

Fazal Sandhi

Quick Start to become QA Engineer

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

18 June 2023

Abstract

Author: Fazal Sandhi

Title: Quick Start to become a QA Engineer

Number of Pages: 71 pages

Date: 16 May 2023

Degree: Master of Engineering

Degree Programme: Information Technology

Professional Major: Networking and Services

Supervisors: Ville Jääskeläinen

As someone exploring a career in Quality Assurance (QA), encountering

unfamiliar responsibilities was part of the journey. Extensive research was

conducted, involving online video consumption and various research

methods. The main goal was to create a detailed guide for people who want

to become skilled in Quality Assurance.This thesis is a valuable resource for

those entering the QA field. It provides essential insights to help someone

beginning his journey. It's important to note that this thesis isn't a step-by-step

guide; instead, it's meant to be a comprehensive reference book. In its pages,

one finds explanations of important ideas and industry standards outlined by

ISTQB. Additionally, the thesis covers basic programming languages needed

for testing, emphasizes the importance of automation tools, and explains

other essential tools commonly used by QA professionals.This investigation

revealed the absence of a coherent framework and comprehensive insights

within available resources, leading to the creation of this thesis.

Keywords: Quality Assurance, ISTBQ fundamentals, Testing

tools, Technology used in QA

The originality of this thesis has been checked using Turnitin Originality Check

service.

Contents

List of Abbreviations

1 Introduction 1

2 ISTBQ standards 3

2.1 Fundamentals of Testing 3

2.2 Testing Throughout the Software Development Lifecycle 5

2.3 Static Testing Summary 7

2.4 Test Analysis and Design 9

2.4.1 Test Techniques Overview 9

2.4.2 Black-Box Test Techniques 9

2.4.3 White-Box Test Techniques 10

2.4.4 Experience-Based Test Techniques 10

2.4.5 Collaboration-Based Test Approaches 11

2.5 Managing the Test Activities 11

2.5.1 Test Planning 11

2.5.2 Risk Management 13

2.5.3 Test Monitoring, Test Control, and Test Completion 13

2.5.4 Configuration Management 14

2.5.5 Defect Management 14

2.6 Test Tools 14

2.6.1 Tool Support for Testing: 14

2.6.2 Benefits and Risks of Test Automation: 15

3 Essential Web Technologies for Quality Assurance 17

3.1 HTML 17

3.1.1 Document Structure 17

3.1.2 Basic Elements 18

3.1.3 Forms 20

3.1.4 Attributes 20

3.1.5 QA-Specific Considerations 21

3.2 CSS 21

3.3 JavaScript 26

4 Tools available for QA (Quality Assurance) professionals 31

4.1 Jira 31

4.1.1 Epics and Stories 31

4.1.2 Report a Bug 34

4.1.3 Backlog refinement 35

4.1.4 Acceptance criteria 35

4.1.5 Sprint 36

4.1.6 Xray installation and configuration 38

4.1.7 Create Xray 39

4.1.8 Test Execution 41

4.2 JMeter 43

4.3 Postman 51

4.4 Robot framework 57

5 Conclusion 65

References 66

List of Abbreviations

API Application Programming Interfaces

ATDD Acceptance Test Driven Development

BDD Behavioral-Driven Development

CD Continuous Developmnet

CI Continuous Integration

CSS Cascading Style Sheets

DOM Document Object Model

HTML HyperText Markup Language

ISTBQ International Software Testing Qualifications Board

OL Ordered Lists

QA Quality Assurance

SDLC Software Development Lifecycle

TDD Test Driven Development

UL Unordered Lists

P a g e | 1

1 Introduction

Quality Assurance (QA), a crucial aspect of ensuring products meet specified

quality standards, involves a variety of tasks to identify and address issues. This

encompasses products ranging from software to gadgets, making QA a

multifaceted discipline. However, QA can be challenging due to the complexity of

issue identification and resolution, requiring extensive knowledge and the

utilization of diverse tools.

The primary challenge addressed in this thesis revolves around how individuals

can be effectively guided to learn about QA. The objective is to furnish essential

information that contributes to success in the QA field. This is paramount because

proficient QA leads to enhanced product quality. Equipping QA professionals with

the necessary skills and knowledge empowers them to identify and rectify issues,

resulting in improved products and increased customer satisfaction.

Within the landscape of Quality Assurance, this thesis serves as a guiding

beacon. It offers valuable insights into essential skills required for success in QA.

The learning journey involves understanding the guidance provided by the

International Software Testing Qualifications Board (ISTQB), grasping

programming languages, acknowledging the significance of automation tools,

and utilizing various other tools integral to daily QA operations.

Starting with an exploration of ISTQB standards and certifications, the

foundational elements of HTML, CSS, and JavaScript are elucidated—vital

knowledge for QA professionals. The discourse progresses to cover tools like

Robot Framework and Jira, which facilitate project and test case management.

The mention of Xrays in Jira is made to underscore efficient test case

management. Finally, the thesis explores the utility of GitHub in managing

automation code and test cases.

P a g e | 2

It's crucial to note that while this thesis does not provide an exhaustive tutorial, it

establishes a robust foundation for launching a successful career in QA.

P a g e | 3

2 ISTBQ standards

In this exploration of software testing based on the Certified Tester Foundation

Level Syllabus v4.0 by the International Software Testing Qualifications Board

(ISTQB), we journey through six chapters, covering key concepts, test planning,

design techniques, management strategies, defect life cycle, and the role of test

tools. The aim is to provide a practical understanding of software testing

methodologies for improved software quality and development efficiency.

2.1 Fundamentals of Testing

What is Testing?

Purpose of Testing: Assess software quality, reduce the risk of software failure,

discover defects, and evaluate software artifacts.

Misconceptions: Testing involves more than just executing tests; it includes

verification and validation aligned with the software development lifecycle.

Static vs. Dynamic Testing: Testing can be static (reviews and static analysis)

or dynamic (execution of software).

Test Objectives

Typical Objectives: Evaluate work products, trigger failures, ensure coverage,

reduce risk, verify requirements, comply with legal standards, provide information

to stakeholders, build confidence, and validate completeness.

Testing and Debugging

Distinction: Testing and debugging are separate activities; testing can trigger

failures or directly find defects.

Debugging Process: Reproduction of failure, diagnosis, fixing the cause,

confirmation testing, and regression testing.

Why is Testing Necessary?

Quality Control: Testing as a form of quality control contributes to achieving

project goals within scope, time, quality, and budget constraints.

P a g e | 4

Testing's Contributions to Success: Detect defects, evaluate quality,

represent users, meet contractual/legal requirements, and contribute to project

decisions.

Testing and Quality Assurance (QA)

Difference: Testing is quality control; QA is a process-oriented, preventive

approach focusing on processes, applicable to both development and testing.

Errors, Defects, Failures, and Root Causes

Cause and Effect: Errors lead to defects, which may result in failures; root

causes are fundamental reasons for problems.

Testing Principles

Seven Principles: Testing shows the presence of defects, exhaustive testing is

impossible, early testing saves time and money, defects cluster together, tests

wear out, testing is context-dependent, and the absence-of-defects fallacy.

Test Activities, Testware, and Test Roles

Test Process: Defined by various activities like planning, monitoring, analysis,

design, implementation, and completion.

Context Dependency: Test activities tailored based on the system, project, and

organizational context.

Testware: Output work products include planning documents, test cases, logs,

reports, and completion reports.

Essential Skills and Good Practices in Testing

Generic Skills: Testing knowledge, thoroughness, communication, analytical

thinking, technical knowledge, and domain knowledge.

Whole Team Approach: Encourages collaboration and knowledge sharing

within the team for effective testing.

Independence of Testing: Achieves a certain degree of independence to

enhance defect discovery.

P a g e | 5

2.2 Testing Throughout the Software Development Lifecycle

Testing in the Context of a Software Development Lifecycle (SDLC)

SDLC models provide a high-level representation of the software development

process. Examples of SDLC models: sequential (e.g., waterfall), iterative (e.g.,

spiral), and incremental (e.g., Unified Process). Activities in software

development can align with detailed methods and Agile practices. The choice of

SDLC impacts scope, timing, documentation, test techniques, automation, and

roles of testers.

Impact of SDLC on Testing

Sequential models involve testers in initial phases but limit dynamic testing early

on. Iterative models allow testing at all levels in each iteration, demanding fast

feedback and extensive regression testing. Agile favours lightweight

documentation, extensive test automation, and experience-based testing

techniques.

Software Development Lifecycle and Good Testing Practices

Good testing practices, regardless of SDLC, involve corresponding test activities

for every development activity. Different test levels have specific objectives,

enabling comprehensive testing without redundancy. Test analysis and design

begin during the corresponding development phase for early testing.

Testing as a Driver for Software Development

Test Driven Development (TDD), Acceptance Test Driven Development (ATDD),

and Behavioral-Driven Development (BDD) are development approaches

emphasizing early testing and a shift-left approach. TDD involves coding through

test cases; ATDD derives tests from acceptance criteria; BDD expresses

behaviour in natural language.

DevOps and Testing

DevOps integrates development and operations to achieve common goals.

P a g e | 6

Benefits include fast feedback, stable test environments, increased focus on non-

functional characteristics, and reduced regression risk. Challenges include

defining the DevOps pipeline, introducing/maintaining Continuous Integration (CI)

and Continuous Developmnet (CD) tools, and establishing test automation.

Shift-Left Approach

Early testing is known as a shift-left approach, emphasizing testing earlier in the

SDLC. Practices for achieving shift-left include reviewing specifications, writing

test cases before coding, using CI/CD, completing static analysis, and performing

non-functional testing early.

Retrospectives and Process Improvement

Retrospectives are post-project meetings to discuss success, areas for

improvement, and incorporation of improvements. Benefits for testing include

increased effectiveness/efficiency, improved quality of testware, team

bonding/learning, and better cooperation between development and testing.

Test Levels and Test Types

Test Levels

Five test levels: Component testing, Component integration testing, System

testing, System integration testing, and Acceptance testing.

Each level has specific attributes like test objectives, test basis, defects, and

responsibilities.

Test Types

Four test types: Functional testing, Non-functional testing, Black-box testing,

and White-box testing.

Functional testing checks functional completeness, correctness, and

appropriateness; Non-functional testing evaluates other attributes like

performance, usability, and reliability.

One should also describe here black-box and white-box testing (shorly).

P a g e | 7

Confirmation Testing and Regression Testing

Confirmation testing ensures successful defect fixes; Regression testing confirms

no adverse consequences due to changes. Impact analysis optimizes regression

testing extent; automated regression tests are recommended, especially in

CI/CD.

Maintenance Testing

Maintenance includes corrective, adaptive, and performance improvement

changes. Maintenance testing depends on risk, system size, and change size.

Triggers include modifications, upgrades, migrations, and retirements; Impact

analysis guides changes, and testing includes evaluating change success and

checking for regressions.

2.3 Static Testing Summary

Static testing is a method of evaluating software work products without executing

the software. This process involves the manual examination of code,

specifications, system architectures, or other work products. It aims to improve

quality, detect defects, and assess characteristics such as readability,

completeness, correctness, testability, and consistency. Static testing can be

applied for both verification and validation.

Static Testing Basics:

Examinable Work Products: Virtually any work product can be examined using

static testing, including requirement specifications, source code, test plans, and

more.

Value of Static Testing:

Detects defects early in the software development lifecycle.

P a g e | 8

Identifies defects not easily found by dynamic testing (e.g., unreachable code,

non-executable work product issues). Provides the ability to evaluate and build

confidence in work products. Allows for the measurement of quality

characteristics that are not dependent on executing code.

Feedback and Review Process:

• Benefits of Early and Frequent Stakeholder Feedback:

Early communication of potential quality problems. Prevention of

misunderstandings about requirements. Improvement of development

team understanding and focus on valuable features.

• Review Process Activities:

Planning: Defining the scope, purpose, participants, and criteria for the

review.

Review Initiation: Ensuring preparedness and access to the work

product. Individual Review: Reviewers assess the quality of the work

product and identify anomalies using various techniques.

Communication and Analysis: Discussion and analysis of identified

anomalies, decisions on status, ownership, and required actions.

Fixing and Reporting: Creation of defect reports, corrective actions, and

reporting of review results.

• Roles and Responsibilities in Reviews:

Manager, Author, Moderator, Scribe, Reviewer, Review Leader play

various roles. More detailed roles are possible, as described in the

ISO/IEC 20246 standard.

• Review Types:

Various review types exist, ranging from informal reviews to formal

inspections. Selection depends on factors like SDLC, development

process maturity, work product criticality, and legal/regulatory

requirements. Common types include Informal Review, Walkthrough,

Technical Review, and Inspection.

• Success Factors for Reviews:

Defining clear objectives and measurable exit criteria. Choosing the

appropriate review type for given objectives and context. Conducting

P a g e | 9

reviews on small chunks to maintain concentration. Providing feedback to

stakeholders and authors for improvement. Ensuring adequate time for

participants and support from management. Integrating reviews into the

organization's culture for learning and process improvement. Providing

adequate training for all participants.

In summary, static testing plays a crucial role in defect detection, quality

improvement, and building confidence in software work products throughout the

software development lifecycle. It complements dynamic testing and involves

various stakeholders in structured review processes. Frequent feedback and

clear communication are key success factors in static testing.

2.4 Test Analysis and Design

This section provides an overview of Test Analysis and Design, focusing on

different test techniques. Here's a summary of the key points:

2.4.1 Test Techniques Overview

Test techniques support test analysis and design. Classified as black-box, white-

box, and experience-based. Black-box techniques are independent of internal

structure; white-box techniques depend on it. Experience-based techniques rely

on tester knowledge and complement other techniques.

2.4.2 Black-Box Test Techniques

• Equivalence Partitioning

Divides data into equivalence partitions based on expected behaviour. Each

partition should be tested at least once. Coverage measured as the

percentage of partitions covered.

• Boundary Value Analysis

P a g e | 10

Focuses on exercising partition boundaries. 2-value and 3-value BVA differ in

coverage items per boundary. Coverage measured as the percentage of

boundary values covered.

• Decision Table Testing

Used for testing system requirements with different conditions and outcomes.

Coverage items are columns with feasible combinations of conditions.

Coverage measured as the percentage of exercised columns.

• State Transition Testing

Models system behaviour through states and transitions. Coverage criteria

include all states, valid transitions, and all transitions. All states coverage is

less stringent than valid transitions coverage.

2.4.3 White-Box Test Techniques

• Statement Testing and Coverage

Focuses on executable statements. Coverage measured as the percentage

of statements exercised. 100% coverage ensures all statements executed but

may not detect all defects.

• Branch Testing and Coverage

Focuses on branches in control flow graph. Coverage measured as the

percentage of branches exercised. 100% branch coverage includes 100%

statement coverage.

• Value of White-box Testing

Strengths include considering entire software implementation. Weaknesses

include potential omission of defects if requirements are unclear.

2.4.4 Experience-Based Test Techniques

• Error Guessing

Anticipates errors based on tester knowledge and application history. Fault

attacks involve creating a list of possible errors and designing tests.

• Exploratory Testing

P a g e | 11

Simultaneously designs, executes, and evaluates tests. Effective when

specifications are inadequate or under time pressure.

• Checklist-Based Testing

Designs, implements, and executes tests based on checklists. Checklists

should be regularly updated based on defect analysis.

2.4.5 Collaboration-Based Test Approaches

• Collaborative User Story Writing

Collaborative creation of user stories using techniques like brainstorming.

Emphasizes the "3 C’s": Card, Conversation, Confirmation.

• Acceptance Criteria

Conditions for user story acceptance by stakeholders. Used to define scope,

reach consensus, describe scenarios, and guide testing.

• Acceptance Test-Driven Development (ATDD)

Test-first approach where test cases are created before implementing a user

story. Test cases based on acceptance criteria and examples. Positive,

negative, and non-functional testing included.

2.5 Managing the Test Activities

2.5.1 Test Planning

Purpose and Content of a Test Plan

A test plan outlines objectives, resources, and processes for a test project. It

serves as a means of communication and adherence to test policies and

strategies. The typical content includes context, assumptions, stakeholders,

communication, risk register, test approach, budget, and schedule.

Tester's Contribution to Iteration and Release Planning

P a g e | 12

In iterative SDLCs, release planning and iteration planning involve testers in

defining user stories, risk analyses, estimating test effort, and planning testing for

both release and iteration.

Entry Criteria and Exit Criteria

Entry criteria define preconditions for activities, while exit criteria define

completion conditions. These criteria differ based on test objectives. They include

resource availability, testware availability, and initial quality level of the test object.

Estimation Techniques

Test effort estimation involves techniques like estimation based on ratios,

extrapolation, wideband Delphi, and three-point estimation. Estimations are

based on assumptions and are subject to errors.

Test Case Prioritization

Test cases are prioritized based on factors like risk, coverage, and requirements.

Prioritization helps in defining the order of test execution, considering

dependencies and resource availability.

Test Pyramid

The test pyramid model illustrates different test granularities, supporting test

automation and effort allocation. It categorizes tests into layers, emphasizing

varying granularity levels and execution times.

Testing Quadrants

Testing quadrants categorize test levels and types in Agile development.

Quadrants distinguish business-facing or technology-facing tests supporting the

team or critiquing the product.

P a g e | 13

2.5.2 Risk Management

Risk management addresses uncertainties to increase the likelihood of achieving

objectives. It involves risk analysis and risk control, with a test approach called

risk-based testing.

Risk Definition and Risk Attributes

Risk is characterized by likelihood and impact. Risk likelihood is the probability of

occurrence, and risk impact is the consequences of the occurrence.

Project Risks and Product Risks

Project risks relate to project management, while product risks concern product

quality characteristics. Both can impact project objectives.

Product Risk Analysis

Product risk analysis identifies and assesses risks to focus testing efforts,

influencing the scope, test levels, techniques, effort estimation, and risk reduction

activities.

Product Risk Control

Product risk control involves mitigation and monitoring. Actions like selecting

testers with suitable skills, conducting reviews, applying appropriate test

techniques, and dynamic testing help mitigate risks.

2.5.3 Test Monitoring, Test Control, and Test Completion

Test monitoring gathers information to assess progress against exit criteria. Test

control uses this information for effective testing. Test completion collects data at

project milestones.

Metrics used in Testing

Metrics, like project progress, test progress, product quality, defect, risk,

coverage, and cost metrics, help monitor and control testing.

P a g e | 14

Purpose, Content, and Audience for Test Reports

Test reports communicate test information during and after testing, supporting

control and completion. Test progress reports and test completion reports cater

to different audiences and frequencies.

Communicating the Status of Testing

Various means, such as verbal communication, dashboards, electronic channels,

online documentation, and formal reports, are used to communicate test status

based on stakeholders and context.

2.5.4 Configuration Management

Configuration management identifies, controls, and tracks test work products. It

ensures traceability, version control, and proper support for testing in DevOps

pipelines.

2.5.5 Defect Management

Defect management is crucial for handling reported anomalies. The process

involves defect identification, analysis, classification, response, and closure.

Defect reports provide information for issue resolution, tracking, and process

improvement.

2.6 Test Tools

2.6.1 Tool Support for Testing:

Test tools play a crucial role in supporting various testing activities. These tools

can fall into different categories, such as management tools, static testing tools,

test design and implementation tools, test execution and coverage tools, non-

functional testing tools, DevOps tools, collaboration tools, and others. Their

P a g e | 15

purpose is to enhance efficiency and effectiveness in managing the software

development life cycle, requirements, tests, defects, and configuration.

2.6.2 Benefits and Risks of Test Automation:

Potential Benefits:

Time Savings: Automation reduces repetitive manual tasks, such as regression

tests and data entry.

Error Prevention: Automation ensures consistency and repeatability,

preventing simple human errors.

Objective Assessment: Automation provides objective measures like

coverage that can be complex for humans to derive.

Access to Information: Easier access to testing information for better test

management and reporting.

Reduced Execution Time: Faster execution enables earlier defect detection,

quicker feedback, and a faster time to market.

Enhanced Test Design: Automation frees up time for testers to design more

profound and effective tests.

Potential Risks:

Unrealistic Expectations: Misjudging the benefits and ease of use of a tool.

Inaccurate Estimations: Underestimating time, costs, and effort required for

tool introduction, script maintenance, and process changes.

Inappropriate Tool Use: Using a tool when manual testing is more suitable for

the context.

Overreliance on Tools: Ignoring the need for human critical thinking by relying

too much on automation.

Dependency on Tool Vendors: Risks associated with tool vendors, such as

business closure, tool retirement, or poor support.

Open-Source Software Risks: Risks with open-source tools, like

abandonment or frequent updates.

Compatibility Issues: Tools may not be compatible with the development

platform.

P a g e | 16

Regulatory Compliance: Choosing a tool that does not comply with regulatory

requirements or safety standards.

P a g e | 17

3 Essential Web Technologies for Quality Assurance

Quality Assurance professionals play a crucial role in ensuring the reliability and

functionality of web applications. A fundamental understanding of web

technologies can significantly enhance their ability to conduct effective testing.

This section covers three essential web technologies that every QA professional

should be familiar with.

3.1 HTML

HTML (Hypertext Markup Language) serves as the backbone for structuring

content on the web. QA professionals, engaged in testing web applications, can

significantly benefit from a solid understanding of HTML. This comprehensive

guide aims to equip QA professionals with fundamental HTML knowledge

essential for effective testing.

3.1.1 Document Structure

HTML documents adhere to a standardized structure that includes:

<!DOCTYPE html>

<html>

<head>

 <title>Page Title</title>

</head>

<body>

<!-- Content goes here -->

</body>

</html>

Listing 1. Standard HTML document structure.

In Listing 1, the standard HTML document structure is presented, adhering to a

predefined format. The document begins with the declaration <!DOCTYPE

html>, which specifies the HTML version being used. Following this, the <html>

P a g e | 18

element serves as the root container encompassing the entire HTML document.

Within the <html> element, the <head> section is designated for meta-

information about the document, such as the title, which is encapsulated within

the <title> element. Finally, the <body> element contains the primary content of

the page. This structure provides a foundational framework for organizing and

presenting content within HTML documents.

3.1.2 Basic Elements

The basic elements of an HTML document include headings, paragraphs, lists,

links, images, and more. These elements are essential for structuring content and

providing a cohesive layout on a webpage.

Headings

HTML provides six levels of headings, ranging from <h1> to <h6>. Headings are

used to define the hierarchical structure of a document, with <h1> representing

the most important heading and <h6> the least important. For example, <h1> is

typically used for the main title of a page, while <h2> may be used for section

headings, and so on. By using headings, one can organize content and make it

easier for users to navigate and understand the structure of the webpage.

<h1>Heading 1</h1>

<h2>Heading 2</h2>

<!-- ... -->

<h6>Heading 6</h6>

Listing 2. HTML headings.

Paragraph

Paragraphs in HTML are defined using the <p> element. They are used to group

together blocks of text and provide structure to the content. Paragraphs are

commonly used for body text, article content, and other textual information on a

webpage.

P a g e | 19

<p>This is a paragraph.</p>

Listing 3. Paragraphs in HTML

Links

Links, also known as hyperlinks, are created using the <a> element in HTML.

They allow users to navigate between different web pages or sections within the

same page. Links are an essential part of web navigation and are used to connect

related content together.

Visit Example

Listing 4. Hyperlinks

Lists

HTML supports two types of lists: ordered lists () and unordered lists ().

Ordered lists are numbered, while unordered lists are bulleted. Lists are used to

organize items in a structured format, making it easier for users to scan and

understand the information presented.

Unordered List

 Item 1

 Item 2

Listing 5. Unordered List

Ordered List

 First

 Second

Listing 6. Ordered List

P a g e | 20

3.1.3 Forms

Forms are created using the <form> element in HTML. They allow users to input

data and submit it to a server for processing. Forms are commonly used for user

registration, login, contact forms, and more.

<form action="/submit" method="post">

 <label for="username">Username:</label>

 <input type="text" id="username" name="username" required>

 <label for="password">Password:</label>

 <input type="password" id="password" name="password" required>

 <input type="submit" value="Submit">

</form>

Listing 7. Forms in HTML

3.1.4 Attributes

ID and Class

Attributes provide additional information about HTML elements and are used to

modify their behavior or appearance. Two commonly used attributes are id and

class. The id attribute uniquely identifies an element on a page, while the class

attribute specifies one or more class names to apply styling or scripting purposes

<div id="container" class="important">

 <!-- Content -->

</div>

Listing 8. ID and Class

Source and Alt (Image)

Images are inserted into an HTML document using the element. They are

used to enhance the visual appeal of a webpage and convey information through

P a g e | 21

graphics and illustrations. Images can help break up large blocks of text and

make the content more engaging for users.

Listing 9. Images

3.1.5 QA-Specific Considerations

Inspecting Elements

QA professionals benefit from using browser developer tools (F12 or right-click

and "Inspect") to scrutinize and comprehend the structure of web elements.

Automated Testing

In automated testing, understanding locators (XPath, CSS selectors) is crucial for

identifying HTML elements, especially when using frameworks like Selenium.

A proficient grasp of HTML empowers QA professionals in testing web

applications comprehensively. While this guide covers fundamental HTML

elements, continuous learning and hands-on experience remain integral for

maximizing testing effectiveness.

3.2 CSS

CSS, or Cascading Style Sheets, is a stylesheet language used to define the

presentation of HTML (Hypertext Markup Language) elements on web pages. It

enables one to control the layout, formatting, and visual appearance of web

content, making it an essential tool for creating aesthetically pleasing and user-

friendly websites.

Key Concepts

P a g e | 22

Selectors in CSS are patterns used to target specific HTML elements on a web

page for styling purposes. These patterns can be based on various criteria such

as element names, IDs, classes, attributes, or their hierarchical relationships

within the HTML document.

/* Selects all <p> elements and sets their text color to blue */

p {

 color: blue;

}

Listing 10. Selectors

By using the selector p, all <p> elements in the HTML document are targeted.

The corresponding CSS declaration { color: blue; } sets the text color of these

<p> elements to blue.

Listing 10 illustrates how CSS selectors can be employed to apply styling rules

to specific HTML elements, enhancing the visual presentation of web content.

CSS properties specify the visual style of selected elements, while values

determine how those properties should be applied. Properties include attributes

like `color`, `font-size`, `margin`, `padding`, `background-color`, `border`,

etc.

/* Sets the font size of all paragraphs to 16 pixels */

p {

 font-size: 16px;

}

Listing 11. Properties and Values in CSS

When applied to the selector p, the CSS declaration { font-size: 16px; } sets the

font size of all paragraphs (<p> elements) to 16 pixels.

P a g e | 23

Listing 11 showcases how CSS properties and values work together to specify

the appearance of HTML elements, allowing for consistent and visually appealing

web design.

Selectors and declarations are fundamental components of CSS rules. Selectors

determine which HTML elements will be styled, while declarations specify the

styles to be applied to those elements.

/* Selects all elements with class "highlight" and sets their background

color to yellow */

.highlight {

 background-color: yellow;

}

Listing 12. Selectors and declarations

For example, in the CSS rule .highlight { background-color: yellow; }, the

selector .highlight targets all elements with the class "highlight". The declaration

background-color: yellow; specifies that the background color of these

elements should be yellow.

Element Selector targets all instances of a specific HTML element. For Example

in Listing 13, the selector h1 targets all <h1> elements in the HTML document.

The declaration color: red; specifies that the text color of these elements should

be red.

/* Selects all <h1> elements and sets their font color to red */

h1 {

 color: red;

}

Listing 13. Element Selectors

Class Selector targets elements with a specific class attribute. For instance, in

the Listing 14 CSS rule, the selector .button targets all elements with the class

P a g e | 24

"button". The declaration background-color: green; specifies that the

background color of these elements should be green.

/* Selects all elements with class "button" and sets their background

color to green */

.button {

 background-color: green;

}

Listing 14. Class Selectors

ID Selector targets a single element with a specific ID attribute. Consider the

Listing 15 CSS rule, the selector #header targets the element with the ID

"header". The declaration font-size: 24px; specifies that the font size of this

element should be 24 pixels.

/* Selects the element with ID "header" and sets its font size to 24

pixels */

#header {

 font-size: 24px;

}

Listing 15. ID Selectors

Attribute Selector selector targets elements with a specific attribute or attribute

value. For example, in the Listing 16 CSS rule, the selector [title] targets all

elements that have a title attribute. The declaration font-weight: bold; specifies

that the font weight of these elements should be bold.

/* Selects all elements with the title attribute and sets their font

weight to bold */

[title] {

 font-weight: bold;

}

Listing 16. Attribute Selector

P a g e | 25

CSS supports various units for specifying measurements, such as pixels (`px`),

percentages (`%`), em, rem, etc. Understanding these units is crucial for creating

responsive and scalable designs.

The CSS box model is a fundamental concept that describes the layout of

elements on a web page. It comprises four main components: content, padding,

border, and margin. These components collectively influence how elements are

sized and spaced within a layout.

/* Adds padding of 20 pixels to all sides of the element */

.box {

 padding: 20px;

}

Listing 17. CSS Box model

In the Listing 17, the .box class represents an HTML element. The padding: 20px;

declaration specifies that a padding of 20 pixels should be applied to all sides of

the element, creating space between the content and the element's border. This

padding affects the overall size and appearance of the element within the layout.

CSS frameworks, such as Bootstrap and Foundation, offer a collection of pre-

designed CSS styles and components that facilitate web development. These

frameworks provide a standardized set of styles for elements like buttons, forms,

navigation bars, and more, allowing developers to create consistent and visually

appealing web interfaces efficiently.

<!-- Example using Bootstrap classes to create a button -->

<button class="btn btn-primary">Click me</button>

Listing 18. Bootstrap class for Buttons

In Listing 18, Bootstrap classes are utilized to style a button element. The btn

class applies basic button styling, while the btn-primary class specifies the

P a g e | 26

button's primary color scheme. By leveraging CSS frameworks like Bootstrap,

developers can expedite the development process and ensure consistency

across different parts of their web applications. Familiarity with these frameworks

can be advantageous for QA professionals involved in testing web applications,

as it allows them to understand the standardized styling and behavior expected

from various UI components.

By mastering CSS fundamentals and understanding its syntax, selectors,

properties, and units, QA professionals can effectively test and ensure the visual

consistency and responsiveness of web applications.

3.3 JavaScript

JavaScript is a high-level programming language commonly used for creating

interactive and dynamic functionality on web pages. As a QA professional,

understanding JavaScript fundamentals is essential for testing web applications

effectively.

Key Concepts

JavaScript variables serve as containers for storing data values, providing a

means to manipulate and manage data within a script. These variables can

accommodate various data types, including numbers, strings, booleans, arrays,

objects, and functions, enabling developers to work with diverse data structures

and values effectively.

An example illustrating JavaScript variables and their data types is presented in

Listing 19 below. This example showcases variable declarations and

assignments, demonstrating how different types of data can be stored and

accessed within a script.

// Variable declaration and assignment

let greeting = 'Hello, world!';

let age = 25;

P a g e | 27

let isUserLoggedIn = true;

let numbersArray = [1, 2, 3, 4, 5];

let person = { name: 'John', age: 30 };

Listing 19. JavaScript variables and data types.

In this listing, several variables are declared and initialized with values of different

data types. For instance, the variable greeting stores a string value ('Hello,

world!'), age holds a numerical value (25), isUserLoggedIn represents a boolean

value (true), numbersArray contains an array of numbers ([1, 2, 3, 4, 5]), and

person stores an object with properties describing a person (name: 'John', age:

30). This example demonstrates the versatility of JavaScript variables in

accommodating various data types and structures.

Functions in JavaScript serve as reusable blocks of code designed to execute

specific tasks. They offer a structured approach to organizing code logic and

promoting reusability within scripts. Functions can accept input parameters and

optionally return values, providing a flexible mechanism for performing various

operations.

// Function declaration

function greet(name) {

 return 'Hello, ' + name + '!';

}

// Function call

let message = greet('Alice'); // Returns 'Hello, Alice!'

Listing 21. Functions

In this Listing 21, the greet function is declared with a single parameter name,

which represents the name of the person to be greeted. Inside the function, a

greeting message is constructed using the provided name, and the resulting

message is returned to the caller. The function is then invoked with the argument

'Alice', resulting in the generation of the message 'Hello, Alice!'.

P a g e | 28

JavaScript supports conditional statements such as if, else if, and else, allowing

developers to execute different code blocks based on specified conditions. These

statements enable developers to implement decision-making logic within their

scripts, facilitating dynamic behavior and response to varying circumstances.

let hour = new Date().getHours();

let greeting;

if (hour < 12) {

 greeting = 'Good morning!';

} else if (hour < 18) {

 greeting = 'Good afternoon!';

} else {

 greeting = 'Good evening!';

}

Listing 22. Conditional statements

In this Listing 22, the current hour of the day is retrieved using the getHours

method of the Date object. Based on the value of the hour variable, a suitable

greeting message is assigned to the greeting variable using conditional

statements. Depending on the time of day, the script dynamically selects and

assigns an appropriate greeting message ('Good morning!', 'Good afternoon!', or

'Good evening!').

JavaScript provides various types of loops, including for, while, and do-while, for

iterating over arrays, objects, or executing code repeatedly.

// Loop through an array

let numbers = [1, 2, 3, 4, 5];

for (let i = 0; i < numbers.length; i++) {

 console.log(numbers[i]);

}

Listing 23. Loops

P a g e | 29

In this Listing 23, a for loop iterates over the elements of the 'numbers' array. It

starts with an index variable 'i' initialized to 0 and continues as long as 'i' is less

than the length of the array. The loop body logs each element of the array to the

console.

The Document Object Model (DOM) represents the structure of HTML

documents, and JavaScript allows one to manipulate it dynamically. One can

access and modify HTML elements, attributes, and styles using JavaScript.

// Change text content of an element

document.getElementById('myElement').textContent = 'New text';

// Add a CSS class to an element

document.querySelector('.box').classList.add('highlight');

Listing 24. DOM manipulation

The Listing 24 demonstrate essential DOM manipulation techniques. In the first

snippet, the getElementById method targets an HTML element with the ID

'myElement', subsequently updating its text content to 'New text' via the

textContent property. This action dynamically modifies the displayed text within

the specified element. In the second snippet, the querySelector method selects

the first HTML element with the class 'box', followed by the classList.add method,

which adds the 'highlight' CSS class to the selected element. This addition of a

CSS class enables the application of specific styles to the element, facilitating

visual enhancements or modifications. Overall, these snippets exemplify

JavaScript's capability to interact with and manipulate the DOM, empowering

developers to create dynamic and engaging web experiences.

JavaScript includes error handling mechanisms like try, catch, and finally blocks

to handle exceptions and prevent runtime errors from crashing the application.

P a g e | 30

JavaScript enables event-driven programming, allowing one to respond to user

interactions like clicks, mouse movements, keyboard inputs, etc., by attaching

event handlers to HTML elements.

JavaScript supports asynchronous programming with features like callbacks,

promises, and async/await, enabling non-blocking execution of code and better

handling of tasks such as fetching data from servers.

By mastering JavaScript basics, including variables, functions, conditionals,

loops, DOM manipulation, and error handling, QA professionals can effectively

test web applications for functionality, interactivity, and responsiveness.

P a g e | 31

4 Tools available for QA (Quality Assurance) professionals

There are numerous tools available for QA (Quality Assurance) professionals,

catering to various aspects of the testing process. Here are some important QA

tools along with examples.

1. Jira (Test Management Tool)

2. Jmeter (Performance Testing Tool)

3. Postman (API Testing Tool)

4. Robot Framework Based on Selenium

4.1 Jira

Jira is a helpful tool for managing projects. It helps teams work together better by

organizing tasks and keeping track of what needs to be done. In this section, we'll

learn about some important features of Jira and why they're useful for getting

things done efficiently.

4.1.1 Epics and Stories

Imagine building a house. An epic is like saying, "Let's build a house." It's a big

idea or goal. Stories are like saying, "Let's build a kitchen," "Let's paint the walls,"

or "Let's install a door." They are smaller tasks that help achieve the big goal.

Epics help us see the big picture of what we're trying to do. Stories help us break

down the big tasks into smaller, manageable pieces. They make it easier to

understand and work on.

Let’s Create Epics and stories with example.

To create an epic or story in Jira, one usually go to one’s project, click "Create,"

and choose either "Epic" or "Story" from the options.

Then one give it a name and describe what it's about. For an epic, one might

describe the big goal. For a story, one might explain the specific task.

P a g e | 32

Figure 1. Epic with the description and goal.

When creating a Story, one need to select the parent Epic from the dropdown

menu under which one want to create the Story.

Figure 2. Selecting a parent in a Stroy

When creating a Story, it's crucial to include a clear description and well-defined

acceptance criteria. These details serve as guidelines for both developers and

QA/testers, ensuring a common understanding of the task's requirements and

expected outcomes.

P a g e | 33

Figure 3. Example of story with description and acceptance criteria.

When one create a Story, make sure to split it into smaller tasks and subtasks.

This helps keep things organized and makes it easier to understand what needs

to be done, which is important for smooth development and testing

Figure 4. Task Linked to Story

We can give tasks, stories, or big projects to the person who will do the work.

P a g e | 34

4.1.2 Report a Bug

When one encounter something unexpected, broken, or when a program doesn't

perform as intended, it's referred to as a bug.

To report a bug in Jira, first, click the "Create" button at the top-right corner of the

screen. Then, choose "Bug" from the list of issue types. Write a brief title

summarizing the problem and describe the bug in detail.

In the description field, provide a detailed explanation of the bug. Include

information such as:

• Steps to reproduce the bug.

• Expected behavior.

• Actual behavior (what one observed).

• Environment details (e.g., browser version, operating system).

• Any relevant screenshots or attachments.

After describing the bug, it's important to set its priority and severity. This helps

show how urgent it is to fix the bug and how much it affects the system or users.

Then, assign the bug to the right team or person responsible for fixing it. Also,

add labels like "UI" or "performance" to categorize the bug for better organization

and understanding.

P a g e | 35

Figure 5. Bug example

4.1.3 Backlog refinement

Backlog refinement is when we look at the list of things we want to do in a

software project, decide which ones are most important, and figure out how to do

them. As a QA person, one get to join in these discussions to make sure the

upcoming features are easy to test and to spot any problems early on. In Jira,

which is a tool we use to keep track of our work, we can create and organize

these tasks, talk to each other about them, and see how things are progressing.

So, basically, it's a way for the team to plan and organize their work, and for QA

to make sure testing is on track.

4.1.4 Acceptance criteria

In Jira, acceptance criteria are like a checklist that tells us when a task or story is

done right. They're simple statements that explain what needs to happen for the

work to be finished. For example, if we're building a login page, the acceptance

criteria might say that users should be able to enter their username and password

and successfully log in. As a QA person, having these criteria helps us know what

to test and make sure everything works as it should. In Jira, we can write down

these criteria right where we're working on the task, so everyone knows what

needs to be done. It keeps us all on the same page and helps us build things the

right way.

P a g e | 36

Figure 6. Story with acceptance criteria

4.1.5 Sprint

In Agile, a sprint is like a short, focused work period, usually lasting a couple of

weeks. During a sprint, a team tackles a specific set of tasks or stories they've

planned out beforehand. It's a way to stay on track and deliver useful stuff to the

project bit by bit.

To create a sprint, one need to first enable the feature in the project settings. One

can do this by going to "Project Settings" and then selecting "Features." Once

one have enabled sprints, one will see the option to create a new sprint.

Now, navigate to the "Boards" section from the left navigation menu and click on

the "Create Sprint" button located on the left side of the columns. After clicking

the button, a new section will appear on top of the backlog. Here, one can edit

the sprint name, add some goals, and set the time period for the sprint. Once one

have done that, one can drag and drop the tickets one want to complete during

that sprint. After selecting the tickets, one can start the sprint by clicking on the

"Start" button.

P a g e | 37

Figure 7. Screen to add sprint goals and timeline

Figure 8. Sprint area for selecting tickets

P a g e | 38

Figure 9. Start sprint

4.1.6 Xray installation and configuration

Xray is a popular test management app for Jira that enhances testing capabilities

within Jira.

To install Xray Test Management for Jira, start by clicking on "Apps" beside the

"Create" button in one’s Jira instance. Then, click on "Explore more" and search

for the keyword "Xray." From the search results, click on "Xray Test Management

P a g e | 39

Tool for Jira," and then click on "Try it for free" on the popup. Next, click on "Start

free trial." This may take some time. Once the app is installed, one will see a

notification in the bottom-left corner to get started with configuration. Review all

the configurations and update settings if needed. Now, go to "Apps," click on

"Manage apps," then click on "Xray," and finally click on "Get started." Here, click

on the "Configure project" button. A popup will appear; select the project where

one want to add Xray and click on "Configure." After selecting the project, wait

for some time. After that, one will need to manually add the issue type for Xray

from the project's issue type settings.

4.1.7 Create Xray

To create an Xray test case in Jira, first, click on the "Create" button, then select

"Xray." Next, add the summary and details about the test case the one creating.

Once one have added the basic details, one need to include the steps to perform

the specific task.

For example, if one is creating an Xray test case for the login page's happy flow

(where all information is correct and no errors are expected), follow these steps:

1. Click on the "Add Step" button. A new area will appear with three sections:

Action, Data, and Expected Result.

• In the Action section, write "Go to Login page" or "Visit the login

page" and provide the link to the page in the Data section.

• In the Expected Result section, write "Login page should be visible."

One can also add a screenshot of the login page.

2. Click on "New Step" to add the next action.

• In the Action section, write "Add username and password provided

in the Data files and click on the login button."

• In the Data section, provide the username and password.

• In the Expected Result section, write "Success message should

appear, and the user should be redirected to the dashboard." One

can also add a screenshot of the dashboard.

P a g e | 40

Figure 10. Xray Title and detail

Figure 11. Area to add the steps

P a g e | 41

Figure 12. Complete xray

4.1.8 Test Execution

In Jira, test execution means running tests to check if software works correctly.

Here's how one do it: first, one go to the part of Jira where tests are managed.

Then, one pick the tests one want to run. When one is ready, one start the test.

One follow the steps in each test, like clicking buttons or entering information. As

one do this, one note down what happens—whether it works as expected or if

there are any problems. If something doesn't work right, one let the team know

so they can fix it. Once one finish all the tests, one mark them as done. That's

P a g e | 42

how one perform test execution in Jira—it's all about checking that the software

does what it's supposed to do.

Figure 13. Test Execution Result

P a g e | 43

4.2 JMeter

This section explains using JMeter for performance testing. First, learn how to

install JMeter on the machine. Then, find out how to create a test plan to decide

what and how to test. This includes setting up things like simulating users and

checking results. Once the plan is ready, then see how to run the test and check

the results.

Getting started with Apache JMeter is straightforward. First, head over to the

official Apache JMeter website and download the latest version that matches

one’s operating system. Once downloaded, simply extract the files to a folder of

one’s preference. To launch JMeter, navigate to the "bin" directory within the

extracted folder and run the appropriate script—either "jmeter.bat" for Windows

or "jmeter.sh" for Unix/Linux systems. These steps ensure that one have JMeter

up and running on one’s machine, ready for performance testing tasks.

Figure 14. the "bin" folder of the installation.

P a g e | 44

Figure 15. jmeter.bat output

Figure 16. JMeter UI

Creating a test plan in Apache JMeter is easy. First, when one open JMeter, one

will see its interface. It's where one make one’s performance tests. Now, in a test

plan, one have threads and thread groups. Threads are like pretend users, and

thread groups are where one set up how these pretend users will act. For

example, one might want to pretend 100 users are visiting one’s website at the

P a g e | 45

same time. One do this by setting up a thread group. To do that, one right-click

on "Test Plan" on the left side and choose "Add" -> "Threads (Users)" -> "Thread

Group". This lets one set how many pretend users there are, how fast they show

up, and how many times they repeat their actions. Once Ons’ve set up one’s

thread group, one can add more things like samplers and listeners to complete

one’s test plan and see how well one’s website or app handles the pretend traffic.

Configuring a thread group in Apache JMeter is the next step after creating one’s

test plan. To start configuring, right-click on the thread group one just made.

Then, select "Add" and "Sampler". This allows one to add different types of

requests to one’s test plan, like HTTP requests or others, depending on what one

want to test. For instance, if one is testing a website, one might add an HTTP

request sampler to simulate users accessing web pages. This step is crucial for

setting up the actions one’s pretend users will take during the test.

Adding listeners in Apache JMeter helps one see the results of one’s performance

test in a clear way. To start, one right-click on the thread group one created or

any sampler one added earlier. Then, one choose "Add" and "Listener". Think of

listeners like a window where one can peek into what's happening during one’s

test. They show one things like response times, errors, and other important

details. For example, if one want to see how fast one’s website is responding to

requests, one might add a "View Results Tree" listener. This listener displays all

the responses from one’s server, letting one check if everything is working as

expected. Adding listeners is crucial for understanding how one’s application

performs under different conditions and helps one spot any issues that need

fixing.

Running one’s test in Apache JMeter is as simple as clicking a button. To start,

one just need to click on the "Play" button in the toolbar. This button looks like a

triangle pointing to the right. When one click it, JMeter will begin executing all the

requests one have set up in one’s test plan. It's like pressing "go" and letting

JMeter do its thing. This step is crucial because it's when one’s test actually runs

and one gather data about how one’s application performs under the load one

P a g e | 46

have simulated. It's a bit like starting a race—one is eager to see how well one’s

application handles the traffic one have thrown at it. Running the test lets one

collect valuable information that one can use to optimize one’s application and

make it more robust.

To perform performance testing on a public URL, such as the OpenAI homepage,

using Apache JMeter, first, ensure one have JMeter installed and open a new

test plan. Within the test plan, create a thread group to simulate users accessing

the webpage concurrently. Then, add an HTTP Request sampler and specify the

URL of the webpage one want to test, like "https://www.openai.com/". After

configuring the thread group and sampler, add a listener, such as the View

Results Tree, to observe the test results. Finally, run the test by clicking the "Play"

button, and JMeter will execute the requests to the specified URL, providing one

with performance metrics such as response times and throughput. Analyze the

results to assess how the webpage performs under the simulated load.

Remember to start with a small number of threads and gradually increase to avoid

overwhelming the server, and always adhere to the website's terms of service

and performance testing guidelines.

Analyzing the results of one’s performance test in Apache JMeter is crucial for

understanding how well one’s website or application performs. Let's break down

the key listeners:

1. View Results Tree: This listener lets one see individual requests made during

the test. One can check details like request and response data, headers, and

response times. It's like looking at each action taken by one’s application one by

one, helping one spot any specific issues or slowdowns.

2. Summary Report: With this listener, one get a summary of the overall test

results. It shows metrics such as average response time, requests per second

(throughput), error rate, and median response time. It's handy for getting a quick

overview of how one’s application performed during the test, highlighting any

trends or areas needing attention.

P a g e | 47

3. Aggregate Report: This listener combines results from multiple samples into

one table. It provides statistics like average, median, and minimum and maximum

response times. This is helpful for comparing different parts of one’s test plan or

configurations, pinpointing where improvements are needed.

These listeners, along with others like Graph Results and Assertion Results, help

one dig deeper into one’s test data. By running tests multiple times under various

conditions, one can ensure the accuracy of one’s findings. Analyzing the results

lets one identify bottlenecks, validate optimizations, and make informed decisions

to enhance one’s application's performance and scalability.

Figure 17. Test plan

P a g e | 48

Figure 18. Thread group

Figure 19. Sampler

P a g e | 49

Figure 20. View result tree listener

Figure 21. Summary report listener

P a g e | 50

Figure 22. Aggregate report listener

Parameterization, assertions, and timers are essential aspects of performance

testing in Apache JMeter, allowing one to make one’s tests more flexible, validate

responses, and introduce realistic delays between requests. To parameterize

one’s test, one can define variables like ${username} and ${password} to

simulate different user inputs. This is done by navigating to "Add" -> "Config

Element" -> "User Defined Variables" and specifying the variables one want to

use. Assertions play a crucial role in validating the responses received from the

server. By right-clicking on the sampler, one can add assertions to check if the

response meets certain criteria, ensuring the correctness of one’s application's

behavior under load. Additionally, timers help in introducing delays between

requests, mimicking real-world scenarios where users don't send requests

instantaneously. One can add a timer by right-clicking on the sampler and

choosing "Add" -> "Timer". These features allow one to create more realistic and

accurate performance tests, helping one identify and address any issues in one’s

application's performance.

P a g e | 51

4.3 Postman

Postman is a tool to check if computer programs (APIs) work right. It helps Quality

Assurance (QA) teams by sending messages to a computer and watching what

comes back. It used to be a small part of a web browser, but now it's its own

program one can use on a computer or online.

QA engineers use Postman to make sure computer programs (APIs) work OK.

They do different tests like asking for information (GET), sending information

(POST), changing information (PUT), or removing it (DELETE). This helps make

sure the programs behave right in different situations. They also make special

tests called "collections." These collections organize lots of tests neatly. They can

run these tests automatically to watch how well the program works all the time. If

they want to see how the program deals with lots of people using it at once, they

can do that too with Postman. They can also make different situations, like

pretending the program is in a "development" or "production" place, to check if it

works everywhere. Postman also helps make notes about the program so others

can understand it easily. Plus, they can work together with others on the tests

and share everything easily. This makes it easier to talk about what they find and

work as a team.

People like using Postman for QA because it's easy to use. It has simple menus

and buttons, so anyone can use it, even if they're not great with computers. It lets

one do lots of different things, like testing programs, making tests run alone,

watching how programs work, and working with others on tests. One can use it

on a computer, online, or even by typing commands, so it works with any

computer. Lots of people use it and help each other out, so if one get stuck, one

can usually find someone who knows how to fix it. And if one're using other tools

to check programs, Postman can work with them too, so one don't have to switch

back and forth between different programs all the time.

In Postman, a collection is like a folder where one keep all one’s related API

requests together. Collections have special features like Authorization, Pre-

request Scripts, Tests, Variables, and Run.

P a g e | 52

Authorization in a collection means one can set up how one want to log in or

authenticate once, and it'll apply to all the requests in that collection. So, one don't

have to set it up for each request separately.

Pre-request Scripts are like little tasks one can do before sending a request. For

example, one can change some data or set things up before making the request.

Tests in a collection are checks one can set up to make sure the API responses

are correct. One can say things like, "Check if the status code is 200" or "Make

sure the response has certain data."

Variables let one store information that one can reuse in different requests. It's

like having placeholders for data that one can use wherever one need them.

The Run feature lets one run all the requests in one’s collection one after another.

This is handy because one can test everything in one’s collection at once, saving

time.

Collections are a simple way to organize and test one’s APIs in Postman, making

it easier to manage and run one’s tests.

Figure 23. Collection example for UPS Shipping

P a g e | 53

Variables in Postman are like placeholders for values that one use in one’s

requests. For example, one might have a variable called {{base_url}} for the

main URL of one’s API, or {{token}} for an authentication token.

These variables can be set up in two main places: in a collection or in an

environment.

Collection Variables: These are specific to a collection. One can set them up

once, and they'll be used in all the requests within that collection.

Environment Variables: These are more flexible. One can set them up in an

environment, and they'll apply to all requests in that environment. This means

one can have different values for different environments like development,

testing, or production.

By using variables, one can avoid repeating the same values over and over again

in one’s requests. It makes one’s requests cleaner and easier to manage.

Figure 24. Collection variable

P a g e | 54

Figure 25. Environment variable

Figure 26. Pre-request Script

This pre-request script from figure 26 checks if a token is about to expire or has

expired. If it is, it automatically renews the token by sending a request to a token

endpoint with the client credentials. After receiving a response, if successful, it

updates the stored bearer token and expiry time. This ensures that there's always

a valid token available for making requests, preventing interruptions due to

expired tokens.

P a g e | 55

To add a new request to a collection in Postman, one have two options. One can

either click the "New" button at the top right corner of the Postman sidebar, or

one can right-click on the collection and select "Add request" from the menu.

Once one've selected to add a request, one can choose the type of request one

want to make, like POST, GET, DELETE, or PATCH.

In the example of creating a shipment, we use the endpoint

{{base_url}}/api/shipments/:version/ship. Here, we've used a variable called

base_url, which could be defined in either the collection's variables or in an

environment.

When creating a request, one have several features to configure:

• Params: If one need to add parameters in the URL, one can specify them

here, and they'll be added to the URL.

• Authorization: By default, the request will use the authorization settings

from the collection. But if one need to change it for this specific request,

one can do that here.

• Headers: One can pass headers here, like specifying the content type as

JSON.

• Body: This is where one specify the body of the request. It could be in

different formats like JSON, form-data, or raw text.

• Pre-request: Here, one can add any additional tasks one want to perform

before sending the request.

• Tests: In the tests section, one can define what kind of data one expect in

the API response. For example, one might expect JSON or an array.

These features help one customize one’s request according to one’s API's

requirements and expectations for testing and integration purposes.

P a g e | 56

Figure 27. JSON body passed to create shipment

Figure 28. Test to expect status 200

P a g e | 57

4.4 Robot framework

Robot Framework is a powerful open-source test automation framework used in

software quality assurance (QA) to automate testing processes. It's designed to

be easy to use, even for those without extensive programming knowledge. The

framework follows a keyword-driven approach, where tests are written using

simple keywords and natural language, making them easy to read and

understand.

In the real world, Robot Framework is used in various industries and applications

to automate testing tasks across different types of software projects. For

example, in web development, Robot Framework can be used to automate UI

testing, where it interacts with web pages, fills out forms, clicks buttons, and

verifies expected behavior. In API testing, Robot Framework can send requests

to APIs, validate responses, and ensure that APIs are working correctly. It's also

used in acceptance testing, where it simulates user interactions to validate that

the software meets specified requirements.

For QA professionals, Robot Framework is invaluable because it saves time and

improves efficiency in testing processes. By automating repetitive testing tasks,

QA teams can focus their efforts on more complex and critical aspects of software

testing, such as exploratory testing and edge-case scenarios. Robot Framework

also provides detailed test reports and logs, helping QA professionals identify

issues quickly and accurately.

To install Robot Framework on one’s machine, one first need to have Python

installed. Python comes with a package manager called pip, which we use to

install Robot Framework. Once Python is installed, one can use the pip command

to install Robot Framework. It goes like this:

pip install robotframework

When working with Robot Framework, one’s tests are organized into collections

of files called test suites. Each test suite can contain multiple test files, and each

file can have several test cases. In Robot Framework, we create test files with a

P a g e | 58

".robot" extension. Typically, one will find all one’s test files stored in a folder

called "Tests" within one’s project directory."

A ".robot" file in Robot Framework follows a structured format. It typically includes:

Settings: This section is used to configure settings for the test suite or individual

test cases. Settings can include things like specifying the library to use,

configuring timeouts, or defining test setup and teardown procedures.

Variables: In this section, one can define variables that can be used throughout

the test suite or specific test cases. These variables can hold values like URLs,

usernames, passwords, or any other data that needs to be reused across tests.

Keywords: Keywords are reusable blocks of functionality that perform specific

actions or verifications. They are defined in this section and can be called within

test cases to perform actions like clicking buttons, verifying text, or making API

requests.

Test Cases: This is where one define the actual test cases that one want to

execute. Each test case consists of a sequence of steps that use keywords to

interact with the system under test and verify its behavior. Test cases can include

setup and teardown steps as well as assertions to verify expected outcomes.

In Robot Framework, test setup and teardown are special sections within a test

case that define actions to be performed before and after the execution of each

test case, respectively.

Test Setup: The test setup section contains steps that are executed before the

main body of the test case. These steps are typically used to prepare the test

environment or to perform any necessary preconditions for the test case to run

successfully. For example, one might use the test setup section to open a

browser, log in to a web application, or set up test data.

Test Teardown: The test teardown section contains steps that are executed after

the main body of the test case has been executed. These steps are used to clean

up the test environment or to perform any necessary postconditions after the test

case has run. For example, one might use the test teardown section to close the

browser, log out of a web application, or clean up any test data that was created

during the test.

locators are like addresses for elements on a web page. Just like one need an

address to find a house, one need a locator to find elements like buttons, input

P a g e | 59

fields, or links on a web page. Locators help automation tools, like Robot

Framework, to identify and interact with these elements during testing.

There are different types of locators, each with its own way of finding elements.

ID: Each element can have a unique ID, like a house number. ID locators directly

target specific elements.

Class Name: Similar elements, like houses in the same neighborhood, can share

a class name. Class name locators can target multiple elements with the same

class.

Name: Some elements have names, like people. Name locators can find

elements based on their names.

XPath: XPath locators use paths to navigate through the HTML structure of a

web page, like following a map to find a location.

CSS Selector: CSS selectors are patterns used to select elements based on their

attributes or relationships with other elements.

Link Text: For links, the visible text is used as a locator.

Partial Link Text: If one don't know the full text of a link, one can use part of it to

locate the element.

Tag Name: Tag name locators target elements based on their HTML tag names,

like finding all houses with the same building style.

HTML Element: <input id="username" type="text">

Robot Framework Locator:

${id_locator}= id:username

HTML Element: <button class="submit-button">Submit</button>

Robot Framework Locator:

${class_locator}= class:submit-button

HTML Element: <input name="email" type="text">

Robot Framework Locator:

${name_locator}= name:email

HTML Element: <input type="text" id="username">

P a g e | 60

Robot Framework Locator:

${xpath_locator}= xpath://input[@id='username']

HTML Element: <input id="username" type="text">

Robot Framework Locator:

${css_locator}= css:input#username

HTML Element: Login

Robot Framework Locator:

${link_locator}= link:Login

HTML Element: Login

Robot Framework Locator:

${partial_link_locator}= partial link:Log

HTML Element: <input type="text">

Robot Framework Locator:

 ${tag_locator}= tag:input

Following is an example where we automate a registration process on a web

page with various types of elements such as text fields, radio buttons,

checkboxes, dropdowns, and button

HTML Structture

<!DOCTYPE html>

<html>

<head>

<title>Registration Page</title>

</head>

<body>

<form id="registration_form">

<label for="first_name">First Name:</label>

<input type="text" id="first_name" name="first_name">

<label for="last_name">Last Name:</label>

<input type="text" id="last_name" name="last_name">

<label for="email">Email:</label>

<input type="text" id="email" name="email">

<label for="password">Password:</label>

<input type="password" id="password" name="password">

<label for="gender">Gender:</label>

P a g e | 61

<input type="radio" id="male" name="gender" value="Male"><label

for="male">Male</label>

<input type="radio" id="female" name="gender" value="Female"><label

for="female">Female</label>

<label for="country">Country:</label>

<select id="country" name="country">

<option value="United States">United States</option>

<option value="Canada">Canada</option>

<option value="United Kingdom">United Kingdom</option>

<!-- Other country options -->

</select>

<label for="interests">Interests:</label>

<select id="interests" name="interests" multiple>

<option value="Books">Books</option>

<option value="Music">Music</option>

<option value="Sports">Sports</option>

<!-- Other interest options -->

</select>

<button id="register_button" type="submit">Register</button>

</form>

</body>

</html>

Registration.robot

*** Settings ***

Library SeleniumLibrary

*** Variables ***

${URL} https://www.example.com/register

${BROWSER} Chrome

${FIRST_NAME} John

${LAST_NAME} Doe

${EMAIL} john.doe@example.com

${PASSWORD} Password123

${GENDER} Male

${COUNTRY} United States

${INTERESTS} Books, Music

${ERROR_MESSAGE} Please fill out this field.

*** Test Cases ***

User Can Register Successfully

[Documentation] Test that a user can register successfully with valid information

Open Browser ${URL} ${BROWSER}

Input Text id:first_name ${FIRST_NAME}

https://www.example.com/register
mailto:john.doe@example.com

P a g e | 62

Input Text id:last_name ${LAST_NAME}

Input Text id:email ${EMAIL}

Input Password id:password ${PASSWORD}

Select Radio Button gender male

Select Country ${COUNTRY}

Select Interests ${INTERESTS}

Click Button id:register_button

Page Should Contain Welcome, ${FIRST_NAME}!

User Cannot Register Without Required Fields

[Documentation] Test that user cannot register without filling out required

fields

Open Browser ${URL} ${BROWSER}

Click Button id:register_button

Page Should Contain ${ERROR_MESSAGE}

*** Keywords ***

Input Password

[Arguments] ${locator} ${password}

Input Text ${locator} ${password}

Press Keys ${locator} \\13 # \\13 is the ENTER key

Select Country

[Arguments] ${country}

Select From List by Label id:country ${country}

Select Interests

[Arguments] ${interests}

${interest_list}= Evaluate "${interests}".split(",")

Unselect All from List id:interests

FOR ${interest} IN @{interest_list}

Select From List by Value id:interests ${interest}

END

In this example, we're automating the registration process on a website using

Robot Framework and SeleniumLibrary. We start by setting up variables for the

URL of the registration page, the browser to use, and the user's input such as

their name, email, and password. Then, we create two test cases: one to test

successful registration and another to test error handling if required fields are not

filled. In the successful registration test case, we input valid information, select

options from dropdowns and radio buttons, and verify the welcome message after

clicking the register button. In the error handling test case, we attempt to register

without filling required fields, click the register button, and verify the displayed

P a g e | 63

error message. We also define custom keywords to securely input passwords,

select gender, country, and interests, and verify text on the page. This example

shows how to automate a registration process with various UI elements using

Robot Framework and SeleniumLibrary.

Figure 29. Developer tool to get the xpath of locaters

Here are some basic built-in keywords in Robot Framework that are important to

remember:

1. Open Browser: Opens a new browser instance. Example: Open Browser

https://www.example.com Chrome

2. Input Text: Types text into a text field. Example: Input Text id:username

my_username

3. Click Button: Clicks on a button element. Example: Click Button id:login_button

4. Select From List by Value: Selects an option from a dropdown list by its value

attribute. Example: Select From List by Value id:country US

5. Wait Until Page Contains: Waits until a specified text appears on the page.

Example: Wait Until Page Contains Welcome, User

6. Run Keyword If: Executes a keyword conditionally based on a condition. Example:

Run Keyword If '${status}' == 'Active' Click Button id:activate_button

P a g e | 64

7. Should Be Equal As Strings: Verifies if two strings are equal. Example: Should Be

Equal As Strings ${actual} ${expected}

8. Log: Logs a message to the console. Example: Log This is a message for debugging

9. Sleep: Pauses test execution for a specified amount of time. Example: Sleep 5

seconds

10. Run Keywords: Executes multiple keywords sequentially. Example: Run Keywords

Click Button id:login_button AND Input Text id:username my_username

P a g e | 65

5 Conclusion

In summary, this thesis looked at different parts of software testing, making sure

computer programs work correctly. We started by learning the basics of testing

and found out different ways to plan and manage tests, along with the tools that

help with testing.

Then, we checked out important web technologies like HTML, CSS, and

JavaScript. These are key for building websites, and we focused on

understanding their structure to test and automate better. Knowing these

technologies helps us improve websites and make testing easier.

It's worth noting that this thesis doesn't give a step-by-step guide on these

technologies and how they work. But it could be helpful to have one for a deeper

understanding. Also, we could have explored more advanced topics in quality

assurance, like GitHub actions and other tools that help with continuous

integration and continuous deployment (CI/CD).

Lastly, we talked about specific tools that make testing software easier, such as

Jira and JMeter. These tools speed up the testing process and help us make

better software.

In conclusion, we've learned that good testing is important for making sure

software works as it should. By using the right tools and techniques, we can

create software that people enjoy using. Let's keep learning and getting better at

making software in the future!

P a g e | 66

References

1. Mozilla Developer Network (MDN). HTML: HyperText Markup Language.

[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/HTML

2. W3Schools. HTML Tutorial. [Online]. Available:

https://www.w3schools.com/html/

3. Mozilla Developer Network (MDN). CSS Documentation. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/CSS

4. W3Schools. CSS Tutorial. [Online]. Available:

https://www.w3schools.com/css/

5. CSS-Tricks - Tips, Tricks, and Techniques. [Online]. Available: https://css-

tricks.com/

6. Mozilla Developer Network (MDN). JavaScript Documentation. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript

7. W3Schools. JavaScript Tutorial. [Online]. Available:

https://www.w3schools.com/js/

8. JavaScript.info - Modern JavaScript Tutorials. [Online]. Available:

https://javascript.info/

9. Apache JMeter. [Online]. Available: https://jmeter.apache.org/

10. Jira. [Online]. Available: https://www.atlassian.com/software/jira/service-

management

11. Postman. [Online]. Available: https://www.postman.com/

12. JMeter. [Online]. Available: https://jmeter.apache.org/

13. Robot framework. [Online]. Available: https://robotframework.org/

