

Ansible and Jenkins based solution for

managing Virtual Machine pools.

Anmol Arora

BACHELOR’S THESIS
December 2024

Software Engineering

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Bachelor's Degree Programme in Software Engineering

ANMOL ARORA:

Ansible and Jenkins based solution for managing Virtual Machine pools.

Bachelor's thesis 38 pages

April 2024

This thesis is dedicated to creating an Ansible and Jenkins based solution for

managing and deploying virtual machines across the global development

ecosystem of a major enterprise specializing in advanced cargo movement and

material handling. The motivation behind this initiative arises from the

developers' need for a more efficient method of obtaining updated VMs. The

primary goal is to establish a universally accessible framework for crafting VM

templates.

The thesis serves as a comprehensive guide, detailing the setup and

configuration of the environment and displaying the use of Ansible playbooks to

accurately instantiate virtual machines. It provides a step-by-step walkthrough

for developing and implementing the proposed solution. By the conclusion of

this thesis, readers will gain a profound understanding of the principles,

methodologies, and practical applications involved in automating VM template

customization.

The approach combines the versatility of Ansible with a user-friendly framework,

enabling developers to easily adapt and employ the solution across diverse

scenarios within the enterprise. This not only addresses the immediate need for

updated VMs but also contributes to a more streamlined and accessible

process for all members of the corporate environment.1

1 Key words: Ansible-based solution, virtual machines, VM templates,
automating, playbooks.

3

CONTENTS

1 INTRODUCTION ... 6

1.2 Motivation for the project ... 6

2 BACKGROUND ... 7

2.1 Ansible... 7

2.1.1 Ansible ad-hoc commands .. 8

2.1.2 Ansible patterns and modules ... 9

2.1.3 Ansible Roles .. 10

2.1.4 Ansible Playbooks... 12

2.1.5 Ansible Tags ... 14

2.2 Jenkins .. 15

2.2.1 Jenkins Plugins ... 15

3 EXECUTION .. 17

3.1 System architecture ... 17

3.1.1 Overview diagram and introduction .. 17

3.1.2 Main components ... 17

3.1.3 Project Directory structure .. 18

3.2 Client Side ... 19

3.2.1 Jenkins Job Parameters ... 20

3.2.2 Jenkins Working ... 21

3.2.3 Pipeline deep dive .. 23

3.3 Version Control .. 25

3.4 Jenkins Agent .. 26

3.4.1 Docker File .. 27

3.4.2 Ansible .. 28

3.5 Server Side .. 31

3.5.1 XenServer CLI .. 31

4 RESULTS AND DISUCSSION ... 33

4

4.1 Old VS New ... 33

4.2 Future plans and development .. 35

5 CONCLUSION ... 36

REFERENCES .. 37

5

ABBREVIATIONS

CLI Command Line Interface

GROOVY Scripting language used to define Jenkins Pipelines

IT Information Technology

INI Initialisation

IP Internet Protocol

JINJA Web template engine for Python

JRE Java Runtime Environment

JSON JavaScript Object Notion

NODES Target device managed by Ansible.

SCM Source Code Management

SSH Secure Shell Server

UI User Interface

URL Uniform Resource Locator

VM Virtual Machine

XE XenServer Edition

YAML YAML Ain’t Markup Language

XVA X-Value Adjustment / virtual appliance format

6

1 INTRODUCTION

The thesis focuses on leveraging Ansible and Jenkins to address the

challenges in managing and distributing virtual machines within a multinational

company specialising in advanced cargo and material handling. The current

manual and outdated distribution process consumes valuable man-hours,

prompting the need for automation to enhance efficiency.

The goal is to create a streamlined solution that empowers developers to easily

customise VM templates, fostering a more flexible and agile development

workflow. This aligns with the company's broader objective of promoting

automation.

The proposed solution, utilising Ansible, is chosen for its declarative

configuration, agentless architecture, and Infrastructure as Code (IaC)

approach. The design emphasises simplicity, enabling easy setup and

configuration adaptability for various environments.

The completion criteria for the thesis involve developers using Jenkins pipelines

alongside Ansible playbooks to autonomously create personalised virtual

machines. These virtual machines are used within the company environment for

various purposes like developer VMs and for running company internal software

for testing and further development. Extensive documentation will accompany

the solution to ensure comprehensive understanding and implementation.

By adopting Ansible's capabilities and integrating it into the Jenkins

development pipeline, the thesis aims to not only resolve the existing

inefficiencies but also contribute to a more dynamic and responsive adaptation

of virtual environments to evolving project requirements.

1.2 Motivation for the project

The project started as a suggestion ticket in Jira which was assigned to the

DevOps team, the suggestion was to create a faster way to distribute virtual

7

machine template images in the development network consisting of 20+ server

pools and a total of 60+ servers.

After some internal discussions, work on this ticket was started. The primary

goal was to use Ansible to create several playbooks which would work in

conjunction with the already existing xen-utilities installed in all the servers. In

addition, for easier usage and accessibility, it was decided to set up a Jenkins

pipeline as well. Finally, the project should also allow distribution of the newly

created templates to all the pools, additionally customisation such as name and

snapshot name for the VM can also be set.

2 BACKGROUND

This chapter will explore the theoretical foundation, benefits, and drawbacks of

the primary technologies used in this project. Details on usage and application

will be discussed and presented in the following sections.

2.1 Ansible

Ansible is a Python-based open-source tool which operates via command-line

for automating IT tasks. It can configure systems, deploy software, and

orchestrate complex workflows.

Simplicity and ease of use are the main strengths of Ansible. It features minimal

moving parts and has a strong focus on security and reliability. It uses

OpenSSH for transport and uses a human readable language that does not

require a lot of training.

Originally written by Michael DeHaan in 2012, and acquired by Red Hat in 2015,

Ansible can be used to configure both Unix-like systems and Microsoft

Windows. Ansible is agentless and utilizes temporary remote connection (SSH)

or Windows Remote Management (WinRM) via PowerShell execution.

8

Figure 1: Ansible basic architecture (Rajesh Kumar, July 4,2019).

Some of the design goals of Ansible are:

 Security: Ansible operates without deploying agents to nodes, relying

solely on OpenSSH and Python on managed nodes.

 Reliability: With careful scripting, Ansible playbooks can be made

idempotent to prevent unexpected impacts on managed systems,

although non-idempotent playbooks are also possible.

 Consistency: Ansible enables the creation of consistent environments

effortlessly.

 Easy learning curve: Playbooks employ a straightforward and descriptive

language based on YAML and Jinja templates.

 Minimalistic: Management systems should avoid adding unnecessary

dependencies to the environment.

2.1.1 Ansible ad-hoc commands

When starting with ansible it is often recommended to get familiar with some ad-

hoc command line commands. Ansible ad hoc commands utilize the

/usr/bin/ansible command-line tool to automate tasks across one or multiple

managed nodes. Although convenient and swift, ad hoc commands lack

reusability.

9

Figure 2: Basic structure of ad-hoc in ansible.

The '-a' option in Ansible accepts options either in the 'key=value' syntax or as a

JSON string enclosed within '{' and '}' for handling more complex option

structures.

2.1.2 Ansible patterns and modules

With the help of Ansible Patterns, one can run commands and playbooks

against specifics nodes and/or groups in the inventory. Ansible pattern can refer

to a single host, an IP address, an inventory group, a set of groups, or all hosts

in the inventory. Patterns in Ansible are extremely flexible, allowing for easy

exclusion or inclusion of subsets of hosts. Additionally, they support the use of

wildcards and regular expressions, further enhancing their versatility.

Table 1: Common patterns for specifying hosts and groups in inventory.

Description Pattern(s) Targets

All hosts all (or *)

Singular host Node1

Multiple hosts node1:node2(or
node1;node2)

Single group database

Multiple groups database:application all hosts in database
plus all hosts in
application

Excluding groups database:!georgia all hosts in database
except those in georgia

Combining groups database:&staging all hosts in database
that are also in staging

10

Modules, also known as "task plugins" or "library plugins," are independent

units of code that can be utilized either from the command line or within

playbook tasks. Ansible executes each module, typically on the remote target

node, and gathers return values accordingly.

Module can be executed directly from the command line:

Figure 3: Ad-hoc command showing usage of modules.

All modules return JSON format data. When used within an Ansible playbook,

modules can trigger 'change events,' which can lead to execution of 'handlers'

to perform additional tasks.

Command line can also be used to access documentation for any module.

Figure 4: Command line tool to access ansible documentation.

2.1.3 Ansible Roles

Ansible Roles offer a structured framework for organizing tasks, variables,

handlers, metadata, templates, and other files. They facilitate code reuse and

sharing in Ansible. With Roles, Ansible code can be referenced and reused in

playbooks with minimal effort, often just requiring a few lines of code.

The directory structure of an Ansible role has eight main standard directories. At

least one of these directories must be included, others can be omitted if the role

does not require them.

11

Figure 5: Ansible project structure with roles folder.

Usually, a role has the tasks and default directory in it, the other directories are

for specific situations. All eight of them are:

 defaults: Holds default values for the role's variables.

 vars: Contains variables specifically defined for the role.

 tasks: Consists of a list of tasks to be executed by the role, similar to the

task section of a playbook.

 files: Stores static and custom files utilized by the role for various tasks.

 templates: Stores Jinja2 template files utilized by tasks within the role,

enabling dynamic expressions and variable access.

 handlers: Contains handlers that check for specific changes on the

machine and run only if those changes occur, such as restarting a

service after an update.

 meta: Includes metadata information for the role, including dependencies

and author details.

 tests: Holds configuration files related to role testing.

Within these directories the actual name of the YAML file stays the same. It is

named as ‘main.yaml’.

12

2.1.4 Ansible Playbooks

Playbooks serve as automation blueprints in YAML format that Ansible utilizes

to deploy and configure managed hosts.

The crucial concepts of Ansible are the following:

 Playbook: A collection of plays that govern the sequence in which

Ansible executes operations, from start to finish, to accomplish an

operation.

 Play: A sequential list of tasks assigned to managed nodes within an

inventory.

 Task: A command to a single module outlining the actions that Ansible

executes.

 Module: A discrete piece of code or binary executed by Ansible on

managed nodes.

Figure 6: First playbook using module ping.

In the above mock playbook, the basic structure of an Ansible playbook can be

noticed, starting with the name of the playbook which the user can set as per their

needs, usually an indication to what the playbook will try to achieve. Then the

hosts are defined, the host name given should correspond to one of the entries

13

in the inventory file as well. Inventory files are discussed more in detail shortly.

After hosts there is a possibility to set some playbook level variables, the scope

of these variables is global and are applied to all the tasks/roles in the playbook

unless overwritten. Lastly in this playbook, tasks are described. There are two

simple tasks, the first one is ping which uses the inbuilt ping module in Ansible

and checks the connection to the host. The next one is the debug module to show

the output of the ping.

Since Ansible communicates via SSH, passing credentials is important and vars

are the easiest way to do that. The inventory/hosts file should also be structured

to include IP addresses of the target machines. The inventory file can be written

in either YAML format like the playbook or INI format.

Figure 7: Comparison between INI and YAML syntax.

In the YAML syntax variables can be added under the host section which

makes the playbook look cleaner.

The syntax for running playbooks is:

‘$ ansible-playbook -i <hostfile> <playbook name>’

14

Figure 8: Running the playbook.

Ansible returns information about the playbook run in JSON format and the

result from the ping module is returned as ‘pong’ if successful.

2.1.5 Ansible Tags

In Ansible, tags are a powerful mechanism used to selectively execute specific

tasks within a playbook based on user-defined labels. Tags allow users to

categorize tasks and control their execution during playbook runs. When

defining tasks within a playbook, users can assign one or more tags to each

task using the tags parameter. These tags serve as identifiers that can be used

to include or exclude tasks from execution.

During playbook execution, users can specify which tasks to run by specifying

tags on the command line. Ansible provides options such as --tags to specify

which tags to include and --skip-tags to specify which tags to exclude. This

allows for fine-grained control over playbook execution, enabling users to target

specific tasks based on their tags.

Additionally, Ansible provides an inbuilt variable called ansible_run_tags,

which contains all the tags specified on the command line when the playbook is

executed. This variable can be accessed within the playbook to dynamically

adjust task execution based on the tags provided at runtime.

15

2.2 Jenkins

Jenkins is a self-contained, open-source automation server utilized for

automating various tasks associated with building, testing, and delivering

software.

It can be installed via native system packages, Docker, or as a standalone

application on any machine equipped with a Java Runtime Environment (JRE).

Initially named Hudson, the project was rebranded as Jenkins in 2011 following

a dispute with Oracle, which had forked the project and laid claim to the original

name. Despite Oracle's continued development of the forked project under the

name Hudson for a period, it has since become obsolete and is no longer

maintained.

Jenkins offers multiple ways in which a build can be triggered:

 Webhook: This feature acts as a trigger mechanism that responds to

commits pushed to a version control system, initiating actions or

processes within the system.

 Scheduling: Similar to cron job, this functionality enables the automated

execution of tasks or processes at predefined intervals or time

schedules.

 URL Endpoint: Allows for the initiation of a build process through a

specific URL, providing a straightforward and direct method for triggering

builds externally.

 Invoke: Provides the capability for one build process to initiate or start

another build, facilitating sequential or dependent build workflows.

 Queue Management: Manages the order and execution of builds within a

queue, ensuring that builds are processed in a systematic manner, with

consideration given to dependencies and resource availability.

2.2.1 Jenkins Plugins

Jenkins also supports plugins to add extra functionality and extends its use to

projects. Plugins are available for integrating Jenkins with most version control

16

systems and bug databases. Plugins can also change the look and feel of

Jenkins. Plugins that are in use for this project:

● Credentials Binding - Allows storing credentials in Jenkins and a layer of

security so that credentials are not passed as clear text or shown up in

pipeline logs.

● Docker pipeline – Allows building, testing, and using Docker images from

Jenkins pipeline projects.

● GitLab plugin - Triggers builds in Jenkins when code is submitted, or

merge requests is opened/updated.

● Plugin Usage - Plugin that gives possibility to analyse the usage of all

installed plugins.

17

3 EXECUTION

This chapter aims to outline the primary components of both Ansible playbook

and Jenkins pipeline, covering their design, development, operation, and how

they interrelate.

3.1 System architecture

3.1.1 Overview diagram and introduction

The template update and distribution job is a Jenkins pipeline, the main

components and how they interact with each other are depicted below in Figure

9. The system architecture revolves around a Jenkins job that serves as the

central control point for managing parameters and configurations. Leveraging

the declarative pipeline approach, the pipeline code is sourced from a GitLab

repository, ensuring version-controlled and easily maintainable workflows.

Figure 9: Overview diagram of the Ansible solution with other components.

3.1.2 Main components

The main components, their purpose, and roles in the Ansible based solution

are described in Table 2 below.

18

Client

Components Description

Jenkins Automation server for executing pipeline
workflows, triggered by events and parameters
defined in GitLab

Version
Control

GitLab Version control repository storing pipeline code
and configurations, facilitating version-controlled
automation processes.

Jenkins
Agent

Docker Containerization platform providing isolated
environments for Jenkins agents, ensuring
consistent pipeline execution.

Ansible Configuration management tool for provisioning
and managing virtual machines, orchestrating
VM creation, software installation, templating,
and distribution.

Server
Side

XenServer
CLI

Managed pool of virtual machines interacted with
by Ansible for creating, configuring, templating,
and distributing VMs across the development
environment.

Virtual
Machine

Virtual machine created in XenServer pool where
updates will be installed in next stages of
Jenkins pipeline

Table 2: Main components used in the Ansible solution.

3.1.3 Project Directory structure

This is a cleaned-up version of the project directory and shows all the relevant

files and folders.

19

Figure 10: Project directory structure.

The Jenkins pipeline is outlined in the 'jenkins' directory under the name

'updated_template_to_pools.Jenkinsfile'. In the 'roles' directory, all essential

roles for template creation and distribution are stored. Within the 'templates'

folder, there exists a sub-folder named 'roles', housing all roles related to

component installation. The primary playbook responsible for executing these

roles, 'staged_linux_template.yaml', is also located in the 'templates'

directory. Additionally, within the main directory, there are files pertinent to the

Docker container, including the 'Dockerfile' detailing container specifications

and image usage. Furthermore, the 'ansible.cfg' file is copied to the Docker

container. Lastly, the 'inventory' file specifies the hosts targeted by ansible

commands.

3.2 Client Side

20

3.2.1 Jenkins Job Parameters

The client side is a single job on the Jenkins Web application where the

following parameters can be set:

 Refresh – Ticking this option enables dry run of the pipeline and checks

for updates. No ansible roles are ran.

 image_name – Takes in the name of the template image, which is used

to create base vm and install updates to it. Base image can either be

stored in network share drive or in Artifactory.

 host_ip – Takes in IP of the server pool in which the VM will be made.

 updated_template_name – Takes in name for the updated template that

will be created at the end of the job.

 vm_name – Takes in name of the virtual machine which is created from

the base image and then updated.

 snapshot_name – Takes in name for the snapshot of the virtual machine

that is created.

 hostlist_raw – Takes in IP addresses of all server pools where updated

template must be copied to. Delimiter is comma “,”

 PoolDistribute – Ticking this option enables the pool distribution part of

the pipeline.

 GIT_BRANCH – Takes in from which branch to build pipeline.

 secret – Login credentials used by ansible roles stored in Jenkins using

‘Credentials’.

Figure 11: Jenkins Web UI

21

3.2.2 Jenkins Working

In Jenkins, Groovy is used to write pipeline scripts that define the job

configuration and orchestrate the deployment process. While Groovy is an

object-oriented programming language its usage in Jenkins is purely for

scripting purposes. Jenkins Groovy scripts typically involve defining stages,

steps, and conditional logic to control the execution flow of a job. This way of

configuring a Jenkins job is referred to as Declarative Pipeline.

In Jenkins, the machine on which the jobs are running is called an ‘agent.’ The

Jenkins agent is defined in the pipeline script which is written in Groovy and

stored using GitLab version control. The agent can either be the Jenkins server

itself or a Docker container within the server. Docker containers provide a

consistent and isolated runtime environment, ensuring that each execution of

the pipeline occurs in a controlled environment with the necessary

dependencies and configurations, regardless of the underlying host system or

server setup.

Figure 12: Setting agent in groovy pipeline.

The parameters mentioned above in section ‘3.2.1 Main Technologies’, which are

needed for the execution of a job are also defined in the Groovy script, each

parameter has its type and some extra variables like ‘default value’ or ‘choices’.

Figure 13: Parameter types in Groovy.

22

The rest of the Groovy script describes the stages of the pipeline and runs the

individual commands in those stages. A ‘stage’ in Jenkins is the primary

building block in a pipeline. It utilizes the ‘Pipeline Stage Setup’ plugin and

requires wrapping all steps within the defined stage. This makes the boundaries

of each stage obvious and predictable.

Figure 14: Pipeline stages.

Multiple ‘stage’ can be put together in a stages section to make the code more

readable as well. The main stage is the ‘Run Jenkins File check’ which has

another subsequent ‘stages’ section. The Jenkins UI shows all the stages at the

jobs home page and their status.

23

Figure 15: Stage view in Jenkins UI

3.2.3 Pipeline deep dive

This section will focus on the ‘Run Jenkins File check’ stage of the pipeline and

breakdown the structure of the stage in more detail.

Figure 16: Agent reads docker file location.

At the start of the pipeline, ‘docker’ was defined as the choice for Jenkins agent,

in the stage ‘Run Jenkins File check’ the location for the Dockerfile to build the

docker container from is provided. At the start of a job which uses this stage,

the docker container is built and then all commands are run from within this

docker container.

The next stage is ‘Generating template description,’ all templates that are

created and stored in server pools need to have some sort of description so that

the components installed can be traced. For this reason, git commit hash is

used as the template description as git commit hashes are unique.

24

Figure 17: Generating template description.

The next two stages are the ones responsible for running the ansible playbooks

for the creation of the virtual machine and the components installation.

Figure 18: Stages for template creation.

These stages use the ansible playbooks stored in a different folder in the repo

and pass the parameters that were set at the start of the job via the Jenkins

web UI to ansible.

The last stage of the pipeline is the template distribution stage, it is only

triggered if the ‘PoolDistribute’ option is ticked and enables template distribution

to all specified server pools.

25

Figure 19: Template distribution stage.

Jenkins also gives the ability to define sections that should run at the end of a

pipeline and depending on the outcome being ‘success’ or ‘failure’ the actions

taken can be different.

Figure 20: Jenkins post action.

In this pipeline in case of a failure a cleanup role is ran which deletes any virtual

machine or template that might have been created during the process. The role

is wrapped in a try-catch block and then parameters for workspace cleanup are

set as well.

3.3 Version Control

26

The project uses GitLab for source code management and version control. The

connection from GitLab to Jenkins is made from within the job configuration in

Jenkins.

Figure 21: Jenkins SCM configurations.

Other options like what branch to build from and the path to Jenkinsfile are also

set here.

3.4 Jenkins Agent

The Jenkins agent is an UbuntuServer20.04 virtual machine inside which

docker is used to run the Jenkins job. In Jenkins, the agents are also referred to

as ‘Nodes’ and can be viewed from the Dashboard → Manage Jenkins →

Nodes.

Figure 22: Jenkins nodes.

27

The node for this job is called ‘thesisdockerworker,’ names are customisable

through node management. Since Jenkins is built on Java the connection from

Jenkins to the node is also made via java .jar file.

The steps to setting up a node are quite easy:

 create new virtual machine from template UbuntuServer20.04 unless

there are some other specific needs.

 Install Java, UbuntuServer20.04 template already has it installed.

 Download the Java .jar file from Jenkins.

 Create a Jenkins service to start/stop the .jar file.

 Configure the service to include your secret which is created by Jenkins

to identify node.

3.4.1 Docker File

The docker image used for the Jenkins agent is ubuntu:20.04 as well, the

container is built from the Dockerfile stored in the GitLab repository.

Figure 23: Jenkins agent Dockerfile.

There are some packages defined in the Dockerfile as well which are needed

by the container since docker images are light weight and do not come with any

extra packages pre-installed. Once the image is built it can be reused by

Jenkins and the job logs look like this.

28

Figure 24: Jenkins docker logs.

3.4.2 Ansible

The main playbook, 'staged_linux_template.yaml,' as previously mentioned in

section 3.1.3 Project Directory Structure, orchestrates the execution of all roles

required by the pipeline for the creation and distribution of the templates. By

29

default, tasks within a playbook are executed in the order they appear, from top

to bottom. However, the flow of execution can be altered using tags.

Figure 25: Ansible roles flow.

Figure 24 shows the flow of Ansible roles in the pipeline, the order of execution

is marked with numbers. The purpose of this order is explained below in more

detail, but it starts with the role that checks if base template is already existing

on the host server where the virtual machine would be created. If not, it is

downloaded from the network drive. Step 2 creates the virtual machine from this

base template, after that installers are ran on the virtual machine leading to

creating of updated template. After all this, the updated template is uploaded to

the network drive and if the user opted for distribution the relevant role is also

ran.

30

Figure 26: Ansible playbook structure.

In this playbook, the pre-task 'setting facts' is executed only when the tag

'xva_to_template_many' is specified during execution. This condition is

enforced using the 'when' directive. Following the pre-tasks, the playbook lists

all roles required for the deployment. Each role is assigned its own tag, with the

tag name matching the role name for simplicity and clarity. This tagging system

allows for fine-grained control over task execution.

The role ‘template_to_vm’ contains the commands that are used on the host

server which goes through several checks before creating a virtual machine.

This role also has a dependency ‘xva_to_template’ which does some

prechecks and downloads the template from the shared network drive if it is not

on the server already.

31

Once the virtual machine is successfully created, component installer roles such

as 'install_mssql_win' and 'install_dotnet8' are executed based on the final

template's requirements. Notably, the 'roles' folder houses installer roles for

both Windows and Linux systems, necessitating careful role selection.

Unneeded roles can be commented out or removed before repository push to

GitLab.

Then after all the installations, the ‘template_to_xva’ role starts the process of

creating a template out of this updated virtual machine and then starts

uploading it to the network share drive. Now that the updated template is in the

network drive it can be accessed by all the host servers and can be copied

easily.

3.5 Server Side

The server side consists of XenServer pools and the Virtual machines that are

created in those pools. The XenServer cli commands enable Ansible modules

to communicate with the servers and perform required actions.

Figure 27: Ansible command to list uuid on XenServer using shell module.

Using the shell module in Ansible is the same as running the commands directly

on the target machine.

3.5.1 XenServer CLI

Xe CLI is the command line interface for Citrix Hypervisor (XenServer) users. It

allows for scripting and job automation management. The tool comes pre-

installed by default on all Citrix Hypervisor servers and is part of XenCentre.

The CLI can be accessed by SSH-ing into any of the XenServers and provides

a comprehensive and helpful interface for administrators to perform a wide

32

range of management tasks, including virtual machine management, resource

allocation, network configuration, and system monitoring.

Figure 28: XE cli help section.

Some basic commands for virtual machine management involve:

 starting/stopping a vm

 cloning a vm

 creating a vm from a template

 creating a template from a vm

33

4 RESULTS AND DISUCSSION

This section highlights the results attained during the development of the

Ansible and Jenkins solution. It also discusses the benefits of this solution

compared to the old existing solution.

4.1 Old VS New

The old process of distributing templates also involves a Jenkins job but that job

has limited functionality. It only copies the template from one pool to another.

The normal workflow for creating a template requires a developer to find a

template and create a virtual machine out of it via XCP-ng centre. Then

manually update this template by installing all the required software

components. Once done the developer would have to add the components to

the description section in XCP-ng and then create a template out of it.

Figure 29: Old Jenkins template distribution job.

The old Jenkins pipeline is also only accessible by an internal IP address so

developers would need to be connected to the internal VPN to use it.

34

Figure 30: Old template description in XCP-ng.

Old Job Ansible Solution

Developer must do software
installation to the template on their
own.

Ansible roles can be reused for
templates.

Template can be distributed one pool
at a time.

Multiple pools can be set for
distribution.

Involves a lot of manual work. Automated solution, reduces manual
load.

Edit template description manually to
remember what components have
been installed

Uses git commit hash to track file in
version control system which reflects
which roles were installed.

Version tracking is difficult and based
on names of the templates.

Template version will be reflected in git
history.

The main advantage of using Ansible and role-based installation is that over

long term, roles for crucial components for instance python can be devised in

such a way that developer only needs to bump up the version number, example

from 3.8 to 3.10 and rest of the role remains the same. This minor change if

done manually over multiple templates and virtual machine ends up costing a

lot of time of the developer and drains resources. Furthermore, such a solution

is a step towards Infrastructure as Code type of development which is more

suitable as a company scales up.

A rough estimate of hours spent on template updates is around 8-10hrs for

creating new templates and then 35-40 for distribution to pools. Templates are

updated at least quarterly so 4 times a year a developer spends around 50*4 =

200 hours for this task. With Ansible the template creation and distribution time

is combined and brought down to 1-2hrs for updating and 10-12 for distribution!

35

Thus, saving around 200 – (14*4) = 144 hours. That is almost equivalent to one

month’s work!

4.2 Future plans and development

At the time of authoring this thesis the project is working as intended and has

had multiple successful runs. Future plans for the project are to make other

developers aware of its existence and start using it for the quarterly template

updates happening every three months. It may also be used to develop and

distribute templates needed by specific projects. Some planned changes that

are already under development are:

 Template description should include link to GitLab commit so it is easier

to track down updates.

 Implement some sort of version tracking in template naming i.e.

Updated_Template_V1, Updated_Template_V2.

 Add date of creation to template description or template name.

 Create more Ansible roles for software components.

The most challenging task ahead would be to make other developers familiar

with the Ansible playbooks and Jenkins pipelines since there are a lot of moving

pieces in this project. Also, it is always difficult to get developers to adapt to

something new especially in a bigger company where old practices are set in

stone (almost).

36

5 CONCLUSION

This thesis documented the development of an automation solution for template

updating and distribution within a company’s virtual environment. It also covered

DevOps tools like Ansible, Jenkins in depth and virtualization platform XCP-ng.

The main product of this thesis, a Jenkins pipeline was designed with the goal

of reducing manual work while updating templates for development virtual

machines and facilitate their deployment in all server pools. Ansible was used to

automate the process and create roles and playbooks which could be reused

and save up on roughly 140+ hours. Using Ansible was also in line with

Infrastructure as Code development strategy which emphasizes on having

definitions in version control system rather than maintaining the code through

manual process. The Jenkins pipeline created could be accessed easily and did

not require a VPN connection like the older solution and was clean, intuitive,

and user-friendly.

Although the pipeline has not been widely taken in use yet, there are future

plans for that, and the initial response of the developers has been positive with

some room for development. Suggestions include features such as more

informative template description, automated versioning, and creation of more

installer components as Ansible roles.

37

REFERENCES

Ansible. (n.d.). Official Ansible Documentation. Read on 04.12.2023 . Retrieved

from https://docs.ansible.com/

Ansible. (n.d.). How Ansible Works. Read on 08.12.2023. Retrieved from

https://www.ansible.com/overview/how-ansible-works

Ansible. (n.d.). Ansible Playbook User Guide. Read on 08.12.2023. Retrieved

from https://docs.ansible.com/ansible/latest/playbook_guide/index.html

Ansible. (n.d.). Ansible Roles User Guide. Read on 10.01.2024. Retrieved from

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse_roles.

html

DevOpsSchool. (n.d.). Understanding Ansible Architecture Using Diagram.

Read on 10.01.2024. Retrieved from

https://www.devopsschool.com/blog/understanding-ansible-architecture-using-

diagram/

Jenkins (software). (n.d.). In Wikipedia. Read on 12.12.2024. Retrieved from

https://en.wikipedia.org/wiki/Jenkins_(software)

Jenkins Plugins. (n.d.). Read on 15.02.2024. Retrieved from

https://plugins.jenkins.io/

Jenkins. (n.d.). Managing Nodes Components of Distributed Builds: Creating

Agents. Read on 03.03.2024. Retrieved from

https://www.jenkins.io/doc/book/managing/nodes/#creating-agents

LinuxConfig.org. (n.d.). XE Full Command List Reference with Description for

XenServer. Read on 17.11.2023. Retrieved from https://linuxconfig.org/xe-full-

command-list-reference-with-description-for-xenserver

https://docs.ansible.com/
https://www.ansible.com/overview/how-ansible-works
https://docs.ansible.com/ansible/latest/playbook_guide/index.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_reuse_roles.html
https://www.devopsschool.com/blog/understanding-ansible-architecture-using-diagram/
https://www.devopsschool.com/blog/understanding-ansible-architecture-using-diagram/
https://en.wikipedia.org/wiki/Jenkins_(software)
https://plugins.jenkins.io/
https://www.jenkins.io/doc/book/managing/nodes/#creating-agents
https://linuxconfig.org/xe-full-command-list-reference-with-description-for-xenserver
https://linuxconfig.org/xe-full-command-list-reference-with-description-for-xenserver

38

XCP-ng. (n.d.). XCP-ng Management: Manage Locally: CLI. Retrieved from

https://docs.xcp-ng.org/management/manage-locally/cli/

https://docs.xcp-ng.org/management/manage-locally/cli/

	1 INTRODUCTION
	1.2 Motivation for the project

	2 BACKGROUND
	2.1 Ansible
	2.1.1 Ansible ad-hoc commands
	2.1.2 Ansible patterns and modules
	2.1.3 Ansible Roles
	2.1.4 Ansible Playbooks
	2.1.5 Ansible Tags

	2.2 Jenkins
	2.2.1 Jenkins Plugins

	3 EXECUTION
	3.1 System architecture
	3.1.1 Overview diagram and introduction
	3.1.2 Main components
	3.1.3 Project Directory structure

	3.2 Client Side
	3.2.1 Jenkins Job Parameters
	3.2.2 Jenkins Working
	3.2.3 Pipeline deep dive

	3.3 Version Control
	3.4 Jenkins Agent
	3.4.1 Docker File
	3.4.2 Ansible

	3.5 Server Side
	3.5.1 XenServer CLI

	4 RESULTS AND DISUCSSION
	4.1 Old VS New
	4.2 Future plans and development

	5 CONCLUSION
	REFERENCES

