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In recent years, machine learning technology can be found in almost every of 
area of life. As the need for machine learning integration into mobile application 
has become increasingly relevant, a question arises: Do developers need an in-
depth understanding of machine learning to utilize Google ML Kit in their 
application? This thesis aimed to answer this question. 
 
The thesis began by reviewing the key concepts and techniques of machine 
learning to identify the common process of utilizing machine learning in mobile 
application development. Furthermore, the thesis evaluates existing frameworks 
that are available for developers to utilize machine learning solutions in mobile 
application development. 
 
As the result of this thesis, three basic mobile applications for Android platform 
were developed using Google’s ML Kit framework. One application’s main 
functionality is detecting human pose from an image. Another application can 
classify yoga poses via a live camera feed. The third application allows users to 
translate text from English to Finnish. 
 
The significant finding of this thesis was that development process with Google 
ML Kit is relatively simple. The basic understanding of machine learning is often 
good enough as Google ML Kit provides detailed guidelines.  

Keywords: ML foundation, Google ML Kit, pose detection, yoga pose 
classification 
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AI: Artificial Intelligence 

Android: Mobile operating system based on the Linux kernel, developed by 

Google, and mainly used for mobile devices 

API: Application Programming Interface 

Colab: Google Colaboratory 

CSV: Comma Separated Values 

Dataset: Collection of data, can be treated as a single unit 

IDE: Integrated Development Environment 

iOS: iPhone Operating System 

ML: Machine Learning 

OS: Operating System 

Prediction: What comes out of machine learning model 

SDK:  Software Development Kit 

URI: Uniform Resource Identifier 
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1 Introduction 

In the past ten years, machine learning (ML) has increased its popularity. 

Businesses are leveraging ML to gain insights into customer behaviour, optimize 

sale strategies, and enhance user experiences. Industries such as manufacturing 

are using ML to streamline production, improve cost efficiency, forecast demand, 

and ensure quality control. From healthcare, finance, security, logistics to 

marketing, ML is driving innovation and reshaping the way people approach 

problems. (O’Donnellan 2024.) 

 

Integrating artificial intelligence (AI) into mobile applications offers various 

opportunities to improve their functionality, enrich users’ experiences, and 

provide personalized interactions for the user. The popularity of smartphones 

makes them optimal platforms for deploying ML’s algorithms, enabling tasks such 

as image recognition, speech comprehension, and text analysis. Applications 

such as Google Translate, Netflix, YouTube, Facebook have already applied ML 

in functionalities such as “Recommendation” or “People you might know”.  

(Zaheer 2023.) 

 

Additionally, mobile devices, with their multiple sensors and powerful computing 

capabilities, provide an ideal ground for implementation of ML applications. The 

challenge lies in developing efficient and lightweight applications that do not 

compromise devices’ performance or drain battery life. Fortunately, the 

advancement in mobile technology and the availability of tools such as Google’s 

ML Kit, TensorFlow Lite have made it easier for developers to create ML based 

applications. These tools offer pre-trained models optimized for mobile devices, 

reducing the barrier to entry and empowering developers to create innovative 

solutions. (Google 2018.) 

 

This thesis focuses on developing Android mobile applications utilizing Google’s 

ML Kit framework. It seeks answer to the question: Do developers need an in-
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depth understanding of machine learning when utilize Google’s ML Kit framework 

in their mobile application development process?  

 

The first chapter is devoted to introducing the readers to machine learning. An 

overview of machine learning and its concepts are explained in detail here. The 

following chapters introduce popular machine learning frameworks as well as 

other tools and resources that are used in building the demo applications. The 

thesis then goes over the process of developing mobile applications using 

Google’s ML Kit framework. The final chapter concludes the thesis with its finding 

and discussion. 

2 Background 

2.1 Machine learning: an overview 

Machine learning is considered as a subset of AI. It was originally defined as the 

“field of study that gives computers the ability to learn without explicitly being 

programmed” in the 1950s by Arthur Samuel. The goal of ML is to create 

computer models that behave like humans and can perform actions without 

detailed instructions. (Brown 2021.) 

 

ML learning programming is different from traditional programming and is used 

to solve problems that cannot be addressed with traditional programming. In 

traditional programming, developers provide logic and step-by-step instructions 

on how to perform a specific task for the application and produce a pre-

determined outcome when the program was executed correctly. However, in ML 

programming, algorithms are used to analyse the input data and make predictions 

or decisions without explicitly guidance. The difference between traditional 

programming and machine learning programming is depicted in figure 1. (Brown 

2021.) 
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Figure 1. Difference between Traditional programming and ML programming. 
Based on Brown (2021). 

Chollet (2021: 5) stated that “machine learning discovers rules for executing a 

data processing task”. The process involves input data points, examples of the 

expected output, and a measurement to access whether the algorithms is 

performing well. Essentially, machine learning is “an automatic search process 

for data transformations that produce useful representations of some data, 

guided by some feedback signals”, which can be used to solve the task at hand. 

(Chollet 2021: 6.) 

 

Chollet (2021: 432) emphasized the role of data in ML by stated that ML develops 

models “purely from exposure to training data”. According to Brown (2021), data 

can be of any types: images, text, sound, video, numerical data and so on. The 

type of data is decided based on the features of the applications. The quality and 

quantity of data significantly influence the performance of ML program.  

 

ML Gopalakrishnan and Avinash (2018: 9) suggested to use machine learning 

programs in the following scenarios: 

• very complex tasks that are difficult to program 

• very complex tasks that deal with huge amount of data 

• adapting to changes in environment and data. 
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Most current real-world machine learning based applications are: “optical 

character recognition, email spam filtering, image classification, computer vision, 

speech recognition, machine translation, group segmentation and clustering, 

generation of synthetic data, anomaly detection, cybercrime prevention, credit 

card fraud detection, internet fraud detection, time series prediction, natural 

language processing, board game and video game playing, document 

classification, recommender systems, search, robotics, online advertising, 

sentiment analysis, DNA sequencing, financial market analysis, information 

retrieval, question answering, and healthcare decision making.” (Patel 2019.) 

2.2 Categories of Machine Learning 

As highlighted in figure 2, ML is usually categorized into three broad categories: 

supervised, unsupervised, reinforcement learning. The type of machine learning 

can be chosen based on the problems that need to be solved. ML is also 

associated with several other AI subfields such as natural language processing, 

neural networks, and deep learning. (Brown 2021.) 

 

Figure 2. ML categories. Copied from MathWorks (2020). 

2.2.1 Supervised learning 

Supervising learning is a technique that uses labelled datasets to train algorithms 

to predict outcomes and recognize patterns. Supervised learning has two 
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phrases: training and prediction. In the first phrase, a collection of labelled data 

is fed to an algorithm. The algorithm is designed to look at the data over and over, 

notice the common characteristics and learn to detect patterns. In the prediction 

phrase, the trained algorithm can make prediction on new unlabelled data.  A 

basic example for supervised learning is a model that can recognize what animal 

it is from different in images as seen in figure 3.  

 

Figure 3. Supervised learning example. Copied from Banoula (2023). 

This method of learning is based on repetition. By repeating its execution and 

making adjustments until a certain set of conditions is met, the algorithms learn 

to recognize specific traits of labelled data. This helps them to get better at 

providing the output of new data correctly. By refining the process over and over, 

the model keeps getting better at predicting while minimizing errors. (Google 

2024.) 

 

Supervised learning’s problems are usually felled under two primary categories: 

classification and regression. In classification problem, the goal is to assign input 

data sets into predefined classes/ categories. Regression problem is more 

focused on forecast numerical values by finding a relationship between the 



 

 

6 

dependent variable and the independent variable. (Dutt, Sandramouli and Das 

2018.)  

2.2.2 Unsupervised learning 

As the name suggests, the model learns by itself without human intervention in 

unsupervised learning. The objective of unsupervised learning is not to predict 

an outcome based on input data like supervised learning, but rather detect 

hidden patterns and find similarities from unlabelled data sets. Figure 4 below  

describes how unsupervised learning works. (Gopalakrishnan and Avinash 

2018: 52) 

 

 

Figure 4. What is supervised learning. Copied from Gopalakrishnan and 
Venkateswarlu (2018: 20). 

Unsupervised learning can be further grouped into types: clustering and 

association. Clustering is the main type of unsupervised learning. Its goal is to 

group unlabelled data into groups/clusters based on similarities or patterns. 
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Association, on the other hand, looks for the dependency between data elements 

so their relationship can be map accordingly. (Banoula 2023.) 

 

Unsupervised learning thrives in scenarios where it needs to identify patterns in 

a large volume of data. Examples of real-world application are recommendation 

engines, object recognition, image detection and classification, and many more. 

(IBM 2024.) 

2.2.3 Reinforcement learning 

Reinforcement learning has gradually become a large research area in machine 

learning since its first introduction in 1979. It is a “computational approach to 

learning from interaction” and “is much more focused on goal-directed learning 

from interaction than other approaches to machine learning”. (Sutton & Barto 

2018: 1.) 

 

Reinforcement learning focuses on learning how to make decisions in dynamic 

environment rather than make predictions or finding patterns. Even though a 

reinforcement learning model does not utilize pre-labelled data sets, it does not 

fit into the category of unsupervised learning either. This is because the primary 

goal of reinforcement learning is to learn the optimal course of actions - map 

situations to actions – in order to maximize a numerical reward signal, rather than 

trying to uncover structurers. (Sutton & Barto 2018 :1.) 

 

The decision-making process in reinforcement learning, described in Figure 5, 

involves “interaction between an active decision-making agent and its 

environment, within which the agent seeks to achieve a goal despite uncertainty 

about its environment”. Re (Sutton & Barto 2018: 5.) 
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Figure 5. Reinforcement learning process. Copied from Alpaydin (2021). 

Reinforcement learning process is a complex, iterative process. The first step is 

observation. The reinforcement learning agent observes the current state of its 

environment. After that, it must decide what action to take based on a policy. The 

concept of policy in reinforcement learning is defined as “a mapping from 

perceived states of the environment to actions to be taken when in those states”. 

Once an action is selected, the agent then executes the action, and the 

environment transition to a new state. Following the execution of the action, the 

agent receives “a single number called the reward” from the environment. The 

goal of the agent is “to maximize the total reward it receives over the long run”. 

The policy might be altered based on the reward signal. This cycle of steps 

continues until the learning agent has reached its goal or until a certain number 

of steps have been taken. (Sutton & Barto 2018: 6.) 

2.3 Transfer learning 

In traditional machine learning, models are trained from scratch even if the tasks 

are similar. This approach can be time-consuming and expensive from the use of 

computational resources. Transfer learning is a machine learning technique 

which addresses those issues by leveraging the learned knowledge to enhance 
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the learning of new tasks. Figure 6 illustrates the connection between transfer 

learning and machine learning. (GeeksforGeeks 2023.) 

 

Figure 6. The relationship between transfer learning and machine learning. 
Copied from Wang and Chen (2023). 

Wang and Chen (2023: 5) stated that “transfer learning aims to solve the new 

problem by leveraging the similarity of data (task or models) between the old 

problem and the new one to perform knowledge (experience, rules, etc.) transfer”. 

In general, transfer learning can be used in various scenarios, including computer 

vision, natural language processing, activity recognition, indoor location, and 

human-computer interaction. (Wang & Chen 2023: 17.) 

2.4 Machine learning on mobile devices 

Computers are evolving rapidly, and their form factors are expanding. Previously 

confined to office, nowadays computers can be seen on home desks, in people’s 

laps or pockets, and even on wrists. Nearly every adult carries a device, and 

smartphones are checked by their owner at least 50 times a day. Given this 

accessibility and usage, it makes sense to run ML models directly on mobile 

devices (Ng 2018.) 

 

According to Singh and Bhadani (2020), mobile manufactures have been 

consistently enhancing their hardware to accommodate the computational 
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demands on mobile devices. Kirin 970 SoC from Huawei, A11 Bionic from Apple, 

Exynos 9810 from Samsung are examples of dedicated chips enabling on-device 

machine learning tasks.   

 

Gopalakrishnan and Venkateswarlu (2018: 23) stated that running ML models on 

mobile devices offers several advantages. The model is stored locally on the 

device, allowing it to function offline without requiring a network connection. By 

eliminating the need for data transmission, the network bandwidth cost is 

reduced. Additionally, on-device ML provides faster performance and enhances 

privacy.  

2.5 Implement machine learning in mobile applications 

Gopalakrishnan and Venkateswarlu (2018: 10) presented four main activities of 

the universal workflow of a machine learning: define problem, prepare the data, 

build the model, and deploy the model. Figure 7 provides a quick overview of the 

development process. 

 

Figure 7. The machine learning process. Copied from Gopalakrishnan and 

Venkateswarlu (2018: 10). 

 

Gopalakrishnan and Venkateswarlu (2018: 25) concluded that using a trained 

model to solve a problem is much easier than training a new model. In the mobile 
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application development process, there are some decisions need to be made in 

early stages by answering the following questions: 

• Is there a need for training and creating a custom model or can it be 

sufficient with prebuilt model? 

• If the need for training a custom model, where the training process can be 

done: desktop, cloud or on the mobile device itself? 

• Once the model is available, is it going to be stored on the device or on 

the cloud? 

3 Popular ML frameworks for mobile development 

3.1 Apple: CoreML 

Core ML is a framework developed by Apple, which can be used to integrate ML 

models directly into applications across Apple’s operating systems. It was 

introduced in the Worldwide Developers Conferences 2017 and is tightly 

integrated with XCode. (Apple Inc 2024.) 

 

Core ML provides supports for machine learning features such as analysing 

images, processing text, converting audio to text, identifying sounds in audio. 

Sample use cases of the framework are depicted in the following figure. (Apple Inc 

2024.) 

 

 

Figure 8. Framework Core ML. Copied from Apple Inc (2024). 
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By utilizing Apple hardware such as CPU, GPU, and Neural Engine, Core ML 

reduces the battery consumption, memory usages and optimizes devices’ 

performance. Moreover, they can run on the device without a network connection 

which helps the models can learn user’s behaviour and protects user’s privacy. 

(Apple Inc 2024.) 

Supported mobile platforms: 

• iOS 

3.2 Google: TensorFlow Lite 

TensorFlow Lite is a powerful framework developed by Google. It aims to help 

developers run ML models on mobile, embedded and edge devices. TensorFlow 

Lite, which consists of five high-level components as shown in figure 9, currently 

supports multiple platforms such as Android and iOS devices, embedded Linux, 

and microcontrollers. (TensorFlow 2024.) 

 

Figure 9. TensorFlow Lite Architecture. Copied from Ng (2018). 

 

TensorFlow Lite is built on the foundation of TensorFlow, Google’s open-sourced 

machine learning platform. It provides a lightweight solution with optimization for 

on-device machine learning by addressing 5 key constraints: latency, privacy, 

connectivity, size, and power consumption. (TensorFlow 2024). 

 

TensorFlow Lite can improve performance using hardware acceleration and 

model optimization. With its multiple delegates, developers can choose 
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applicable delegates based on two major criteria: the targeted platform (Android 

or iOS) and the model type. (TensorFlow 2024)  

 

Supported mobile platforms: 

• iOS 

• Android 

3.3 Google: ML Kit 

ML Kit is a comprehensive set of machine learning tools developed by Google. It 

was first introduced in 2018 with a tightly integrated with Firebase version. 

Nowadays, developers can easily incorporate machine learning features into both 

Android and iOS applications using ML Kit with a new standalone ML Kit SDK 

version. It supports the development process for both native and cross-platform 

applications. (Prins and Hu 2020.) 

 

As illustrated below in figure 10, ML Kit offers a range of ready-to-use Application 

Programming Interfaces (APIs). ML Kit’s APIs are divided into 2 segments: Vision 

and Natural Language as in figure 10. These APIs offers to solve common 

challenges such as image labelling, text recognition, face detection, barcode 

scanning, and many more. (Google 2024.) 

 

Figure 10. A Pictures of ML Kit APIs. Copied from Google Developers Blog 

(2020). 

 



 

 

14 

Google-trained ML models, which are called base models and exists in ML Kit by 

default, run entirely on device, which give users speed and privacy advantages. 

In addition, ML Kit’s APIs also allow developer to replace the base models with 

customized models. (Google 2024.) 

 

Supported mobile platforms: 

• iOS 

• Android 

3.4 Android:  AICore 

Android AICore is the latest system service designed in Android 14 that enables 

running foundation models directly on-device. Foundation models such as 

Gemini were trained with diverse range of data to support multiple ML use cases. 

Gemini Nano is the default size for mobile devices which used in Android AICore.  

(Burke 2023) 

 

According to Burke (2023), Android AICore is built on Android’s Private Computer 

Core. It is isolated from network via open-source API. Android AICore handles 

model management, runtimes, safety features according to the architecture 

shown in figure 11.  

 

 

Figure 11. Android AICore Architecture. Copied from Google (2024). 
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Supported mobile platform: 

• Android 

3.5 Google: MediaPipe 

MediaPipe is a cross-platform and open-sourced framework developed by 

Google for building pipelines to provide ML solutions. It is a combination of 

several existing tools from Google: MediaPipe Solutions, TensorFlow Lite Task 

Library, and TensorFlow Lite Model Maker. MediaPipe tasks can run on mobile 

devices, workstations, and servers, and support mobile GPU acceleration 

(Google 2023.)

 

Figure 12. MediaPipe available Solutions. Copied from Google (2024). 

 

MediaPipe’s available solutions support tasks that belong to three main domains: 

vision, text, and audio. Figure 12 lists all currently available task with their 

supported platforms. As MediaPipe Solutions is an evolving product, it may have 
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some limitations such as limited support, incompatible issues with earlier 

versions, and availability may change without notice. (Google 2024.) 

 

According to Google (2023), each MediaPipe solution is equipped with the 

following libraries and resources to provide its core functionality: 

- MediaPipe Task: A cross-platform API and library for deploying solutions. 

- MediaPipe model: Pre-trained, ready-to-run model use with solution. 

- MediaPipe Model Maker: A tool to customize model if needed. 

- MediaPipe Studio: A tool to visualize, evaluate, and benchmark solutions 

in the browser. 

 

Supported mobile platform: 

• Android 

• iOS (availability is shown in figure 12) 

4 Applications’ specification 

4.1 Applications’ concept 

One goal of this thesis is to explore the utilization of Google’s ML Kit in the 

development of Android applications. To familiarize with ML Kit’s range of 

features, the thesis chooses to develop demo applications utilizing two distinct 

solutions offered by ML Kit: one from the Vision APIs (ML Kit Pose Detection) 

and another from the Natural Language APIs (ML Kit Translation). The outcome 

is three mobile applications that run only on Android devices and can perform the 

machine learning task associated with the selected ML Kit solutions. 

4.2 Applications’ functionalities 

Two applications’ main functionality is posture detection. With the utilization of 

Google ML Kit’s Pose Detection, users would be able to detect a human’s body 

pose either from a static image or a camera live feed.  
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In the first demo application, users should be able to choose a picture from their 

image gallery as the input and choose to process the image by click a button. It 

was developed with the base model provided by ML Kit’s Pose Detection. The 

result is displayed to the users as a drawing of a human body’s pose. 

 

In the second demo application, input is a camera live feed. For the second demo 

application, a custom-trained model is integrated in the development 

environment. The application enables users to classify a yoga poses from a live 

camera feed. The result would be shown to the users in real time with the drawing 

of a human’s body pose and a yoga pose’s name.  

 

The third demo application, the main function is to translate text from one 

language to another language. The application allows users to enter text and with 

the ML Kit’s on-device translation API, it will display the required translated result. 

4.3 Technical requirements 

The target platform of both applications is Android. Operating system of the 

Android devices is required to be Android SDK 28 or above, which means that all 

devices running Android 9 and above can install the demo applications. The 

reason behind this specification is because of ML Kit framework.  

4.4  Tools used in the project 

4.4.1 Android Studio 

Android Studio is Google’s official Integrated Development Environment (IDE) for 

Android development application. It was built on IntelliJ IDEA, anther IDE from 

Jet Brains. Android Studio is easy to install on various operating systems such 

as Windows, Mac, Linux, and ChromeOS. Android Studio is a comprehensive 

tool that is more than just an intelligent code editor. It also includes an Android 

Virtual Device (AVD) Manager, which can create multiple emulators. This feature 

enables developers to test their applications without physical device. Additionally, 
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Android Studio provides a suite of tools to debug, write test and more. (Google 

2024.) 

 

4.4.2 ML Kit’s Pose Detection 

According to Google (2023), the ML Kit Pose Detection is a lightweight solution 

used for detecting human bodies pose in real time from a static image or 

continuous video. It produces a full-body 33 key skeletal landmark points which 

is depicted in figure 13.  

 

Figure 13. ML Kit Pose Detection Landmarks. Copied from Google (2023). 

 

As shown in figure 13, the Pose landmark detection uses a series of models: 

pose detection model and pose landmarker model. The pose detection model is 

responsible for detecting the presence of human bodies within an image frame. 

The pose landmarker model locates landmarks on the bodies. (Google 2024.) 

 

The model, developed by Google (2021), is designed for real-time performance 

on a diverse range of mobile devices. However, it is sensitive to factors such as 
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face position, scale, and orientation within the input image. In addition, the model 

can’t handle the following scenarios:  

• There are multiple people present in the same image. 

• The distance between the body and the camera is more than 14 feet/4 

meters. 

• The head is not within the camera’s frame. 

 

There are two optimized SDKs for pose detection: pose-detection and pose-

detection-accurate. They have the same implementation process. The only key 

differences are the app size and performance. Pose-detection-accurate will 

provides better performance at bigger app size. (Google 2024.) 

4.4.3 ML Kit’s Translation 

Google (2024) states that ML Kit’s Translation solution supports more than 50 

languages. It uses the same models used by the Google’s translate application 

in offline mode. Since ML Kit’s Translation model run on device, the translate 

process is quick. 

 

It is crucial to noted that the ML Kit Translation is “intended for casual and simple 

translations”. English is used as a translation intermediate since ML Kit 

Translation’s models are trained for translating to and from English. Thus, 

depending on the languages being translated, the quality of these translation 

varies. (Google 2024.) 

4.4.4 Google Colaboratory  

Google Colaboratory, often referred to as “Colab”, is a free cloud service based 

on Jupyter Notebooks. It provides users an interactive environment to write and 

execute Python in the browser. One of the most significant features of Colab is 

its zero-configuration requirement. It means that a user can start working with 

projects without any setup process. Additionally, it provides free access to GPUs. 

This feature is beneficial for projects that require high computational power. 
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Moreover, Collab notebooks are easy to share and collaborating on. (Google 

2024)  

4.5 Scope and limitation 

The primary purpose of the demo applications is to explore the level of machine 

learning knowledge required by developers when utilizing Google ML Kit in 

Android application development. Thus, the focus lies on implementing the core 

machine learning functionality within the apps.  

 

It’s important to note that user experiences and user interfaces were not 

prioritized and thus were intentionally left minimal for these applications. It means 

that the applications may not provide an optimal user experience. Users might 

find the interfaces less intuitive or visually appealing. 

 

Additionally, application architecture and optimization were not the primary 

concern during the development. Hence, the applications may not be efficient in 

terms of resources utilization. Scalability or maintainability might be 

compromised. 

5 Implementation 

This chapter describes the process of developing the demo applications in detail. 

The first part provides a detailed implementation of how to create the pose detect 

applications.  The text translate application implementation is explained in the 

second part. The final part discusses the implementation process. 

5.1 Pose detection Android applications 

5.1.1 Creating initial application 

The goal was to develop mobile applications for Android devices that could 

detect pose from static images or a camera live feed. To develop an Android 
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application, the project uses Android Studio Giraffe version 2022.3.1 Patch 1 

which was built on August 2023. Kotlin is the main language used in the 

development process.  

The initial application is created using Empty Views Activity template from the 

category Phone and Tablet in Android Studio. It has only one main activity 

which opens when the user launches the application. Figure 14 shows the 

MainActivity file which was auto generated in the template project. 

 

Figure 14. Screenshot of the MainActivity file of the template project. 

In order to use Google ML Kit Pose detection, in the project-level build.gradle 

file, Google’s Maven repository must be added in both buildscript and 

allprojects sections. Then, in the module’s app-level gradle file, the 

dependencies for the ML Kit Android libraries can be added as in the figure 15. 

(Google 2024.) 

 

Figure 15. Screenshot of ML Kit Pose detection injection in the project’s Gradle 

file. 
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To access the mobile devices’ photo gallery or its camera, the application must 

request correct permissions from the user. To implement this, the necessary 

permissions must first be defined in the Android project’s Manifest file as in figure 

16, which can be found in the project under the name AndroidManifest.xml.  

 

Figure 16. Screenshot of permissions in AndroidManifest.xml file. 

5.1.2 Create a custom trained model 

To build a yoga pose classifier that recognized specific yoga pose is quite a 

challenging task for developers. Fortunately, ML Kit Framework provides the 

MediaPipe Colab (Appendix 1) with step-by-step instructions on how to create a 

custom pose classifier. (Google 2022.) 

 

The process started with collecting image samples. The thesis uses a yoga 

poses’ dataset found in Kaggle (Appendix 1). The dataset can be used to train 

five well-known yoga poses: tree, warrior two, downdog, goddess and plank. 

According to Google (2022), for the classification to work well, each pose class 

should have about 100 images. The dataset’s file structure is illustrated in the 

figure below. 

 

Figure 17. Folder structure of train images in dataset. Copied from Pandit (2020). 
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Developers need to upload the images from the dataset into Colab. The 

instruction for folder structure and naming convention can be found on Step 1: 

Build classifier. Figure 18 shows the code block in the Colab. 

 

Figure 18. Screenshot for code block of uploading training images to Colab. 

Next step is to run pose detection on the sample images. This produces a set of 

pose landmark that later will be used for training. After that, the MediaPipe Colab 

is used to access the code for classifier and train the model. The result is a 

Comma Separated Values (CSV) file that can be integrated with ML Kit Android 

application. Figure 16 shows the Colab code block that, when it is executed, a 

CSV file will be created and downloaded to the computer. (Google 2022.) 
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Figure 16. Screenshot for Colab code block used to generate and download a 
CSV file. 

5.1.3 Implementation without classification 

This demo application is designed to demonstrate how to incorporate Google ML 

Kit Pose Detection API into developing application. The application makes use of 

the Google-developed base model with its main function: identify a person’s 

posture from a static image.  

 

When the app is open, users can choose an image from the device’s photo 

gallery. The selected image will be displayed on the screen. Then, users can 

choose to detect pose from the selected image or clear the selection by clicking 

the corresponded button. 
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Based on the process described above: the application has three different 

features that are implemented: pick an image, detect a human’s posture from the 

image, and save the result to the local storage.  

 

Pick an image 

The first feature to implement is pick an image from the photo gallery. When the 

application is installed on a new device, users must be shown a window where 

the permissions to access the photo gallery can be either granted or denied as 

shown in figure 17. 

 

Figure 17. Screenshot of permission dialog. 

In the demo application, this window will be launch when the user starts to choose 

an image by clicking a button as in figure 18. The permissions are checked every 

time the user tried to access the photo gallery. The permission checked is 

performed in the onCreate method of MainActivity class. If the permissions have 

been already granted, the permission request dialog in figure 17 does not need 

to be shown to the user again. When checkSelfPermission method is called, it 

will return a response based on which user can access the media or not. If the 

response is “PERMISSION_GRANTED”, it indicates that the permissions have 

already granted, and the application can open the device’s photo gallery. A 

response “PERMISSION_DENIED” invokes the “requestPermissions” method, 

which opens the permission request window as in figure 17. After the permission 

request is completed, the systems call the `onRequestPermissionsResult` 
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method, where it can be determined what happens if the permissions are granted 

or denied as in figure 19. 

 

Figure 18. Select an image from devices' photo gallery. 

 

Figure 19. Permission request flow. 

When users click the photo button and all permissions have been granted, the 

selectImage function is called. The function starts the process of display photo 

gallery for the user to select an image. The selected image’s content Uniform 

Resource Identifier (URI) is then handled in the lambda expression within 

registerForActivityResult, which is displayed the selected image on the screen. 
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Figure 10. Image picker. 

After the user selects an image, there are two options available: clear the selected 

image or start the posture detection process. The following figure illustrates the 

clear image process.  

 

Figure 11. Clear selection choice. 

When the user clicks the button to detect the posture from the image, first the 

application will check if an image is selected. If there is no image, a toast message 

asking the user to choose an image is displayed. Otherwise, the image is 

processed with ML Kit’s Pose Detection by calling the detectPose methon on a 

poseViewModel object. After a delay of 2 seconds, the ResultActitivity starts. 

The implementation is shown in figure 22.  
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Figure 12. Detect pose button. 

When using ML Kit’s Pose Detection, detection mode can be specified.  The 

settings for Pose Detection mode are configured using an object of type 

`AccuratePoseDetectorOptions` as in figure 23. An instance of the 

PoseDetection class is created by calling the `PoseDetection.getClient` 

method. 

 

 

Figure 23. ML Kit's Pose Detection mode. 

The PoseDetection object can receive images for analysis by calling its method 

“process”. This method accepts images of type InputImage, which can be 

created either from a Bitmap, media.Image, ByteBuffer, byte array, or a file on 

the device (Google 2024). In this demo application, the InputImage is created 

from a Bitmap object as shown in figure 24.  

 

Figure 24. Prepare input image for analysis.  
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The process method call returns an asynchronous task, to which listeners can be 

attached as in figure 25. Listeners are used in conjunction with the ML Kit API 

such as onSuccessListener, OnFailureListener. The code in figure 25 defined 

that if the process is successfully completely, a function named processPose will 

be executed. On the other hand, if the process is failed to complete, a pop up will 

be show. 

 

Figure 25. Analyse the image for detecting pose.  

 

If the task completes successfully, the result of the pose detection will be shown. 

The result is a drawing of the pose. With the ML Kit Pose Detection API, a full-

body 33 landmarks were returned.  Based on those landmarks, the demo 

application can draw a skeleton image from shoulder downward of the pose by 

connecting those landmarks as in figure 26. 

 

Figure 26. Result of pose detection. 
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The display of pose detection result is handled in the ResultActivity. The code 

block in figure 27 ensures that the result image is displayed, can be saved, and 

allows the user to go back to the main activity. 

 

 

Figure 27. ResultActivity. 

5.1.4 Implementation with classification 

This demo application is designed to demonstrate how to incorporate Google ML 

Kit Pose Detection API into developing application with a custom trained model. 

The application makes use of the downloaded CSV file to implement its main 

function: detect a human posture and classify yoga poses from a live camera 

feed. The application has three different features that are implemented in order: 
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open the device’s camera, detect human posture, classify the yoga pose and 

displayed the result of classification. 

 

To integrate the custom trained model into the application, developers need to 

add the exported CSV file downloaded from Google Colab to the app’s asset 

folder (figure 28).  

 

Figure 28. Assets folder of the application. 

In addition to ML Kit’s Pose Detection dependencies, the application needs to 

add CameraX depencies since it uses the camera live feed as the input for the 

classification as shown in figure 29. Not only that, but it also needs to update the 

AndroidManifest as illustrated in figure 30. 

 

Figure 29. CameraX dependencies. 

 

Figure 30. Users’ permissions from AndroidManifest file. 
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The demo application has been developed by leveraging the foundational code 

from ML Kit’s quickstart app project available on GitHub (Appendix 1). Developers 

can extract relevant files from the project and incorporate them into their own app 

development process. In this project, all files in folder posedetector, utils, 

graphics are copied from the sample app. Figure 31 shows the structure of the 

application. 

 

Figure 31. Application structure. 

In the PoseClassifierProcessor file, developers need to update 

POSE_SAMPLES_FILES and POSE_CLASSES variables to match the CSV file 

and pose samples. In this demo application, it means five yoga poses: warrior, 

tree, downdog, goddess and plank as in figure 32. After updating the variables in 
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this file, the ML Kit Pose Detection is now able to classify the mentioned yoga 

poses. 

 

Figure 32. Update variables in PoseClassifierProcessor. 

The demo application has only one activity MainActivity and 2 fragments. The 

main activity inflates the layout and initializes the navigation components. The 

home fragment welcomes users and provides instructions on how to start using 

the application. The camera fragment launches the device’s camera. Most of 

function in the camera fragment can be found on the quickstart app. Figures 33 

show the navigation graph of the application. 
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Figure 33. Application navigation graph. 

When users move to CameraFragment, the application checks for the necessary 

permissions as the fragment require access to the device’s camera. If users allow 

permission for the camera, ML Kit’s Pose Detection starts detecting and tracking 

body posture once the camera is working as shown in figure 34. 

 

Figure 34. CameraFragment. 
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The yoga classification won’t be triggered unless users click the start button. 

Once the classification process starts, start button and camera flip button 

disappear from screen and a stop button appears. The process logic can be found 

in figure 35. The result of the classification can be found in figure 36. 

 

Figure 35. Start button on CameraFragment. 

 

Figure 136. Result of classification. 

5.2 Text translation application 

This demo application is created following the instruction of ML Kit on Android. 

The application allows users to input English text and receive the corresponding 

Finnish translation. First, to integrated ML Kit Translate into developing 

application, the dependency for ML Kit must be added as shown in figure 37. 
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Figure 37. ML Kit Translate dependency. 

 

Figure 38. Layout of the application. 
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Figure 38 demonstrates the MainActivity component and styling for screen. 

There is one box for users to type in text, one box to show the translated text, 

and two buttons for users to interact with the application. The clear button is to 

delete users’ input text as well as its translated result. The translate button lets 

users translate their text.  

 

To translate a string between two languages, the first step is to create a 

Translator object and configure it with the source and target languages (English 

and Finnish in order). When the users click the Translate button, the application 

checks the input text. If the input text is empty, the application displays a brief 

message prompting users to enter some text. If the input text is not empty, the 

following steps occur: 

• The application checks whether the required translation model has been 

downloaded to the device.  

• If the model is available, it proceeds to translate the text and display the 

result on screen.  

• If the model is not downloaded, an error is logged to the console. 

Figure 39 shows the process described above and its result. 

 

 

Figure 39. MainActivity file and the application at work. 
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5.3 Discussion 

Overall, all demo applications are completed and functional. The implementation 

was straightforward due to the thoroughly instructions as well as the example app 

provided by ML Kit’s framework.  

 

ML Kit’s Pose Detection model and MediaPipe Colab provide developers with 

powerful tools for integrating human’s body posture detection and tracking into 

their application. One application can detect a pose from an image, while another 

one can detect, track, and classify a yoga pose from a live camera feed. One 

drawback of ML Kit’s Pose Detection is that the model can only detect one person 

in a frame. When multiple people are present, the model assigns landmarks to 

the person it detected with the highest confidence. In addition, it works best when 

the subject’s entire body is visible in the frame. Although the model can detect 

partial body poses, but in this case, the landmarks that are not recognized are 

assigned coordinates outside of the image. This affects the result of classification. 

It is important that developers include user instructions for users in their 

application. (Google 2024.) 

 

The most challenging part in the process is to create a custom-trained model 

when implementing pose detection applications. Developers might encounter 

errors when executing the code blocks from the provided Colab. Without a good 

understanding of Python, it can be time-consuming to troubleshoot and resolves 

these issues.  

 

However, there is room for further development in the demo applications. A 

significant improvement to the demo applications would be database integration. 

With database, results can be saved and reviewed later. Another function for the 

pose detection applications is to calculate angles between joints, for example 

between hip and knee, and the application can give feedback to users if their 

postures are correct or not. For translation application, the application can let 

users choose what languages they want to use in translation since the ML Kit 



 

 

39 

Translate API supports dynamic model downloads. Additionally, implementing 

tests would be beneficial to ensure the functionality of applications. 

6 Conclusion  

The purpose of the study was to explore the utilization of Google ML Kit in Android 

application development by building demo applications. Through the demo 

applications, it is proven that creating a ML based application using Google MK 

Kit framework is not complicated for developers. With basic knowledge of 

software development, developers can build applications by following the 

guidelines and reviewing example applications provided by Google ML Kit.  

When integrating ML into their applications using Google ML Kit, developers 

can follow a straightforward process. First, developers should determine the 

specific machine learning tasks they need for the application. Then, based on 

the identified task, developers can select the appropriate ML Kit API. Finally, 

developers can integrate the chosen API into their application following ML Kit’s 

documentation and instructions.  

Based on this study it seems that knowing about the inner-working of machine 

learning did not seem beneficial when developing application utilizing Google 

ML Kit. The reason for it is because Google ML Kit’s APIs make use of Google 

trained machine learning models. Developers do not need to create machine 

learning models from scratch, so no extended knowledge is required. 

More often, the default model in ML Kit framework might not suit developers’ 

exact use cases and there is a need for a different model. Fortunately, some ML 

Kit APIs provide tools to create custom models such as MediaPipe Colab, which 

simplify the process of fine-tuning models and allow developers to retrain 

models without delving deep into ML theory.  

Machine learning is a complex topic. To delve deeper in machine learning field 

would require more advanced knowledge of mathematics than a typical 
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software developer possesses. Nonetheless, the thesis demonstrates how 

Google’s ML Kit framework is making ML more approachable for developers. 
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Appendix 1 

1 (1) 

 

Links to Resources Used 

ML Kit Vision Quickstart Sample App 

https://github.com/googlesamples/mlkit/tree/master/android/vision-quickstart 

Link to MediaPipe Colab to build a custom pose classifier: 

https://colab.research.google.com/drive/19txHpN8exWhstO6WVkfmYYVC6uug
_oVR 

Link to yoga pose dataset: 

https://www.kaggle.com/datasets/niharika41298/yoga-poses-dataset 

https://github.com/googlesamples/mlkit/tree/master/android/vision-quickstart
https://colab.research.google.com/drive/19txHpN8exWhstO6WVkfmYYVC6uug_oVR
https://colab.research.google.com/drive/19txHpN8exWhstO6WVkfmYYVC6uug_oVR
https://www.kaggle.com/datasets/niharika41298/yoga-poses-dataset
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