

Neeta Diwan

Optimising performance in React
apps

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and communication technology

Bachelor’s Thesis

6 May 2024

Abstract

Author: Neeta Diwan
Title: Optimising performance in React apps
Number of Pages: 29 pages
Date: 6 May 2024

Degree: Bachelor of Engineering
Degree Programme: Information and communication technology
Professional Major: Software Development
Supervisors: Janne Salonen (Director of School)

App performance is a critical aspect of app development. For an app to be
performant, it must provide uninterrupted user-interactions and smooth UI transitions.
Although ReactJS is capable of building efficient user interfaces, it takes
implementing ReactJS the right way to avoid performance issues.

The purpose of this study is to present app performance optimizing techniques to
manage component renders and commonly encountered issues caused by rerenders
as well as the amount of render time. In order to mitigate app performance problems,
techniques such as memoization and code splitting are known to be efficient and
effective. The intent of the study is to make use of these approaches and thus
experiment with lazy loading and performance hooks, useMemo and useCallback,
provided by ReactJS to optimize app performance.

The study provides insights into identifying and minimizing performance issues by
using the techniques mentioned above. A description of React rendering mechanism
is also introduced in this thesis. React developer tool Profiler is used to evaluate app
performance.

The study results show that optimising React app with useMemo, useCallback and
lazy loading techniques improves render duration and loading time. Considering that
the given app is data heavy with computations that involves working with large lists,
the results from this study could be used as a reference to estimate the
responsiveness of data-consuming React apps. The study identifies that the
effectiveness of these techniques and performance of React app also depends on
how the app is structured and the amount of data and computationally expensive
operations it is performing.

Keywords: React, hooks, useMemo, useCallback, lazy loading

The originality of this thesis has been checked using Turnitin Originality Check
service.

Contents

List of Abbreviations

1 Introduction 1

2 React 2

2.1 Components 2
2.1.1 Composition of components 3
2.1.2 UI elements 4
2.1.3 Components and UI 5

3 Data flow 6

3.1 State 7
3.1.1 Hooks 7
3.1.2 Props 8

4 Rendering mechanism 8

4.1 Virtual DOM 8
4.2 Rendering and Updating UI 9

5 Performance considerations 11

6 Performance issues 13

7 Performance optimising techniques 13

7.1 Memoization 14
7.2 Code splitting 15

8 Tools to evaluate performance 17

8.1 Profiler 17

9 Project overview 17

9.1 Determining correct optimization technique 21
9.1.1 Optimizing performance using useMemo hook 22
9.1.2 Optimizing performance using Callback hook 23
9.1.3 Optimizing performance using lazy loading 24

10 Results 25

11 Conclusion 25

References 27

List of Abbreviations

API: Application programming interface. It is a way for two or more

computer programs or components to communicate with each other.

App: Application. Application refers to a software program that's designed

to perform a specific function directly for the user or, in some cases,

for another software program.

DOM: Document Object Model. It is the data representation of the objects

that comprise the structure and content of a document on the web.

JSX: JavaScript Syntax extension. It is used to write HTML in React.

React: React.js. It is a JavaScript library for building user interfaces and is

also known as React.js.

1

1 Introduction

The importance of building apps that deliver high performance cannot be

understated. The development of various frameworks and libraries is the result

of having recognized the need for a better solution or a product with specific

implementations. Improved performance intended to solve certain problems to

meet specific objectives is what these technologies are designed to offer.

React gained popularity for its efficient mechanism of building dynamic user-

interfaces composed of components. It was deployed on Facebook in 2011 and

on Instagram in 2012. React is maintained by Meta engineering team and was

created by a Jordan Walke, a software engineer working for Meta, formerly

called Facebook [1].

The purpose of this study is to evaluate React techniques to improve

performance of React frontend apps. The study focuses on optimizing apps

based on functional components and particularly evaluates performance related

to User-Interface specific interactions.

This study also discusses the underlying mechanism of React to build front-end

web applications. Its capability to create efficient and dynamic web apps has

convinced developers to build UI apps using React. As a result, its usage, the

number of React developers and React-based websites have been constantly

growing.

However, in order to build performant apps based entirely on React and utilize

React to its best potential, good knowledge about the performance-enhancing

features available in React is undeniably a requirement. At the same time, it is

advisable to have an understanding about the mechanism on which React

operates. Although React API is at par in terms of performance, when it comes

to building data-intensive or complex apps, writing inefficient code can interfere

UI performance. This study will delve into some useful techniques provided by

2

React to optimize React apps and would attempt to identify performance issues

and specify solutions.

The following sections provide an insight into how React works and what issues

could occur on UI and why. Hence the obvious, what to prevent?

Based on the theory and research, this study would further evaluate

performance related to UI interactions by testing an app performance using the

React developer tools, Profiler tool. The findings would provide useful insights

for React developers and a conclusion to this study.

2 React

React is a JavaScript library used to create user interfaces by combining

reusable components [2]. React is based on the single-page app approach. As

such, “the presentation layer for the entire application has been factored out of

the server and is managed from within the browser” [3]. It is a web development

approach that makes an entire app run on a single page. Once the application

is loaded it does not require full-page refreshes and content is updated by

means of component swapping. This way building dynamic UI web apps is a

preferred choice as it enables efficient user interactions and faster UI updates.

2.1 Components

Components are considered as UI building blocks of React. React components

can be described as “a piece of the UI (user interface) that has its own logic and

appearance” [4]. for example, a thumbnail, a like button, or a video etc. In

essence, React components work like JavaScript functions that takes props and

return React elements using JSX. These React elements are used to describe

what to render on the screen [5]. In other words, React app screens are

composed of several components arranged together to form a view or a page.

The emphasis is on the composite nature of React components paradigm that is

3

fundamental to React app development. The aspect of React components is

further discussed in the subsequent sections.

2.1.1 Composition of components

Considering the construct of React app in terms of design patterns, it can be said

that React’s component-based mechanism reflects similarities with composition

pattern.

Design patterns are widely used in software development as they are based on

solid design practices. Its’ fundamental purpose is to write efficient code to

accomplish specific goal. Structural patterns, are the set of design patterns that

are used to “compose groups of objects into larger structures, such as complex

user interfaces or accounting data.” Composition design pattern is one of the

important Structural patterns [6]. Composition pattern is defined as “the process

of solving a complex problem by breaking it down into smaller components (or

parts) and then assembling them.” [7]. According to Object-oriented development

principles, “Composition means that an object is built from other objects” and

represents a “has-a relationship” [8]. Figure 1 reflects this trait of composition in

React components, where listItem ‘has’ a image and a ‘button’, information

section further can contain different sections. The object-oriented paradigm looks

at it as a mechanism for object reuse [9].

The effectiveness of such composition depends on specific situations, similarly,

the effectiveness of React components also depends on the way components are

implemented in an application. Figure 1 illustrates components composition in

app UI.

4

Figure 1 App UI composed of components

Although React gets appreciation for the way it is engineered to deliver fast and

seamless UI interactions, it encounters certain limitations as the app grows. Apart

from implementing appropriate performance optimizing techniques, that will be

examined as the study proceeds, designing app structure in a manner that

reduces complexities and provides efficiency is also important. Over complicated

and unnecessary component implementations tend to affect app performance as

well as makes it difficult to maintain and scale app. The key is to apply

composition with appropriate level of granularity so that it achieves a balance,

simplifies maintainability, and improves performance [10].

2.1.2 UI elements

UI refers to user interface and can be defined as a point of interaction between

humans and computers [11]. A web application’s responsiveness and visual

elements such as screen, forms, pages, buttons, menu items are all part of UI

[12]. These UI elements adds interactivity to the user interface. Figure 2 lists

examples and categories of UI elements.

5

Figure 2 UI elements categories

In React each element is a plain JavaScript object that describes the component

it represents, along with any relevant props or attributes.

2.1.3 Components and UI

While building composite components is a convention, designing React app’s

overall structure efficiently requires thinking in terms of components. Whereby,

UI elements can be seen in terms of components to determine what parts of the

UI can be composed, reused and reorganized as components. This approach

can help in properly organizing app structure and provides a high-level view of

data flow. A visual representation of the UI can serve as a blueprint to identify

components and construct component hierarchy. A UI contains elements that are

distinct as well as elements that can be reused multiple times in different parts of

the interface [13].

React app development being a component-based approach encourages this

practice of creating components based on Separation of concerns or single

responsibility principle. According to this principle, "The goal is to more

effectively understand, design, and manage complex interdependent systems,

so that functions can be reused, optimized independently of other functions, and

insulated from the potential failure of other functions" [14]. Components can be

referred as containers that hold state and props, which are used to store and

share data across components.

6

The discussion in the following section further examines the process involved in

State and Dataflow in developing interactive web apps.

3 Data flow

In order to have a clear understanding about the way React app functions, it is

important to understand how data is shared, managed and updated. An

explanation about how data is shared across components can be approached

by learning the rules about data flow in React.

In React data flows in a unidirectional way and is referred to as ‘one-way data

flow’. This implies that data flows from parent components to child components

and not vice versa. To be more specific, it works like, “Data flows down (or

downstream), and events flow up (or upstream)” [15]. Figure3 illustrates the

concept of unidirectional data flow as described.

Figure 3 Unidirectional data flow

React features that are fundamental to the process of managing data are State

and Props and are described further as subtopics in this data flow section.

7

3.1 State

State can be defined as “an object that holds information that may change over

the component’s lifetime. It is the current snapshot of data stored in a

component’s props” [16]. In this sense, State can be referred as component’s

memory. In order to reflect a change in UI, a change in component state variable

is required. State is private to component and is used to retain data between

renders. Stateless variables do not update value to be displayed on UI [17]. This

data is passed among components by the means of props. The subsequent

sections provide overview of React state management features, involving React

hooks and props.

3.1.1 Hooks

Hooks are the JavaScript functions that allow managing state in React apps.

Hooks are defined as “simple JavaScript functions that allow components to use

the local state and execute side effects (or cross-cutting concerns) and other

React features” [18]. Basically, hooks remove the need to use classes and allows

using stateful logic between components. Hooks such as, useState and

useReducer, are used to manage component state locally and useContext hook

is used to manage application-wide data. As for specific usecase, useState is

used for simple transformations, while useReducer is used for complex state logic

[19].

This implies that a state can be initialized and updated using the useState hook.

This study will use useState hook to handle state change in components used for

example app. useState hook returns an array consisting of a state variable that

retains the data between renders and a setter function that updates the variable.

This is what leads to re-rendering a component.

More information about hooks relevant to this study will be provided while

discussing performance techniques.

8

3.1.2 Props

Props are used to share data between parent components and child components.

It is important to note that Props are immutable. Props are specified in component

instance and a component can contain any number of props with any type of

JavaScript data or an expression that evaluates to a value or function [20]. As

already mentioned, props can also hold a current snapshot of data, thus props

are responsible for passing the updated state variable values to the component

tree as required.

4 Rendering mechanism

4.1 Virtual DOM

“The virtual DOM, like the DOM, is an HTML document modelled as a JavaScript

object” [21]. Although React DOM is similar to actual browser DOM, it is faster,

lightweight and is a virtual representation of the actual DOM in memory i.e. it

exists in memory only, while the actual DOM is the real concrete structure of a

web page [22]. Virtual DOM functions as an intermediary layer where all changes

in the state are evaluated before it syncs with the browser DOM for changes to

appear on the UI.

Virtual DOM allows to create user interfaces in a more efficient and performant

way, solving problems associated with actual DOM. Updating actual DOM tends

to be slower and expensive, due to the fact that every time a change is made to

the real DOM, the browser has to perform several operations that can be

resource-intensive and time-consuming [23]. The efficiency of virtual DOM is

attributed to the fact that it prevents recreation of entire DOM tree and instead

only allows to make specific updates to the actual DOM as per the changes

introduced in JSX elements [24]. React accomplishes this by using Diffing

algorithm that keeps track of the old and new versions of the updates made to

virtual DOM. It is the Diff algorithm that holds the responsibility of determining the

necessary changes required to update the real DOM and apply those changes

9

efficiently by batching operations, i.e. one update for one batch instead of multiple

updates to the actual DOM, for each state change detected [25].

The specificities of virtual DOM as mentioned above, indicates that virtual DOM

allows UI to stay in sync with the changes in state or any UI generated changes,

thereby resulting in updating the UI faster. This certainly is one of the features

that gives ReactJS apps an edge.

4.2 Rendering and Updating UI

One of the significant aspects of React app development that must be understood

is the process involved in updating UI. The official React documentation classifies

it into three phases representing user-initiated events, DOM evaluation and UI

updates, as illustrated in the figure 4.

Figure 4 Initial render and rerenders according to UI updating phases

The trigger phase refers to triggering a component to render. This happens on

initial render or as a result of state change in a component or its parent

component. So, whenever a state is updated with state setter function it triggers

component re-render.

10

This is followed by rendering phase. Component rendering refers to a situation

when a component gets called after a code contained in a component or a parent

component gets executed. This is an intermediary stage, that determines if there

is a need to modify DOM by evaluating previous and current version of Virtual

DOM. Rendering phase thus, represents calling components and evaluating

what to display on the screen. On the initial render, React calls the root

component and create DOM nodes for all React elements returned from

component’s JSX. Thereafter, for subsequent renders, React calls the function

component whose state update triggered the render. During a re-render React

performs a check and calculates if there is any difference in the DOM element

properties by comparing it with the previous render. It is important to note that the

component re-renders involve calling all the nested components and the nested

components contained within nested components [26].

The following figure 5 shows example code for how React initially renders a React

component or React app. This belongs to index.js file where the code to initialise

react app is placed.

Figure 5 Initial render for a fully built app in React

Referring to the explanation provided in React official documentation, React app

is initially rendered by “calling ‘createRoot’ with the target DOM node”, and then

11

”calling its ‘render’ method with the app component” [27] ‘createRoot’ allows to

create a root element to display React app components inside a browser DOM

node. A call to ‘createRoot’ is chained with a call to ‘render’, i.e. `root.render´ that

takes a React component, typically <App/> to display its React content. A fully

React based app typically has one createRoot call for its root components [28].

Proceeding with a description about each phase, it might be useful to reiterate

that rendering phase deals with communicating with the Virtual DOM. Its’ task is

to confirm if there is any necessary change to be committed to the real DOM,

which if applicable updates the DOM and UI accordingly in the commit phase.

This process updating the DOM is referred as ‘committing’.

The initial render in the commit phase has React implement appendChild() DOM

API to update the screen with all the existing DOM nodes. As for re-renders,

React updates the DOM with latest version of rendering output as calculated in

rendering phase. Most notable aspect of the process of updating UI is

undoubtedly that “React only changes the DOM nodes if there’s a difference

between renders”, a statement from React official documentation.

5 Performance considerations

Web performance involves building websites and apps that are quick to load and

responsive to user interaction [29]. Web performance is not only about metrics,

but it also “includes both objective measurements like time to load, frames per

second, and time to become interactive, and subjective experiences of how long

it felt like it took the content to load“ [30]. Recommendations for building

performant apps include minimising loading and response times and using

techniques to conceal latency by making the user experience as available,

interactive and quick as possible [31]. Figure 6 lists main aspects related to web

performance.

12

Figure 6 Web app performance considerations

This conveys that to make web apps performant it is important to ensure that

apps are quick to respond without any delays in content availability. In order to

evaluate app performance there are certain suggestions pertaining to acceptable

response time for web and apps. The research reveals that the page loading

within 1 second is considered as recommended app performance level for a good

user experience.

Figure 7 Performance indicator

Web app performance can be measured using several metrics. It is suggested to

measure performance that reflect exact figures instead of general perception

based approach [32]. This study would analyse app performance using React

developer tools Profiler that would help in clearly distinguishing between app

performance before and after optimization.

13

6 Performance issues

As discussed earlier, React app runs on single page with a UI composed of

several components. React by default is based on mechanism that allows to

build fast interactive frontend webapps, however the issues tend to surface when

the app gets larger. The large amount of JavaScript bundle that gets downloaded

and render can cause performance problems. The app could become slower

already on the initial render and would additionally make UI interactions

inconsistent on subsequent renders [33].

In terms of renders and rerenders, rendering components that handle expensive

computations are most time consuming and affects apps’ responsiveness. The

time for app to become responsive tends to increase as the number of expensive

components to be rerendered increases.

To sum up, it can be deduced that renders, rerenders and bundle size have a

direct impact on app performance in terms of the time it takes for an app to

become interactive and responsive.

7 Performance optimising techniques

According to Official React documentation, “A common way to optimize

rerendering performance is to skip unnecessary work. For example, you can tell

React to reuse a cached calculation or to skip a re-render if the data has not

changed since the previous render” [34]. This statement highlights reusing

cached results thereby avoiding component rerenders if the same input is used

before. Memoization is a technique that works on this concept of reusing and

caching the same inputs for computation intensive function calls [35]. Based on

this approach React provides hooks, named as useMemo hook and useCallback

hook, specifically to facilitate optimizing app performance. React also allows the

creation of custom hooks to build implementations as per project requirements.

This study examines the difference that memoization and code splitting

14

techniques make to app performance by addressing the issues that affect

performance.

7.1 Memoization

Memoization is described as an optimization technique used for “speeding up

web applications by caching the results of expensive function calls. It returns the

cached result when the same input arguments have been passed again” [36]. In

other words, it improves app performance by caching the results of expensive

function calls. The main advantage is that it does not cause unnecessary re-

renders if the cached result is the same for the latest input arguments. However,

memoization is recommended for expensive calculations such as sorting and

filtering operations during rendering and is deemed redundant for simple

calculations within functions [37].

As for the useMemo hook and useCallback hook it is to be noted that although

useMemo and useCallback hooks work to provide performance benefits, they

have different use cases. While useMemo hook allows caching the resulted value

of an expensive calculation, the useCallback hook is meant to cache a function

definition [38].

Figure 8 and 9 shows how useMemo and useCallback hooks are implemented in

practice respectively.

Figure 8 useMemo hook

Figure 9 useCallback hook

15

It is worth mentioning that using these hooks all over the app or applying

memoization wrongly could adversely impact app performance as these

techniques use memory and could increase overhead costs. To clarify the

difference between and suitability for each hook as per usecase, figure 10

provides an overview of these techniques specifying their role and usage.

Figure 10 Memoization and difference between useMemo and useCallback
hooks

Another important technique that considerably improves app performance is code

splitting. The following section explains the concept, its usage, and

implementation.

7.2 Code splitting

Referring to the phases involved in updating app UI, this section relates to the

Initial phase, render. As mentioned, React loads JavaScript files on the initial

loading of a web app, if the bundle is large it can hamper app performance.

16

Code splitting can be used to solve this issue. Code splitting involves breaking

the main code for an app into multiple smaller bundles. A bundle gets loaded only

when any of the components it contains is needed. This technique of lazily

loading bundles is referred as lazy loading [39]. The main purpose of lazy loading

is thus that it ”defers the loading of noncritical JavaScript until after the page has

loaded.” [40]. Thus, by splitting app code it is possible to reduce page load times

and data usage as it only loads the code needed for a particular page or feature.

React offers implementations such as React.lazy and Suspense to address page

loading time issues. It is a standard technique commonly used to optimize large

apps with several components to cause a delay to load the component that are

not required on the initial render [41]. The following figure shows the syntax for

implementing lazy loading.

Figure 11 Lazy loading component

Suspense is used in conjunction with lazy loading to display content such as,

loading indicator while the requested content is being loaded. It uses fallback

prop for this purpose and accepts any React elements to be rendered before the

component gets loaded. By convention, lazy components are rendered inside

Suspense component.

Figure 12 Suspense and fallback prop

It is also advised not to opt for any optimization if the performance improvement

is not significant enough to have a noticeable impact on user experience [42]. At

the same time, the author also encourages having some objective measures in

17

place to take decisions whether an app requires any performance tuning. It is

recommended to measure app performance based on metrics and making

performance evaluations according to accurate results.

8 Tools to evaluate performance

Web app performance can be evaluated using several metrics and tools. This

study would use React Developer tools to test app performance, identify

performance problems and causes and use that information to apply correct

optimization technique.

React developer tools provide valuable insights that can help identifying issues

that impact app performance. For the purpose and scope of this study, React

developer tools Profiler is used to evaluate app performance.

8.1 Profiler

Profiler is a tool available in React developer tools that measures how frequently

a react components render and the time components take to render, thereby

indicating which components are slow. This tool will be used to gather information

about the render duration and performance issues. The results of the optimized

version and the unoptimized version of the app will be used to make performance

evaluation.

9 Project overview

A demo app consisting of large set of data is built to evaluate performance. The

data comes from a dummy data provider API. App performance is analyzed by

interacting with UI, particularly implementing search and button specific events.

The app contains two main components, Posts and Archive, that display a list of

blog posts. Post component is a parent component and Archive is a child

component. Post and Archive both hold PostItem component to display array of

18

posts list items as a list. Parent Component, Posts, displays large list of posts.

The Archive component represents a data-intensive expensive component

contained in Parent component of the App. It is to be noted that the component

composition used in this study is not applicable for a realistic app. It is for

demonstration purpose only to address common performance issues.

As explained in the theory sections, expensive calculations in any scenario have

performance implications. Also, a change in state in parent component causes

all its child component to re-render and could result in slowing down the app if

the component being rerendered is an expensive component.

The following section presents the performance results of implementing

useMemo, useCallback and lazy loading to handle slow components with

expensive operations and reduce renders and app load time, as discussed in this

study. The screenshots of the results provided by Profiler illustrates the amount

of time consumed by components to render and the cause for render. The UI

actions performed are Search and deletion.

Following are the screenshots of data provided by Profiler representing App

performance on initial render without optimization.

Figure 13 shows Posts and Archive components get rendered on initial loading

19

Figure 13 Components render on initial loading

The following screenshot shows the time it took for components to render on

initial load, i.e. 804.1ms

Figure 14 Component render duration on initial loading

20

The following graph shows the components that are rendered, displaying the

component that took the longest time to render at the top. Likewise, listing all

components in order according to the time each took to render. The time shown

for Archive and PostItem indicates that these components took the maximum

amount of time to render.

Figure 15 Graph displaying all components based on render time

It can be observed from the figure16 that the child component Archive rendered

because its parent component rendered i.e. The Search and deletion performed

in Posts component caused Archive component to re-render.

21

Figure 16 Graph displaying the reason for the component to render

9.1 Determining correct optimization technique

The Profiler performance results indicate problems with the performance of the

given app. Referring to the performance consideration as presented in this thesis,

the optimal time for a page to load a UI completely should not exceed 1 second.

The following section delves into applying optimization to improve app

performance by reducing re-renders and app loading time.

As UI interaction involves performing search operation that involves traversing

through the large list of posts using filter function. Implementing ‘useMemo()’ will

be suitable option as it allows to cache the result, a value returned from functions

between rerenders and uses it again if the same search term is used thereby,

avoiding re-renders.

Another action performed on the UI is deleting a post. A button click invokes

‘handleDelete()’ function to delete a post from the post collection. As described

earlier, the useCallback maintains the referential identity of a function

22

‘useCallBack()’ hook, this hook caches a function definition between re-renders.

This hook will be used for optimization.

In order to tackle issues concerning app loading time, implementing lazy loading

is an effective approach. This will prevent loading the non-urgent content and will

only load it when required.

9.1.1 Optimizing performance using useMemo hook

The following Profiler view shows the results of implementing useMemo hook to

filter posts as per the search term. The user interface did not appear appropriately

responsive to UI interaction although shows improvement in component render

time.

Figure 17 useMemo optimization results

The following figure 18 shows the Ranked view of Profiler indicating the time

components took to render. The information clearly reflects improvement in

render time.

23

Figure 18 useMemo optimization result

9.1.2 Optimizing performance using Callback hook

Figure 19 useCallback optimization results

24

9.1.3 Optimizing performance using lazy loading

Figure 20 Lazy loading optimization results

25

10 Results

The following figure 21 shows the comparison of results obtained from Profiler

sessions.

Figure 21 Comparison of performance results

By applying lazy loading, intial render time of components on initial loading

reduced from 804.1ms to 252.7ms. Similarly, useMemo() and useCallback()

show performance improvements as the time it took for components to render

also reduced as a result of reduction in number of renders.

11 Conclusion

The results obtained from this study would be sufficient to conclude that React

useMemo(), useCallback() and lazy loading techniques provide performance

advantage. However, it appears as the app utilizes large set of data and although

show a positive performance gain, the app is not performant enough. The

objective of the study was to analyse performance improvements using React

performance hooks and lazy loading with a focus to achieve efficiency and

loading speed by reducing unnecessary renders and rerenders. Reflecting on the

26

viewpoints and findings presented in this study, it can be said that the core of the

solution, i.e. identifying the performance hampering implementations, such as,

components that unnecessarily rerender or are slow to render, and determining

the right optimizing technique is certainly a prerequisite in the endeavors to build

performant apps. Nested components is a way React app structure is organized,

excessive use of nested components results in excessive rerenders.

Components that perform expensive operations must be evaluated for the

possibility for optimization as well as re-renders should be appropriately

managed. Nonetheless, it is important to use these techniques only if the

outcome is notably positive improvement in app performance.

27

References

1 https://learning.oreilly.com/library/view/react-interview-
guide/9781803241517/B18603_02.xhtml#_idParaDest-61. Accessed on:
15/4/2024

2 https://react.dev/. Accessed on: 15/4/2024.

3 https://learning.oreilly.com/library/view/spa-design-
and/9781617292439/kindle_split_011.html. Accessed on: 25/4/2024.

4 https://react.dev/learn. Accessed on: 11/4/2024

5 https://react.dev/learn. Accessed on: 25/4/2024.

6 https://learning.oreilly.com/library/view/the-object-oriented-
thought/9780135182130/ch10.xhtml#ch10lev1sec3. Accessed on:
25/4/2024.

7 https://medium.com/@master_43681/mastering-composition-patterns-in-
react-and-typescript-3b503645ab6e. Accessed on: 25/4/2024.

8 https://learning.oreilly.com/library/view/the-object-oriented-
thought/9780135182130/ch01.xhtml#ch01lev1sec12. Accessed on:
25/4/2024

9 https://learning.oreilly.com/library/view/the-object-oriented-
thought/9780135182130/ch07.xhtml#ch07lev1sec1. Accessed on:
22/4/2024.

10 https://learning.oreilly.com/library/view/the-object-oriented-
thought/9780135182130/ch07.xhtml#ch07lev1sec2. Accessed on:
25/4/2024.

11 https://www.coursera.org/articles/ui-design. Accessed on: 13/4/2024.

12 https://www.geeksforgeeks.org/user-interface-ui/. Accessed on: 28/4/2024.

13 https://learning.oreilly.com/library/view/react-in-
action/9781617293856/kindle_split_011.html. Accessed on: 29/4/2024

14 https://en.wikipedia.org/wiki/Separation_of_concerns. Accessed on:
6/5/2024.

28

15 https://learning.oreilly.com/library/view/beginning-reactjs-
foundations/9781119685548/c06.xhtml#head-2-96. Accessed on:
2/5/2024.

16 https://learning.oreilly.com/library/view/learning-javascript-
design/9781098139865/ch12.html#idm45017690349552. Accessed on:
17/4/2024.

17 https://react.dev/learn/state-a-components-memory. Accessed on:
17/4/2024.

18 https://learning.oreilly.com/library/view/react-interview-
guide/9781803241517/B18603_03.xhtml#_idParaDest-114. Accessed on:
13/4/2024.

19 https://learning.oreilly.com/library/view/react-interview-
guide/9781803241517/B18603_03.xhtml#_idParaDest-115. Accessed on:
4/5/2024.

20 https://learning.oreilly.com/library/view/beginning-reactjs-
foundations/9781119685548/c06.xhtml#head-2-97. Accessed on:
28/4/2024.

21 https://learning.oreilly.com/library/view/fluent-
react/9781098138707/ch03.html#id33. Accessed on: 18/4/2024.

22 https://www.geeksforgeeks.org/difference-between-virtual-dom-and-real-
dom/. Accessed on: 18/4/2024.

23 https://learning.oreilly.com/library/view/fluent-
react/9781098138707/ch03.html#id3. Accessed on: 2/5/2024.3

24 https://www.geeksforgeeks.org/difference-between-virtual-dom-and-real-
dom/. Accessed on: 2/5/2024.

25 https://learning.oreilly.com/library/view/fluent-
react/9781098138707/ch03.html#id33. Accessed on: 2/5/2024

26 https://react.dev/learn/render-and-commit. Accessed on: 2/5/2024.

27 https://react.dev/learn/render-and-commit. Accessed on: 2/5/2024.

28 https://react.dev/reference/react-dom/client/createRoot#root-render.
Accessed on: 2/5/2024.

29 https://developer.mozilla.org/en-US/docs/Learn/Performance. Accessed
on: 23/4/2024.

30 https://developer.mozilla.org/en-US/docs/Web/Performance. Accessed on:
23/4/2024.

29

31 https://developer.mozilla.org/en-US/docs/Web/Performance. Accessed on:
1/5/2024.

32 https://learning.oreilly.com/library/view/react-
cookbook/9781492085836/ch10.html. Accessed on: 4/5/2024.

33 https://learning.oreilly.com/library/view/react-
cookbook/9781492085836/ch10.html#idm45458558019120. Accessed on:
13/4/2024.

34 https://react.dev/reference/react/hooks#performance-hooks. Accessed on:
22/4/2024.

35 https://learning.oreilly.com/library/view/react-interview-
guide/9781803241517/B18603_03.xhtml#_idParaDest-132. Accessed on:
24/4/2024.

36 https://learning.oreilly.com/library/view/react-interview-
guide/9781803241517/B18603_03.xhtml#_idParaDest-132. Accessed on:
2/5/2024.

37 https://learning.oreilly.com/library/view/react-interview-
guide/9781803241517/B18603_03.xhtml#_idParaDest-134. Accessed on:
2/5/2024.

38 https://react.dev/reference/react/hooks. Accessed on: 3/5/2024.

39 https://learning.oreilly.com/library/view/react-
cookbook/9781492085836/ch10.html. Accessed on: 1/5/2024.

40 https://learning.oreilly.com/library/view/fluent-
react/9781098138707/ch05.html#id66. Accessed on: 1/5/2024.

41 https://learning.oreilly.com/library/view/fluent-
react/9781098138707/ch05.html#id68. Accessed on: 1/5/2024.

42 https://learning.oreilly.com/library/view/react-
cookbook/9781492085836/ch10.html. Accessed on: 2/5/2024.

