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ABSTRACT 
Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Bachelor's Degree Programme in Software Engineering  DANG, MINH: 3D graphics renderer for Web Applications using Web Assembly and WGPU  Bachelor's thesis 42 pages, appendices 2 pages January 2024 
The primary objective of this thesis was to develop a new 3D graphics engine based on a cross-platform contemporary graphics API to replace recent web graphics solutions. Furthermore, it could be used as a starter for becoming a back-end renderer for desktop and mobile applications.  
To achieve the outcomes, the engine was built on Rust and WGPU to take ad-vantage of multi-platform support, memory safety, and a web-friendly ecosys-tem. The solution could be separated into two parts: an engine as the backend renderer and an application as the output presentation. The engine had been developed according to WGPU and WebGPU documentation. It has essential pipeline configurations and supports input buffers of vertex, uniform, and image.  
From the application perspective, it could run on modern desktop operating sys-tems (Window, Linux, and MacOS), and the Web via Web Assembly. Moreover, the window management (Winit) used in the application is the most advanced library in the market. For instance, it could support inputs from keyboard, mouse, and touchscreen. Hence, there was not a hindrance with camera con-trols when ported on different platforms. Furthermore, an asset importer has been added to the application. By having its support, numerous assets could be seamlessly rendered using the built-in asset importer. 
At the beginning of the thesis, it started with an essential acknowledgment of Rust and WGPU. Although there was some experience with computer graphics, working with a new programming language and its memory-borrowing concept still created a significant impact on the thesis process. Besides the fact, the overall outcome was satisfied with the high compatibility of Web Frameworks and excellent performance when running on the Web. 
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GPU Graphics Processing Unit 
iGPU Integrated Graphics Processing Unit 
dGPU Dedicated Graphics Processing Unit 
3D Three-dimensional   
API Application Programming Interface 
URL Uniform Resource Locator 
WASM Web Assembly 
OS Operating System 
WebGL Web Graphics Library  
OpenGL/OGL Open Graphics Library 
GLTF Graphics Library Transmission Format 
Metal Apple Graphics Library  
Direct3D Microsoft Graphics Library  
UV Texture Coordinate 
FOVY Vertical Field of View  
VRAM  Video Random-Access Memory 
UBO Uniform Buffer Object 
VBO Vertex Buffer Object 
JSON JavaScript Object Notation 
NPM JavaScript Package Manager 
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1 INTRODUCTION 
 
In recent years, the demand for high-performance and cross-platform 3D 
Graphics Engines continues to grow rapidly for applications such as video games, 
virtual simulations, and metaverse concepts. Consequently, a graphics library for 
multiple platforms becomes imperative. However, the current high-level 3D solu-
tions for web development have not adapted to the mentioned trend. By mostly 
using a rendering backend based on WebGL API, applications can only commute 
with the hardware via an old low-level Graphics API called OpenGL. Hence, they 
usually serve deficient performance, and low efficiency with a lack of new fea-
tures. Fortunately, a state-of-the-art technology called WebGPU has been prom-
ised a bright future by replacing old technologies on the market. 
 
This thesis focuses on the creation of a 3D rendering viewer running on the web 
service (built by React web framework). It will apply some essential rendering 
techniques to provide a robust and versatile solution for users aiming to observe 
immersive 3D assets. Therefore, the primary objective was not to use any enter-
prise graphics engines such as Unity or Unreal Engine, but to build a basic 3D 
engine on top of WGPU graphics API. 
 
The motivation for this project was to develop a new 3D renderer for web appli-
cations, which replaces the popular 3D Viewer based on old technologies. The 
thesis will cover features, including all essential techniques, such as basic vertex 
rendering, an arc ball camera system, and fetching remote GLTF model files via 
an URL. 
 
Developing in this manner presents inevitable challenges, such as a lack of sup-
port for development tools and the absence of a preview scene like what is avail-
able on commercial engines. 
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2 REQUIREMENTS 
 
2.1 Architecture  
 

 
PICTURE 1. Software architecture 
 
In picture 1, the graphics renderer would be built depending on WGPU which is 
a native core of WebGPU. It supports the renderer to construct the graphics pipe-
line using numerous modern graphics APIs. To handle hardware inputs and man-
age system windows, the author decided to use Winit which fully supports Rust. 
About the web migration, wasm-bindgen and web-sys are good cargo packages 
that help the project to be built to web target effortlessly. Finally, the GLTF pack-
age is a support library for importing GLTF-format files. Besides the dependen-
cies, the project also includes built-in support libraries to control data flows, ren-
dering resources, and object systems. 
 
2.2 Features 
 
The project will be separated into two parts: the engine and a web application for 
presentation. In theory, the graphics pipeline operations would be started in 
WGPU internal code. Hence, the primary purposes of the engine are processing 
asset data (meshes and textures), configuring the pipeline, handling inputs from 
physical gestures, and controlling presenting view angles. 
 
The renderer should have a reliable performance with low latency. It should have 
good logic for view control. Moreover, there is no issue with rendering models 
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and texture mapping. Finally, the support for web frameworks needs to be initi-
ated via binding project source code to a Web Assembly package. 
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3 ACKNOWLEDGEMENT 
 
3.1 WGPU 
 
In general, graphics hardware needs to be controlled by data and configuration. 
Then, the process of GPU will present frames on a display. There are numerous 
APIs and workloads behind the curtain, however, the ones taking the responsi-
bility to control GPU rendering are graphics APIs. For instance, OpenGL, WebGL, 
and Direct3D have been standards for graphics development in the early 21st 
century and recently, some noticeable ones are coming with state-of-the-art tech-
nologies, such as Metal, WebGPU, and Vulkan could change the game graphics 
industry. 
 
Working with graphics APIs requires tremendous effort and time for configuration 
and programming, especially Vulkan which is too complex for the lack of experi-
enced developers. 
 
Came from the inspiration of creating a Graphics API that works on any system 
and builds fully on Rust. The WGPU was born, and it started to be a new 3D 
standard for desktop, mobile, and web applications. 
 

 
PICTURE 2. WebGL API (Frausto-Robledo, A. (2017, February 24)) 
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PICTURE 3. WebGPU API (Frausto-Robledo, A. (2017, February 24)) 
 
Before WebGPU was created, all 3D graphics web views were created using 
WebGL API. As can be seen clearly, WebGL has been useful for accessing low-
level graphics API, in this case, it is OpenGL. However, many new graphics APIs 
were inevitably created recently. Hence, it made WebGL and OpenGL is not 
enough anymore. Therefore, WebGPU API presents a new method for accessing 
contemporary low-level graphics API, such as Metal, Direct 3D, and Vulkan. As 
a result, developers can now create complex rendered images in the browser 
with new advanced features. (Next-generation 3D graphics on the web. (2017, 
April 5)) 
 
3.2 Rust 
 
3.2.1 Rust History 
 
Rust was found as a personal project by Graydon Hoare (an employee at Mozilla 
Research) in 2006. Then, Mozilla began sponsoring the project in 2009. The mod-
ern Rust compiler was successfully compiled in 2011 and the first stable release 
of the language was in May 2015. Rust has been used in numerous companies 
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including Amazon, Discord, Dropbox, Google, Meta, and Microsoft. (Thompson, 
C. (2023, February 15)) 
 
The reason Rust has excelled rapidly nowadays is due to its benefit of memory 
safety. For instance, Rust’s ownership system and borrow checker force devel-

opers to follow strict principles of memory handling. Without a garbage collector 
for memory management, Rust can run extremely fast and avoid bugs coming 
from null pointers like on C and C++. 
 
3.2.2 Cargo 
 
Cargo is Rust package management. Like the famous Node Package Manage-
ment, it controls package dependencies in a Rust project by downloading and 
compiling those into a suitable architect-developing environment. It requires cre-
ating a "Cargo.toml" file to configure a rust project. 
 

 
FIGURE 4. An example of a Cargo.toml file 
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3.3 Rendering Flow 
 

 
PICTURE 5. An Illustration of Rendering flows 
 
In theory, developers cannot program and access GPU directly using normal de-
velopment processes. It can be explained that the GPU uses a different memory 
called VRAM. Hence, they need to follow some robust steps before making the 
hardware rendering images. For instance, the data needed to be gathered and 
processed. Then, it will need to be stored in the VRAM. There are data structures 
supported in most modern graphics libraries: 

- Vertex Data includes values of Point Position, Color, or UV. 
- Uniform Data includes sets of uniform attributes. For instance, it declares 

a structure including groups of data types which is handy for working with 
custom-structed data working as an object constructor. 

- Image and Sampler are used for bitmap or image data. 
After finishing binding work, the GPU can finally collect data from two program-
able phases which are vertex shader and fragment shader. Unlike the mentioned 
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phase, most others cannot be programmed. Fortunately, they can be adjusted by 
sets of configurations and descriptions. If all requirements are satisfied, the pipe-
line should run smoothly and return a complete image as a buffer. 
 
3.4 Graphics Pipelines 
 
In theory, a graphics pipeline is a workflow in a rendering process that creates a 
framebuffer in the finish. The pipeline structure is shared to all graphics APIs on 
the market. It can be explained easily that the pipeline serves as a path or an 
instruction which reflects separate ways of how GPU can render a frame to a 
screen. 
 
As a result, developers can manipulate the process by adding data as buffers. 
 

 
PICTURE 6. WGPU Pipeline. (Gfx-Rs) 
 
In WGPU, the pipeline could be divided into seven phases, vertex fetching, vertex 
shader processing, primitive assembly, rasterization, fragment shader pro-
cessing, stencil-depth tests, and output merging. Only vertex shader and frag-
ment shader could be programmed from the application side. Other phases sup-
port passing configurations for options regarding WGPU features. 
 
As a starting point, in vertex fetch, a set of positions will be stored in the memory 
with a buffer address. It will send buffers and addresses to the vertex shader 
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phase. With the data from VRAM, the phase will define a calculation for space 
positions of vertices. Fortunately, this phase could be programmed by a shading 
programming language, hence, it could be helpful if developers want to pass 
some additional attributes into the calculation, such as camera or lighting posi-
tions. In primitive assembly, it converts a vertex stream into a sequence of base 
primitives. 
 
After processing raw vertices data, the pipeline still requires one more mandatory 
process, which is fragment shader. In addition, it displays fragments in a colorful 
texture or canvas. However, before going to the fragment shader, the primitives 
need to be broken down into fragments thanks to Rasterization, a connection 
phase. 
 
As a result, two more processes need to be executed, which are testing and out-
put merging. In the testing process, tests of stencil and depth are usually manda-
tory in most graphics’ pipelines, additionally, it will also include a scissor test if 
clipping fragments outside a rectangular area is required. For instance, the stencil 
test will remove fragments that are disabled according to a stencil buffer. It is 
useful when outlining an object. 
 

 
PICTURE 7. Example of Stencil testing (LearnOpenGL - Stencil testing) 
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PICTURE 8. Example of Outlining objects (LearnOpenGL - Stencil testing) 
 
In 3D rendering, the depth test is always added due to removing overlapped arti-
facts which must render behind other ones. Finally, if all tests pass, the fragments 
will be combined with other results to present on a surface.  
 

 
PICTURE 9. Example of Depth test (LearnOpenGL – Depth Test) 
 
3.5 Vertex Specification 
 
In theory, a chunk of data can be passed to the pipeline via the vertex shader. 
Furthermore, the way for the GPU to understand which data in memory is used 
for rendering depends on the stream of vertices. It could include the position of 
points, normal values, or even texture coordinates. For instance, this is how to 
draw a triangle with specific color inputs.  

{[{0.0, 0.5, 0.0}, {1.0, 0.0, 0.0}],  
[{-0.5, -0.5, 0.0}, {0.0, 1.0, 0.0}],  
[{0.5, -0.5, 0.0}, {0.0, 0.0, 1.0}]}  
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Each object includes three attributes for presenting x, y, and z positions in 3D 
space and three attributes for RGB float-type color values starting from 0.0 to 1.0 
equivalent to eight-bit color (0 to 255). 
 

 
PICTURE 10. Creating a vertex buffer. 
 
In WGPU, the implementation of vertex input requires small preparations before-
hand. Primarily, the vertex attribute should be initiated and created via the “de-
vice.create_buffer_init()” method. Furthermore, the pipeline needs to be noticed 

by adding a new buffer layout description. Those operations needed to be ready 
before starting the pipeline. They can be prepared in the graphics engine, by 
calling WGPU-supported functions regarding buffer binding. Finally, the result 
should present a shape depending on the input vertices with a basic vertex 
shader.  
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PICTURE 11. Shader script used for drawing vertices from buffers. 
 
In picture 11, there are two scripts for vertex and fragment shader. With the 
scripts, those shaders can be programmed from the engine side. For instance, 
the vertex shader gets vertex buffers including position and color for each vertex. 
They are already processed carefully from the engine side. It just needs to gather 
those data in the correct locations according to earlier binding layouts. After pro-
cessing memory values from vertex buffers, it will pass them into the rasterization 
phase before turning into blank fragments. Finally, the fragment shader will return 
the correct color of each pixel to the drawing surface. 
 

 
PICTURE 12. A result of a simple triangle primitive. (captured from the project 
engine) 
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In picture 12, the color of each pixel has been filled according to the position and 
color blending between points. Color blending in fragment shader is an internal 
feature in the graphics pipeline that is supported in all graphics APIs on the mar-
ket.  
 3.6 Textures 
 
Nowadays, supporting a feature to map texture including image and bitmap has 
been mandatory in most contemporary graphics engines. In WGPU, mapping 
textures seems straightforward. First, a texture needs to be loaded on the 
memory then it can be reused as bytes. It could be in any format, such as JPEG, 
PNG, or even Bitmap. Afterward, the image could also be converted into an array 
of pixels with RGBA values. Secondly, a primary device could create a Texture 
format according to the mentioned values via the “device.create_texture()” 
method. Finally, the texture needs to be written into the system queue, including, 
an image texture, image size, and pixel data. It helps the system understand how 
to copy data precisely. 
 
To make GPU understand the imported data from WGPU, it needs to have a 
texture view and a sampler. Normally, the texture views have alike settings, then 
it just needs to be set as the default description. However, the samplers take a 
bigger role in the texture mapping purpose. Besides image-format data, the pro-
cess also needs data to coordinate the mapping area. If the texture coordinate is 
outside the image, it will need some options to fill the blank pixels. For instance, 
the address mode offers four options including ClampToEdge, Repeat, MirrorRe-
peat, and ClampToBorder. (Overvoorde, A) 

 
PICTURE 13. Examples of Address Mode (Overvoorde, A). 
 



18 

 

To make it easier to understand, let’s start mapping a picture on a rectangular 
surface. In this example, it needs to have vertex positions and texture coordi-
nates. 
 

{[{1.0, 1.0, 0.0}, {1.0, 0.0}],  
[{1.0, −1.0, 0.0}, {1.0, 1.0}],  
[{−1.0, −1.0, 0.0}, {0.0, 1.0}]} 
[{−1.0, 1.0, 0.0}, {0.0, 0.0}]}  

 
Each object includes three attributes for presenting x, y, and z positions in 3D 
space and two attributes for float-type texture coordinates starting from 0.0 to 1.0 
equivalent to eight-bit color (0 to 255). 
 

 
PICTURE 14. Coordinate Systems in WGPU – left one is rendering position and 
right one is texture mapping position. (Gfx-Rs) 

 
PICTURE 15. Setup and configuration for texture mapping via WGPU related 
functions. 
 
In picture 15, the pipeline needs an extra texture binding group with a texture 
binding group layout which will be placed in the Pipeline description. They can be 
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done easily by calling methods from the device and queue which relates to GPU 
functions. Like vertex buffer, texture mapping resources needed to be ready be-
fore running the pipeline. They can be prepared in graphics engine, by calling 
WGPU supported functions regarding texture mapping. With a suitable shader 
script, it can be seen clearly that the texture has been mapped correctly on the 
primitives. 
 

 
PICTURE 16. Shader script has texture support. 
 
In picture 16, the vertex shader pushed out the new texture coordinate value to 
the fragment shader. With the new data, fragment color can be calculated ac-
cording to texture with sampler and coordinate values. As a result, each pixel of 
texture will be blended on the rectangular primitive. 
 



20 

 

 
PICTURE 17. A result of a simple texture mapping. (captured from the project 
engine) 

 
PICTURE 18. How image is mapping on a surface texture in fragment shader.  
 
In picture 18, the image has a red part on the top. Normally, the texture coordi-
nates (UV) of four points would be like in picture 16. However, in this case, they 
are swapped upside down. Then, the pipeline maps a 180-rotated version of the 
original image. The result will present a red part on the bottom. 
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3.7 Camera 
 
3.7.1 Orthographic and Perspective projection 
 
From a camera perspective, there are two unique projection matrices. They are 
Orthographic and Perspective. Each is supposed to work on a niche style of view. 
For instance, an orthographic projection matrix is described as a cube-style frus-
tum box that presents primitives or parts of primitives inside a cube space, other 
ones will be clipped. 

 
FIGURE 19. The orthographic frustum (LearnOpenGL - Coordinate Systems) 
 
On the other hand, perspective view is more noticeable in 3D rendering due to 
the relation of depth and object scale. For instance, with trapezoidal prism frus-
tum, it can work like a mechanical camera with rear and front parts. 
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FIGURE 20. The perspective frustum (LearnOpenGL - Coordinate Systems) 

 
To calculate the camera matrix from a perspective projection, there are four ele-
ments including the vertical field of depth (FOVY), Aspect ratio, Near, and Far 
which impact on perspective view. 

- The FOVY is the value that impacts the view angle of the camera on the 
Y axis. 

- The Aspect ratio is equal to a division of width and height of view. 
- The Near value is the length of the near plane on the Z axis. 
- The Far value is the length of a far plane on the Z axis. 

 
 

PICTURE 21. calculating perspective matrix in WGPU from camera attributes. 
 
It can be seen clearly that the matrix needs to be served differently than other 
data types. Due to the volatility of the mentioned matrices, it should be technically 
used for passing specific types, such as matrices, structure of types, and so on. 
Fortunately, as mentioned before, there is a technique called uniform buffer ob-
ject which provides user-defined data to the shader. For instance, to serve a pipe-
line with a Camera Uniform, the uniform buffer needs to be initiated with uniform 
usage. Afterward, like other types of buffers, it must be bound before providing 
them into a suitable pipeline. 



23 

 

 

 
PICTURE 22. Camera Uniform Structure. 
 
3.7.2 Arcball Camera Systems 
Because of the purpose of 3D rendering, the camera should be calculated into a 
perspective matrix in this project. Additionally, it will be controlled by an Arcball 
camera system which calculates position in a spherical route. The camera will be 
controlled by mouse input. 
 

 
PICTURE 23. Camera view attributes using Euler angles and right-handed Car-
tesian coordinate system. (LearnOpenGL - Camera) 
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PICTURE 24. Cartesian coordinate systems (Stevewhims) 
 
In this thesis, the camera motion needs to qualify two factors - position and rota-
tion angles. Therefore, it should move in a spherical area and be always looking 
at the origin point. In rotation perspective, the camera as an object needs to rotate 
itself around up and right vectors whenever it is moving around the target Y axis 
and X axis respectively (Eberly, D. 1999, December 1). Hence, it always looks at 
the original point. Fortunately, the math library used in this project also includes 
the method for calculating a matrix when a vector is looking at a point. 
 

 
PICTURE 25. “Look at” method for right-handed coordinate. 
 
On the other hand, the position camera needs to be calculated actively during the 
engine runtime. Furthermore, Euler angles take a huge advantage in calculating 
the position of an orbital point around the origin point. A basic camera should 
have four attributes including one position point, three vectors of direction, right, 
and up. However, it does not need to save all four attributes and they can be 
calculated by eye, target, and up. For instance, the position point is the eye point, 
the direction is equal to the subtraction of target and eye values, and finally, the 
right value can be calculated by the cross product of up and the view direction. 
(Marie. (2019, November 30)) 

�⃗� = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑃𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑐𝑎𝑚𝑒𝑟𝑎) 
�⃗�  is the vector of direction,   𝑃𝑐𝑎𝑚𝑒𝑟𝑎  is the eye position of the camera in 3D space, 
and 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 is the point the camera is looking at in this case is 0.0, 0.0, 0.0.  
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�⃗� = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(�⃗� × �⃗⃗� ) 
�⃗� ,  �⃗� , and �⃗⃗�  are vectors of right, direction, and up respectively. 
 
First, the position and pivot vectors of the camera need to be calculated, those 
attributes are the position (eye) point and target point.  

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  [

𝑥𝑒𝑦𝑒

𝑦𝑒𝑦𝑒

𝑧𝑒𝑦𝑒

1

] , 𝑝𝑖𝑣𝑜𝑡 =  [

𝑥𝑡𝑎𝑟𝑔𝑒𝑡

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑧𝑡𝑎𝑟𝑔𝑒𝑡

1

] 

𝜃𝑥 = (ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙𝑎𝑠𝑡) ⋅  
2𝜋

𝑤𝑖𝑑𝑡ℎ
 

𝜃𝑦 = (𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙𝑎𝑠𝑡) ⋅
𝜋

ℎ𝑒𝑖𝑔ℎ𝑡
 

 
𝜃𝑥 and 𝜃𝑦 are theta values of vertical and horizontal rotating angles. 
 

𝑅𝑥 = [

1 0 0 0
0 co s 𝜃 −si n 𝜃 0
0 si n 𝜃 co s 𝜃 0
0 0 0 1

] ⋅ (

𝑥
𝑦
𝑧
1

) = (

𝑥
co s 𝜃 ⋅ 𝑦 − si n 𝜃 ⋅ 𝑧
si n 𝜃 ⋅ 𝑦 + co s 𝜃 ⋅ 𝑧

1

) 

𝑅𝑦 = [

co s 𝜃 0  si n 𝜃 0
0 1 0 0

−si n 𝜃 0 co s 𝜃 0
0 0 0 1

] ⋅ (

𝑥
𝑦
𝑧
1

) = (

𝑥co s 𝜃 ⋅ 𝑥 + si n 𝜃 ⋅ 𝑧
y

−si n 𝜃 ⋅ 𝑥 + co s 𝜃 ⋅ 𝑧
1

) 

𝑅𝑧 = [

co s 𝜃 −si n 𝜃 0 0
si n 𝜃 co s 𝜃 0 0

0 0 1 0
0 0 0 1

] ⋅ (

𝑥
𝑦
𝑧
1

) = (

co s 𝜃 ⋅ 𝑥 − si n 𝜃 ⋅ 𝑦
co s 𝜃 ⋅ 𝑥 + si n 𝜃 ⋅ 𝑧

z
1

) 
𝑅𝑥,  𝑅𝑦, and 𝑅𝑧 are rotation matrices around X axis, Y axis, and Z axis, respec-
tively. (LearnOpenGL - Camera) 

position = 𝑅𝑥 ⋅ (position − pivot) + pivot 
final_pos = 𝑅𝑦 ⋅ (position − pivot) + pivot 

 
Second, the first rotating position will be solved by multiplying the X rotation ma-
trix and subtraction (position and pivot), then adding that result with the pivot 
value. 
Finally, the second rotating position is equal to the multiply of the Y rotation matrix 
and subtraction of (position and pivot). The final position is completed by adding 
them to the last result.  
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PICTURE 26. Camera position when user drags mouse in vertical direction and 
horizontal direction.  
 
3.8 GLTF modelling format 
 
In theory, the structure of a GLTF file contains one JSON file (.gltf), one binary 
file (.bin), and some texture image files. The JSON files define the address and 
length of each data buffer in the Binary file. 
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FIGURE 27. The GLTF JSON structure (GLTF-Tutorials) 
 

 
PICTURE 28. The GLTF structure (GLTF-Tutorials)  
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4 IMPLEMENTATION 
 
4.1 Source code and library management 
 

 
PICTURE 29. Simplified Project Structure  
 
The structure of the project seems quite simple. In any rust project, it needs a 
cargo configuration file (Config.toml) for installing dependencies. In the directory 
of source code, it has main.rs as a starting point and lib.rs for controlling internal 
submodules as smaller library files. There is a role of each file: 

- “window.rs” contains the “run” method which initiates the state, event 

loop, and window. 
- “state.rs” includes all methods for the event system in the application. 
- “texture.rs” supports a shorter way of handling texture mapping opera-

tions. 
- “resource.rs” is a helper library that includes some methods used for 

fetching and processing data on the cloud. 
- “model.rs” takes a key role in creating Model objects and operating draw-

ing commands from the resources. 
- “camera.rs” is built for the Camera data structure and its control methods. 



29 

 

 
4.2 Application Event Flow 
 
Primarily, the projection targets of this solution are desktop operating systems. 
Hence, a library for window management is required. Besides, the application 
also needs to have a state system for handling application events. In this project, 
Winit was chosen because of its compatibility with cross-platform devices, even 
on the web. It is just used for window management, graphics presentation, and 
input handling only, without any further high-level implementations. (Rust-Win-
dowing) 
 

 
FIGURE 30. Event Flowchart 
 
According to figure 31, to create a surface for drawing rendering frames, an in-
stance should be initiated to gather supporting backend graphics APIs from the 
current device. Afterward, there is a mandatory fact that the surface needs to live 
with the generated window lifetime. Additionally, there is also an adapter that opts 
for a preferred power mode for the application. For instance, in some computers 
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having dGPU and iGPU, the OS will always prioritize running applications with 
the most power-efficient hardware. 
 
In the render method, a request is made for a rendering destination as a new 
Surface Texture. Then, it will be stored in output. After having a texture for the 
surface, its view can be created with a default setting. Besides this fact, there are 
two more important ones. For instance, the GPU needs a command request, 
then, an encoder with a render pass is required. Finally, the render method needs 
to be added to the event loop for handling the redraw request. 
 
4.3 Control camera with mouse cursor position  
 

 
Figure 31. Gesture input to control the arc ball camera. 
 
Fortunately, Winit supports methods for handling physical inputs such as mouse, 
keyboard, or even touchscreen.  
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PICTURE 32. Example of handling mouse inputs. 
 
When the mouse is moving, the window event will return the cursor position. 
Then, according to the received data, it will be stored in the camera object via a 
setter method called “set_last_mouse_position()”. Moreover, after having a new 

position, the camera update method will be instantly called. 
 
Firstly, according to what was explained in the theoretical part, the calculation 
starts with calculating the pivot and position of the eye and target. 
 
Secondly, the horizontal step must be calculated by the subtraction of current 
mouse's horizontal position from the last one, and then multiplying it with a divi-
sion of two PI and width values. The vertical one can be solved by subtraction of 
the current mouse's vertical position from the last one. However, it just needs to 
multiply with the division of PI and height value. 
 
Thirdly, the delta angle of x and y will be calculated depending on the subtraction 
of the new position and the last position. Finally, the camera position will be cal-
culated based on rotation matrices of the up vector and the right vector.  
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PICTURE 33. Updating camera position. 
 
4.4 Fetching GLTF model on cloud storage 
 
In this thesis, the requirement is to render meshes without lighting. Hence, there 
are only three values that need to be collected from the model, which are the 
positions of a points, texture coordinates, and color texture (albedo). 
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PICTURE 34. Loading data from file using GLTF library based on Rust. 
 
Primarily, a link or path needs to be passed into a model-loading method. Then, 
before processing data, it needs a GLTF reader which points to the passed link. 
When it is ready, buffer data can be recalled by one of two scenarios. If it is a 
URL, it will be fetched by the “reqwest::get(URL)” which is an HTTP client. If it is 
a directory path, the binary will automatically be stored in the library. Then, it just 
needs to be assigned with the "gltf.blob". Like processing binary, if the material 
is stored on the cloud, the data will be fetched. However, the material can be 
collected by accessing buffer data due to it is already stored. From the vertex 
perspective, it needs another reader to travel through all points. Unlike material, 
the values of points are only placed in binary. Hence, positions and texture coor-
dinates can be accessed via “read_position()” and “read_tex_coords()” methods. 
 
4.5 Working with React Web Application 
 
The destination for this thesis is running on a web framework. It can be solved by 
a recent technology called Web Assembly. In 2015, it was announced and cre-
ated a massive impact on web applications at that time. Recently, there has been 
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a contemporary feature that allows developers to bind fully or partially Rust 
source code for web applications. Hence, it can be built into a package containing 
JavaScript, TypeScript, and WASM. The package can be imported into various 
Web Frameworks such as React or Vue. 
 
To define a line of code only running on WASM target, the project needs to add 
wasm-bindgen library.  
 

 
PICTURE 35. Adding wasm-bindgen into Cargo.toml file. 
 
After having the required dependency, it is required to set a configuration of target 
architecture to “wasm32” by adding “#[cfg(target_arch = "wasm32")]”. 
 

 
PICTURE 36. web_run method and those variables work only when it is built for 
WASM target. 
 
Finally, the project can be built and implemented into various recent web frame-
works. Additionally, to make it easier, this thesis used a tool named wasm-pack. 
It supports building Rust project to WASM package working with NPM. With 
wasm-pack support, the project is easily placed inside any package.json files. 
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PICTURE 37. Implementing the project to React Framework. 
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5 QUALITY ASSURANCE 
 
5.1 Renderdoc 
 
RenderDoc is a free open-source tool for graphics developers. It is widely used 
in many industries including VFX - Visual Effects, Fiction Film, Animation, and 
Video Game. Using this tool, developers can investigate events when a frame is 
rendered, such as buffer values, images, pipeline timestamps, and so on. (Bal-
durk. (n.d.)) 
 
Unfortunately, RenderDoc only works with desktop platforms including Window 
(Direct3D, Vulkan, and OpenGL), Linux (Vulkan and OpenGL), and MacOS 
(OpenGL, Vulkan and Metal). Hence, it is only used for testing primary features, 
engine output, and improving optimization. 
 

 
PICTURE 38. Mesh Viewer Pane. 
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6 DISCUSSION   
 
The engine achieved exceptional performance with a clean visual and fast re-
sponsiveness, displaying the advantages of WGPU's ability to work across mul-
tiple platforms. Additionally, the GLTF Loader is capable of loading models from 
both local and cloud sources. (Appendix 1) 
 

 
PICTURE 39. Screenshot of web live demonstration. 
 
However, the camera system could be improved. It experiences issues when the 
up vector and view direction are parallel, often leading to a Gimbal lock, which is 
a disadvantage of the Euler rotation theorem. Moreover, implementing a simple 
lighting system could enhance the visual experience. 
 
Besides the rendering minuses, the event system could be improved in the future. 
For instance, there were a lot of stop points in the flow. Currently, it could serve 
as a shortcut to come through the memory-borrow and mutation concepts of Rust. 
For instance, the application should not break because of process failures. If this 
improvement is applied in the future, the application will achieve the concurrency 
milestone. Hence, it will improve the applicability of the solution. 
 
Furthermore, this thesis could serve as valuable material for developers taking 
advantage of WGPU and its features, especially, its ability to run on the web via 
WebGPU. It is still early to predict that it will replace commercial engines in the 
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market, but it is poised to have a significant and positive impact on the current 
landscape of graphics development. Additionally, computer graphics should re-
ceive more attention from developers, as WGPU could direct a bright future, at-
tracting more enthusiasts due to its flexibility and simplicity. 
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APPENDICES  

Appendix 1 Related Resources 
- Source Code: github.com/minhdangphuoc/thesis-3d-web-renderer 
- Web Demonstration: thesis-3d-web-renderer.vercel.app 
- GLTF Sample Models: github.com/KhronosGroup/GLTF-Sample-Models 
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Appendix 2 RenderDoc Screenshots 
- Swapchain and Depth Output views 
- Image Buffer view 

 

 
 
 


