

Mai Nguyen Tan Phat

Developing a Timesheet Application

Technology and Communication
2024

ABSTRACT

Author Phat Mai
Title Developing a Timesheet Application
Year 2024
Language English
Pages 53
Name of Supervisor Kenneth Norrgård

This thesis presents the development of Mercury 2.0, an updated version of the
employee working hours management system originally developed by Indevit Ab
Oy over a decade ago. The project aimed to improve user experience and func-
tionality by redesigning the interface and adding new features.

The project was designed and developed using Razor, Blazor, C#, HTML/CSS and
Fusion. Backend and frontend part were developed at the same time to ensure
they worked well together. Developer also constantly tested the website to catch
and fix any errors or bugs that could affect the rest of the development process.

The final application is fully functional and easy to use, allow employee to input,
edit, delete and track their working hour.

Keywords Software engineering, Fusion, timesheet, C#, web applica-
tion

CONTENTS

ABSTRACT

1 INTRODUCTION .. 8

2 BACKGROUND AND PROJECT PURPOSE ... 9

3 WORK PROCESS .. 11

4 THEORETICAL BACKGROUND ... 12

4.1 Backend ... 12

4.2 .NET ASP.NET Fusion ... 12

4.3 Frontend .. 13

4.4 RAZOR BLAZOR HTML CSS .. 13

4.5 DATABASE ... 14

4.5.1 MICROSOFT SQL SERVER ... 14

4.5.2 MS SQL MANAGEMENT STUDIO ... 14

4.6 VISUAL STUDIO 2022 .. 15

4.7 INSTALLing NuGet Packages ... 15

5 IMPLEMENTATION .. 19

5.1 Project Structure ... 19

5.2 Backend ... 20

5.2.1 Backend.Contracts .. 20

5.2.2 BackEnd.Core .. 22

5.2.3 Backend.Host .. 26

5.3 Frontend .. 27

5.3.1 Css ... 28

5.3.2 Pages ... 29

5.3.3 Smart Components ... 31

5.3.4 Migrations ... 43

5.4 Deployment... 43

5.4.1 IIS ... 44

5.4.2 Azure Pipeline ... 45

6. OUTCOME OF PROJECT ... 47

7. CONCLUSIONS ... 50

REFERENCES .. 52

LIST OF FIGURES AND TABLES

Figure 1 Microsoft SQL Server .. 14

Figure 2 Microsoft Visual Studio (C# IDE) ... 15

Figure 3 Project Structure ... 19

Figure 4 The "Backend.Contracts" .. 21

Figure 5 The "ICustomerService" file .. 21

Figure 6 The "DbEffort" file ... 23

Figure 7 Effort entity in Database ... 24

Figure 8 The "EffortService" file .. 24

Figure 9 The "UserService" file ... 26

Figure 10 Backend.Host files tree ... 26

Figure 11 The "Frontend" files tree .. 27

Figure 12 The "Css" files tree .. 28

Figure 13 Part of css file .. 28

Figure 14 The "Reset.css" file .. 29

Figure 15 The "Pages" files tree .. 29

Figure 16 The "Home.razor" file ... 30

Figure 17 All component that include in "Home.razor" file display in the browser

 ... 31

Figure 18 The "Calendar.razor" file ... 32

Figure 19 The "Calendar.razor" file ... 32

Figure 20 The "calendar.razor" display in the browser .. 33

Figure 21 The "Calendar.razor.cs" file .. 34

Figure 22 The "Calendar.razor.cs" file .. 34

Figure 23 The "CreateEffort.razor" file ... 35

Figure 24 This is how ”CreateEffort” file .. 35

Figure 25 The "CreateEffort.razor.cs" file ... 36

Figure 26 EditDeleteModal.razor file .. 37

Figure 27 The "EditDeleteModal.razor.cs" file ... 38

Figure 28 EffortList.razor .. 39

Figure 29 The "EffortList.razor" file .. 40

Figure 30 The "EffortList.razor.cs" file .. 41

Figure 31 GetEffortsByDateAndCustomer method .. 42

Figure 32 Azure pipeline system ... 44

Figure 33 Azure pipelines setting .. 45

Figure 34 Login page ... 47

Figure 35 Mercury-timesheet page .. 48

Figure 36 EditDeleteModel popup .. 49

Table 1: Smart frontend convert case .. 36

8

1 INTRODUCTION

During my internship at Indevit Ab Oy, I gained practical experience and valuable

insights into the world of web development. Throughout this period, I was ex-

posed to a variety of technologies, including HTML, CSS, Gatsby, React, and C#. A

significant part of my internship involved developing a web application to help

employees track their working hours efficiently. This project provided me with

hands-on experience in building web applications from scratch, implementing key

functionalities, and ensuring user-friendly interfaces.

In addition to mastering technical skills such as coding and debugging, this experi-

ence taught me the importance of adaptability and continuous learning in the fast-

paced field of software development. I learned to tackle challenges head-on, think

critically, and find innovative solutions to complex problems. My internship at In-

devit Ab Oy not only enhanced my technical proficiency but also equipped me with

invaluable practical knowledge and problem-solving abilities.

Mercury, a software developed more than 10 years ago by the founder of Indevit,

required further development due to the rapid advancements in society and tech-

nology. The old Mercury had several problems: the interface was difficult to see,

the arrangement of features was not convenient, it was challenging to operate, it

was difficult to edit tasks if entered incorrectly, and there was no feature to track

total working hours in a day or for a customer. Therefore, Indevit needed a new

application for hour recording. During my internship, my task was to develop this

new application, and I also chose this project for my thesis.

These experiences have significantly contributed to the research and development

of my thesis, providing me with a solid foundation to explore and address real-

world challenges in the field of software engineering.

9

2 BACKGROUND AND PROJECT PURPOSE

Indevit is a Finnish company specializing in providing advanced IT solutions and

services for various industries. With a strong focus on digital transformation and

innovation, Indevit aims to empower businesses by leveraging cutting-edge tech-

nology.

Founded in 2010, Indevit has grown to become a trusted partner for organizations

seeking to optimize their operations and enhance their competitiveness in the dig-

ital age. The company offers a wide range of services, including software develop-

ment, IT consulting, cloud services, and system integration.

Indevit's team consists of highly skilled professionals with expertise in areas such

as software development, cloud computing, cybersecurity, and data analytics. By

combining industry knowledge with technical proficiency, Indevit delivers tailored

solutions that address the unique challenges and objectives of each client.

The old Mercury had the following problems: the old interface was difficult to see,

the arrangement of features was a not convenient, it was difficult to operate, it

was difficult to edit tasks if entered incorrectly, there was no feature of total work-

ing hours in a day, no features total working hours for a customer.

To solve these problems, Mercury 2.0 has the same functions as the old Mercury,

such as entering working hours (effort), which include work description, working

time, date, customer project, project task, and task category. It also allows users

to edit hours, delete hours, and sort days by week or by day more efficiently and

easily. Moreover, it comes with many upgrades: users can now choose the week

to display by selecting the week in the calendar, it shows the total hours of the

week, total hours in a day, and total hours that an employee has worked on a

specific customer project. It will also auto-update whenever a user adds or deletes

working hours.

10

In addition to the existing functions, Mercury 2.0 also has a better and easier user

interface than the old version. Users do not need to go through as many steps to

add or edit hours, making it easier to track working hours. Mercury 2.0 uses Azure

for login, they also integrate with Azure to send tasks or assign tasks separately to

employees, making it easier for both managers and employees to handle task

management efficiently.

11

3 WORK PROCESS

I collaborated closely with the Indevit IT team, which included senior software en-

gineers and the Chief Technology Officer (CTO), who served as my supervisor. The

work followed a structured timetable using Azure DevOps as the project manage-

ment tool, adhering to Agile methodology. While I primarily worked inde-

pendently on the Mercury 2.0 project, I regularly participated in weekly meetings

with the Indevit team to report progress to both the CEO and CTO.

The most challenging aspect of the project was ensuring the smooth flow of appli-

cation data between components, which was crucial for maintaining accurate

timesheet records. The Mercury 2.0 underwent testing by my supervisor, my

teammates, and other Indevit employees.

According to feedback from my supervisor (CTO), the application is free of bugs,

with all functions operating perfectly. They also praised the new user interface,

describing it as aesthetically pleasing, user-friendly, and ready for deployment. Ad-

ditionally, another employee commented on the smooth performance of the web

application, highlighting that all functions work flawlessly. They also appreciated

the attractive user interface and its ease of use.

12

4 THEORETICAL BACKGROUND

4.1 Backend

Backend is a server-side of the web application, which is responsible for managing

and processing data, as well as handling requests from the client-side (front end).

In a typical web application, the backend includes the server, application logic, da-

tabase, and any other components necessary to support the functionality of the

application.

4.2 .NET ASP.NET Fusion

.NET is a software development framework developed by Microsoft. It provides a

platform for building, deploying, and running applications across various operating

systems, devices, and architectures. NET supports various programming lan-

guages, including C#, Visual Basic .NET, and F#. It offers a wide range of function-

alities such as web development, desktop application development, mobile appli-

cation development, cloud-based services, and more. Additionally, .NET includes

a large class library known as the .NET Framework Class Library (FCL), which pro-

vides reusable code for common programming tasks. (Meghan, 2023)

ASP.NET is a web application framework developed by Microsoft for building dy-

namic web pages and web applications. It is an extension of the .NET framework

and allows developers to use languages such as C# or Visual Basic to create web

applications. It provides many of feature and tools for web applications: Web

form, ASP.NET MVC (Model-View-Controller), ASP.NET Web API, ASP.NET Core,

ASP.NET Razor Pages. (Rick, 2017)

Fusion is a .NET library that implements Distributed REActive Memoization

(DREAM), which is a novel abstraction designed to address various challenges en-

countered in building real-time web applications. It's somewhat similar to other

state management libraries like MobX or Flux but is tailored to handle large states

13

across backend microservices, API servers, and client applications. (Alexyakunin,

2020)

4.3 Frontend

Frontend is an interface of the webpage or application that client interact with. If

client have any action or request, the frontend will send it to the backend. Backend

will resolve and send it result back and display it in the frontend. For example:

when client want to view the shoe and click on it, the browser will pop up the shoe

that client want to see.

4.4 RAZOR BLAZOR HTML CSS

RAZOR is a markup syntax used in ASP.NET, a web application framework devel-

oped by Microsoft. RAZOR allows developers to embed server-based code (C# or

VB.NET) directly into HTML markup, making it easier to create dynamic web pages.

It's particularly popular for building web applications with the ASP.NET MVC

(Model-View-Controller) architecture. (Mike, 2018)

Blazor is a modern front-end web framework based on HTML, CSS, and C# that

helps you build web apps faster. With Blazor, build web apps using reusable com-

ponents that can be run from both the client and the server so that you can deliver

great web experiences. (Microsoft, 2019)

HTML (HyperText Markup Language) is the standard markup language used to

create and design documents on the World Wide Web. It's the foundation of

web pages and web applications and provides the structure and layout for the

content they display. (Wikipedia, 2001)

CSS (Cascading Style Sheets) is a fundamental component of web development,

used to control the layout, formatting, and appearance of web pages. It allows

developers to separate content from presentation, making it easier to create con-

sistent and visually appealing websites. (W3Schools, 2013)

14

4.5 DATABASE

A database is an organized collection of structured information or data, typically

stored electronically in a computer system. It is designed to efficiently manage,

store, retrieve, and manipulate data according to specific requirements. Small

databases can be stored on a file system, while large databases are hosted on

computer clusters or cloud storage. (Wikipedia, 2022)

4.5.1 MICROSOFT SQL SERVER

Microsoft SQL Server is a relational database management system (RDBMS). Ap-

plications and tools connect to a SQL Server instance or database and communi-

cate using Transact-SQL (T-SQL). (Wikipedia, 2022)

Figure 1 Microsoft SQL Server

4.5.2 MS SQL MANAGEMENT STUDIO

SQL Server Management Studio (SSMS) is an integrated environment for managing

any SQL infrastructure, from SQL Server to Azure SQL Database. SSMS provides

15

tools to configure, monitor, and administer instances of SQL Server and databases.

(Microsoft, 2018)

4.6 VISUAL STUDIO 2022

Visual Studio is a powerful developer tool that you can use to complete the entire

development cycle in one place. It is a comprehensive integrated development

environment (IDE) that you can use to write, edit, debug, and build code, and then

deploy your app. Beyond code editing and debugging, Visual Studio includes com-

pilers, code completion tools, source control, extensions, and many more features

to enhance every stage of the software development process. (Microsoft, 2016)

Figure 2 Microsoft Visual Studio (C# IDE)

4.7 INSTALLing NuGet Packages

Microsoft.AspNetCore.Components.WebAssembly is a framework that enables to

the building of interactive web applications using C# and .NET in the client-side

browser environment.

16

Microsoft.AspNetCore.Authentication.MicrosoftAccount is a middleware that al-

lows to the user authentication in ASP.NET Core applications using Microsoft ac-

counts.

Microsoft.AspNetCore.Components.WebAssembly.DevServer is a development

server that enables the debugging and testing of Blazor WebAssembly applica-

tions during development.

Microsoft.AspNetCore.Authentication.Google simplifies the process of imple-

menting Google authentication in ASP.NET Core applications, providing a secure

and user-friendly login experience.

Microsoft.AspNetCore.Authentication.Cookies: is essential for implementing

cookie-based authentication and session management in ASP.NET Core applica-

tions, providing a secure and convenient way to authenticate users and manage

their sessions.

Microsoft.AspNetCore.Components.WebAssembly.Server is a package that al-

lows the hosting of Blazor WebAssembly applications on the server side.

Microsoft.Authentication.WebAssembly.Msal is a library that enables authentica-

tion in Blazor WebAssembly applications using Microsoft Authentication Library

(MSAL).

Microsoft.EntityFrameworkCore.Sqlite is a library that enables SQLite database

support in Entity Framework Core applications.

Microsoft.EntityFrameworkCore.SqlServer is a library that enables SQL Server da-

tabase support in Entity Framework Core applications.

Microsoft.Extensions.Logging.Debug is a logging provider for .NET applications

that writes log messages to the debug output window in Visual Studio.

17

Microsoft.Identity.Web is a library that simplifies the process of adding authenti-

cation and authorization to ASP.NET Core web applications using Azure Active Di-

rectory (Azure AD) and Microsoft identity platform.

Microsoft.NET.ILLink.Tasks is a NuGet package that provides tasks for the ILLink

linker, which is used to perform link-time optimization (LTO) in .NET applications.

Microsoft.NET.Sdk.WebAssembly.Pack is a package that provides tools for pack-

aging and publishing Blazor WebAssembly applications.

Stl.Fusion is a library that provides tools for building highly responsive and scala-

ble .NET web applications.

Stl.Fusion.Blazor is a library that extends the capabilities of Blazor applications by

providing tools for building highly responsive and scalable user interfaces.

Stl.Fusion.Blazor.Authentication is a library that extends the capabilities of Blazor

applications by providing tools for integrating authentication and authorization

functionalities.

Stl.Fusion.EntityFramework.Redis is a library that extends the capabilities of En-

tity Framework Core (EF Core) by providing integration with Redis for caching

and distributed data synchronization.

Stl.Fusion.Ext.Contracts is a library that provides contract interfaces and attrib-

utes for defining and managing operations in Stl.Fusion-based applications.

Stl.Fusion.Ext.Services is a library that extends the capabilities of Stl.Fusion by

providing additional services and utilities for building highly responsive and scala-

ble .NET applications.

Stl.Fusion.Server is a library that extends the capabilities of Stl.Fusion by provid-

ing server-side components and utilities for building highly responsive and scala-

ble .NET applications.

18

Stl.Generators is a library that provides utilities for generating code, such as

source code files, during the build process of .NET applications.

Stl.Interception is a library that provides tools for intercepting method calls in

.NET applications.

UAParser is a library that provides user-agent parsing functionality in .NET appli-

cations.

19

5 IMPLEMENTATION

5.1 Project Structure

The project includes 5 folders: _, Backend, Frontend, Migrations, and Solutions

Items, but the focus in this project is on Backend, Frontend, and Migrations.

Figure 3 will show the Project structure.

Figure 3 Project Structure

The Backend folder contains three important components:

- Service Interface defines how different parts of the application communi-

cate with each other. It ensures smooth interaction between various ser-

vices.

- Application Service is where the logic of the application lives. It handles all

the behind-the-scenes operations, making sure everything works as it

should.

- Hosting is responsible for deploying and managing the application, ensur-

ing it's available and can handle as many users as needed.

The front ends contain many components that are used for creating and designing

applications on the browser. Migrations ensure that the database structure

evolves with the application.

20

5.2 Backend

Backend (”Server side”) have 3 sub-folders: Backend.Contracts, Backend.Core,

Backend.Host

- Backend.Contract contain interfaces defined for the backend functionality

of an application.

- Backend.Core refers to the core implementation of the backend function-

ality. It contains the concrete implementations of the interfaces defined in

Backend.Contracts.

- Backend.Host is the hosting or integration layer for the backend services.

In Fusion and .NET development, this might involve components responsi-

ble for hosting backend services, such as API endpoints,or web services.

5.2.1 Backend.Contracts

In Fusion, backend.contracts is a namespace that typically contains interfaces de-

fining contracts for backend services or functionalities. These contracts act as a set

of rules that define what a particular service is supposed to do.

When working with Fusion and C#, backend.contracts would contain interfaces

that define the communication protocols between the frontend and backend of

an application. These interfaces help in decoupling the frontend and backend

code, making the application more modular and easier to maintain.

Figure 4 displays all the file in the Backend.Contract

21

Figure 4 The "Backend.Contracts"

There are many files and it all the interface for the service in the Backend.Core for

example: ICustomerService, IEffortService, IProjectService, ITaskService

All service interfaces have different methods and structures, depending on what

the developer wants in that specific service interface. For the purpose of explana-

tion, I have chosen the ICustomerService.

Figure 5 illustrates the ICustomerService which has the record type name “Cus-

tomer” with list of the contructor include: CustomerId, CustomerName

Figure 5 The "ICustomerService" file

The code in Figure 5 essentially provides a structure for managing customer data

in a Blazor application, including defining the customer data structure (Customer)

and methods to interact with this data (ICustomerService interface)

22

ICustomerService is an interface that provides methods for retrieving customer

data. These methods are decorated with [ComputeMethod] attribute from Stl.Fu-

sion, indicating that the results of these methods will be automatically cached and

invalidated when necessary. This helps in optimizing the performance of the ap-

plication by caching the results and reducing the number of calls to the server.

The ICustomerService interface serves as a blueprint for all CustomerService im-

plementations. It ensures that each method in CustomerService follows the same

structure defined in this interface. For example, the ICustomerService interface

includes a method called GetCustomers which requires a session and a cancella-

tionToken to execute, and a GetUserCustomerForTimeSpan method which re-

quires a session, startDate, endDate, and a cancellationToken to execute. Any class

implementing ICustomerService must provide an implementation for the GetCus-

tomers method that accepts these parameters.

For services like IEffortService, ITaskService, and IProjectService, the workflow

would be the same as ICustomerService.

Each interface would define methods that specify the functionality related to ef-

forts, tasks, and projects.

5.2.2 BackEnd.Core

The core functionality of the backend in a Fusion application includes the imple-

mentation of business logic, data access logic, and other essential components.

In this web application, developers use data models such as Category, Task, Cus-

tomer, Effort, and Project. All entities within these models must be defined to cor-

respond with the database schema.

Figure 6 show the model entities in the implementation part as an example.

23

Figure 6 The "DbEffort" file

The DbEffort class creates a blueprint for storing information about these efforts

in a database. Each effort has a unique identifier (EffortId), and might be linked to

specific tasks (TaskId) and people (UserId) involved. It also tracks the date (Ef-

fortDate), a description (Description), and the time spent (Time). The system can

also manage invoicing by keeping track of whether the effort has been billed (IsIn-

voiced) and potentially the associated price (InvoicingPrice). Finally, it records

when the effort was logged (Timestamp) and allows linking it to a specific task

within the project (Task).

An example of the Effort entity in Databa is shown in Figure 7.

24

Figure 7 Effort entity in Database

To ensure that the application can correctly send and retrieve data from the data-

base, we need to make sure that the data types match the entity data types.

After defining data entity,service implementation is the next part for that model,

in this case is EffortService.

Figure 8 is an example of EffortService.

Figure 8 The "EffortService" file

25

In the EffortService, we implement functions related to the Effort model that are

necessary for the application development. For example, in a timesheet applica-

tion, creating an effort is one of the essential functions required. Each method in

the EffortService must be defined in IEffortService because IEffortService is the

interface of EffortService, ensuring that EffortService follows the rules or blueprint

defined in the interface.

For some methods used for data invalidation, as this is a timesheet application,

data must always be fresh and up to date. For example, after creating, editing, or

deleting an effort, the UI or data must be refreshed so that the latest data can be

sent to the frontend or user interface using the GetEffort method.

For some method that can not invalidate in the normal way, we create a Pseudo

method and invalidate it. PsuedoGet is used to trigger the invalidation of other

computed methods such as GetEffortsByDateAndCustomer and GetTimeByDates.

This ensures that these methods recalculate their results with fresh data from the

database.

For each data model, such as Task, Project, and Customer, model entities need to

be defined similarly to the DbEffort model. The choice of which model entities to

implement depends on the requirements set by the developer. In this case, Task,

Project, and Customer data models implemented, and several services were cre-

ated using these data models for the application's purposes.

The problem is we need to use the old Mercury data which is login by the system

username and password and the new mercury using Azure to login. To solve this

problem, we have UserService.cs to filter and connect 2 different accounts be-

come one with specific UserId.

Figure 9 is an example of UserService.cs

26

Figure 9 The "UserService" file

5.2.3 Backend.Host

Backend.Host usually refers to the host or server where the backend services of

an application are hosted. Figure 10 shows the Backend.Host tree

Figure 10 Backend.Host files tree

The launchSettings.json file is used to configure how the application will be

launched. It allows specification of various settings such as the application profile,

environment variables, the web server settings, and the URL to launch the appli-

cation.

27

The appsettings.json file is used to store configuration settings for your applica-

tion. It's used to store a wide range of configuration options, such as database

connection strings, logging configuration.

The program.cs file contains the entry point for the application. The Main method

in Program.cs is builds the web host and starts the application.

The Startup.cs file is used to configure services and the application's request pipe-

line.

5.3 Frontend

The front end is the user interface (UI) because it is where users interact with the

application. Figure 11 illustrates the “Frontend” file tree.

Figure 11 The "Frontend" files tree

28

The wwwroot folder stores static files like CSS, and images, which are important

for the look and feel of the app and for running code in the browser. The Pro-

gram.cs file is crucial for setting up the application; it configures services, handles

routing, and starts the application. In Blazor WebAssembly apps, Program.cs starts

the WebAssembly host, while in Blazor Server apps, it sets up the server. This or-

ganized structure helps developers easily manage and grow their Blazor applica-

tions, using the power of .NET and C# to create modern, interactive web inter-

faces.

5.3.1 Css

Where set the styling for the whole page with 2 files: app.css, reset.css. The

App.css file is the place for setting up application text font, text style, text size for

displaying. Figure 12 shows the CSS file tree and Figure 13 how to configure code

in the CSS file.

Figure 12 The "Css" files tree

Figure 13 Part of css file

This CSS @font-face rule defines the "Poppins" font, specifying its style, weight,

source URL, format, and the range of Unicode characters it supports. This allows

the font to be used throughout the website.

29

Reset.css reset stylesheet normalizes default styles for HTML elements, ensuring

consistent rendering across different browsers. It resets margins, paddings, bor-

ders, and sets default font sizes. Additionally, it normalizes HTML5 display proper-

ties for older browsers.

Figure 14 demonstrates how to configure code in Reset.css.

Figure 14 The "Reset.css" file

5.3.2 Pages

Figure 15 illustrates the working tree of “Pages” folder

Figure 15 The "Pages" files tree

The Home.razor file is a Razor component in a Blazor application. It is designed to

render different content based on the user's authorization status. For example, if

30

the user does not login it would display the home login page. After login or author-

ized with would display the home page of the web application which have 2 com-

ponents: CreateEffort and Calendar.

An example of “Home.razor” file is shown in Figure 16.

Figure 16 The "Home.razor" file

The AuthorizeView component handles the login and logout process, covering

both authorized and unauthorized. When the user is not logged in yet, it would

display all component inside the NotAuthorized tag. Upon successful authoriza-

tion, two components, CreateEffort and Calendar, representing the Mercury ap-

plication, are shown.

Figure 17 shows a successful login.

31

Figure 17 All component that include in "Home.razor" file display in the browser

5.3.3 Smart Components

For each smart component, this package would include three files: Component.ra-

zor, Component.razor.cs, and Component.razor.css. For example: Calendar.razor,

Calendar.razor.cs, Calendar.razor.css. The purpose of each file type:

32

Figure 18 and Figure 19 how to implement the code in the calendar.razor file

Figure 18 The "Calendar.razor" file

Figure 19 The "Calendar.razor" file

The purpose of Calendar.razor file is to display a calendar table which is the com-

bination from many components: EditDeleteModel, WeekTimeTotal, DateTime-

Total, CustomerCalendar, CustomerTimeCalculate, EffortList.

33

With the loop Date, it helps this component to render the date which represents

7 days in the week.

EditDeleteModal pops up a modal where the user can edit the effort value (De-

scription, Time, Date, Task) after clicking on the effort in the calendar.

WeekTimeTotal calculates and displays the total amount of time for the client

throughout the week.

DateTimeTotal calculate and display the total amount of time in the day for the

client.

CustomerCalendar render the customer's name in the calendar.

CustomersTimeCalculate calculate and display the amount of time that cus-

tomer in a week.

EffortList display the efforts that the client has in the database.

Figure 20 show how calendar.razor display in the broswer

Figure 20 The "calendar.razor" display in the browser

Figure 21 depicts a part of Calendar.razor.cs

34

Figure 21 The "Calendar.razor.cs" file

The purpose of this component is to handle the logical part for the frontend (Cal-

endar.razor). It renders week dates and binds parameters from another compo-

nent so it can take values from it and display them on the front end.

The Calendar.razor.css component is used for styling how the Calendar.razor com-

ponent is displayed. For example, it set width and height for calendars, calendar

column with these elements: “width”, “height”.

Figure 22 show is example of Calendar.razor.css

Figure 22 The "Calendar.razor.cs" file

The purpose of CreateEffort.razor component is to render the input fields for the

application. For example, this application has four input values: Description, Task

(SearchButton component), Date, and Time. For the add time, user can both type

35

value in the input or click “+” or “-” to add hour, for each click it would plus or

minus 30 minutes. All the input values in the front end would bind value to lower

component which is CreateEffort.razor.cs. Figure 23 shows the code file of Cre-

ate.Effort.razor and Figure 14 how it is displayed in the browser.

Figure 23 The "CreateEffort.razor" file

Figure 24 This is how ”CreateEffort” file

The purpose of CreateEffort.razor.cs component is to send all the values that the

client has provided in the input form to the backend. It uses TaskService and Ef-

fortService in the backend, specifically the method in CreateEffort.cs. It takes the

values (@bind) from CreateEffort.razor so that the component would have the

values and can send them to the backend with CreateEffort method in Ef-

fortService. Figure 25 demonstrates CreateEffort.razor.cs code file.

36

Figure 25 The "CreateEffort.razor.cs" file

This component also sets smart values for the front end. For example: if client

input are:

Table 1: Smart frontend convert case

Case Input Return

’:’ between number 9: 15 09: 15

’ ’ (space) between num-

ber

9 15 09: 15

1 Number only 10 10 (hour)

1 Number only 30 30 (minutes)

Figure 26 display the EditDeleteModal.razor code file

37

Figure 26 EditDeleteModal.razor file

The purpose of the EditDeleteModal.razor is displaying Edit or Delete Model for

the Effort that selected in the calendar. In this model it would show the value of

the selected effort. Users can edit effort value (Description, Time, Date, Task) in

this model or user can Delete that effort it depends on user purpose. After user

action, it would send or bind user input from the front end (EditDeleteModal.ra-

zor) to lower layer (EditDeleteModal.razor.cs).

38

In figure 27 you will see how EditDeleteModal.razor.cs look like as the code file

Figure 27 The "EditDeleteModal.razor.cs" file

The purpose of EditDeleteModal.razor.cs component is handling the logical part

for the EditDeleteModal.razor, it takes value binding from the front end and re-

solves it before sending it to the back end.

After Edit or Delete, it would send the value to the backend through 2 Task: Delete

(DeleteEffort method in the EffortService) and Save (EditEffort method in Ef-

fortService).

In this component also have the smart input value. It checks that if the input has

“:” or “ ”, if it does split the input string into 2 parts: hour and minute.

Figure 28 shows what smart convert method look like

39

Figure 28 EffortList.razor

It then converts the hours and minutes into an integer and checks if the conversion

was successful.

If the hour is less than 15, it converts the time to minutes using

TimeSpan.FromHours(hour) + TimeSpan.FromMinutes(minute).

If the hour is 15 or more, it converts the time to minutes using TimeSpan.FromMi-

nutes(hour * 60 + minute).

Figure 29 gives an example of EffortList.razor

40

Figure 29 The "EffortList.razor" file

The purpose pf EffortList is to render the efforts obtained from the lower compo-

nent (EffortList.razor.cs). It displays three values of each effort: Description,

Time, and Name (CustomerName). The Time value is displayed as hours and

minutes.

Additionally, this component includes a HandleClick method which sends the

value of the selected effort to the EditDeleteModal, allowing the user to edit or

delete the selected effort.

41

Figure 30 shows an example of EffortList.razor.cs

Figure 30 The "EffortList.razor.cs" file

This component's purpose is to fetch effort for specific customer and date by

passing parameter: CalDate, CustomerId, each effort always has different date

and customerId, so with CalDate, customerId parameter it would render effort

42

for each day and customer. Fox example: 3/4/2024 have 2 efforts with 2 differ-

ent customers (Mirka, Entia).

In figure 31 you will see GetEffortsByDateAndCustomer method

Figure 31 GetEffortsByDateAndCustomer method

This code purpose is getting the effort from the database with specific date and

customerId then the front end displays it with 3 values: Description, Time, Name

It also defined customer card color by GetCardColor, each customer has specific

color with color hex code.

There are many more components that are related to calculating working time

for calendar: WeekTimeTotal, DateTimeTotal, CustomersTimeCalculate.

WeekTimeTotal: The GetTimeForWeek method in EffortService requires a

StartDate and an EndDate to calculate the total hours in a week for a user. These

StartDate and EndDate parameters are provided in Calender.razor.cs. The calcu-

lation begins when the user chooses the week to display, ensuring that the data

is always up-to-date whenever the user adds, edits, or deletes effort.

DateTimeTotal: it requires CalDate to calculate total hour in a date of customer.

CalDate is provided in Calendar.razor.cs. The calculation happens for the date

43

column that has effort inside, ensuring that the data is always up to date when-

ever the user adds, edits, or deletes effort. It is using GetTimeInDay method to

calculate.

CustomersTimeCalculate: requires CustomerId to calculate total hours of the cus-

tomer that user works on. The calculation happens for the customer row when

there has effort appear in the week. Using GetTimeByDates to calculate.

5.3.4 Migrations

CreateUserTable.sql

This SQL script creates database tables and is used to synchronize the develop-

ment and test databases. If developers make changes to the database schema,

such as adding new columns, they need to include those changes in this script to

ensure synchronization between the databases.

UserToAspNetUser.sql

The purpose of this table is to establish a relationship between a UserId from an-

other table (likely the Users table) and an AspNetUserId from an ASP.NET Iden-

tity related table. This could be useful for linking user accounts between different

systems or services.

5.4 Deployment

During application development, Indevit uses Azure to manage the development

process, so deploying web applications also utilizes Azure. After setting up IIS,

developers click "Save & Queue" to build the package that the server needs to

run. Once the build is successful, developers can create a new pipeline to send

the package to the IIS server.

In figure 32 you will see the example of Azure pipieline system.

44

Figure 32 Azure pipeline system

Azure Pipeline Releases automate the deployment of application updates across

different environments, ensuring a consistent and controlled process. This service

in Microsoft Azure handles the transition from development to production, reduc-

ing manual effort and errors.

Key components include artifacts (build outputs), stages (environments like devel-

opment and production), jobs (deployment steps), and approvals (reviews before

and after deployments). By automating these processes, Azure Pipelines enhance

reliability, speed, and compliance with organizational policies. Adopting best prac-

tices like using templates and securing data further improves efficiency. Overall,

Azure Pipeline Releases streamline deployments, improving software quality and

delivery speed.

5.4.1 IIS

Internet Information Services, also known as IIS, is a Microsoft web server that

runs on Windows operating system and is used to exchange static and dynamic

web content with internet users. IIS can be used to host, deploy, and manage

web applications using technologies such as ASP.NET and PHP.

45

5.4.2 Azure Pipeline

Azure Pipelines automatically builds and tests code projects. It supports all major

languages and project types and combines continuous integration, continuous

delivery, and continuous testing to build, test, and deliver your code to any

destination.

Before setting up the release pipeline, a build pipeline is configured to build the

application and produce artifacts for deployment. Once the build pipeline is set

up, the release pipeline is created. This involves adding the artifact produced by

the build pipeline and configuring tasks such as creating/updating the website,

configuring the application pool, and starting the website.

In figure 33 is a example of Azure pipeline setting

Figure 33 Azure pipelines setting

Deployment stages are configured to define the deployment workflow, such as

Dev, QA, and Production environments. Finally, the release is triggered, and the

46

deployment process is automated, ensuring rapid and consistent delivery of code

changes to production.

 Azure Pipeline Release streamlines the deployment process, ensuring that every

code change goes through the same build, test, and deployment process, thereby

enhancing the efficiency and reliability of the deployment process.

47

6. OUTCOME OF PROJECT

The application has three page states: the login page, the homepage, and the

EditDeleteModal popup page. When the application starts, the login page is the

initial page.

In the figure 34 you will see how the login page looks like

Figure 34 Login page

After logging in with an Azure account, the user is redirected to the homepage,

where the create effort bar and calendar are displayed. Users can select the week

they want to display in the calendar by clicking on the Week select.

To add a new effort to calendar, user must fill value into create bar. Type your

comment in “What have you done” part which is Description. Click into Project

Button then it would popup the modal where user can search for specific task

name, customer name, task category or user can search with those 3 values. For

example: type “Entia webdev publish” and it would appear the task that user

wants to create.

Users can select the date by choosing the date in the date field or user can type

the date they want into that field.

48

Users can set the time value by click “+” or “-” button to change the value or can

type specific time into the input field.

After filling all those input fields, users can create a new effort with those values.

In figure 35 you will see an example of how application display with effort card.

Figure 35 Mercury-timesheet page

Users can edit or delete efforts by clicking on the effort displayed in the calendar.

After clicking on the effort, they want to change, a modal will pop up displaying

the selected effort's details. Users can then make whatever changes they want

and click "Save" to save the changes or "Delete" to delete the effort. Once saved

or deleted, the effort will be updated or removed immediately, ensuring that the

data is always up to date for display, thanks to the EffortService's validation pro-

cess.

49

In figure 36 you will see how EditDeleteModal look like after clicked into Effort

card

Figure 36 EditDeleteModel popup

User can type or edit value in input field of modal, user need to click Save to savet

he change to backend. they also can delete the effort by click DELETE. Whenever

you click outside the modal, it auto close without saving change.

The application is ready to use, but it is only intended for internal use by employ-

ees of Indevit AB Oy. While there are many new features planned, Mercury 2.0 is

ready for use based on the current application requirements.

50

7. CONCLUSIONS

During my internship at Indevit Ab Oy, I had the opportunity to work on the devel-

opment of Mercury 2.0, a web application designed to streamline the process of

recording, tracking, and editing employee working hours. Throughout this experi-

ence, I gained valuable skills in web development, including HTML/CSS, Blazor, Ra-

zor, React, and C#.

I was guided to develop the application according to a certain plan by dividing

tasks on Azure devops, so that my working process was also easier in planning and

dividing time appropriately for each function. Based on that, the company can eas-

ily monitor and evaluate my work process. Starting the development process, I had

to spend time learning new tools, such as Fusion, Blazor, Razor. After gaining the

necessary knowledge, I started developing from the smallest things needed in a

web application. During the development process, I worked alone, so encounter-

ing difficulties was completely expected. But thanks to the experience shared from

my teammates and my boss, I have learned many things from debugging and fixing

bugs in a more systematic and logical way. The biggest challenge is data flow be-

tween components because the developer must know which components need

that data and which do not use it, which components receive it, and which com-

ponents need to be invalidated.

Mercury 2.0 was designed with a new and improved user interface that retains the

functionality of the original system while making it easier to use. New features

were added to simplify the process of adding, editing, and deleting hours, improv-

ing overall usability and efficiency.

After extensive testing by developers and Indevit employees, Mercury 2.0 is com-

plete and performing excellently. The application runs smoothly with fast-loading

pages, no bugs, and a highly intuitive, user-friendly interface. Future includes add-

ing more impressive features to further expand its functionality.

51

Through the development of Mercury 2.0, I gained valuable experience as a soft-

ware engineer, learning the importance of continuous improvement and innova-

tion in software development. I enhanced my skills in learning new technologies,

coding, debugging, and problem-solving, which will be invaluable in my future ca-

reer.

My supervisor, the CTO, was thrilled with the results, confirming that the applica-

tion is bug-free and that all features work perfectly. They commended the new

user interface for its attractive design and ease of use, stating that it is ready for a

successful launch. Another Indevit employee also praised the application's smooth

performance and beautifully designed, user-friendly interface, highlighting the

outstanding work done.

There are still many improvements that could be made to the application in the

future, making it more user-friendly and fuctional. For example, connecting with

Powerpi would make it easier for international business teams to work with the

database. Implementing an employee payment invoicing system would allow em-

ployees to know how much salary they receive each month. Hourly record notifi-

cations would help users keep track of their latest actions. Additionally, a day-off

reservation feature would greatly assist companies in managing employee holi-

days.

52

REFERENCES

Alexyakunin. (2020). Stl.Fusion. Retrieved from github:

https://github.com/servicetitan/Stl.Fusion

Brind, M. (2018). Learn Razor Pages. Retrieved from learnrazorpages:

https://www.learnrazorpages.com/

Meghan, S. &. (2023). .NET Framework: Advantages and Disadvantages. Retrieved

from softjourn: https://softjourn.com/insights/net-framework-

advantages-and-disadvantages

Microsoft. (2016). Retrieved from https://learn.microsoft.com/en-

us/visualstudio/productinfo/vs-roadmap

Microsoft. (2018). Retrieved from https://learn.microsoft.com/en-

us/sql/ssms/sql-server-management-studio-ssms?view=sql-server-ver16

Microsoft. (2019). Blazor - Build client web apps with C# | Microsoft Docs.

Retrieved from Microsoft: https://dotnet.microsoft.com/en-

us/apps/aspnet/web-apps/blazor

Mike. (2018). Learn Razor Pages. Retrieved from learnrazorpages:

https://www.learnrazorpages.com/

Mike. (2019). Learn Blazor. Retrieved from learnblazor:

https://www.learnblazor.com/

Mike. (2019). Learn Blazor. Retrieved from learnblazor:

https://www.learnblazor.com/

Rick, D. &. (2017). Introduction to ASP.NET Core. Retrieved from aspnetcore:

https://aspnetcore.readthedocs.io/en/stable/intro.html

53

W3Schools. (2013). Introduction to CSS. Retrieved from W3Schools.in:

https://www.w3schools.in/css3/introduction-to-css

Wikipedia. (2001). Retrieved from https://en.wikipedia.org/wiki/HTML

Wikipedia. (2022). Retrieved from

https://en.wikipedia.org/wiki/Microsoft_SQL_Server

Wikipedia. (2022). Database. Retrieved from wikipedia:

https://en.wikipedia.org/wiki/Database

	1 Introduction
	2 BACKGrOUND AND PROJECT PURPOSE
	3 WORK PROCESS
	4 THEORETICAL BACKGROUND
	4.1 Backend
	4.2 .NET ASP.NET Fusion
	4.3 Frontend
	4.4 RAZOR BLAZOR HTML CSS
	4.5 DATABASE
	4.5.1 MICROSOFT SQL SERVER
	4.5.2 MS SQL MANAGEMENT STUDIO

	4.6 VISUAL STUDIO 2022
	4.7 INSTALLing NuGet Packages

	5 IMPLEMENTATION
	5.1 Project Structure
	5.2 Backend
	5.2.1 Backend.Contracts
	5.2.2 BackEnd.Core
	5.2.3 Backend.Host

	5.3 Frontend
	5.3.1 Css
	5.3.2 Pages
	5.3.3 Smart Components
	5.3.4 Migrations

	5.4 Deployment
	5.4.1 IIS
	5.4.2 Azure Pipeline

	6. OUTCOME OF PROJECT
	7. CONCLUSIONs
	References

