routed in a nested sequence

in case a nested folder structure is created. A single page can be deconstructed

into multiple reusable components. By default, Next.js pre-renders each page to

enhance the speed and user experience of the application. It utilizes the Link

component from the next/link package to facilitate smooth transitions between

different routes (Next.js, 2024). For the scope of this thesis project, both static

and dynamic routes have been used for routing among pages, as seen in

Listing 12.

6.3 Navigation setup

For the navigation setup, a responsive navbar for the web application consisting

of the application logo, navigation links such as Home, My Cards, Create,

Statistics, theme options, and a user profile drop-down menu is created. State

and routing are managed using React hooks such as useState and

useRouter. The navbar adjusts its layout based on the screen size, displaying

a hamburger menu on a mobile-based screen. It integrates with authentication

by displaying a user dropdown menu when a user is logged in, allowing them to

access their profile and logout. At initial setup, the user dropdown menu was not

used in smaller screen sizes. The application theme is yet to be implemented

for this project. There was not any extra setup needed to connect the backend

to the frontend. Just a simple API call made the backend and frontend

connections smooth. As seen in Figure 3, all the frontend related code is

located in pages and component files.

Figures 6 and 7 demonstrate the navigation view in the web application and

mobile application. These figures show different navigation routes implemented

in the application.

Figure 6: Navigation bar in web view

Figure 7: Navigation bar in mobile view

As depicted in Figures 6 and 7, navigation routes contain Home, My Cards,

Create, and Statistics routes, where Home displays all the quiz cards created by

different users, My Cards is the specified section that displays the card owned

by the logged-in user, Create allow the user to create a new card, and the

Statistics route displays the basic gamified statistics related to the application.

6.4 CRUD setup

As mentioned earlier in this thesis, the web application implemented the CRUD

feature to get a deeper insight into the type safety in different scenarios. For

that purpose, a user would be able to create a deck of quiz cards, read,

observe, and interact with other users’ quiz cards, update, and delete the quiz

card exclusively owned by the user. Apart from that, a basic read and update

feature is added to the user profile as well. Since the authentication was carried

out using nextauth.js, no separate registration or login process was needed for

this application.

6.4.1 Create quiz card.

The first step of the application usage for a freshly logged-in user is to create a

quiz cards. For the creation of a deck of quiz card, components of the react-

hook-form library were used. The basic components of react-hook-form used

for the card creation were, input, textarea, select, button, and form.

As the create component was integrated into the backend using the mutation

procedure that required the inputs mentioned in Listing 13.

export const setSchema = z.object({

 name: z.string().min(1).max(50),

 description: z.string().min(1).max(200),

 difficulty: z.string().min(1).max(25),

 image: z.string().optional(),

 cards: z

 .array(

 z.object({

 front: z.string().max(200),

 back: z.string().max(500),

 }),

)

 .min(1),

});

Listing 13. Backends’ input schema for the create quiz card component.

As illustrated in Listing 13, the form for creating a quiz card involves several

input components, such as name, description, and card content, whose

information is collected through text areas; the difficulty level is chosen using a

select dropdown, and images are uploaded via the UploadButton, a component

from UploadThing. Zod schema validation ensures that react-hook-form

components only accept values that meet the predefined schema criteria,

thereby reducing the likelihood of input errors. Figure 8 below, demonstrates the

user interface for creating a quiz card in both web and mobile views. This

interface contains a form to create a new quiz card.

Figure 8: User interface for creating a new quiz card.

Figure 8 displays the create quiz card screen of the application, where a user

can create a deck of quiz cards. Once the user adds the question and answer

for the card, the Save button is enabled, allowing the user to add the deck of

quiz cards. Listing 14 illustrates a sample component that handles card

creation.

//sent the user input data to the backend
 const userEntry = api.card.create.useMutation({
 onSuccess: () => {

//sent the user input data to the backend

 const userEntry = api.card.create.useMutation({
 onSuccess: () => {
 toast.success("Congrats your card is added");
 void replace("/mycards");
 },
onError: () =>
toast.error("Failed to create card Set! Please try again
later."),
 });
const onSubmit = async (formData: SetSchema) => {
try {

 await userEntry.mutateAsync({
 ...formData,
 image: imageUrl,
 });
 await replace("/mycards");
 } catch (error) {
 console.error("Error:", error);
 toast.error("Error in submission.");
 }
 };

Listing 14. Sample component that handled the creation of quiz card and sent the
data to the backend.

As seen in Listing 14, the input data from the user is sent to the backend

through the onSubmit function, which receives formData as props, and the

function mutates the received data through the userEntry constant. Image

data is appended separately as uploadthing library handles image uploads as

strings. On successful mutation or storage of data, the user receives a success

toast message and is routed to my cards route. In the case of a failed mutation,

a failure toast message is displayed on the screen.

6.4.2 Read quiz cards.

Quiz cards are displayed in two different routes, one in the Home route that

displays all the cards and the other in My Cards route that displays the cards

owned by the logged-in user. There is the possibility to display the cards in grid

and table view and filter the cards for easy access based upon the difficulty,

number of cards in the deck, and owner of the card. The search input allows the

user to search the card using the card name. Figures 9 and 10 display the list of

quiz cards in table and grid views. The user can switch between the view

options by clicking the table and grid icons to the left of the screen.

Figure 9: List of quiz cards in table view.

Figure 10: List of quiz cards in grid view.

As displayed in Figures 9 and 10, users can observe and interact with the quiz

cards in two different view options, such as table view and grid view. Table view

shows the cards in a simple table, whereas grid view displays the quiz cards in

a grid view containing 3 cards in a row. In grid view, the horizontal number of

cards changes based on the screen size. For the search option, the useState

hook is used to hold the current value of the search query entered by the user,

where the handleSearchInputChange function sets and updates the search

query entered by the user. User input is handled by the input component of
react-hook-form.

For easy access to a set of cards, filter functionality is implemented, where the

user can filter the cards based on personal requirements. filteredEntries

stores the entries data from the backend and filters the data based upon the

number of cards, creator of the card, and difficulty level of the card. The user

can have quick access to the required card by applying the available filter

options. Figure 11 below, displays different filtering options implemented in the

Quiz Card project. Filter options include difficulty level, number of cards, and

creator of the quiz card.

Figure 11: Filter options for filtering the cards.

As seen in figure 11, three different filter options are available to filter the quiz

cards. The number of cards available after filtering is displayed in the Apply

Changes button. The user can reset the filter that gives the list of all the

available cards.

6.4.3 Update quiz card

An update feature is added to the quiz card and user profile. The user can edit

the cards owned by him or her. Using the navigation option for My Cards, users

get a grid view of cards. Once a particular card is clicked, the user can view a

vertical ellipsis icon that gives the option to either modify or delete the card.

Figure 12 below displays the update feature of the quiz card implemented in the

project.

Figure 12: Edit option of single card owned by the user.

Figure 12 shows that the user can modify the card name, description, and card

contents, but for now, the image update feature has not been introduced. The

update feature is personalised based on the ownership of the quiz card. The

cards are visible to all the logged-in users but modifiable by only the owner of

the cards. Similarly, users can modify their personal profiles. The user profile

has a minimal feature applied that allows the user to modify their image and

username. The user can access their profile from the navigation bar by clicking

the user image. Within the user profile, users get to update their user image and

username, as seen in figure 13.

Figure 13: Update profile allows user to modify profile picture and username.

As illustrated in figure 13, user can modify username and profile picture. It is a

minimalistic feature that uses UploadThing component within a form component

to handle the file update.

6.4.4 Delete quiz card

As the last part of the CRUD application, the delete feature is implemented to

delete the cards owned by the user himself or herself. Figure 14 below

illustrates the delete alert that pops up for confirmation from the user to delete a

card owned by the user.

Figure 14: Prompt initiating the deletion of quiz card.

Users can modify and delete the cards they own. As seen in Figure 11, once

the vertical ellipsis icon is clicked, the user can modify or delete the selected

card. Once delete is clicked, the user is prompted to confirm if the deletion is

intentional, as seen in figure 13. Once confirmed by the user the card is

permanently deleted by calling the backend function deleteQuizCard as

shown in Listing 15 below.

 const { mutate: deleteEntryMutations } =
api.card.deleteQuizCard.useMutation({
 onSuccess() {
 void router.push("/mycards");
 },
 });
deleteQuizCard: protectedProcedure
 .input(z.object({ id: z.string() }))
 .mutation(async ({ ctx, input }) => {

 await ctx.db.deck.delete({ where: { id: input.id }
});
 return { message: "Success" };
 }),

Listing 15. Delete function that remove the cards permanently.

In Listing 15, the deleteQuizCard function removes the card using the card

id as an input. As mentioned before, only the user owning the card can delete

the card, as it is a protected procedure.

7 Conclusion

The aim of this thesis was to create a responsive full stack web application by

utilizing the type-safe feature of a T3 stack. This thesis aimed at understanding

the practicalities of type safety in the modern T3 stack in web development

through the practical implementation of the CRUD concept in full stack web

application. Keeping this thesis aim at the center, a full stack Quiz Card

application was developed.

As mentioned above in Chapter 2, using stacks such as Typescript, Next.js,

NextAuth.js, and tRPC, ensured the type safety of the web application

developed for this thesis. Typescript itself is a type safe language built on top of

JavaScript. It is utilized by Next.js, tRPC, Prisma, and NextAuth.js for type

safety, making the use of other stacks type safe as well. Next.js supports

TypeScript, allowing developers to write type safe React components. The

Next.js page component uses TypeScript to ensure type safety by making sure

the data passed to the component is correctly typed. Use of prop interface

ensures that any prop passed to a React functional component are correctly

typed, preventing compile time errors due to incorrect prop types. In case the

data type is mismatched, it flags the error at compile time. This way, the error

can be avoided at the location where it originated.

tRPC leverages TypeScript to ensure that the data passed between client and

server is type-checked. To ensure type safety, the shape of input and output

was defined for each API endpoint using the TypeScript types. As seen in

Listing 3, createNewCard, the tRPC endpoint uses a TypeScript-first Schema

validation library, Zod, to ensure that the data passed to the query is correctly

typed, providing type safety at the API level. If the user input does not align with

the input type schema, it throws a type error. Moreover, using protected

procedures protects the endpoint in a simple way without the need for additional

codes.

Integration of TypeScript with Prisma in Listing 3 demonstrates the power of

TypeScript in Prisma to provide type safe database access that enhances the

robustness and maintainability of the application. Based upon the database

schema, as seen in Listing 6, Prisma ensured type safe results. In the

getAllCards function, as seen in Listing 3, the findMany method is a

promise that resolves to an array of decks, with each deck being a type safe

object that matches the structure of the database scheme in Listing 5. The

returned allCards is a type safe array of Quizdecks, where each deck

complies with the structure defined in the database schema. This property

ensured the expected data, reducing the likelihood of compile-time errors. The

database operations used In this thesis project included creating, reading,

updating, and deleting records in the database.

By default, in NextAuth.js, certain types or interfaces are shared across

submodules. Session is created at /src/server/api/auth.ts, and

TypeScript picks it up in every location where it is referenced. Through the

concept of module augmentation of NextAuth.js, shared interfaces like sessions

are defined in a single place, ensuring type safety across the whole application.

As seen in Listing 10, the session interface was extended to include the id

property inside the user object, which allowed to define shared types in a single

place and have TypeScript automatically recognize them through the

applications adhering to type safety.

In a nutshell, the T3 stack leveraged the power of TypeScript across the default

and other stacks and made the application type safe. While creating this

application, the use of the T3 stack prevented compile time errors due to

incorrect data types and enhanced the overall strength and maintainability of

the application. Type errors were detected by the type checker and highlighted

to the developer at the location where the incorrect value was introduced. In

conclusion, the T3 stack has been successfully applied to develop a responsive

web application, QuizCard, by demonstrating the practicalities of type safety in

the T3 stack. Since the application built for the thesis was a basic application, a

thorough investigation could not be made regarding the type safety considering

the complex setup. A more comprehensive and large-scale application should

be built in order to test the overall scope of the T3 stack as a type safe stack for

web application development.

References

Aplyca. (2023). Creating scalable applications with T3. [online] Available at
https://www.aplyca.com/en/blog/blog-T3-scalable-aplications. [Accessed 20
March 2024]

Baeldung. (2024). Type Safety in Programming Languages. [online] Available at
https://www.baeldung.com/cs/type-safety-programming. [Accessed 3rd April
2024]

Byby. (2021). Type Safety in JavaScript. [online] Available at https://byby.dev/js-
type-safety. [Accessed 3rd April 2024]

CleanCommit (2022). tRPC vs GraphQL: How to choose the best option for
your next project. [online] Available at https://cleancommit.io/blog/trpc-vs-
graphql-how-to-choose-the-best-option-for-your-next-project/. [Accessed 4 April
2024]

Codeless (2023). 8 Best Web Development Stacks for 2024. [online]. Available
at https://codeless.co/web-development-stacks/. [Accessed 22 March 2024]

Destroy All Software (2024). Types for anyone who knows a programming
language. [online]. Available at
https://www.destroyallsoftware.com/compendium/types?share_key=baf6b67369
843fa2. [Accessed 3rd April 2024]

Dev Community (2024). Unleash the potential of T3 Stack. [online]
https://dev.to/4r7ur/unleash-the-potential-of-t3-stack-m4k. [Accessed 20 March
2024]

FreeCampCode.org. (2020). What is tailwindcss. [online] Available at
https://www.freecodecamp.org/news/what-is-tailwind-css-and-how-can-i-add-it-
to-my-website-or-react-app/. [Accessed 21 March 2024]

Freecodecamp.org. (2021). A Brief History of Responsive Web Design. [online]
Available at https://www.freecodecamp.org/news/a-brief-history-of-responsive-
web-design/. [Accessed 22 March 2024]

LinkedIn.com (2024). Why Is Web Application Development Valuable for
Businesses? [online] https://www.linkedin.com/pulse/why-web-application-
development-valuable-businesses-wp6we. [Accessed 24 March 2024]

Medium 2021. ReactJS: A brief history. [online] Available at
https://medium.com/@sjarancio/reactjs-a-brief-history-3c1e969a477f.
[Accessed 20 March 2024]

Medium 2023. Dominating Web Development Trends 2023. [online] Available at
https://medium.com/quick-code/dominating-web-development-trends-2021-
94a8e86ba416. [Accessed 21 March 2024]

Medium 2023. Getting started with the T3-Stack. [online] Available at
https://medium.com/@shagilislam786/getting-started-with-the-t3-stack-part-1-
3faf3dbe186a. [Accessed 4 April 2024]

Prisma 2024. Data sources [online] Available at
https://www.prisma.io/docs/orm/prisma-schema/overview/data-sources.
[Accessed on 4 April 2024]

Prisma 2024. Data sources [online] Available at
https://www.prisma.io/docs/orm/prisma-schema/data-model/models [Accessed
on 4 April 2024]

Reich Report 2023. The evolution of NextJS and Type safety. [online] Available
at https://www.erichreich.com/the-evolution-of-nextjs-and-type-safety/.
[Accessed on 3 April 2024]

T3 Docs. NextAuth.js [online] Available at https://create.t3.gg/en/usage/next-
auth. [Accessed 4 April 2024]

The new stack. (2022). What is TypeScript. [online] Available at
https://thenewstack.io/what-is-typescript/. [Accessed 21 March 2024]

The React Framework for the Web.(2021). Next.js. Available at
https://nextjs.org/. [Accessed 24 March 2024]

tRPC (2024) Homepage. [online] Available at https://trpc.io/. [Accessed on 4
April 2024]

What is Next.js? A look at popular JavaScript framework. (2024). [online]
Available at https://kinsta.com/knowledgebase/next-js/. [Accessed 22 March
2024]

What is TypeScript? A comprehensive guide.(2024). [online] Available at
https://kinsta.com/knowledgebase/what-is-typescript/ [Accessed 20 March
2024]

Next.js. (2024). About React and Next.js. [online] Available at
https://nextjs.org/learn/react-foundations/what-is-react-and-nextjs. [Accessed 21
March 2024]

NextAuth.js. (2024). Home. [online] Available at https://next-auth.js.org/getting-
started/example. [Accessed 4 April 2024]

P. Chiusano, Functional progamming, UX, tech, 2016. The advantage of static
typing, simpy stated. [online] Available at https://pchiusano.github.io/2016-09-
15/static-vs-dynamic.html. [Accessed 3rd Wed 2024]

T. Uppal, S. Srivastava and K. Saini, "Web Development Framework : Future
Trends," 2022 4th International Conference on Advances in Computing,
Communication Control and Networking (ICAC3N), Greater Noida, India, 2022,
pp. 2181-2184, doi: 10.1109/ICAC3N56670.2022.10074105. keywords: {Market

research;Libraries;Faces;Front-End;E-
Commerce;JavaScript;Framework;HTML;DOM}, [online] Available at
https://ieeexplore-ieee-org.ezproxy.metropolia.fi/document/10074105.
[Accessed 22 March 2024]

Makeuseof.com. (2024). What Is tRPC and Why Should You Use It? [online]
Available at https://www.makeuseof.com/trpc-what-why-use/ [Accessed 24
March 2024]

