

Practical Attack and Defense Methods

for Integrity of Deep Neural Networks in

Digital Pathology Image Analysis

Systems

Markus Aukeala

Master’s thesis

May 2024

Master’s Degree Programme in Information Technology

 Description

Aukeala, Markus

Practical attack and defense methods for integrity of Deep Neural Networks in Digital Pathology Image
Analysis systems

Jyväskylä: Jamk University of Applied Sciences, May 2024, 83 pages.

Master’s Degree Programme in Information Technology, Cyber Security. Master’s Thesis.

Permission for open access publication: Yes

Language of publication: English

Abstract

Digital pathology has made huge strides in development over the past decade. The introduction of new
technology brings with it huge potential in efficiency, accuracy, and cost benefits, but also new risks. From
the point of view of cyber security, in addition to traditional software, hardware and network security, a
new risk will be attack attempts against artificial intelligence models and systems running the models.

The purpose of the thesis was to respond to the thesis commissioner’s need to investigate practical options
for detecting and preventing vulnerabilities in deep neural network models and their feasibility. In addition
to the goodness of the detection models, things to consider were, e.g., performance, feasibility in practice
and calculated cost/benefit ratio.

The thesis used design science as its research method, which aims to produce an artifact that solves the re-
search problem with a practical and innovative solution. Scientific publications were used as source mate-
rial for the work, both on the vulnerabilities related to neural networks in digital pathology, and on the vul-
nerabilities of deep learning neural networks in general in relation to image analysis. In the work, a deep
learning neural network (convolutional autoencoder) was produced as an artifact, the purpose of which is
to detect deviations from the input data.

Based on the results, with convolutional autoencoders it is possible to detect perturbations of even just a
few pixels in the analyzed images and through this to detect a possible attack that tries to influence the re-
sult of the image analysis through a deviation of the input data. Implementing standard convolutional auto-
encoders is an easy way to start detecting deviations, but the disadvantage of an artificial intelligence
model for detecting attacks taught with image data is its poor generalizability and the need to retrain the
neural network model if significant changes in image quality or color scheme occur in the digital pathology
image data due to hardware or software changes.

Keywords/tags (subjects)

Cybersecurity, Adversarial attack, Integrity, Convolutional Autoencoder, Healthcare Security

Miscellaneous (Confidential information)

-

 Kuvailulehti

Aukeala, Markus

Practical Attack and Defense Methods for Integrity of Deep Neural Networks in Digital Pathology Image
Analysis Systems

Jyväskylä: Jyväskylän ammattikorkeakoulu. Toukokuu 2024, 83 sivua.

Master’s Degree Programme in Information Technology, Cyber Security. Opinnäytetyö YAMK.

Julkaisun kieli: englanti

Julkaisulupa avoimessa verkossa: kyllä

Tiivistelmä

Digitaalinen patologia on ottanut valtavia kehitysaskelia viimeisen vuosikymmenen aikana. Uuden
teknologian käyttöönotto tuo mukanaan valtavia potentiaalisia tehokkuus-, tarkkuus- ja kustannushyötyjä,
mutta myös uusia riskejä. Kyberturvallisuuden näkökulmasta perinteisen ohjelmisto-, laitteisto- ja
tietoverkkoturvallisuuden lisäksi uutena riskinä tulee tekoälymalleihin sekä niitä ajaviin järjestelmiin
kohdistuvat muokkaus ja hyökkäysyritykset.

Opinnäytetyön tarkoituksena oli vastata toimeksiantajan tarpeeseen tutkia käytännöllisiä syväoppivien
tekoälymallien haavoittuvuuksien havainnoinnin ja ehkäisyn vaihtoehtoja ja niiden toteutuskelpoisuutta.
Havainnointimallien hyvyyden lisäksi huomioitavia asioita olivat mm. suorituskyky, toteutettavuus
käytännössä ja laskennallinen kustannus/hyöty -suhde.

Opinnäytetyössä käytettiin tutkimusmenetelmänä suunnittelutiedettä, jossa pyritään tuottamaan artefakti,
joka ratkaisee tutkimusongelma käytännöllisellä ja innovatiivisella ratkaisulla. Työn lähdemateriaalina
käytettiin tieteellisiä julkaisuja sekä digitaalisen patologian neuroverkkoihin liittyvistä haavoittuvuuksista
että yleisesti syväoppivien neuroverkkojen haavoittuvuuksista liittyen kuva-analyysiin. Työssä tuotettiin
artefaktina syväoppiva neuroverkko (konvolutiivinen autoenkooderi) jonka tarkoituksena on havainnoida
poikkeamia syötedatasta.

Tulosten perusteella konvolutiivisilla autoenkoodereilla on mahdollista havaita jopa vain muutamien
pikselien kuvahäiriöitä analysoitavissa kuvissa ja tätä kautta havaita mahdollinen hyökkäys jossa yritetään
vaikuttaa kuva-analyysin lopputulokseen syötedatan poikkeaman kautta. Tavallisten konvolutiivisten
autoenkoodereiden toteuttaminen on helppo tapa aloittaa poikkeamien havaitseminen, mutta kuvadatalla
opetetun hyökkäysten havaitsemiseen tarkoitetun tekoälymallin haittapuolinan on heikko yleistyvyys ja
tarve uudelleenkouluttaa neuroverkkomalli, jos digitaalisen patologian kuvadatassa tapahtuu laite -tai
ohjelmistovaihdoksista johtuvia olennaisia muutoksia kuvalaadussa tai värimaailmassa.

Avainsanat (asiasanat)

Kyberturvallisuus, Neuroverkon huijaus, Muuttumattomuus, Konvolutiiviset autoenkooderit,
Terveydenhuollon tietoturva

Muut tiedot (salassa pidettävät liitteet)

-

1

Contents

1 Introduction .. 4

1.1 Research question ... 5

1.2 Thesis commissioner and topic selection justification ... 5

1.3 Thesis topic delineation .. 6

1.4 Research methodology ... 7

1.5 Information retrieval and source material .. 10

1.6 Research reliability and ethics .. 11

2 Background and key concepts .. 14

2.1 Prior research and literature ... 14

2.2 Cybersecurity threats in Digital pathology image analysis ... 15

2.3 Deep Neural Networks attacks and defenses ... 20

3 Solution implementation workflow .. 28

3.1 Problem identification and motivation ... 28

3.2 Objectives of a solution ... 29

3.3 Design & development .. 30

3.3.1 Hardware and software requirements .. 31

3.3.2 Dataset preprocessing and splitting .. 33

3.3.3 Selecting attack target system and AI model .. 36

3.3.4 Generating adversarial images with Differential Evolution 37

3.3.5 Training convolutional autoencoder to detect anomalies 39

3.4 Demonstration of solution suitability ... 44

3.4.1 Selecting dataset for demonstration ... 45

3.4.2 Attack demonstration .. 45

3.4.3 Threshold used for attack detection ... 46

3.4.4 Defense demonstration ... 48

3.5 Evaluation of the implemented solution .. 49

3.5.1 Selecting dataset for evaluation .. 50

3.5.2 Attack evaluation ... 51

3.5.3 Defense evaluation .. 55

3.6 Communication of results and knowledge ... 59

4 Discussion.. 60

4.1 Autoencoder suitability for image anomaly detection ... 61

4.2 On the probability of attacks against Digital Pathology Image Analysis systems 62

4.3 Improvement ideas for adversarial image detection .. 63

2

5 Conclusion ... 65

6 References ... 67

7 Appendices .. 72

Appendix 1. Parameters used in adversarial image generation .. 72

Appendix 2. The demonstration environment setup instructions .. 73

Appendix 3. Demonstration attack & defense results table .. 74

Appendix 4. Evaluation attack & defense results table ... 77

Figures

Figure 1. The process model of Design Science Research Methodology (Peffers et al., 2007),

modified. ... 7

Figure 2. Digital Pathology workflow (example) ... 17

Figure 3. Adversarial attacks and risks related to machine learning pipeline (Finlayson & Beam,

2019, modified). .. 20

Figure 4. Dataset structure after splitting into train, validation and test folders 35

Figure 5. Swagger API description and test user interface for codait/max-breast-cancer-mitosis-

detector ... 37

Figure 6. Original image (left) and image reconstructed by the autoencoder(right) trained for

solution. .. 44

Figure 7. Attack evaluation process .. 51

Figure 8. HTTP POST requests send towards target system ... 55

Figure 9. Defense evaluation process ... 56

Figure 10. Confusion matrix based on anomaly detection test set .. 58

Tables

Table 1. Attacker and Defender motives .. 18

Table 2. Hiding attack by selecting pixel color from existing color scale 21

Table 3. Blending pixel sized changes ... 22

Table 4. Selected adversarial attacks and their relation to medical domain 22

Table 5. Differences of black-box vs white-box attack in the context of adversarial attacks on

images. .. 24

Table 6. Defense methods against Deep Neural Network attacks ... 26

Table 7. Countermeasures for adversarial examples (Yuan et al., 2017, modified) 27

Table 8. Original image and produced image patches. .. 34

Table 9. Dataset split command ... 35

3

Table 10. Sample image patches from the dataset .. 40

Table 11. Commands for neural network visualization .. 41

Table 12. Architecture of the Autoencoder used in solution ... 42

Table 13. Autoencoder model training & validation loss accuracy ... 43

Table 14. Attack efficiency samples .. 46

Table 15. Autoencoder reconstruction errors and detection efficiency with validation set 48

Table 16. Defense efficiency samples ... 49

Table 17. Summary of the performance of the implemented solution 50

Table 18. CODAIT Prediction change (mitosis-to-normal) .. 52

Table 19. CODAIT Prediction change (normal-to-mitosis) .. 53

Table 20. Metrics of the black-box attack agains AI model behind REST API 54

Table 21. Autoencoder reconstruction errors (before-after attack) for evaluation dataset 56

Table 22. Structure of confusion matrix ... 57

Table 23. Classification report .. 59

Table 24. Probability for inference or training attack occurrence ... 62

4

1 Introduction

The digitalization of pathology has created a huge opportunity to improve the accuracy of clinical

diagnoses and reduce the time it takes to analyze a whole slide image (WSI) (Parwani, 2019). It en-

ables efficient storage and sharing of the samples gathered from patients over decades for educa-

tional and research purposes. On the research side the digitalized data can be used in training

deep learning models that enable faster analysis, handle large datasets, reduce the annotation

burden and predictive models capable of estimating patient outcome, disease progression likeli-

hood or treatment response. This requires that the experts making AI (artificial intelligence) sys-

tems and labeling digitalized image samples can trust that the data used follows Information secu-

rity triad (Stallings, 2019): Confidentiality, integrity, availability (CIA). The CIA-triad is a guideline

for information security that aims to secure the systems in such a way that the system and the in-

formation in it is protected, trustworthy, not modified by any unauthorized party and available

when needed in use.

From a cybersecurity perspective healthcare is a critical sector and must be protected well and

with all reasonable security controls available, both technical and non-technical. At the same time

cost-saving requirements in healthcare, new legal requirements, legacy system maintenance and

collaboration with resources external to the hospitals closed networks bring new challenges to the

overall cybersecurity and governance models. From cybersecurity criminals’ perspective the

healthcare sector has until now been a target for financial benefit (Finlayson et al., 2019) using

ransomware and causing chaos among patients by attacking system availability through denial-of-

service attacks. But the deployment of new intelligent systems will bring new attackers and attack

types into play, ones that are clever, more difficult to detect by humans and that will also require

another intelligent system to protect them from adversaries.

Currently, in clinical use, deep learning neural networks are used in an assisting role where the

pathologist verifies the diagnosis produced by the artificial intelligence model (Parwani, 2019). So

even if the risk for adversarial image attack is currently low and unlikely, the moment to build effi-

cient detection and defense for these new kinds of attacks is now when there is still plenty of time

to prepare for more advanced types of attacks. When clinical analysis workflow is more and more

automated, there should be ways to detect deviations on workflow, input data and output result.

5

In this thesis, chapters 1 and 2 explain the design science research method, goals, literature, and

background concepts to give an overview and explain the importance of the topic. The goal was to

show how in practice an adversary could perform an attack and what kind of ways there exists to

detect and defend those special kinds of tailored attacks. Chapter 3 follows design science re-

search method solution implementation steps to explain the objectives, motivation, design, and

actual implementation of the resulting artifacts. As a result, a convolutional autoencoder was pro-

duced (chapter 3.3.5) to detect adversarial perturbations. The latter part of chapter 3 covers the

demonstration and evaluation of the implemented solution to show how well the resulting arti-

facts succeed in both the adversarial attack and defense side. Finally, chapters 4 and 5 cover the

discussion and conclusion parts, also giving some ideas for further improvement of the initial solu-

tion.

1.1 Research question

The primary research question (RQ) can be defined as follows:

• RQ1: How in practice can one detect and defend against digital pathology image analysis AI model

attack?

The answer to research question can be further divided into these detailed questions:

• RQ2: What are known threats and vulnerabilities to digital pathology image analysis AI model?

• RQ3: What are known adversarial AI attack techniques and types of attacks for image analysis?

• RQ4: What detection and defense methods exist against adversarial AI attacks for image analysis

and how well do they work?

1.2 Thesis commissioner and topic selection justification

The commissioner (assigning company) for this thesis is Aiforia Technologies Oyj. The public web-

site of Aiforia Technologies describes the company with following introduction: “Aiforia equips

pathologists and scientists in preclinical and clinical labs with powerful deep-learning artificial in-

telligence software for translating images into discoveries, decisions, and diagnoses. The cloud

based Aiforia products and services aim to escalate the efficiency and precision of medical image

analysis beyond current capabilities across various fields, from oncology to neuroscience and

more.” (Aiforia Technologies Oyj, 2023)

6

During the writing of this thesis, I have worked both in Lead Cloud architect and Cyber security en-

gineer roles. In these roles the security of our company cloud-based image analysis system has

been both an interest and duty. This thesis has been implemented using open-source AI platforms

and tools. Aiforia’s image analysis systems, data sets or AI models have not been used in the ex-

periments presented in this thesis. Therefore, results or vulnerabilities do not directly apply to Ai-

foria products. I selected and agreed not to use Aiforia’s system so that all the tools, code, meth-

ods, and results can be published as is, results are platform independent and can be reproduced

using free tools and frameworks available. Aiforia has provided time, education and advice when

needed to support my thesis writing.

From the early years of working with Aiforia I have been reading articles about theoretical attacks

against image analysis and image recognition systems. Coming from a software developer back-

ground it seemed obvious that instead of seeking more methods for adversarial attacks, it was

necessary to start looking for cost-effective, generic, and efficient methods to either detect the

attacks and prevent them or make AI models more tolerant against attacks. Therefore, the se-

lected research method for this thesis is a design science approach which aims to produce con-

crete outcomes.

1.3 Thesis topic delineation

The topic of this thesis has been delineated as Practical Attack and Defense Methods for Integrity

of Deep Neural Networks in the field of digital pathology image analysis. While there is a lot of ex-

citing adversarial attack research done in other fields such as traffic sign recognition (Eykholt et al.,

2018) with autonomous vehicles, this thesis focuses on medical imaging and specifically on digital

pathology.

From different adversarial attack methods, the scope of this thesis is limited to few-pixel modifica-

tions that allow attacker to modify the image data in ways that are hard to detect by digital pa-

thology experts and therefore more likely to pass detection and defenses.

This thesis focuses on attacking an existing, published model that produces only single numerical

result (mitosis probability in the image) as output. However, it is important to notice that many

digital pathology AI models for cancer detection give more information than just Boolean

7

“Yes/No” or single numerical result as output. The output is often larger graphical and numeric re-

sult set indicating the important finding areas and severity. There is also research done about fool-

ing the image segmentation results such as Metzen et al., (2017) where the authors were able to

create adversarial perturbations producing desired target segmentation and therefore fooling im-

age segmentation model not to recognize pedestrians from given landscape pictures.

For the detection and defense, a method to detect attack using deep neural network was selected

with the idea of creating separate subsystem that could be attached to existing digital pathology

image analysis system. This detection method is focused on detecting adversarial perturbations on

image tiles (of a larger image), but adversary attacks against image segmentation models can also

use same or similar methods on detecting attacks.

1.4 Research methodology

The research method used will be design science-based research method (Peffers et al., 2007). The

reason to use Design Science Research Methodology (DSRM) is that it fits well for solution imple-

mentation in the information system research area. DSRM provides a structured approach for de-

veloping and evaluating technological solutions and is also focused on addressing practical real-

world problems and creating innovative solutions and knowledge as outcome. This thesis focuses

on developing knowledge about what attacks Medical Deep Learning AI models could be facing

and design practical software-based solutions to defend against those attacks.

Figure 1. The process model of Design Science Research Methodology (Peffers et al., 2007),
modified.

Design science-based research method aim is to prove the usefulness of the design with concrete

sample solution or system. The six different steps of DSRM (Figure 1) are aligned with this thesis as

follows.

Identify problem and motivate

8

The process starts with identifying some information system or technology related problem or op-

portunity that needs to be addressed with a solution. The motivation needs to be clear so that

both the researcher and the audience of this research can understand the value of the artifact pro-

duced by this research would bring (Peffers et al., 2007).

For this thesis the chapter “3.1 Problem identification and motivation” describes the main motiva-

tion for this research is to help preventing damage to patient security by detecting adversarial at-

tack of digital pathology image analysis AI model using a separate trained AI model for anomaly

detection on model input images. Chapter “2 Background and key concepts” covers the back-

ground information on the subject and prior research done on the subject to identify possible ear-

lier attempts to come up with a solution to the identified problem. It also introduces the audience

to the key concepts related to the cybersecurity threats of an AI model.

Define objectives of a solution

The second step of the DSRM process is to determine what specific goals and objectives the re-

search project is trying to achieve with the proposed solution. Also, the scope should be deline-

ated so that boundaries and constraints are clear (Peffers et al., 2007).

For this thesis the chapter “3.2 Objectives of a solution” describes what are the expected out-

comes and sets quantifiable objectives for the solution to be evaluated later. These rational expec-

tations will serve as design and evaluation criteria for the solution.

Design & development

In this third step the actual solution artifact is being developed to solve the problem. Usually, this

step is iterative as it involves trying different technical approaches to solve the problem and exper-

iments with various design options. This step applies the theoretical knowledge gained in earlier

steps to the actual problem solving (Peffers et al., 2007).

As this thesis develops a software artifact to solve the identified problem, the chapter “3.3 Design

& development” initially covers hardware and software used in the artifact implementation and

then introduces the dataset preparation, attack sample creation (for testing the artifact) and im-

plementation of the actual solution artifact, the AI model to be used defending the attack input

from reaching the target system.

Demonstration

9

The demonstration step shows in practice how the developed artifact is used in action to solve the

identified problem in form of prototype, experimentation, simulation, or such activity. This step

also demonstrates knowledge of the researcher on how to correctly use the artifact (Peffers et al.,

2007).

In this thesis the chapter “3.4 Demonstration of solution suitability” contains a demonstration of

both successful attack and sufficient defense (or detection) of an adversarial attack against the se-

lected digital pathology image analysis AI model.

Evaluation

The goal of the evaluation step is to determine the effectiveness and practicality of the solution. It

measures how well the implemented artifact supports an effective solution to the earlier identi-

fied problem. Results from the demonstration may be used in evaluating the solution. This step

also offers researchers a possibility to jump back to design & development step to improve the so-

lution artifact to gain better results. An acceptable option is also to communicate on the results

(as is) and leave the identified problem to be solved better in future projects. Sometimes a feasible

solution cannot be developed or solving the problem needs a different solution approach (Peffers

et al., 2007).

For this thesis the chapter “3.5 Evaluation of the implemented solution” the results from the

demonstration are evaluated quantitatively and qualitatively along with additional measures

against larger set of testing data from various angles. Both attack and defense (or detection) re-

sults and performance are evaluated.

Communication

Sharing the insights acquired through the research, underlining the significance and novelty of the

created solution artifact to both academia and industry professionals, serves as a catalyst for

knowledge dissemination. It enables fellow researchers to gain knowledge, enhance existing meth-

odologies, pose new questions, or expand upon findings. Such collaborative efforts are invaluable

for advancing the field of study (Peffers et al., 2007).

Along with the thesis itself, in the last DSRM process step, a set of artifacts are produced and pub-

lished along with evaluation results and knowledge gained through researching the topic.

10

1.5 Information retrieval and source material

Information retrieved using search keywords and scientific research databases.

General information and initial searches for information were gathered from JAMK E-library sys-

tems Janet Finna International article search (https://janet.finna.fi/), arXiv (https://arxiv.org/), Re-

searchGate (https://www.researchgate.net/), ProQuest Ebook Central

(https://ebookcentral.proquest.com/). Some of the search patterns used in information queries in

Janet Finna and ProQuest Ebook Central:

• (attack* OR defen*) "medical deep learning"

• ("attack*" OR "defen*") "medical deep learning systems"

• "cybersecurity" AND "threat" AND "digital pathology" AND "image analysis"

• "one-pixel attack" AND "deep learning"

• "one-pixel attack"

• "one-pixel attack" AND "medical deep learning systems"

• "few-pixel attack"

• "few-pixel attack" AND "deep learning"

• "adversarial" AND "attack" AND "black-box"

• "Deep learning" AND ("attack" OR "defense") AND "adversary" AND "image analysis" AND "medi-

cal"

• "adversarial attack" AND "medical" AND "deep learning"

• "adversarial" AND "defense" AND "Digital Pathology" AND "deep learning" AND "image analysis"

• "adversarial attacks" "medical deep learning systems"

Following the references in some of the key research papers and articles such as Finlayson &

Beam, (2019), Su et al., (2017), Chakraborty et al., (2018), gave good basis for starting to develop

an initial solution implementation from both attack and defense point of view.

Information retrieved from Finnish sources related to the topic

In JAMK, there was already a research group studying model fooling attacks against medical imag-

ing so the articles published by Sipola et al., (2020), Korpihalkola et al., (2020) gave mode detailed

information on the type of attacks that would be suitable for this thesis. As that research group

https://janet.finna.fi/
https://arxiv.org/
https://www.researchgate.net/
https://ebookcentral.proquest.com/

11

was focused on attacks against Digital Pathology images, the information and references were a

good starting point for finding key research groups from outside Finland and articles focusing on

same topics.

Programming references and source codes

For the implementation of the few-pixel attack with Differential Evolution and training of the Con-

volutional Autoencoder, several general programming references and reference implementations

were studied. For the programming references, the main sources were:

• Python scipy.optimize.differential_evolution documentation:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolu-

tion.html

• Keras reimplementation and tutorial of "One pixel attack for fooling deep neural networks" (Su et

al., 2017) by Dan Kondratyuk: https://github.com/Hyperparticle/one-pixel-attack-keras/

• Building Autoencoders in Keras: https://blog.keras.io/building-autoencoders-in-keras.html

• CODAIT/deep-histopath: https://github.com/CODAIT/deep-histopath

Other information used in thesis

For Digital Pathology overview, evaluation, history, terminology and current state, the articles of

Pantanowitz et al., (2018) and Parwani, (2019) were helpful. The only physical book that is refer-

enced and that was used in this thesis for general Cybersecurity knowledge and terminology was

(Stallings, 2019).

1.6 Research reliability and ethics

Reliability and suitability of data

Results are based on tests done with image tiles from the original TUPAC16 dataset (Veta & et al.,

2024) which contains a subset breast cancer case images from The Cancer Genome Atlas (TCGA).

TCGA is a well-known and widely used data set in digital pathology research. The TUPAC16 dataset

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://github.com/Hyperparticle/one-pixel-attack-keras/
https://blog.keras.io/building-autoencoders-in-keras.html
https://github.com/CODAIT/deep-histopath

12

is available from Grand Challenge web site (https://grand-challenge.org/). Users of the dataset are

encouraged to reference the challenge overview paper (Veta et al., 2019) and that recommenda-

tion is followed in this thesis.

Image tiles selected for training, validation, testing, demonstration, and evaluation steps represent

quite well common H&E-stained image samples in the data set. The presence of mostly white im-

age tiles affects anomaly detection results for normal samples (no mitosis) but is a common fea-

ture for digitalized WSI images. Those usually contain a lot of empty background color.

Data confidentiality, consistency, and quality

Data quality will be controlled using well-known image data sources referenced in several scientifi-

cally reviewed articles. Data is anonymized and does not contain any identifiable patient infor-

mation. Data will be stored under safe, encrypted source control in personal encrypted hard drive,

JAMK Office 365 and private GitHub environments and will be destroyed after thesis is completed.

Access to the data will be limited to authorized persons only.

Reliability of experimental setup

The experimental setup in this thesis is realistic in a sense that digitalized WSI images are so large

(the size can exceed 50,000 by 50,000 pixels) that splitting the image into smaller tiles (64X64 pix-

els in this thesis) for image analysis and viewing purposes is efficient and rational choice of imple-

mentation. Therefore, attacking individual image tiles will affect breast cancer prediction results

when certain regions of interest (ROI) are selected for analysis. In practice one would attack sev-

eral image tiles at once to cause larger effect in ROI analysis results.

Reliability and generalization of findings

Findings presented in this thesis give specific answers to the research question using the selected

solution implementation and align directly with the topic.

If the AI anomaly detection model is used with other digital pathology WSI image staining models

than H&E or with different data set created with a different WSI scanner (as example), the model

must be trained again with samples from the new data set included. This is because color differ-

ences and other variation in the digitalized WSI data affect the model performance and may result

in a situation where perfectly valid breast cancer image tile sample is considered as anomaly.

https://grand-challenge.org/

13

The AI anomaly detection model (Convolutional autoencoder) implemented in this thesis work has

not been tested with other breast cancer data sets to see how it generalizes.

Research Ethics

This master’s thesis adheres to ethical research principles and guidelines (JAMK, 2018). Research is

conducted in an ethical manner, with no intentional harm or damage being inflicted on any par-

ties.

Research topic is selected so that it may reveal weaknesses in critical healthcare systems, but the

aim is to make image analysis AI model producers and users aware of the vulnerabilities and

therefore enable mitigating of vulnerabilities in early stage. Vulnerabilities listed in this thesis have

already been discovered by other researchers and are known to the research community.

The digitized whole slide image data set used in model training is freely available, anonymized and

does not contain patient data. Programming tools used are open source licensed and freely avail-

able. Results from test runs are reported honestly "as is" so that the validation of working solution

can be repeated by other people interested in applying the public source code and results into

their own solutions. Results can be reproduced using the same setup and parameters as described

in this thesis.

Python code produced in this research is implemented by thesis author, except open-source soft-

ware libraries and tools used. There are 1-2 efficient Python code methods referenced in the code

that were originally implemented by other authors. Those code blocks are clearly referenced in

code documentation with comments and link to original code. Code files used in solution imple-

mentation can be found from this thesis authors public GitHub library

(https://github.com/amarkus/thesis_jamk). Code is available under MIT license.

Thesis is written by the author and has gone through the Turnitin Originality Check plagiarism de-

tection software scanning. Author of this thesis has followed Jyväskylä University of Applied Sci-

ence’s ethical principles (JAMK, 2018).

https://github.com/amarkus/thesis_jamk

14

2 Background and key concepts

2.1 Prior research and literature

When thesis writing begun in February 2021, Senior Lecturer of JAMK University of Applied Sci-

ences was contacted to get approval to proceed with the thesis subject and to get thesis supervi-

sor. It was surprise to find out that inside JAMK there was already a research group studying

model fooling attacks related to medical imaging (Sipola et al., 2020). They were using breast can-

cer whole slide images and deep learning models as their targets, so it was the best possible start

to get a thesis supervisor who was already familiar with the subject. Thesis supervisor also in-

formed about the latest relevant research articles that could be useful knowledge for this thesis

implementation. At the time thesis writing started, JAMK research group did not have any publica-

tions related to detection or defending AI model fooling attacks, so that confirmed my idea of the

need for detection and defense methods.

The selected approach for this thesis is based on older Convolutional Autoencoder and straightfor-

ward to implement with a dataset with just enough data representing the images to be analyzed.

In this thesis the selected attack method is few-pixel attack. It adds only a few pixels (5 pixels in

this thesis) perturbation to the target image but If pixel colors are close to original image, the per-

turbation can be hard to detect by human. That should cause more false results in the targeted AI

model and often result attack success, compared to for example One-Pixel attack as more image

data is tampered (Su et al., 2017). This approach and Alatalo et al., (2022) aim to detect the attack

enabling image analysis system administrator or the person responsible for the data set to act

upon findings and perform further analysis of the integrity of image data and the model created

using the data set.

During thesis writing, JAMK research group published an article titled “Detecting One-Pixel Attacks

Using Variational Autoencoders” (Alatalo et al., 2022) which targeted finding an efficient way to

detect specific attack called One-Pixel attack with promising results. The Variational Autoencoder

approach (Alatalo et al., 2022) is based on technological improvements on the basic Convolutional

Autoencoder but requires more knowledge for the implementer to find out the right optimization

model.

15

Outside JAMK University of Applied Sciences, there have been several research groups researching

adversarial attacks against medical deep learning systems. In the area of medical imaging, a group

of researchers (Finlayson et al., 2019) performed adversarial patch attacks using Cleverhans (Pa-

pernot, Faghri, et al., 2016) library against medical classification models for fundoscopy, chest X-

Ray and dermoscopy images developed by their own team.

PACS (Picture archiving and communication systems) and medical imaging security has been re-

searched by (Eichelberg et al., 2020) and closely relates to image format security (DICOM, TIFF)

and the way digital pathology images are stored and transferred during the workflow. Weak PACS

cybersecurity protection enables attackers to access ad tamper training and/or analysis data.

Recently there have been more research articles comparing convolutional neural networks (CNNs)

and vision transformers (ViTs) on their robustness against white-box and black-box attacks. One

such paper is (Ghaffari Laleh et al., 2022) where researchers find vision transformers to be more

robust against several gradient-based adversarial attacks than convolutional neural networks.

2.2 Cybersecurity threats in Digital pathology image analysis

In this chapter the main areas of digital pathology workflow and image analysis are covered to give

the reader an overview related to research questions RQ2, RQ3 and RQ4 in chapter 1.1: What are

the threats and vulnerabilities present in the image analysis process, what kind of adversarial at-

tacks can be used to attack the AI models used in digital pathology image analysis and how can

one defend against the attacks in practice?

Digitalization of pathology

Digital pathology has been around for over 20 years now but the deployment of even the basic el-

ements such as creating a whole slide imaging (WSI) workflow are an ongoing task even in some of

the world’s biggest and well-known hospitals. This is mostly because of the cost of setting up WSI

workflow with scanning devices and because over the decades hospitals and research labs have

collected tens of thousands (even hundreds of thousands) of glass slides so there is a lot to be

scanned into digital formats. Glass slides have been earlier viewed by using common microscope

or with different variations of “Virtual Microscopes”, earliest developed in 1996-1998 (Pan-

16

tanowitz et al., 2018). Digitalization of vast amounts of glass slides is a huge task but it enables ef-

ficient storage, retrieval and sharing of the pathology samples for educational and research pur-

poses. This data (digital WSI images) is applicable for training machine learning models capable of

assisting pathologists in the making of accurate diagnoses by performing different image analysis

tasks. These image analysis tasks, such as classification, segmentation, scoring and counting of ob-

jects can be done in matter of minutes or seconds and save pathologist’s time. When robust AI im-

age analysis solution has been created, it can be scaled to analyze hundreds of images at the same

time.

Training deep learning models for use in digital pathology requires a well-chosen data set and an

expert to label the interesting areas, objects, or images so that the resulting deep neural network

(DNN) learns to recognize key features from the data set. When the model has been thoroughly

tested by experts using relevant test data, the DNN model is then used in daily image analysis

tasks to identify and outline regions of interest from pathological images. Such regions of interest

can be, for example, tumor areas.

Digital pathology workflow (see in Figure 2) contains many phases for attacker to manipulate the

data in such way that the attack scenario described in the solution implementation part of this

thesis will be possible.

17

Figure 2. Digital Pathology workflow (example)

Legacy infrastructure and security misconfigurations

While hospital networks and endpoints (such as desktops and mobile devices) are usually secured

well from external threats, it is common that there are many existing vulnerabilities in the hospi-

tals internal systems (Finlayson & Beam, 2019) as some of those are legacy systems, monolithic

and hard to update. Also, the updating of regulated systems requires long test cycles to be done

before updates or new software/hardware is taken into production use. When updating hardware

and software is hard and requires a lot of time for planning and deployment, there are usually

plenty of opportunities for cybercriminals to penetrate the system.

Legacy infrastructure may effect on the information security of digitalized pathology images, re-

vealing one or several points of attackers to tamper with images used in AI training of analysis

phases.

Motives of attacker and defender

Motives of the attacker may vary by the application area of image analysis, mostly focusing on fi-

nancial gain and causing harm. Table 1. lists motives for both the attacker and defender of digital

18

pathology deep learning networks. Some of the financial motives for the attacker are covered in

(Finlayson et al., 2019).

Table 1. Attacker and Defender motives

Attacker motives Defender motives

Financial Gain: Getting high-quality healthcare Avoiding of unnecessary use of resources

and costs for treatments

Financial Gain: Accepting treatment that is not nec-

essarily needed

Avoiding of unnecessary use of resources

and costs for treatments

Financial Gain: Insurance fraud Avoiding of unnecessary costs

Financial Gain, Data Manipulation: Getting pharma-

ceutical and device approvals through clinical trials

by result manipulation

Preventing damage to patients and ma-

nipulation of results

Financial Gain, Data Manipulation: Drug abuse for

getting recipe

Preventing drug abuse and costs

Extortion and Ransom: Manipulating results and re-

questing money for correct AI model predictions.

Preventing damage to patients

Cyber Warfare, Hacktivism, Disruption and Sabo-

tage, Data Manipulation: Causing harm to one pa-

tient or a group of patients

Preventing damage to patients

Competitive Advantage: Winning a commercial ten-

der by manipulating AI model evaluation results

Preventing manipulation for competitive

advantage

The biggest motive for cybercriminals to attack against machine learning algorithms used in assis-

tance with medical decisions currently are the possible financial gains. As healthcare is trillion-dol-

lar business in US alone (Finlayson & Beam, 2019) and the number of adoptions of AI as part of

medical reimbursement decisions, drug decisions, pharmaceutical and device approvals is grow-

ing, opportunity for fraud and extortion/ransom is considerable.

19

Measuring the possible threat impact and exploitability

In cybersecurity there is a commonly used scoring system which is called the Common Vulnerabil-

ity Scoring System, CVSS (FIRST.Org, 2024) which is used to score exploitability and impact metrics

so that teams responding to threats can prioritize responses and resources according to threat.

When many threats and vulnerabilities exist and multiple attackers are trying to discover vulnera-

bilities in hospital systems as well as pharmaceutical research laboratories, the cybersecurity

teams must focus on the most relevant common threats first.

CVSS system is not meant to score AI/ML model vulnerabilities, but rather the computer systems

in which they are run. When thinking about the exploitability and impact of Digital Pathology im-

age analysis system inference attack performed with perturbed input images in the field of digital

pathology image analysis, then using CVSS criteria we could get these kinds of characteristics:

• Exploitability Metrics

o Attack Vector: Network/Adjacent Network/Local.

- Depending on the implementation, parts of the image analysis system are accessible

through network (or adjacent network.). Sometimes physical access to the local network

where the system is running is required.

o Attack Complexity: High.

- Attack requires considerable amount of effort in both planning and executing the attack.

o Privileges Required: High. Significant privileges are required over the vulnerable compo-

nent to affect the files and settings.

o User Interaction: Required.

- For the vulnerability to be exploited, user must select an image containing adversarial per-

turbations as input for the image analysis.

• Vulnerable System Impact Metrics

o Confidentiality: Low.

- Ability to manipulate image analysis system results affects confidentiality of the system

enabling attacker to gain control of some or all the predictions produced by the system.

o Integrity: High.

- Model behaves incorrectly due to tampering of data. Some or all inputs may be miscate-

gorized and AI model's behavior is not trustworthy anymore.

20

o Availability: Low/High.

- Vulnerability does not necessarily affect system availability over the network but affects

results availability for pathologists not being able to get expected results from the system

either partially or completely.

With these parameter values, the CVSS v3.1 calculator (https://www.first.org/cvss/calculator/4.0)

would give CVSS Base Score between 5.0 - 7.0 and therefore rated as “Medium”. Generally greater

focus and prioritization in resolving threats goes into categories “Critical” and “High”, so AI model

vulnerability would not most likely result in immediate action or remediation. If the possibility of

AI result tampering would seem likely or high-likely, then in hospital environment the temporary

solution would be to perform analysis manually by the pathologists and temporarily bypass vulner-

able image analysis system.

2.3 Deep Neural Networks attacks and defenses

In the paper (Finlayson & Beam, 2019) authors go through some of the motives and methods that

could make adversarial attacks to be realized also in the field of medical deep learning systems.

They also describe the risks related to different stages of machine learning pipeline (Figure 3.).

Figure 3. Adversarial attacks and risks related to machine learning pipeline (Finlayson & Beam,
2019, modified).

Various attacks can be performed during different phases of digital pathology workflow, causing

risks to realize as privacy breach, system downtime, loss of trade secrets (model internals), misin-

terpretation of results, error in results, or even leading to a wrong clinical diagnosis.

Attack methods related to digital pathology image analysis

https://www.first.org/cvss/calculator/4.0

21

There are several surveys and research articles published focusing on adversarial attacks against

machine learning models analyzing images, sound, and text such as (Chakraborty et al., 2018) and

(Xu et al., 2019). Attack methods often vary by the content type being analyzed. In this chapter,

some of the most relevant attacks against digital image analysis are covered. The focus on selected

attacks is on few-pixel perturbations and digital pathology, because in the field of digital pathology

where pathologists are viewing very large images, some with tens of gigabytes in size and having

over 10 gigapixels of information, cleverly made perturbations of carefully selected pixels will most

likely be left unnoticed.

The adversarial perturbations inserted into the image can be significant in size (adversarial patch)

or change of colors and usually that will result in desired results faster than minor change of pixels

both in percentage of area and color. But it has been shown that even carefully selected one-pixel

change that blends into its surrounding will cause enough change that the attack can succeed and

resulting change is hard if not impossible to be noticed by trained human specialist (Korpihalkola

et al., 2021) .

Table 2. Shows a sample of normal image and 2 attacked image, latter image having the attack

pixel selected so that it is hard to spot by even an expert, considering the large amount of image

data each pathologist must go through.

Table 2. Hiding attack by selecting pixel color from existing color scale

Image patch (mitosis_1.png)

"probability": 0.03698

Attack with yellow pixel

"probability": 0.014664

Attack with magenta pixel

"probability": 0.02031

One-pixel sized anomalies are also more difficult to find when analyzing single pixel color devia-

tions from a larger image. A very simple visualization is showed in Table 3. but generally, a more

thorough analysis about pixels and their expected location in the image is needed to determine if

any anomalies are occurring. This is what neural networks learn during their training iterations.

22

Table 3. Blending pixel sized changes

Attack with yellow pixel Attack with magenta pixel

For medical domain there are research articles covering attacks based on adversarial images on

radiology as well as digital pathology. The difference between those two is that radiology images

are often smaller in size and color variation. Digital pathology images may go through different

kinds of staining process, leading to several variations in digitalized image pixels even using the

same source WSI slide.

Selected attacks, their efficiency and implementation related to few-pixel, or one-pixel perturba-

tions are covered in the following publications shown in Table 4., where some of the attacks are

directly related to medical domain.

Table 4. Selected adversarial attacks and their relation to medical domain

Paper Black-box / white-box

attack

Medical domain? Few-pixel, one-pixel, or

other type of attack?

Su et al., (2017) "semi-black-box attack"

(using only probability

labels as information).

No. One-pixel attack

Korpihalkola et al.,

(2020)

Black-box attack. DNN

network queried using

a REST based API.

Yes.

Digital Pathology.

One-pixel attack

23

Finlayson & Beam,

(2019)

Both. For black-box at-

tack, results from inde-

pendently trained net-

work with similar

architecture were used

(transferred) in attack

against victim.

Yes.

Digital Pathology.

Radiology.

Adversarial patch, Projected

Gradient Descent (PGD) at-

tack

Nguyen-Son et al.,

(2021)

Black-box attack. No. One-pixel attack, Few-pixel

attack

Paschali et al.,

(2018)

Black-box attack. Yes.

Digital Pathology.

Radiology.

Fast Gradient Sign Method

(FGSM), DeepFool and Sali-

ency Map Attacks

Sorin et al., (2023) Black-box attack.

White-box attack.

Yes.

Digital Pathology.

Radiology.

Multiple attacks (this paper

is survey with references to

actual papers on implemen-

tations)

Narodytska & Ka-

siviswanathan,

(2017)

Black-box attack. No. Few-pixel attack

Quan et al., (2021) "semi-black-box attack"

(using only probability

labels as information).

 One-pixel attack, Few-pixel

attack

Attack strategy and prior knowledge about the target network

This thesis uses black-box attack in testing how AI model behaves under attack. The distinction of

Black-Box and White-Box attacks is closely related to attack strategy and prior knowledge that ad-

versary has about the target. This distinction is like the types that general software and security

24

testing uses. If an adversary can generate a successful attack with very little information, then the

attack is considered more effective. Often black-box attack requires gathering information about

model by testing the system using the targeted AI model. For commercial REST API interfaces that

are billed per usage, optimizing cost of the attack is also a success criterion.

Table 5. describes the differences between these two. In an article of (Chakraborty et al., 2018),

the authors have given detailed information about Black-box and White-box attacks and their sub-

classes, such as Strict, Non-Adaptive and Adaptive Black-Box Attack.

Table 5. Differences of black-box vs white-box attack in the context of adversarial attacks on
images.

 Black-box attack White-box attack

Knowledge required

to perform attack

The attacker has restricted or no access

at all to the target model. They might

not know the model's architecture, pa-

rameters, or have access to its internal

workings.

The attacker possesses

complete access to all as-

pects of the target model,

including its structure, pa-

rameters, and the data it

was trained on. This

means the attacker knows

how the model works.

Attack strategy Attackers rely on observations and in-

teractions with the model, such as sub-

mitting input images and observing the

corresponding outputs, to generate ad-

versarial examples. Techniques like

transferability, where adversarial exam-

ples crafted for one model can fool an-

other model, are often used in black-

box attacks.

Attacker may use gradient

information to craft per-

turbations that are specifi-

cally designed to deceive

the model.

Some literature and research papers mention also attack strategy known as Semi-white (Gray) Box

Attack. It is defined as when attacker has some prior knowledge (limited knowledge) about target

AI model but can transfer that knowledge later in some form to be used in black-box attack. This is

described shortly in (Xu et al., 2019). Transfer can happen for example by training a generative

network in a white-box setup and then later using the generative network as a tool for adversarial

attack.

25

Adversarial samples and Transferability

Transferability is an important feature of adversarial attacks against machine learning models.

Many attacks that are shown to succeed for one AI model, also succeed on another model even if

those models have different architecture as shown by (Papernot, McDaniel, et al., 2016) . This

makes it easier for an attacker to mimic the behavior of a target AI model locally and find such an

attack that will most likely work also on target model and architecture. In such Black-box attack

scenario, the advantage is on the attacker side as there is no need to use brute-force methods

against target API to find the weakness. This allows the attacker to remain undetected as the be-

havior to perform the attack does not differ from legitimate use of target API or software. This is

also a financial factor as calls to machine learning REST APIs may have per request costs and there-

fore brute-force approach might result in high costs per attack session, with one session having

thousands or tens of thousands of requests.

To succeed in training local target AI model of their own, the attacker must have knowledge of the

domain to succeed. In the medical domain this is more difficult as training a predicting AI model

for breast cancer proliferation score requires pathology expertise which cybercriminals rarely

have. However, there are freely available AI models and AI training tutorials for multiple frame-

works that may give some medical domain knowledge to train a model like the one used in target

system.

Defense methods and strategies

To be able to defend Deep Neural Network based AI models trained for image analysis from being

attacked, different methods to prevent the effects of adversarial input and detecting those inputs

have been developed. In this chapter, content of three articles Yuan et al., (2017), Xu et al., (2019)

and Chakraborty et al., (2018) are covered to get an overview of the different defense types and

categories. Each defense type has its benefits and pitfalls in actual production use with digital pa-

thology image analysis AI models. Digital pathology is a highly regulated area when resulting appli-

cations and systems are used in clinical diagnostics or patient care. This often limits the possibility

to use some methods that alter the input data, even if the intention behind those methods was

good.

Some of the well-known defense methods are introduced in Table 6 .

26

Table 6. Defense methods against Deep Neural Network attacks

Defense methods How it works?

Adversarial Training Works by increasing model robustness by augmenting train-

ing set with adversarial examples. This defense works best

on adversarial samples made using the original AI model.

Robust Optimization Works by utilizing optimization techniques that improve ad-

versarial robustness during model training. Robust optimi-

zation algorithm needs some prior knowledge of the poten-

tial threat/attack.

Defensive Distillation Works by training the classifier in two-round process and

using a specific distillation method. This leads to model

learning smoother network, makes the AI model less sensi-

tive to small input changes and harder to attack against.

Gradient Masking / Obfus-

cation / Hiding

Works by obscuring or hiding gradient information to pre-

vent adversaries from crafting effective adversarial pertur-

bations.

Blocking the Transferability Introduced NULL Labeling method to prevent adversarial

example transferability. Works by augmenting a new NULL

label in the dataset and training the model to reject adver-

sarial input and classify them as NULL. Benefits of this

method is that accuracy of the clean data is not compro-

mised.

Defense-GAN Defense-GAN is trained to recognize perturbed and unper-

turbed images. During inference it finds a close output to a

given image without any adversarial changes. The resulting

output is then passed to the classifier, making it hard to at-

tack against. This model may alter the data passed to target

AI model.

27

MagNet MagNet combines two defense strategies: detector net-

works which detect adversarial inputs and reformer net-

works which correct adversarial perturbations in input sam-

ples. This model alters the data passed to target AI model.

Adversarial detecting A method, such as DNN network is used in detecting adver-

sarial samples and preventing them to reach target AI

model.

Defensive strategies for defending Deep Learning models can also be categorized as proactive or

reactive (Table 7.) based on preparations (like adversarial training) required before an adversarial

example is detected (Yuan et al., 2017). Reactive strategies are used after DNN network is built

and proactive strategies take an adversarial attack into account when DNN network is designed

and trained.

Table 7. Countermeasures for adversarial examples (Yuan et al., 2017, modified)

Reasoning for selected method of defense in this thesis

In this thesis, the selected defensive strategy is Adversarial detecting, meaning that a reactive ap-

proach is used. Whenever an adversarial input is detected, it is marked as anomaly. Detection in-

formation can be chained into further actions such as blocking the input and alerting system ad-

ministrator about the anomaly finding.

Digital pathology image analysis reliability is bound to keeping the actual image data immutable

for confidentiality and integrity reasons. Pathologists must be able to trust that the clinical analysis

is done against unmodified image so that all important image areas remain unchanged, and the

results predicted by the image analysis AI model are valid based on the original sample taken from

28

the patient. This mean that reconstructing digital pathology images using Generative Adversarial

Networks (GANs) to erase/remove the adversarial perturbations is out of the question.

Another important factor is the accuracy of the actual digital pathology image analysis AI model

(DNN network). It should not be affected by the selected method of defense, not by its execution

performance or the accuracy of the results it predicts from the input data. Defense methods that

inject or augment adversarial data into the digital pathology image analysis AI model may affect

the accuracy of the model predictions or even result errors in clinical analysis.

So, based on the reasons explained, the easiest option to start with is detecting adversarial input.

It does not modify (or reconstruct) the image data in any way, it allows blocking and alerting when

anomalies are found and does not require changing the way the actual digital pathology AI model

is trained.

3 Solution implementation workflow

This chapter goes through the solution implementation following design science research (DSRM)

approach, following the six steps of DSRM. Solution implementation covers topics starting from

problem identification, motivation, and objectives. After the objectives are set, thesis proceeds

into planning, testing and evaluation of the implemented design artifacts.

3.1 Problem identification and motivation

Chapters 1 and 2 describe in detail the motivation, background, and the need to prevent severe

consequences to patient security, caused by possible adversary attacks. Research focus in 2020

year seemed to be on finding new ways to fool deep learning models, also on the field of digital

pathology. But back then there was not much research done on the prevention, detection, and de-

fense side. While sharing knowledge about possible ways of attack is important also to defenders

of cybersecurity, more focus should be put on practical defense activities. Therefore, in this thesis,

one way of detection is implemented using known deep learning architectures and software tools

to test in practice how difficult detection and defense really is.

Based on initial literature review, there is no ultimate solution to the problem of defending against

adversarial samples on image analysis or defending targeted image classification attacks. This is

stated well in (Finlayson et al., 2019) where authors indicate that the defense should hold against

29

present and future threats while attacker only needs to defeat one specific way of defense. Cur-

rently the best options for defense are related in making the deep neural network more robust to

attacks by including some adversarial samples into the training data, allowing the DNN network to

tolerate some level of perturbation. The research problem is hard, and the number of possible

types of attacks is considerable. Also attack type variations are easy to produce, and therefore one

can currently only select one or more attacks to detect or defend against. But no universal solution

exists that would tolerate all attacks and produce accurate and trustworthy results when under

attack.

The value of the proposed solution in this thesis is to offer an evaluated result on detecting adver-

sarial attack of digital pathology image analysis AI model using one known efficient method, Con-

volutional Autoencoder, trained with image tiles produced from a set of whole slide images. With

the results one can either adopt a proposed solution or, based on results gained, develop a differ-

ent or improved solution for the same research problem. Value for the digital pathology image

analysis solutions is to have a way to detect when adversary input is given, then notify system us-

ers, and cybersecurity team or even reject (or put in quarantine) the malicious input. If detection

works well, the benefits are obvious as there will be no damage to patients caused by deliberately

created false analysis results.

3.2 Objectives of a solution

The objective of the proposed solution for the identified research problem is to produce a Convo-

lutional Autoencoder model, trained with image tiles generated from TUPAC16 data set, that can

detect selected types of adversarial image attacks against digital pathology images with good de-

tection rate. The practical usefulness of the solution is defined by:

• Performance of the model measured as detection rate.

• Implementation complexity. Solution should be easy to implement and take into use.

• The computational effort (time, cost, number of data samples used) required to train the
AI model.

• The computational effort required to run the detection for single image tile.

• The computational effort required to run the detection for complete whole slide image
(WSI).

30

• Integrity of the digital pathology image data and trained AI model. Keeping the image data
and AI model unchanged is essential for the trustworthy AI computing. If the analysis input
image data has to be modified because of the method used in detection or defense, that
may affect the results given by the medical AI analysis performed by the model. If AI model
has to be constantly retrained (continuous learning etc.), then it’s use for clinical analysis
will be hard from regulation point of view.

Additional value for system users and administrators would bring if the solution would also be able

to:

• Detect other types of attacks (generalization)

• Explain and show in detail the findings and the type of attack detected. This could be done
by annotating detected possible attack areas.

The list of additional value is out of scope of the main objectives of this thesis solution implemen-

tation.

3.3 Design & development

In the design and development step, following the selected research method, a Convolutional Au-

toencoder network was trained to be able to distinguish between image patches from the original

data set and adversarial image patches generated by attacker. To be able to train such network,

several Python code files were created for training, testing, evaluation, and adversarial image gen-

eration. Trained AI model, images patches and code files had an important role in the develop-

ment, demonstration, and evaluation steps. But one of the most important elements was the

knowledge gained to create both the attack and detection implementations.

The main artifacts created in the design and development step were:

• Convolutional Autoencoder network (AI model) that can detect selected types of
adversarial image attacks against digital pathology images

• Training data set image patches (size 64 X 64 pixels)

• Python code for generating adversarial image patches (size 64 X 64 pixels) + resulting
generated set of adversarial patches

• Python code for training the Autoencoder using Keras

• Python code for attacking CODAIT model over REST API

31

• Python code for testing and evaluating success metrics

• Knowledge on Autoencoders, Few-pixel attacks, Differential Evolution, training of
Convolutional Neural Networks and how to attack AI models on black-box attack
scenario

3.3.1 Hardware and software requirements

This section provides a minimum software requirement where a standalone laptop/desktop com-

puter is used. This setup has been used for training the models used and for running AI analysis

tasks. But if cloud capacity or high-end computational server cluster is available, running the train-

ing and analysis tasks will take a lot less time.

One can also use Docker based Jupyter notebook -environment for developing and documenting

AI models, but when tested it seemed to result in 3-4 times slower performance.

Minimum recommended hardware:

• Memory (RAM): 16 GB (or more)

• Processor: 64-bit, 8 cores

• Hard disk space: 500 GB SSD drive or 120 GB SSD for system drive + ~300 GB for second drive

o When generating image tiles for training, any additional hard disk space is beneficial.

1 TB disk should be a good fit.

• GPU: NVIDIA GeForce GTX 1060 (or later) / NVIDIA Tesla T4 (or later)

o While CPU-only training is possible, things take about 3-5 times longer than with GPU.

• Network Interface Card (NIC): An ethernet adapter with at least 1 gigabit/second throughput.

o Training and testing image data download requires decent networking speed.

Software:

• Operating system: Windows 10/11 or Ubuntu Linux

o At least these are proven to work fine with GPU libraries and NVIDIA display drivers.

• IDEs used for development of solution (both available for Windows/Mac/Linux):

o Visual Studio Code (Microsoft Software License Terms (Visual Studio Code product) MIT

license (Code)): https://code.visualstudio.com/

o Spyder (Scientific PYthon Development EnviRonment, MIT License): https://www.spyder-

ide.org/

• Programming language used in this thesis:

https://code.visualstudio.com/
https://www.spyder-ide.org/
https://www.spyder-ide.org/

32

o Python (License: Python License, PSF-2.0. Python Software Foundation License (PSFL) is

BSD-style license): https://www.python.org/

• Python programming language libraries used:

o Numpy (License: NumPy license/BSD License): https://numpy.org/

o Matplotlib (License: Matplotlib license/BSD-style license): https://matplotlib.org/

o Scipy (License: BSD-3): https://scipy.org/install/

o Pillow (License: Pillow is licensed under the open-source Historical Permission Notice and

Disclaimer (HPND) license): Python Imaging Library (https://pillow.readthedocs.io/)

o Split-folders (License: MIT License): https://pypi.org/project/split-folders/

o Texttable (License: MIT License): https://pypi.org/project/texttable/

• Whole Slide Image (WSI) processing:

o OpenSlide (License: GNU LGPL): https://openslide.org/

• Machine learning frameworks and libraries:

o TensorFlow (License: Apache License 2.0): https://www.tensorflow.org/

o Keras (License: Apache License 2.0): https://keras.io/

o Scikit-learn (License: BSD-3): https://scikit-learn.org/stable/

• Packaging and runtime configuration of applications

o Docker engine (License: Apache License 2.0): https://docs.docker.com/get-started/over-

view/

o Docker Compose (License: Apache License 2.0): https://docs.docker.com/compose/install/

• CODAIT -project software:

o CODAIT - deep-histopath (License: Apache License 2.0): https://github.com/CODAIT/deep-

histopath

▪ Matplotlib (License: Matplotlib license/BSD-style license): https://matplotlib.org/

▪ Numpy (License: NumPy license/BSD License): https://numpy.org/

▪ Pandas (License: BSD-3): https://pandas.pydata.org/

▪ Scipy (License: BSD-3): https://scipy.org/install/

▪ Jupyter Notebook (License: BSD-3): https://github.com/jupyter/notebook

▪ IPython (License: BSD-3): https://github.com/ipython/ipython

▪ Scikit-learn (License: BSD-3): https://scikit-learn.org/stable/

▪ Scikit-image (License: BSD-3): https://scikit-image.org/

▪ OpenSlide Python (License: GNU LGPL): https://github.com/openslide/openslide-

python

https://www.python.org/
https://numpy.org/
https://matplotlib.org/
https://scipy.org/install/
https://pillow.readthedocs.io/
https://pypi.org/project/split-folders/
https://pypi.org/project/texttable/
https://openslide.org/
https://www.tensorflow.org/
https://keras.io/
https://scikit-learn.org/stable/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/compose/install/
https://github.com/CODAIT/deep-histopath
https://github.com/CODAIT/deep-histopath
https://matplotlib.org/
https://numpy.org/
https://pandas.pydata.org/
https://scipy.org/install/
https://github.com/jupyter/notebook
https://github.com/ipython/ipython
https://scikit-learn.org/stable/
https://scikit-image.org/
https://github.com/openslide/openslide-python
https://github.com/openslide/openslide-python

33

3.3.2 Dataset preprocessing and splitting

The dataset containing Digitalized whole slide images (WSI) used in the solution implementation is

TUPAC16 dataset from the Tumor Proliferation Assessment Challenge 2016 (Veta et al., 2019).

The original plan was to select and download a subset breast cancer case images from The Cancer

Genome Atlas (TCGA) which is also the source for TUPAC16 dataset images. Having an expert se-

lected subset of images certainly helped as for a non-pathologist, selecting the right set of breast

cancer case images using TCGA search only is not easy.

The training dataset of TUPAC16 is made of 500 breast cancer cases from the data in The Cancer

Genome Atlas (TCGA) where one case is represented with one whole-slide image (WSI). The size or

the training data is 490 GB, and it includes one separate ground truth CSV file with 500 rows, one

for each patient. The testing dataset is smaller (345 GB), and it is made of 321 cases.

From the TUPAC16 dataset pages, one can also download auxiliary datasets for mitoses and re-

gions of interest (for annotations of ROIs where pathologists would perform mitosis counting).

There is also mitosis detection testing dataset available without publicly available ground truth.

Source file format

Whole-slide images in the training and testing datasets are provided in the Aperio (.svs file exten-

sion) file format. According to (OpenSlide project authors, 2023) Aperio format is "single-file py-

ramidal tiled TIFF, with non-standard metadata and compression". Aperio format is owned by

Leica Biosystems, a company that among other products manufactures whole slide image scan-

ners. Leica Biosystems offer Aperio ImageScope application for viewing .svs files (The Open Mi-

croscopy Environment, 2023).

Dataset preprocessing into image patches

With the Python scripts found in (https://github.com/CODAIT/deep-histopath) one can call com-

mand python3 preprocess_mitoses.py to generate image patches of size 64X64 from

the large .TIF original image. While it would be simple to use OpenSlide python library to create

the patches, the added value of deep-histopath project script is that is uses ROI area information

from TUPAC16 csv data files to extract both normal and mitosis patches.

In Table 8 the starting point with original TIFF files and resulting PNG image patches can be seen as

folder and file hierarchy.

34

Table 8. Original image and produced image patches.

Original TUPAC16 dataset (.TIF images + .CSV data) PNG patches generated from original files

Splitting dataset into separate training, validation, and test sets

When creating the dataset used in training AI models, it is a recommended good practice (Brown-

lee, 2020) to split the original source data into 3 different datasets (training/validatation/test).

This is beneficial because it helps to prevent overfitting in training, helps the AI model to learn

meaningful patterns from the source data, enables model to generalize better on new data and

gives model creator honest feedback on model performance when trying with different hyperpa-

rameters.

The dataset used in training the convolutional autoencoder model was created by splitting the

larger image patch dataset (over 200000 images) generated with CODAIT python scripts into three

(3) different datasets:

• Training Set: Contains data on which the model learns. The model parameters are adjusted to mini-

mize the error on this data and it's the largest portion of the dataset. The training dataset can be

labeled on non-labeled, sometimes using folder structure (subfolders) as labels.

The data used in this thesis is kept in subfolders during training, but the training engine is in-

structed to ignore using folders as labels. This is because we want to see both mitosis and normal

35

image patched as “normal data” and the adversary images generated later by code as “anomaly

data”.

• Validation Set: Contains data that is used in tuning the hyperparameters of the model. Hyperpa-

rameters are the settings controlling the learning process. For example, the number of hidden lay-

ers in a neural network or the learning rate. The validation set helps in selecting the best hyperpa-

rameters to improve the trained AI model's performance.

• Test Set: When the AI model has been trained and tuned using the separate training and validation

sets, it's tested on the test set. This dataset provides an unbiased evaluation on how the model per-

forms on new, unseen data.

The Python library called split-folders was used in splitting the dataset (Table 9).

Table 9. Dataset split command

import splitfolders

splitfolders.fixed(input_folder, output=output_folder, seed=1337, fixed=(7000,

2000, 1000), oversample=False, group_prefix=None, move=False)

The resulting database contains 20000 images, split with a ratio of 0.7/0.2/0.1. The training da-

taset had 14000 images, validation dataset had 4000 images and test dataset had 2000 images

(Figure 4).

Figure 4. Dataset structure after splitting into train, validation and test folders

Image patches used in demonstration and evaluation steps are picked from the test dataset. Also,

the adversarial patches are created using same demonstration image patches as the goal is to

measure how well the target AI model can be fooled and how well the convolutional autoencoder

trained will perform with detecting anomalies from those same images.

36

3.3.3 Selecting attack target system and AI model

One of the main reasons to use TUPAC16 dataset was to search for a publicly available (open

source) digital pathology image analysis AI model that could be used as a target for black-box and

white-box attacks. Currently there aren’t many of those freely available as the area of digital pa-

thology AI solutions if highly competed and companies do not reveal competitive models to public.

Luckily IBM had released their CODAIT/deep-histopath model under Apache-2.0 license (Dusen-

berry, 2017).

IBM has published a convenient Docker container (CODAIT - Center for Open-Source Data & AI

Technologies, 2021) called “IBM Code Model Asset Exchange: Breast Cancer Mitosis Detector” that

could be used as Black-box attack target. The model developed by IBM CODAIT uses 64 x 64 PNG

image tiles for its input. Tiles can be extracted from one larger breast cancer whole slide image.

Given an input image, CODAIT returns the predicted probability of the image patch containing mi-

tosis as a result.

Inside the CODAIT Docker image "codait/max-breast-cancer-mitosis-detector” there is a REST API

at port 5000 (default) that one can call with 64X64 pixel sized binary image patch and get back mi-

tosis probability score (between 0-1). REST API user interface is shown in Figure 5.

37

Figure 5. Swagger API description and test user interface for codait/max-breast-cancer-mitosis-
detector

3.3.4 Generating adversarial images with Differential Evolution

Finding few-pixel perturbations that can change the AI model prediction towards another class or

another prediction certainty can be time consuming and challenging tasks, especially if using

black-box attack scenario where the architecture, parameters, or internal workings of the neural

network are unknown. To overcome difficulties and computational costs, one can select to use

one of the many optimization algorithms that are proven to work efficiently in finding solutions to

computationally challenging problems.

For optimization algorithm in this thesis work, Differential Evolution (DE) was selected based on its

successful usage in several research articles, including original One pixel attack article Su et al.,

(2017) and Korpihalkola et al., (2020). Differential Evolution (Storn & Price, 1997) is a population-

38

based optimization algorithm that is often used for global optimization problems. Global optimiza-

tion algorithms are designed to explore the entire solution space to find the best solution globally

even if there are multiple local optima present. This thesis used the Scipy library method scipy.op-

timize.differential_evolution as the DE implementation.

The phases of DE are following:

• Initialization

o Control parameters for DE are initialized.

o A population of candidate vectors (solutions) is randomly initialized to represent potential

solutions to the optimization problem.

• Mutation

o For each candidate solution in the population, a new trial vector is created through the mu-

tation operation. This step combines the information from three randomly selected parent

vectors to create a new ‘offspring’ candidate solution.

• Crossover

o The trial vector is then combined with the original candidate solution using a crossover (CR)

operation, defining how much of the information (real valued factor in the range [0,1])

from the trial vector is incorporated into the original candidate solution. When CR is in-

creased, larger number of mutants progress into the next generation.

• Selection

o Now the candidate solution and original one is compared. A better solution is selected for

the next generation.

• Population Update

o Solutions selected in selection phase will replace the corresponding solutions in the current

population, forming a next generation.

• Termination

o This process is repeated for several generations defined by initialization criteria OR until a

termination criterion is met. If the termination criterion is met, it means a solution satisfy-

ing given criteria is met.

39

o In the Scipy library method scipy.optimize.differential_evolution the termination is de-

fined by the result of the callback function.

Downsides in using DE for attack optimization may be the challenge in finding parameters that

work best for the current task under research and high learning curve when applying the method.

3.3.5 Training convolutional autoencoder to detect anomalies

Autoencoders aims to minimize the reconstruction error to be able to reconstruct the original in-

put as accurately as possible (Goodfellow et al., 2016). This reconstruction error gives a good tool

for anomaly detection as it can show how much the input data differs from what the autoencoder

has learned based on its training data. In the heart of the autoencoder is the hidden layer (“bottle-

neck”) which contains low-dimensional, compact representation of the most useful properties of

the training data. Autoencoders do not contain a compressed, exact copy of the training data but

rather features it has learned to well represent it.

Training data set

As the task was to develop an AI model that can recognize adversarial images from the original

data set (TUPAC16 images), contents of both “Mitosis” and “Normal” folders were combined into

“Training” data folder to learn the features common for both types of data. The original “Mitosis”

and “Normal” folder image patches were later used to generate attack images of both types so

that attack success can be compared for both mitosis-to-normal and normal-to-mitosis attacks.

Information about sample patch image dataset:

• Total number of image patches: 20000

o Training set: 14000

o Validation set: 4000

o Testing set: 2000

• Contains both mitosis and normal patches (see sample images in Table 10)

• File type: PNG (Portable Network Graphic)

• File size (patches): 5-9 KB

• Dimensions: 64 X 64 pixels

• Resolution: 96 pixels/inch

40

Table 10. Sample image patches from the dataset

Normal image patch sample Mitosis image patch sample

Architecture of the trained autoencoder

The architecture of the deep neural network used in this thesis for detecting anomalies is Convolu-

tional Autoencoder. Given that the convolutional autoencoder architecture is good in image re-

construction, image generation, anomaly detection and computer vision feature extraction tasks,

it seemed like a good choice to start with.

The autoencoder used in this thesis has the following characteristics:

• Undercomplete: The code dimension (hidden layer) is less than input dimension. Or can

also be described as the number of hidden neurons is less than input/output layer neurons.

• Structure: Encoder, Latent space, and Decoder.

• Convolutional: It uses convolutional layers for both the encoder and decoder components.

• Unsupervised learning type: The model learns from the input data itself without explicit

external labeling.

• Number of convolutional layers: 4 (2 in encoder and 2 in decoder)

Training of the convolutional autoencoder model was done using machine described in 3.3.1 Hard-

ware and software requirements chapter using primarily Python code, Tensorflow 2 and Keras li-

braries. The training parameters used in convolutional autoencoder model training were as fol-

lows:

• input_shape: (64, 64, 3)

• batch_size: None (64)

o As ImageDataGenerator is used in training data source, the batch size set in generator

holds (it’s 64)

• optimizer: 'adam'

• loss function: 'mean_squared_error'

41

• metrics: ['accuracy', 'mse']

• early stopping: patience 30, monitor='val_loss'

• steps_per_epoch: None (64)

o ‘None’ = number of samples in dataset divided by the batch size (64)

• epochs: 500

• validation_freq: 1

• validation_steps: None (64)

o As ImageDataGenerator is used in training data source, the batch size set in generator

holds (it’s 64)

• callbacks: [early_stopping, csv_logger]

• verbose: 1

Neural network was visualized using commands shown in Table 11.

Table 11. Commands for neural network visualization

from keras.utils.vis_utils import plot_model

model = Autoencoder()

plot_model(model.encoder,

to_file='model_plot_encoder.png',

show_shapes=True, show_layer_names=True)

plot_model(model.decoder,

to_file='model_plot_decoder.png',

show_shapes=True, show_layer_names=True)

Detailed structure of both Encoder and Decoder parts of the convolutional autoencoder can be

seen in Table 12.

42

Table 12. Architecture of the Autoencoder used in solution

Encoder model Decoder model

The model was trained against the training dataset of 14000 images (selected by ImageDataGener-

ator) and validated against the 4000 validation images (selected by ImageDataGenerator). Model

was set to run 500 epochs with early stopping criteria of patience=30, which means that if there is

no improvement for 30 epochs, training will stop and save the current model as the “best model”

discovered. The progressing of loss and accuracy (common metrics to follow) can be seen in pic-

tures of Table 13.

43

Table 13. Autoencoder model training & validation loss accuracy

Model training and validation loss Model training and validation accuracy

After the training ended during Epoch 218 when early stopping criteria were met, the resulting

model was evaluated against the separate test dataset of 2000 images. Only a batch size of 64 im-

ages was used in evaluation. Then the first image from the test batch was evaluated for recon-

struction error and the resulting 2 images (original, reconstructed) were plotted.

• Evaluate on test data:

o Test loss: 0.0002075

o Test accuracy: 0.9703534

• Reconstruction error (sample image): 0.0004107

To test how well the newly trained convolutional autoencoder model can reconstruct given image

samples, some image patches from both mitosis and normal image patch folders were tested. In

the Figure 6 test the reconstruction works well.

44

Figure 6. Original image (left) and image reconstructed by the autoencoder(right) trained for
solution.

Reasoning for selected convolutional autoencoder structure

The selected model architecture and structure was based on experimenting with several different

competing options and hyperparameter tuning. While the resulting model does not generalize ex-

tremely well, it performs well in reconstructing the image patches used in the dataset.

Multiple sequential Keras models were tested with different series of convolutional and pooling

layers. Usually, the training took a long time and resulting network had considerable reconstruc-

tion error even for normal images. So, to overcome these problems, Batch Normalization was

added to the Encoder part.

The decision to use Batch Normalization was made to make the training faster with reasonable

sized dataset and to prevent the network from overfitting. Using batch normalization to autoen-

coders not only stabilizes training, improves the network against variations, and promotes

smoother convergence but also facilitates more accurate reconstruction of input data in the end.

3.4 Demonstration of solution suitability

In the demonstration part of the design science research approach, the anomaly detection solu-

tion is tested in action to solve the original research problem defined in RQ1, chapter 1.1.

To demonstrate how the convolutional autoencoder model works when is get an adversarial im-

age as input, the first task was to collect small enough data set to be used to demonstrate how the

autoencoder model works under normal input. Then to demonstrate the effects of an attack, a

similar set of adversarial images was needed. Those were crafted using python script that tested

the image effectiveness by running a series of HTTP REST API queries, each with separate adver-

sarial mage variation. Last, both original and adversarial image patches were then given as input to

45

the convolutional autoencoder model to see if it can separate anomaly images from the normal

ones (detection as defense), using a reconstruction error threshold value calculated from the origi-

nal images.

Setting the demonstration environment

The detailed installation manuscript for setting the demonstration environment to be used in both

demonstration and evaluation steps is detailed in Appendix 2. The demonstration environment

setup instructions.

CODAIT prediction values and decision criteria for demonstration and evaluation

The classification criteria used for CODAIT Docker image ("codait/max-breast-cancer-mitosis-de-

tector") prediction was that predictions over 0.5 are classified as “mitosis” and under 0.5 as “nor-

mal”. As values given by AI model are predictions, for an image to qualify as “mitosis” image with

high certainty, the score predicted should near 0.9 and for “normal” images, the predicted values

should be less than 0.1. But on the scale range of probabilities from [0,1], the value 0.5 can already

be uncertain and in favor of both result outcomes.

3.4.1 Selecting dataset for demonstration

Demonstration dataset images were randomly selected from a subset of validation dataset im-

ages. Demonstration data set contained:

• 50 randomly selected “mitosis” & 50 randomly selected “normal” image patches

• Adversarial image patches generated from those 50 “mitosis” & 50 “normal” image patches

• Total 200 images: 100 unmodified image patches & 100 adversarial image patches

3.4.2 Attack demonstration

Adversarial (attack) images were created from the same images that were used in validation data.

This is because the goal is to measure how significant reconstruction errors can be caused by using

adversarial image patches, compared to the original ones. The python code generated variations

of 5-pixel perturbations injected into the given target image. Adversarial versions of both normal

and mitosis image patches were generated. Another use for 200 demonstration images was to use

46

them when computing a good threshold value to use in defense demonstration and evaluation

steps.

Attack results for selected images of both type

To demonstrate how well an attack is performed in most optimal cases, samples of both normal

and mitosis images are visualized both before and after attack along with targeted AI model pre-

dictions.

In the Table 14 below a couple of attack results are highlighted as sample on attack performance.

For demonstration dataset, no single attack against “normal” image type was successful, later for

evaluation dataset some success was achieved. A full result data table is available in Appendix 3.

Demonstration attack & defense results table.

Table 14. Attack efficiency samples

Image patch type Normal (normal_9.png) Mitosis (mitosis_45.png)

Before or after attack Before After Before After

Image patch

Mitosis probability

prediction

0,0001537

(normal)

0,0961711

(normal)

0.9984108

(mitosis)

0.0061978

(normal)

3.4.3 Threshold used for attack detection

Finding a good threshold value is an essential task to be able to detect anomalies from original im-

ages well. The usual value to start with is 0.5 (from range [0,1]) which means that all the samples

with predicted probability over 0.5 will be flagged as anomalies (adversarial images), and all values

below 0.5 are normal samples. With the convolutional autoencoders we are using the reconstruc-

tion error (not prediction), that is calculated by first trying to reconstruct the given image using

our trained autoencoder. Then we compare the result with the original image and evaluate the re-

construction error value (float, floating point number). And here it comes a bit tricky: anomalies

47

cannot be detected directly by using 0.5 (in general 0.5 is not a good final value to use), one must

experiment with another dataset first and after finding a good anomaly threshold, use that in eval-

uating the autoencoder model performance as part of the defense/detection logic.

Some useful values that can be used when finding a good threshold are:

• Mean values of autoencoder model predictions on normal and anomaly datasets

o Compute mean values of both normal data & anomaly data: Then take the mean of those.

• Precision: Measures fraction of true positive predictions among the total positive predictions

• Recall: Measures the fraction of true positive predictions among the total actual positives

• F1 score: This score measures accuracy of the model taking into account both precision and recall

(harmonic mean of precision and recall).

• Accuracy: The fraction of samples that were predicted correctly

Finding a good threshold is an iterative process, computing precision, recall, and other statistics

along several given threshold values to understand how the threshold affects. Also, some

tradeoffs must be made as the increasing of recall decreases precision.

Finally, after several trial & error attempts, two methods to find good threshold value were se-

lected:

• Mean values of autoencoder model predictions on normal and anomaly datasets

o Compute mean values of both normal data & anomaly data: Then take the mean of

those.

• Threshold matching Best F1 score found after iterating F1 scores calculated

o Compute mean values of both normal data & anomaly data reconstruction error

values

o Then iterate(test) over range of threshold values using np.arange(start, stop, step)

so that:

▪ Start = Average (mean) recognition error of validation images

▪ Stop = Average (mean) recognition error of anomaly images

▪ Step = 0.000005 (reasonable sized small step)

o Get threshold values and F1 scores into list and find max F1 score. Return threshold

value that was used to get that F1 score.

48

From these two, the “Best F1 score threshold” was chosen as it was tested to give good results on

validation datasets. Using the “Best F1 score threshold” a corresponding threshold was found. Per-

formance was evaluated by using a confusion matrix in defense demonstration step.

Values used are:

• best_f1_score: 0.9056604

• best_threshold (leading to best F1 score): 0.0005542

• Threshold was rounded to 0.000554 for usage in Python scripts

3.4.4 Defense demonstration

To measure the efficiency of the Autoencoder model detection, same set of validation data image

patches was used to:

• First, measure the reconstruction error output of Autoencoder model using original image patch.

• Second, measure the reconstruction error output using adversarial (perturbated) version of the

same image patch.

Results were calculated for 100 unmodified (normal/mitosis) image patches and 100 adversarial

image patches. The convolutional autoencoder neural network was able to recognize anomalies

with good rate but at the cost of false negative findings (normal images recognized as anomaly).

Table 15. Autoencoder reconstruction errors and detection efficiency with validation set

Autoencoder reconstruction error metrics
Confusion matrix visualization of autoencoder classification
performance for 100 normal and 100 anomaly images

 Before attack After attack

Maximum 0.0007119 0.0012089

Mean 0.0004542 0.0007765

Median 0.0004594 0.0007581

Standard

deviation 0.0001045 0.0001600

Minimum 0.0001882 0.0004346

49

In the Table 16 below a couple of attack results are highlighted as sample on attack success. A full

result data table is available in Appendix 3. Demonstration attack & defense results table.

Table 16. Defense efficiency samples

Image patch type Normal (normal_50.png) Mitosis (mitosis_251.png)

Before or after attack Before After Before After

Image patch

Reconstruction error 0,0003872 0,0010391 0,0004432 0,0009099

Anomaly Threshold: 0.000554 (images with reconstruction error over threshold are anomalies)

Anomaly detection re-

sult

Normal Anomaly Normal Anomaly

3.5 Evaluation of the implemented solution

Below in Table 17 is a summary of how well the implemented artifact contributes to the solution

of a problem described in the objectives of a solution chapter. Each success criteria are evaluated

based on how well the implemented convolutional autoencoder model meets the requirements as

a defense (detection) solution. Both the attack and defense are evaluated separately in this chap-

ter and solution success will be evaluated by measuring digital pathology AI model behaviour be-

fore and after attack, and the performance of the implemented detector network (autoencoder).

Evaluation results are calculated to each of the tested image patches, both for normal and mitosis

image patches.

50

Table 17. Summary of the performance of the implemented solution

Evaluation scale used: (5) Excellent, (4) Good, (3) Average, (2) Weak, (1) Poor

Success criteria How does artifact

support solution?

Description

Model performance as detection rate 4 Detection accuracy is below

90%.

Computational effort of AI model training 2 Training must be performed

continuously with new mate-

rial to achieve good perfor-

mance.

Computational effort of single image tile

detection run

5 For single tile the result com-

putation is milliseconds

Computational effort of complete whole

slide image (WSI) detection run

3 Each tile (with information)

must be checked. So, the time

is x times single image detec-

tion run duration, where x =

number of tiles in WSI.

Integrity of the digital pathology image

data

5 Implementation does not re-

quire any changes to the origi-

nal image data

Integrity of the Deep Neural Network

used in digital pathology image analysis

5 Implementation does not re-

quire any changes to the origi-

nal digital pathology image

analysis model.

3.5.1 Selecting dataset for evaluation

Data for the evaluation dataset was a randomly selected subset of testing dataset images. This is

to ensure result reliability when demonstration step uses validation dataset and evaluation step

uses test dataset.

The evaluation data set contained:

• 50 randomly selected “mitosis” image patches

• 50 randomly selected “normal” image patches

51

• Adversarial image patches generated from those 50 “mitosis” & 50 “normal” image

patches

• Total 200 images: 100 unmodified image patches & 100 adversarial image patches

Crafting adversarial images from the testing data

Adversarial (attack) images were created from the same images that were used in testing data.

This is because the goal is to measure how significant reconstruction errors can be caused by using

adversarial image patches, compared to the original ones.

The python code generated variations of 5-pixel perturbations injected into the given target im-

age. Adversarial versions of both normal and mitosis image patches were generated. The effi-

ciency throughout the Differential Evolution iterations was measured by performing attack and

measuring the attack success. Parameters used in the creation of adversarial image using Differ-

ential Evolution are listed in detail in Appendix 1. Parameters used in adversarial image genera-

tion.

3.5.2 Attack evaluation

The attack against image analysis AI model was evaluated by gathering mitosis probability results

before the attack and after attack (according to process defined in Figure 7) using adversarial ver-

sion of the image patch used in original “before attack” test. Also, the Black-box attack method

was evaluated to measure the effort needed to perform an attack against single image patch and

series of image patches. Results were calculated using python script.

Figure 7. Attack evaluation process

52

Results for both “mitosis-to-normal” and “normal-to-mitosis” attack were evaluated separately as

for the attacker perspective the goal can be either targeted attack or untargeted attack.

The result evaluation for attacks shows that for “mitosis” image patches, the attack was able to

change the original prediction in such a significant amount that the result for all the images is

changed from “mitosis” to “normal” (see Table 18). This means this non-targeted black-box attack

succeeded perfectly with reasonable amount of iterations (see Table 20, column “mitosis-to-nor-

mal”).

Table 18. CODAIT Prediction change (mitosis-to-normal)

CODAIT prediction metrics of mitosis patches

before and after attacks were carried out

Box plot visualization of CODAIT predictions of 100 mitosis patches

before and after attacks were carried out

 Before attack After attack

Maximum 0.9967603 0.0093238

Mean 0.5995929 0.0032371

Median 0.7004911 0.0026079

Standard

deviation 0.3546401 0.0027327

Minimum 0.0003032 0.0000028

For normal image patches, the attack was not that of success (Table 19). In fact, trying to make as

image with a lot of white-colored areas to look like a probable mitosis image was a hard task and

would probably require more time and computing power to achieve. Some successful samples

were created, even one with certainty over 0.9 to be a “mitosis” image. Complete table of results

from both mitosis-to-normal and normal-to-mitosis attacks are available in Appendix 4. Evaluation

attack & defense results table.

53

Table 19. CODAIT Prediction change (normal-to-mitosis)

CODAIT prediction metrics of normal patches

before and after attacks were carried out

Box plot visualization of CODAIT predictions of 100 normal patches

before and after attacks were carried out

 Before attack After attack

Maximum 0.0134948 0.9160057

Mean 0.0012509 0.0746376

Median 0.0000268 0.0038450

Standard

deviation 0.0031723 0.1727071

Minimum 0.0000001 0.0000061

Evaluation of Black-box attack method

As an additional item of evaluation, the Black-box attack method was evaluated to measure the

effort needed to perform attack with adversarial images (few-pixel perturbation). It is important to

acknowledge that there is a price for the attacker in both cost and time when trying to find a way

to fool the AI model. Also, the attacker does not know if the query-based attack will be noticed be-

cause of the high query volume each attack produces.

In Black-box attack using only queries against the attack target, the aim is to find such input or

query that when used in the attack, that input will cause the AI model to change the returned re-

sult in such way that benefits attacker’s goals. Nowadays many of the commercial and open-

source AI models are published as subscription-based REST API implementations where subscribed

user can operate over the common HTTP protocol by posting input and get the AI model predic-

tion result as output. This is also how the CODAIT Docker image is used, over HTTP protocol by

posting queries and inspecting results. CODAIT Docker image is free to use but commercial REST

APIs usually charge per request or by the amount of data processed.

In a query-based attack model, finding optimal or near-optimal adversarial attack inputs often re-

quires many queries with different input to be used to gather enough information about how the

AI model behind the service works. Common cybersecurity network monitoring systems and API

management services are usually setup to:

54

• monitor the traffic.

• notice and trigger alarm from malicious network behavior or anomalies.

• perform rate limiting. Rate limiting allows only a certain number of HTTP queries from
same user account to complete and return result.

This makes attacking REST API implementations more difficult from AI model attack perspective. A

query-based attack is easier to detect by the cybersecurity experts monitoring AI service usage.

Attackers can split the queries to be performed by multiple accounts created in advance or during

a longer period that fits closely to the normal network and API usage patterns. In the Figure 8, be-

havior of script-based Differential Evolution is seen clearly as all the adversarial input combina-

tions generated by the DE optimization algorithm are sent as HTTP POST requests towards the at-

tack target. Posting hundreds of queries in milliseconds for digital pathology analysis task would

clearly show as an anomaly compared to normal network and API usage.

The amount of queries generated by the Differential Evolution based attack solution depends on

the difficulty of the optimization task. For the attacks in this thesis, the mitosis-to-normal task is

considerably easier than the normal-to-mitosis task. This can be seen in the recorded duration,

number of attack requests performed, and average prediction change caused by the performed

attack. See Table 20 for results calculated and stored as file under reports folder.

Table 20. Metrics of the black-box attack agains AI model behind REST API

 Mitosis-to-normal Normal-to-mitosis

Average number of HTTP requests used

(per generated adversarial image)

742 11863

Average time taken in seconds

(solution found/max iterations reached)

14.10 259.83

Average prediction change

(of all attacks performed)

0.5963558 0.0733574

As an attack improvement, there is a possibility to implement request throttling, divide attacks

into smaller batches of HTTP request and wait for a static or random amount of time (implement

“sleep time” into code) so that the traffic seems normal. Also, an AI-based solution could be

trained to mimic normal REST API traffic. One could vary the source IP-address with different

methods, by for example creating a set of server instances around the globe using commercial

cloud platform, each server with its own unique IP address.

55

Figure 8. HTTP POST requests send towards target system

3.5.3 Defense evaluation

For defense evaluation, the evaluation dataset (100 normal and 1000 anomaly images) is used. Im-

ages are run against the trained convolutional autoencoder model and the reconstruction error of

both normal images and attacked (adversarial) images are compared to measure how well detec-

tion can spot anomalies (Figure 9).

56

Figure 9. Defense evaluation process

From the results (Table 21) the reconstruction error is almost double for the adversarial images

compared to the original non-attacked images. This is helpful when trying to detect and defend

against an attack where adversarial images are used. However, results also indicate that model

might need more training, improvements on the dataset or a way to effectively discard outlier im-

ages on both sides.

Table 21. Autoencoder reconstruction errors (before-after attack) for evaluation dataset

Autoencoder reconstruction error metrics
Confusion matrix visualization of autoencoder classification

performance for 100 normal and 100 anomaly images

 Before attack After attack

Maximum 0.0007372 0.0012749

Mean 0.0004787 0.0008074

Median 0.0004702 0.0008144

Standard

deviation 0.0001235 0.0001774

Minimum 0.0001733 0.0005179

Performance of the convolutional autoencoder model developed for detecting adversarial images

is measured by confusion matrix. It enables an easy way to visualize the performance of AI model

by comparing predicted classes with actual classes. The structure of confusion matrix in Keras is a

57

table with predicted classes on one axis and actual classes on another. This is illustrated in Table

22. Anomalies are marked as positive and non-anomalies as negative.

Table 22. Structure of confusion matrix

Confusion matrix
Predicted

Negative Positive

Actual
Negative True Negatives (TN) count False Positives (FP) count

Positive False Negatives (FN) count True Positives (TP) count

For this thesis, the confusion matrix was created by using confusion_matrix, classification_report

and ConfusionMatrixDisplay from Scikit-learn library. Figure 10 shows how well the trained AI

model was able to detect adversarial images from the normal ones. To determine if the image is

an adversarial image(anomaly) or normal one, the threshold & F1 score values from the demon-

stration step were used (3.4.3 Threshold used for attack detection). Threshold value was com-

puted for a demonstration dataset, but it worked equally well also against evaluation dataset.

Values used are:

• best_f1_score: 0.9056604

• best_threshold (leading to best F1 score): 0.0005542

• Threshold was rounded to 0.000554 for usage in Python scripts.

58

Figure 10. Confusion matrix based on anomaly detection test set

As the goal was to optimize the convolutional autoencoder to detect attack images, the threshold

value used worked well to achieve this goal. It must be noted that while the amount of false posi-

tives (normal images flagged as anomaly) is ~30% in this test set, it is still acceptable as not being

able to catch true positives (adversarial images) would be dangerous from the patient security per-

spective. Result indicated by the test set run (visualized by confusion matrix) still give room for im-

provement.

Classification report Table 23 given by sklearn.metrics library shows the following metric

values for the autoencoder model used:

• Precision: ratio of TP / (TP + FP)

o True Positive (TP): Instance that the AI model correctly classifies as positive.

o False Positive (FP): Instance that the AI model incorrectly classifies as positive.

o False Negative (FN): Instance that the AI model incorrectly classifies as negative.

o True Negative (TN): Instance that the AI model correctly classifies as negative.

• Recall: ratio of TP / (TP + FN)

• F1-score: It is the harmonic mean of the precision and recall scores obtained for the positive class.

• Support: The number of occurrences of each class in the dataset.

59

• Accuracy: Proportion of correct matches. Accuracy = correct predictions/total number of predic-

tions.

• Macro avg: It is the sum of metric values for all classes, divided by the total number of classes.

• Weighted avg: Calculates the average performance by considering the weighted contribution of

each class to the overall metric.

 precision recall f1-score support

Normal (0) 0.92 0.71 0.80 100

Anomaly (1) 0.76 0.94 0.84 100

accuracy 0.86 200

macro avg 0.84 0.82 0.82 200

weighted avg 0.84 0.82 0.82 200

Table 23. Classification report

3.6 Communication of results and knowledge

Following the Design Science Research Method (DSRM), finding of the research and the designed

artifact must be communicated to academic community and parties involved. This thesis is pub-

lished to Theseus (https://www.theseus.fi/) system under “JAMK University of Applied Sciences”

school thesis collection to be publicly available for anyone to read. The importance of this solution

design and information contained by this thesis is in indicating a rather new area of threats and

their mitigations in Digital Pathology cybersecurity. Finding practical defense methods for Deep

Neural Networks attacks in Digital Pathology Image Analysis system is a challenge that must be

tackled in advance so that the patients and pathologists can rely on trustworthy AI solutions also

in the future.

The DSRM in this thesis produced following artifacts:

• Convolutional autoencoder deep neural network architecture for detecting possible attack against

Digital Pathology Image Analysis system.

• Trained Convolutional Autoencoder as Keras (.keras) model file for detecting possible anomalies in

the input data. Also the weights are saved into their own HDF5 (.hd5) file. The HDF5 (Hierarchical

Data Format version 5) is a file format used to store both the architecture of the model and its

learned weights.

https://www.theseus.fi/handle/10024/5

60

• Results of the trained Convolutional Autoencoder effectiveness to solve the problem at hand. Re-

sults are evaluated in the chapter “Evaluation of the implemented solution”.

• Attack code for generating Few-pixel attacks to demonstrate Black-box type of attack against a

deep neural network served over REST API

• Finally, suggestions on how to improve detection and defense of Deep Neural Networks (DNN) in

Digital Pathology Image Analysis system.

In addition to the information provided by this thesis and its attachments, code files used in solu-

tion implementation can be found from authors public GitHub library. Code is available under MIT

license. For source code of his thesis, see GitHub repository: https://github.com/amarkus/the-

sis_jamk.

4 Discussion

The goal for the thesis was to study practical attack and defense methods for integrity of Deep

Neural Networks in Digital Pathology Image Analysis systems. This was done by using a design sci-

ence-based research method, producing concrete software artifacts (code) that will demonstrate

how attack can be performed against DNN and to test if there is a way to detect the attack by us-

ing another neural network implementation. The primary idea in the thesis was to implement ad-

versarial images and then try the detection with a rather simple and straightforward autoencoder

solution that could be taken into use with reasonable implementation knowledge and computa-

tional resources.

Performance for the implemented few-pixel attack was good against “mitosis image patches” but

moderate or poor against “normal image patches”. This is quite expected result as generating such

perturbations that would make some of the mostly white images to be predicted as mitosis images

is hard task or would have required hand-picking of such “normal image patches” that would be

closer to mitosis image based on their original prediction values.

The evaluated performance of the implemented autoencoder detector model was moderate and

could be further improved with more training and better selection of the training data set. In this

https://github.com/amarkus/thesis_jamk
https://github.com/amarkus/thesis_jamk

61

demonstration a threshold value was used to separate normal images from anomalies, but by ad-

justing the threshold value it could be used to spot only the most likely anomalies from the image

analysis data.

From a production usage perspective, the demonstrated setup needs to be improved so that de-

tection is more accurate and that most likely requires different kind of neural network implemen-

tation than convolutional autoencoder. The continuous scanning of image data in the training or

inference data set to find anomalies requires considerable amount of computing resources to be

done in fast and efficient manner. Cost/benefit ratio of implementation and actual risks should be

considered before implementing any adversarial image detection services.

4.1 Autoencoder suitability for image anomaly detection

During the implementation step the goal was to find near-optimal deep neural networks-based

solution for the problem of detecting adversarial attack images to prevent attacks from succeed-

ing. It is a common fact of convolutional autoencoders (AE) that when AE is used for image recon-

struction, one can compare the goodness of AE based on reconstruction error. Further reading of

source literature and web articles showed that indeed AE image reconstruction error has been

used for image anomaly detection with success.

When implementing initial models using convolutional autoencoders and TensorFlow it soon be-

came obvious that creating “near-perfect” detector using only convolutional autoencoder model

would be very difficult, if not impossible task. Reason is that when splitting a large whole slide im-

age into tiles, there are a lot of different areas that can all be part of normal tissue but unlike dis-

tinction between apples and oranges, tissue areas (+ slide background color) can vary a lot both in

shape and in color scale. This requires a well-formed and clean training data set and a lot of sam-

ples of valid (no anomalies) image tiles. Problems of Autoencoder sensitivity to outliers in the

training data set and shortcomings are detailed in (Beggel et al., 2019).

62

4.2 On the probability of attacks against Digital Pathology Image Analysis sys-
tems

There isn’t much research literature available on how likely it is that deep learning models used in

medical imaging, especially in Digital Pathology would be attacked by adversarial samples by ac-

tual cybercriminals. Therefore, the estimates done in this chapter are educated estimates based

on the current state of deployments in hospitals and the adaptation of AI models in Digital Pathol-

ogy. In the Table 24 the two common types of attack using adversarial images are estimated based

on the likeliness to happen in near future or longer period.

Current wars and confrontations between countries certainly affect by slightly increasing the prob-

ability of any kind of cyberattacks. However, cybercriminals and even nation state actors usually

select targets of high financial value, high attention value or significant psychological effect. Natu-

rally the easier targets requiring less effort are preferred. Therefore, the value of attacking a cur-

rently small number of live digital pathology image analysis and their training systems is not

enough to justify the effort. Also, many of the current systems require second opinion and ap-

proval of clinical analysis results from a pathology expert.

During the next decades we will see more systems requiring less and less human intervention in

the analysis process, and significant volume increase of image analysis to whole slide images in

digital pathology. That increases the financial benefit of clinical analysis result manipulation and

probability of attacks to occur.

Table 24. Probability for inference or training attack occurrence

Attack type Probability Time assessment Description

Cybercriminals perform attack

against digital pathology im-

age analysis (inference) using

adversarial image perturba-

tions

Highly improbable 0-5 years Not probable as eas-

ier targets exist with

less effort required

from the attacker.

Small number of AI

deployments. Finan-

cial benefit not signifi-

cant.

Probable 5-10 years Probably the first live

attack seen or at least

attempted. Enabled

by larger deployment

63

of AI software in hos-

pitals all around the

work with varying se-

curity policies.

Greater financial ben-

efit and attention

value.

Cybercriminals perform poi-

soning of digital pathology

training data using adversarial

image patches

Probable 0-5 years Much of the training

data comes from the

same open-source or

commercial sources.

Easier targets for ma-

nipulation of data and

damage done is con-

siderable. Reliability

of the data may not

be questioned or

measured.

Highly probable 5-10 years Progress and adop-

tion of defense meth-

ods against adversar-

ial attacks in

production systems,

makes manipulation

of training data easier

target from effort vs

benefit perspective.

4.3 Improvement ideas for adversarial image detection

During the information retrieval and solution design & development steps there were a lot of in-

formation sources available about different techniques and methods used in both attacking and

defending the DNN models used in image analysis systems. Many such alternative methods were

published during 2022-2023. In this chapter some of those methods are covered to give ideas for

improving adversarial image detection and defense.

Using Kernel Density Estimation (KDE) as additional anomaly detection criteria

If the training data set contains some outlier images, then in many cases only using the convolu-

tional autoencoder’s reconstruction error as an anomaly detection criterion will result in degrade

64

of detection performance in autoencoder (Beggel et al., 2019). Then one way to improve the inad-

equacies of the trained autoencoder is to chain multiple detection criteria and form the decision-

making process based on the thresholds in multiple criteria instead of just one. One must carefully

consider this, as the need to use additional criteria or methods may also be an indication of poor

initial deep neural network implementation.

In paper (Beggel et al., 2019) the researchers use the likelihood of the image in the latent space. In

this thesis, the corresponding latent space would be produced as the most compressed (last) layer

in the “encoder” part of Autoencoder network. Using the latent space resulting from the Autoen-

coder “encoder” part training as low-dimensional representation of images, a density distribution

can be calculated using KDE that represents well kernel density scores of normal images and used

as threshold value to indicate anomaly image when given as input (KDE calculated for the input

image). Combination of Autoencoder reconstruction error threshold and KDE threshold for anom-

aly images could improve the anomaly detection compared to using only the Autoencoder recon-

struction error threshold.

Using 3rd party adversarial attack and anomaly detection libraries

An interesting open-source approach has been developed by the Linux Foundation AI & Data

Foundation (LF AI & Data) called Adversarial Robustness Toolbox (Nicolae et al., 2019). ART source

code is published under MIT License. ART contains samples for both Red and Blue Teams to use

when trying to attack or defend machine learning models.

Foolbox (Rauber et al., 2018) is a Python library to run adversarial attacks against machine learning

models such as deep neural networks. For measuring ML system vulnerability to adversarial exam-

ples, one can use Python library called CleverHans (Papernot et al., 2018).

Alibi Detect Python library contains code for outlier detection, adversarial detection, and drift de-

tection (Klaise et al., 2020). It contains a sample for Adversarial Autoencoder detection and correc-

tion on CIFAR-10 dataset.

Moving from Convolutional autoencoder to Vision Transformers

Vision transformers (ViTs) have been an active target of research and in the paper(Ghaffari Laleh

et al., 2022) researchers find vision transformers are more resilient against several gradient-based

adversarial attacks than convolutional neural networks. While CNNs can be trained to have better

resiliency against adversarial attacks, a notable discovered fact is that vision transformers did not

65

require adversarial pretraining or architectural modifications to achieve better robustness. It

would be interesting to research further on the weaknesses of vision transformers and types of

adversarial attacks that work well with those models. Therefore, it would make sense to further

study the effectiveness of vision transformers to see pros and cons of ViTs compared to CNNs in

both robustness against adversarial attacks and ability to detect adversarial samples in training of

inference input data.

5 Conclusion

In this thesis the aim was to demonstrate an answer the research questions presented in chapter

1.1 about how one can in practice attack against Deep Neural Networks (DNN) in the context of

Digital Pathology Image Analysis system, and as a defense, to present one practical option on how

to detect such attack and prevent it from happening. This is an important step towards teaching

more generalizable models that can detect multiple types of attacks. The code required to train

the convolutional autoencoder, generate adversarial images and calculate metrics for evaluation

used in this thesis is published in GitHub to be freely available and to allow anyone to repeat the

experiment or further develop upon the codebase used.

Another very important finding during the solution design and implementation step was that the

problem is difficult and in the constant battle between attacker and defender, the advantage is

always on the attacker’s side. While there are multiple research articles on detecting adversarial

attacks against image classification and segmentation models, even more articles exist on the dif-

ferent attacks one can use to fool them. That should not stop researchers from trying to find effec-

tive ways for defending against attacks but gives a realistic view on what to expect on the com-

plexity of the task.

The answer to the main research question RQ1 of this thesis is the sum of the answers to detailed

research questions RQ2-RQ4. One must know what is currently known to be possible from the at-

tack point of view to be able to defend or detect those attacks. This is a common theme for cyber-

security blue team (defender) members. Also, the defense and detection largely depend on the

type of attack performed. No single attack type or defense type will rule them all. A good start is

to try to tackle the most common attack types first, as those require less from the attacker to im-

plement.

66

Following the design science research approach, a solution artifact was implemented by training a

convolutional autoencoder network to recognize adversarial image patches from original image

patches. Results from the implemented solution indicate that as there is a wide variance of colors

in digital pathology image patches from almost completely white patches to very colorful ones, the

task of finding adversarial images is hard but still results in sufficient performance to start with.

Results can be improved through more careful selection of the training data and using other ma-

chine learning methods than convolutional autoencoders.

Part of the task was to implement a practical Black-box attack that one can perform against DNN

model without knowing the exact implementation and architecture of the targeted model before-

hand. This attack was performed as query-based by issuing a series of HTTP requests towards the

target. For improving the attack result, Differential Evolution was used as an optimization algo-

rithm to incrementally improve the few-pixel perturbations used in adversarial input images.

When evaluating attack results, it was shown that normal image patches were more difficult to at-

tack compared to mitosis images, and therefore mitosis-to-normal (hide results requiring treat-

ment) attack is easier to perform for the attacker. This is most likely because many “normal” im-

ages contain a lot of white/empty areas and making CODAIT/deep-histopath model predict those

as “mitosis” images would require more perturbation than just 5 pixels that were used in the at-

tack in this thesis.

To ensure research reliability and ethics, publicly available TUPAC16 data set was selected in the

context of Digital Pathology as it contains breast cancer case images from well-known The Cancer

Genome Atlas (TCGA). Also, a publicly available Digital Pathology image analysis system implemen-

tation was needed to be the target of Black-box attack scenario. IBM CODAIT/deep-histopath was

selected as it is free to use, has been used in TUPAC16 challenge, includes a scientific paper about

the implementation and allowed attack to be performed safely in an on-premises setup where

HTTP requests were done inside the same restricted local host network.

For research reliability it must be mentioned that the generalization of the network was not meas-

ured thoroughly against other attack targets (image analysis services) or other Digital Pathology

image data sets. This is because different Digital Pathology image data sets have usually been cre-

ated with different Whole Slide Image scanners, affecting the image quality and color scheme, and

therefore would have required retraining of the Convolutional Autoencoder model.

67

6 References

Aiforia Technologies Oyj. (2023, November 4). About Aiforia. Aiforia Public Website.

https://www.aiforia.com/about-us

Alatalo, J., Sipola, T., & Kokkonen, T. (2022). Detecting One-Pixel Attacks Using Variational Autoen-

coders. In Á. Rocha, H. Adeli, G. Dzemyda, & F. Moreira (Eds.), Information Systems and Tech-

nologies - WorldCIST 2022, Volume 1, Budva, Montenegro, 12-14 April, 2022 (Vol. 468, pp.

611–623). Springer. https://doi.org/10.1007/978-3-031-04826-5_60

Beggel, L., Pfeiffer, M., & Bischl, B. (2019). Robust Anomaly Detection in Images using Adversarial

Autoencoders. http://arxiv.org/abs/1901.06355

Brownlee, J. (2020, August 14). What is the Difference Between Test and Validation Datasets?

https://machinelearningmastery.com/difference-test-validation-datasets/

Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., & Mukhopadhyay, D. (2018). Adversarial

Attacks and Defences: A Survey. https://doi.org/10.48550/arXiv.1810.00069

CODAIT - Center for Open-Source Data & AI Technologies. (2021). codait/max-breast-cancer-mito-

sis-detector. https://hub.docker.com/r/codait/max-breast-cancer-mitosis-detector

Dusenberry, M. (2017, September 9). CODAIT/deep-histopath/LICENSE.

Https://Github.Com/CODAIT/Deep-Histopath/Blob/Master/LICENSE.

https://github.com/CODAIT/deep-histopath/blob/master/LICENSE

Eichelberg, M., Kleber, K., & Kämmerer, M. (2020). Cybersecurity in PACS and Medical Imaging: an

Overview. Journal of Digital Imaging, 33(6), 1527–1542.

https://doi.org/https://doi.org/10.1007/s10278-020-00393-3

68

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T., & Song, D.

(2018). Robust Physical-World Attacks on Deep Learning Models.

https://arxiv.org/abs/1707.08945

Finlayson, S. G., & Beam, A. L. (2019). Adversarial Attacks Against Medical Deep Learning Systems.

https://doi.org/10.48550/arXiv.1804.05296

Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam, A. L., & Kohane, I. S. (2019). Adversarial

attacks on medical machine learning. Science, 363(6433), 1287–1289.

https://doi.org/10.1126/science.aaw4399

FIRST.Org, M. authors. (2024, February 3). Common Vulnerability Scoring System version 4.0: User

Guide. https://www.first.org/cvss/v4.0/user-guide

Ghaffari Laleh, N., Truhn, D., Veldhuizen, G. P., Han, T., van Treeck, M., Buelow, R. D., Langer, R.,

Dislich, B., Boor, P., Schulz, V., & Kather, J. N. (2022). Adversarial attacks and adversarial ro-

bustness in computational pathology. Nature Communications, 13(1).

https://doi.org/https://doi.org/10.1038/s41467-022-33266-0

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

https://www.deeplearningbook.org/

JAMK. (2018, June 24). Ethical Principles for JAMK University of Applied Sciences Approved by the

Student Affairs Board on 11 December 2018. https://www.jamk.fi/en/media/34826

Klaise, J., Looveren, A. Van, Cox, C., Vacanti, G., & Coca, A. (2020). Monitoring and explainability of

models in production.

Korpihalkola, J., Sipola, T., & Kokkonen, T. (2021). Color-Optimized One-Pixel Attack Against Digital

Pathology Images. 2021 29th Conference of Open Innovations Association (FRUCT), 206–213.

https://doi.org/10.23919/FRUCT52173.2021.9435562

69

Korpihalkola, J., Sipola, T., Puuska, S., & Kokkonen, T. (2020). One-Pixel Attack Deceives Computer-

Assisted Diagnosis of Cancer. https://doi.org/10.1145/3483207.3483224

Metzen, J. H., Kumar, M. C., Brox, T., & Fischer, V. (2017). Universal Adversarial Perturbations

Against Semantic Image Segmentation.

Narodytska, N., & Kasiviswanathan, S. (2017). Simple Black-Box Adversarial Attacks on Deep Neu-

ral Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), 1310–1318. https://doi.org/10.1109/CVPRW.2017.172

Nguyen-Son, H.-Q., Thao, T. P., Hidano, S., Bracamonte, V., Kiyomoto, S., & Yamaguchi, R. S.

(2021). OPA2D: One-Pixel Attack, Detection, and Defense in Deep Neural Networks. 2021 In-

ternational Joint Conference on Neural Networks (IJCNN), 1–10.

https://doi.org/10.1109/IJCNN52387.2021.9534332

Nicolae, M.-I., Sinn, M., Tran, M. N., Buesser, B., Rawat, A., Wistuba, M., Zantedeschi, V., Bara-

caldo, N., Chen, B., Ludwig, H., Molloy, I. M., & Edwards, B. (2019). Adversarial Robustness

Toolbox v1.0.0.

OpenSlide project authors. (2023, October 22). OpenSlide/Aperio format.

https://openslide.org/formats/aperio/

Pantanowitz, L., Sharma, A., Carter, A. B., Kurc, T., Sussman, A., & Saltz, J. (2018). Twenty years of

digital pathology: An overview of the road travelled, what is on the horizon, and the emer-

gence of vendor-neutral archives. In Journal of Pathology Informatics (Vol. 9, Issue 1). Wolters

Kluwer Medknow Publications. https://doi.org/10.4103/jpi.jpi_69_18

Papernot, N., Faghri, F., Carlini, N., Goodfellow, I., Feinman, R., Kurakin, A., Xie, C., Sharma, Y.,

Brown, T., Roy, A., Matyasko, A., Behzadan, V., Hambardzumyan, K., Zhang, Z., Juang, Y.-L., Li,

Z., Sheatsley, R., Garg, A., Uesato, J., … Long, R. (2018). Technical Report on the CleverHans

v2.1.0 Adversarial Examples Library. ArXiv Preprint ArXiv:1610.00768.

70

Papernot, N., Faghri, F., Carlini, N., Goodfellow, I., Feinman, R., Kurakin, A., Xie, C., Sharma, Y.,

Brown, T., Roy, A., Matyasko, A., Behzadan, V., Hambardzumyan, K., Zhang, Z., Juang, Y.-L., Li,

Z., Sheatsley, R., Garg, A., Uesato, J., … McDaniel, P. (2016). Technical Report on the Clever-

Hans v2.1.0 Adversarial Examples Library. http://arxiv.org/abs/1610.00768

Papernot, N., McDaniel, P., & Goodfellow, I. (2016). Transferability in Machine Learning: from Phe-

nomena to Black-Box Attacks using Adversarial Samples. http://arxiv.org/abs/1605.07277

Parwani, A. V. (2019). Next generation diagnostic pathology: Use of digital pathology and artificial

intelligence tools to augment a pathological diagnosis. In Diagnostic Pathology (Vol. 14, Issue

1). BioMed Central Ltd. https://doi.org/10.1186/s13000-019-0921-2

Paschali, M., Conjeti, S., Navarro, F., & Navab, N. (2018). Generalizability vs. Robustness: Adversar-

ial Examples for Medical Imaging. http://arxiv.org/abs/1804.00504

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research

methodology for information systems research. Journal of Management Information Systems,

24(3), 45–77. https://doi.org/10.2753/MIS0742-1222240302

Quan, W., Nagothu, D., Poredi, N., & Chen, Y. (2021). CriPI: an efficient critical pixels identification

algorithm for fast one-pixel attacks. 21. https://doi.org/10.1117/12.2581377

Rauber, J., Brendel, W., & Bethge, M. (2018). Foolbox: A Python toolbox to benchmark the robust-

ness of machine learning models.

Sipola, T., Puuska, S., & Kokkonen, T. (2020). Model Fooling Attacks Against Medical Imaging: A

Short Survey. Information & Security: An International Journal, 46(2), 215–224.

https://doi.org/10.11610/isij.4615

Sorin, V., Soffer, S., Glicksberg, B. S., Barash, Y., Konen, E., & Klang, E. (2023). Adversarial attacks in

radiology – A systematic review. European Journal of Radiology, 167, 111085.

https://doi.org/https://doi.org/10.1016/j.ejrad.2023.111085

71

Stallings, W. (2019). Effective Cybersecurity: Understanding and Using Standards and Best Prac-

tices. Addison-Wesley. http://williamstallings.com/Cybersecurity/

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for global Opti-

mization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359.

https://doi.org/10.1023/A:1008202821328

Su, J., Vargas, D. V., & Kouichi, S. (2017). One pixel attack for fooling deep neural networks.

https://doi.org/10.1109/TEVC.2019.2890858

The Open Microscopy Environment. (2023, October 22). Bio-Formats Documentation/For-

mats/Supported Formats/Aperio SVS TIFF. https://bio-formats.readthedocs.io/en/stable/for-

mats/aperio-svs-tiff.html

Veta, M., & et al. (2024, May 2). Tumor Proliferation Assessment Challenge - Dataset. https://tu-

pac.grand-challenge.org/Dataset/

Veta, M., Heng, Y. J., Stathonikos, N., Bejnordi, B. E., Beca, F., Wollmann, T., Rohr, K., Shah, M. A.,

Wang, D., Rousson, M., Hedlund, M., Tellez, D., Ciompi, F., Zerhouni, E., Lanyi, D., Viana, M.,

Kovalev, V., Liauchuk, V., Phoulady, H. A., … Pluim, J. P. W. (2019). Predicting breast tumor

proliferation from whole-slide images: The TUPAC16 challenge. Medical Image Analysis, 54,

111–121. https://doi.org/10.1016/j.media.2019.02.012

Xu, H., Ma, Y., Liu, H., Deb, D., Liu, H., Tang, J., & Jain, A. K. (2019). Adversarial Attacks and De-

fenses in Images, Graphs and Text: A Review. https://doi.org/10.48550/arXiv.1909.08072

Yuan, X., He, P., Zhu, Q., & Li, X. (2017). Adversarial Examples: Attacks and Defenses for Deep

Learning. http://arxiv.org/abs/1712.07107

72

7 Appendices

Appendix 1. Parameters used in adversarial image generation

Adversarial image generation parameters:

• Number of adversarial samples to generate:

o Normal images: 50

o Mitosis images: 50

• Amount of change expected:

o expected_change_factor_mitosis: 100

o expected_change_factor_normal: 80

▪ Normal images are harder to attack against and setting change factor higher

might only be a waste of computing time without significant change in result.

• Number of pixels to attack: 5

• Color bounds used in attack:

o Normal images: near_black_bounds = [(0, 5), (0, 5), (0, 5)]

o Mitosis images: pink_bounds = [(220, 225), (170, 175), (200, 205)]

• Image patch locations:

o normal_images_path: "data/normal_patches"

o mitosis_images_path: "data/mitosis_patches"

o adversarial_images_path: "data/adversarial_patches"

Parameters for Differential Evolution:

• func (objective function to be minimized):

o Different functions are used for ‘normal’ and ‘mitosis’ images.

o We want to minimize it for ‘mitosis’ images and maximize it for ‘normal’ ones.

• bounds (variable bounds):

o Different bounds are used for ‘normal’ and ‘mitosis’ images.

o See “Color bounds used in attack” in 3.4.1 Selecting dataset for demonstration.

• strategy (selected differential evolution strategy): "best1bin"

• maxiter (maximum number of generations): 500

• popsize (multiplier for setting the total population size): 30

• mutation (mutation constant / differential weight): (0.3, 1)

73

• recombination (recombination constant / crossover probability): 0.7

• atoll (Absolute tolerance for convergence): -1

• disp (print the evaluated func at every iteration): True

• polish (polish the best population member at the end): True

• population initialization: "latinhypercube"

Appendix 2. The demonstration environment setup instructions

The demonstration environment is setup using the following manuscript:

• Initialize the attack target:

o The actual attack is implemented through a series of HTTP POST queries against the

CODAIT/deep-histopath model running as Docker container. HTTP REST API of

CODAIT/deep-histopath was accessible on localhost port 5000.

o If using Windows/Mac/Linux there is an option to use Docker Desktop. Download and

install Docker desktop. Then Start Docker desktop.

▪ Notice: There are multiple ways to run Docker containers, also without Docker

Desktop. But that is the simplest option for most users.

o Install Python 3.x by using Anaconda installer or command line

o Download the CODAIT/deep-histopath container using the following command: docker

pull codait/max-breast-cancer-mitosis-detector

• Create Python virtual environment and install requirements (python libraries)

o Open terminal/command prompt and run command: pip install virtualenv

o Create a new folder (for the project), navigate to project folder in your terminal (cd com-

mand):

▪ mkdir <project-name>

▪ cd <project-name>

o Then run the following command: python<version> -m venv <virtual-environment-

name>

o Run command to activate virtual environment: source <virtual-environment-

name>/bin/activate

▪ Note: After the virtual environment is created, you can use it in VS Code, Ana-

conda.Navigator, Spyder and many other tools.

• Download code used in development, demonstration, and evaluation steps:

74

o On your computer, under the project folder you created run command: git clone

https://github.com/amarkus/thesis_jamk.git

o This will download the source code containing all the code used in different steps of this

thesis, except the image patch generation from TUPAC16 images

(https://github.com/CODAIT/deep-histopath)

o In your tool of choice, set the current working directory as “<some_dir_path>\the-

sis_jamk”:

▪ One-liner to check the current working directory:

python -c "import os; print(os.getcwd())"

o Install required python packages:

▪ Navigate to src folder

▪ Run command: pip install -r requirements.txt

• If not already done in training the convolutional autoencoder:

o Prepare image patches from TUPAC16 dataset (see 3.3.2 Dataset preprocessing and

splitting)

o Copy some 100000-200000 images (mitosis folder needs to have over 10000) from

patches from CODAIT\data\mitoses\patches\train folder to dataset\patches folder un-

der the project folder.

o Navigate into the “solution_design_and_development” folder and run prepare_train-

ing_data.py. This will generate train, val and test folders under training_data folder (di-

rectly under datasets folder).

o Navigate into the “solution_design_and_development” folder and run train_anom-

aly_detector.py. As a result, the folder src/run_results/<run_id>/models will contain a

keras file. That is your convolutional autoencoder model. The folder src/run_re-

sults/<run_id>/ will also contain screenshots, logs, and model summary for debugging

needs.

Now you should be able to run the scripts for demonstration and evaluation also.

Appendix 3. Demonstration attack & defense results table

Image name Initial prediction Prediction af-
ter attack

Initial reconstruc-
tion error

Reconstruction error
after attack

mitosis_1.png 0,148413569 0,000735580 0,000459316 0,000774894

https://github.com/amarkus/thesis_jamk.git
https://github.com/CODAIT/deep-histopath

75

normal_1.png 0,000041971 0,009503714 0,000513094 0,000831877

mitosis_2.png 0,922306359 0,007309685 0,000224037 0,000608885

normal_2.png 0,000001702 0,000380007 0,000506389 0,000715072

mitosis_3.png 0,543869495 0,004026819 0,000400077 0,000558080

normal_3.png 0,000012727 0,006169492 0,000538159 0,000756408

mitosis_4.png 0,157493040 0,000435463 0,000572376 0,000763913

normal_4.png 0,000004124 0,000066945 0,000376544 0,000657802

mitosis_5.png 0,417111874 0,003761098 0,000471778 0,000850438

normal_5.png 0,000012809 0,006896434 0,000494574 0,000793531

mitosis_6.png 0,955929995 0,009479479 0,000358863 0,000651374

normal_6.png 0,000047098 0,000515505 0,000402633 0,000916627

mitosis_7.png 0,431792140 0,003948513 0,000608882 0,000781549

normal_7.png 0,000386461 0,013763451 0,000607773 0,001075869

mitosis_8.png 0,346063435 0,002397292 0,000506101 0,000851330

normal_8.png 0,000014482 0,001597611 0,000477807 0,000804672

mitosis_9.png 0,729875982 0,005932807 0,000425172 0,000679207

normal_9.png 0,000153686 0,096171118 0,000374779 0,000681507

mitosis_10.png 0,117708840 0,000241658 0,000344551 0,000594535

normal_10.png 0,000012478 0,000986555 0,000562975 0,000888699

mitosis_11.png 0,977434158 0,001612379 0,000455520 0,000755749

normal_11.png 0,000165269 0,012995451 0,000633106 0,000992789

mitosis_12.png 0,963935912 0,009143808 0,000288653 0,000677566

normal_12.png 0,000016052 0,000610318 0,000583112 0,001037779

mitosis_13.png 0,897652924 0,001752942 0,000292758 0,000434632

normal_13.png 0,000001292 0,000340625 0,000418452 0,000830780

mitosis_14.png 0,998695672 0,320512086 0,000448726 0,000764912

normal_14.png 0,000093107 0,001791153 0,000316912 0,000752405

mitosis_15.png 0,300658047 0,002991061 0,000592037 0,000765517

normal_15.png 0,000105568 0,025303578 0,000343787 0,000579192

mitosis_16.png 0,475262255 0,001495939 0,000650389 0,000950290

normal_16.png 0,000001314 0,000020806 0,000527908 0,001044561

mitosis_17.png 0,708144724 0,001151610 0,000373309 0,000697099

normal_17.png 0,000000510 0,000003508 0,000512268 0,000759002

mitosis_18.png 0,879327178 0,007079005 0,000338766 0,000585314

normal_18.png 0,000026389 0,022385601 0,000510679 0,000899967

mitosis_19.png 0,203910992 0,001742448 0,000464506 0,000657389

normal_19.png 0,000007310 0,003639274 0,000327715 0,000793213

mitosis_20.png 0,975126565 0,003535033 0,000365537 0,000757173

normal_20.png 0,000004855 0,000574146 0,000572748 0,001096880

76

mitosis_21.png 0,203611642 0,001192780 0,000349845 0,000740107

normal_21.png 0,000024900 0,019636095 0,000475079 0,000802950

mitosis_22.png 0,537590981 0,001949711 0,000360358 0,000664426

normal_22.png 0,000000889 0,003671370 0,000594335 0,000959667

mitosis_23.png 0,341924250 0,002120507 0,000459512 0,000611895

normal_23.png 0,000079310 0,001024267 0,000556149 0,000955571

mitosis_24.png 0,880136192 0,004757602 0,000402609 0,000636143

normal_24.png 0,000001878 0,000497219 0,000519868 0,001034495

mitosis_25.png 0,290616304 0,000292063 0,000528872 0,000740660

normal_25.png 0,000013901 0,009991005 0,000529542 0,000989252

mitosis_26.png 0,963564575 0,007676982 0,000475212 0,000808516

normal_26.png 0,000062225 0,001310628 0,000474056 0,000726044

mitosis_27.png 0,813812256 0,006990579 0,000393369 0,000747075

normal_27.png 0,000016552 0,002715214 0,000440478 0,000717063

mitosis_28.png 0,784856081 0,007029271 0,000406684 0,000676100

normal_28.png 0,000023335 0,000353302 0,000354228 0,000675525

mitosis_29.png 0,851696134 0,003199333 0,000317658 0,000560948

normal_29.png 0,000002587 0,000289122 0,000403808 0,000654283

mitosis_30.png 0,274329156 0,000070314 0,000352982 0,000720285

normal_30.png 0,000005340 0,000076600 0,000479827 0,000776059

mitosis_31.png 0,531968772 0,004610776 0,000382672 0,000617131

normal_31.png 0,000008099 0,013352522 0,000447822 0,000839770

mitosis_32.png 0,976763606 0,005248149 0,000479618 0,000725932

normal_32.png 0,000001493 0,000556821 0,000550196 0,000895875

mitosis_33.png 0,936972916 0,000589918 0,000521675 0,000804988

normal_33.png 0,000038136 0,000278694 0,000381965 0,000859856

mitosis_34.png 0,090065710 0,000675426 0,000188178 0,000437867

normal_34.png 0,000029371 0,008464520 0,000393075 0,000632904

mitosis_35.png 0,740434289 0,001459896 0,000402481 0,000632345

normal_35.png 0,000021989 0,001536802 0,000500422 0,000926090

mitosis_36.png 0,262425482 0,002271656 0,000428102 0,000586888

normal_36.png 0,000001255 0,000177536 0,000528869 0,001082251

mitosis_37.png 0,765155137 0,000460444 0,000362311 0,000687527

normal_37.png 0,000004080 0,002228478 0,000464842 0,000836157

mitosis_38.png 0,039777346 0,000387052 0,000467323 0,000649182

normal_38.png 0,000042465 0,001053018 0,000502394 0,000879077

mitosis_39.png 0,002447123 0,000008824 0,000388801 0,000619520

normal_39.png 0,000000713 0,000645112 0,000534446 0,000801638

mitosis_40.png 0,514352322 0,000502599 0,000453803 0,000754409

77

normal_40.png 0,000526292 0,038574133 0,000540067 0,001025475

mitosis_41.png 0,950375676 0,005177333 0,000678369 0,000998959

normal_41.png 0,000012877 0,002525970 0,000503823 0,000797285

mitosis_42.png 0,596053958 0,003930310 0,000464670 0,000608197

normal_42.png 0,014112246 0,072855488 0,000658165 0,001121363

mitosis_43.png 0,114015333 0,000743672 0,000508351 0,000745800

normal_43.png 0,000018849 0,004824089 0,000437686 0,000915101

mitosis_44.png 0,969435096 0,008734260 0,000346385 0,000709688

normal_44.png 0,000016008 0,005539660 0,000526471 0,000904132

mitosis_45.png 0,998410821 0,006197840 0,000443224 0,000909922

normal_45.png 0,000272839 0,011999988 0,000553122 0,000882455

mitosis_46.png 0,299752563 0,002330190 0,000286664 0,000474421

normal_46.png 0,000311008 0,015046140 0,000367788 0,000558693

mitosis_47.png 0,617649257 0,005823713 0,000711869 0,000859951

normal_47.png 0,000000392 0,000009144 0,000660069 0,001208907

mitosis_48.png 0,990627408 0,008096716 0,000597812 0,000974689

normal_48.png 0,000214633 0,003455861 0,000310276 0,000685424

mitosis_49.png 0,007887042 0,000059159 0,000340301 0,000602807

normal_49.png 0,000004125 0,000162429 0,000331757 0,000524227

mitosis_50.png 0,934542537 0,000212351 0,000266848 0,000568269

normal_50.png 0,000043786 0,000720795 0,000387180 0,001039097

Appendix 4. Evaluation attack & defense results table

Image name Initial prediction Prediction af-
ter attack

Initial reconstruc-
tion error

Reconstruction error
after attack

mitosis_1.png 0,861586809 0,002933479 0,000403515 0,000694025

normal_1.png 0,000000125 0,000006046 0,000654039 0,001034940

mitosis_2.png 0,508837402 0,003429842 0,000558350 0,000849870

normal_2.png 0,000088287 0,015161656 0,000638837 0,001024484

mitosis_3.png 0,976993203 0,008370327 0,000344540 0,000761791

normal_3.png 0,000021582 0,006168855 0,000508193 0,001079600

mitosis_4.png 0,040070117 0,000283404 0,000343472 0,000616856

normal_4.png 0,000008508 0,000024747 0,000466306 0,000646110

mitosis_5.png 0,942859530 0,006173938 0,000419355 0,000631905

normal_5.png 0,005960859 0,543592095 0,000529099 0,001029449

78

mitosis_6.png 0,951725364 0,002114710 0,000423353 0,000725156

normal_6.png 0,000001338 0,000026185 0,000417315 0,000819426

mitosis_7.png 0,662126899 0,005187168 0,000628526 0,000842162

normal_7.png 0,000094111 0,004635017 0,000500958 0,000756711

mitosis_8.png 0,993190706 0,003885588 0,000389265 0,000818062

normal_8.png 0,000015341 0,000286067 0,000471179 0,001051436

mitosis_9.png 0,988112629 0,009323802 0,000581883 0,001008967

normal_9.png 0,000008260 0,000286751 0,000665288 0,000901613

mitosis_10.png 0,975726903 0,005520195 0,000545166 0,000823079

normal_10.png 0,000016696 0,003009412 0,000560992 0,000789938

mitosis_11.png 0,996760309 0,002569380 0,000173283 0,000551101

normal_11.png 0,000006222 0,001185444 0,000527690 0,000873499

mitosis_12.png 0,152778775 0,000348541 0,000283078 0,000732881

normal_12.png 0,000452658 0,290014535 0,000592616 0,000857122

mitosis_13.png 0,093522131 0,000685714 0,000435727 0,000613879

normal_13.png 0,000005982 0,000532239 0,000596250 0,000994258

mitosis_14.png 0,984991252 0,000671417 0,000285611 0,000603182

normal_14.png 0,012027426 0,054091424 0,000423403 0,000736616

mitosis_15.png 0,555196762 0,002646575 0,000342206 0,000585478

normal_15.png 0,000035430 0,000922100 0,000507059 0,000951306

mitosis_16.png 0,133751780 0,000747747 0,000568632 0,000852862

normal_16.png 0,000013655 0,011056987 0,000322551 0,000646458

mitosis_17.png 0,852719724 0,008195848 0,000496698 0,000739022

normal_17.png 0,000006990 0,004050226 0,000451216 0,001040308

mitosis_18.png 0,901980758 0,004354236 0,000339345 0,000746069

normal_18.png 0,000373711 0,010094131 0,000544319 0,000930654

mitosis_19.png 0,206469983 0,000714460 0,000598259 0,000912544

normal_19.png 0,000097254 0,005270306 0,000361893 0,000556447

mitosis_20.png 0,792511344 0,004817124 0,000305439 0,000563664

normal_20.png 0,000033047 0,009772085 0,000407767 0,000709176

mitosis_21.png 0,827489853 0,006083493 0,000320813 0,000614566

normal_21.png 0,000004269 0,000710378 0,000619536 0,000902113

mitosis_22.png 0,482688248 0,003692272 0,000356787 0,000665832

normal_22.png 0,000077331 0,238524631 0,000610591 0,000823337

mitosis_23.png 0,912186742 0,000045685 0,000725277 0,001005554

normal_23.png 0,000477635 0,005277387 0,000539185 0,000833929

mitosis_24.png 0,080556132 0,000773440 0,000370304 0,000559779

normal_24.png 0,013494822 0,040900834 0,000723363 0,001094747

mitosis_25.png 0,180041835 0,000788218 0,000439219 0,000776875

79

normal_25.png 0,000005982 0,000499840 0,000596250 0,000995177

mitosis_26.png 0,034925595 0,000231816 0,000461911 0,000565518

normal_26.png 0,008238786 0,380933434 0,000341740 0,000517954

mitosis_27.png 0,990396857 0,009108635 0,000680095 0,001021950

normal_27.png 0,007635538 0,394852161 0,000459155 0,001081589

mitosis_28.png 0,908827603 0,004196631 0,000364350 0,000544776

normal_28.png 0,000004815 0,009165278 0,000595764 0,000878691

mitosis_29.png 0,000303229 0,000002749 0,000308762 0,000673548

normal_29.png 0,000017036 0,000306312 0,000322630 0,000837066

mitosis_30.png 0,924608111 0,006086867 0,000238724 0,000533590

normal_30.png 0,000002369 0,002294043 0,000497339 0,000852417

mitosis_31.png 0,657065034 0,002821964 0,000545104 0,000918871

normal_31.png 0,000001181 0,000072544 0,000510476 0,000730158

mitosis_32.png 0,738855243 0,003363867 0,000534546 0,000810682

normal_32.png 0,000951621 0,916005731 0,000571423 0,000920070

mitosis_33.png 0,394089550 0,000699077 0,000469128 0,000650055

normal_33.png 0,000000494 0,000237823 0,000649482 0,001042027

mitosis_34.png 0,833088636 0,002429518 0,000408609 0,000596312

normal_34.png 0,000420977 0,023655837 0,000358105 0,000586153

mitosis_35.png 0,924941063 0,005847837 0,000544753 0,000914407

normal_35.png 0,000010368 0,000225086 0,000414711 0,000908144

mitosis_36.png 0,547642052 0,005148123 0,000372587 0,000665996

normal_36.png 0,000012867 0,000807639 0,000630015 0,000939428

mitosis_37.png 0,959904552 0,003680790 0,000459890 0,000706456

normal_37.png 0,000001109 0,000127522 0,000694194 0,000994339

mitosis_38.png 0,969527423 0,009250625 0,000375798 0,000679238

normal_38.png 0,000283154 0,009045467 0,000300523 0,000617744

mitosis_39.png 0,796106696 0,002230616 0,000547540 0,000894445

normal_39.png 0,000025291 0,003639846 0,000590286 0,001274992

mitosis_40.png 0,098639891 0,000609463 0,000368121 0,000608158

normal_40.png 0,000061714 0,001210482 0,000384634 0,000544199

mitosis_41.png 0,375225991 0,001880224 0,000247568 0,000525189

normal_41.png 0,001031355 0,244819820 0,000595024 0,000880439

mitosis_42.png 0,622190595 0,002417985 0,000504503 0,000693577

normal_42.png 0,000015125 0,002785343 0,000727062 0,001077682

mitosis_43.png 0,191802621 0,001516148 0,000369241 0,000585079

normal_43.png 0,000044519 0,011891786 0,000613268 0,001051413

mitosis_44.png 0,532338023 0,004602729 0,000400386 0,000679548

normal_44.png 0,000029134 0,001194934 0,000479315 0,001036730

80

mitosis_45.png 0,167223439 0,000804042 0,000540781 0,000709515

normal_45.png 0,000028328 0,001623439 0,000481210 0,001037945

mitosis_46.png 0,831625998 0,007252574 0,000452184 0,000756052

normal_46.png 0,008872952 0,232463703 0,000737232 0,001256906

mitosis_47.png 0,157239035 0,000297302 0,000409302 0,000738732

normal_47.png 0,000479103 0,044775996 0,000464226 0,000898477

mitosis_48.png 0,096121520 0,000242361 0,000385462 0,000713385

normal_48.png 0,000021607 0,000282375 0,000614566 0,001024582

mitosis_49.png 0,217245176 0,000437816 0,000529805 0,000884339

normal_49.png 0,000001167 0,000031124 0,000432330 0,000676310

mitosis_50.png 0,954838574 0,002342672 0,000376643 0,000705945

normal_50.png 0,001031355 0,203333601 0,000595024 0,000920043

	1 Introduction
	1.1 Research question
	1.2 Thesis commissioner and topic selection justification
	1.3 Thesis topic delineation
	1.4 Research methodology
	1.5 Information retrieval and source material
	1.6 Research reliability and ethics

	2 Background and key concepts
	2.1 Prior research and literature
	2.2 Cybersecurity threats in Digital pathology image analysis
	2.3 Deep Neural Networks attacks and defenses

	3 Solution implementation workflow
	3.1 Problem identification and motivation
	3.2 Objectives of a solution
	3.3 Design & development
	3.3.1 Hardware and software requirements
	3.3.2 Dataset preprocessing and splitting
	3.3.3 Selecting attack target system and AI model
	3.3.4 Generating adversarial images with Differential Evolution
	3.3.5 Training convolutional autoencoder to detect anomalies

	3.4 Demonstration of solution suitability
	3.4.1 Selecting dataset for demonstration
	3.4.2 Attack demonstration
	3.4.3 Threshold used for attack detection
	3.4.4 Defense demonstration

	3.5 Evaluation of the implemented solution
	3.5.1 Selecting dataset for evaluation
	3.5.2 Attack evaluation
	3.5.3 Defense evaluation

	3.6 Communication of results and knowledge

	4 Discussion
	4.1 Autoencoder suitability for image anomaly detection
	4.2 On the probability of attacks against Digital Pathology Image Analysis systems
	4.3 Improvement ideas for adversarial image detection

	5 Conclusion
	6 References
	7 Appendices
	Appendix 1. Parameters used in adversarial image generation
	Appendix 2. The demonstration environment setup instructions
	Appendix 3. Demonstration attack & defense results table
	Appendix 4. Evaluation attack & defense results table

