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Abstract 

Digital pathology has made huge strides in development over the past decade. The introduction of new 
technology brings with it huge potential in efficiency, accuracy, and cost benefits, but also new risks. From 
the point of view of cyber security, in addition to traditional software, hardware and network security, a 
new risk will be attack attempts against artificial intelligence models and systems running the models. 
 
The purpose of the thesis was to respond to the thesis commissioner’s need to investigate practical options 
for detecting and preventing vulnerabilities in deep neural network models and their feasibility. In addition 
to the goodness of the detection models, things to consider were, e.g., performance, feasibility in practice 
and calculated cost/benefit ratio. 
 
The thesis used design science as its research method, which aims to produce an artifact that solves the re-
search problem with a practical and innovative solution. Scientific publications were used as source mate-
rial for the work, both on the vulnerabilities related to neural networks in digital pathology, and on the vul-
nerabilities of deep learning neural networks in general in relation to image analysis. In the work, a deep 
learning neural network (convolutional autoencoder) was produced as an artifact, the purpose of which is 
to detect deviations from the input data. 
 
Based on the results, with convolutional autoencoders it is possible to detect perturbations of even just a 
few pixels in the analyzed images and through this to detect a possible attack that tries to influence the re-
sult of the image analysis through a deviation of the input data. Implementing standard convolutional auto-
encoders is an easy way to start detecting deviations, but the disadvantage of an artificial intelligence 
model for detecting attacks taught with image data is its poor generalizability and the need to retrain the 
neural network model if significant changes in image quality or color scheme occur in the digital pathology 
image data due to hardware or software changes. 
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Tiivistelmä  

Digitaalinen patologia on ottanut valtavia kehitysaskelia viimeisen vuosikymmenen aikana. Uuden 
teknologian käyttöönotto tuo mukanaan valtavia potentiaalisia tehokkuus-, tarkkuus- ja kustannushyötyjä, 
mutta myös uusia riskejä. Kyberturvallisuuden näkökulmasta perinteisen ohjelmisto-, laitteisto- ja 
tietoverkkoturvallisuuden lisäksi uutena riskinä tulee tekoälymalleihin sekä niitä ajaviin järjestelmiin 
kohdistuvat muokkaus ja hyökkäysyritykset. 
 
Opinnäytetyön tarkoituksena oli vastata toimeksiantajan tarpeeseen tutkia käytännöllisiä syväoppivien 
tekoälymallien haavoittuvuuksien havainnoinnin ja ehkäisyn vaihtoehtoja ja niiden toteutuskelpoisuutta. 
Havainnointimallien hyvyyden lisäksi huomioitavia asioita olivat mm. suorituskyky, toteutettavuus 
käytännössä ja laskennallinen kustannus/hyöty -suhde. 
 
Opinnäytetyössä käytettiin tutkimusmenetelmänä suunnittelutiedettä, jossa pyritään tuottamaan artefakti, 
joka ratkaisee tutkimusongelma käytännöllisellä ja innovatiivisella ratkaisulla. Työn lähdemateriaalina 
käytettiin tieteellisiä julkaisuja sekä digitaalisen patologian neuroverkkoihin liittyvistä haavoittuvuuksista 
että yleisesti syväoppivien neuroverkkojen haavoittuvuuksista liittyen kuva-analyysiin. Työssä tuotettiin 
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pikselien kuvahäiriöitä analysoitavissa kuvissa ja tätä kautta havaita mahdollinen hyökkäys jossa yritetään 
vaikuttaa kuva-analyysin lopputulokseen syötedatan poikkeaman kautta. Tavallisten konvolutiivisten 
autoenkoodereiden toteuttaminen on helppo tapa aloittaa poikkeamien havaitseminen, mutta kuvadatalla 
opetetun hyökkäysten havaitsemiseen tarkoitetun tekoälymallin haittapuolinan on heikko yleistyvyys ja 
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1 Introduction 

The digitalization of pathology has created a huge opportunity to improve the accuracy of clinical 

diagnoses and reduce the time it takes to analyze a whole slide image (WSI) (Parwani, 2019). It en-

ables efficient storage and sharing of the samples gathered from patients over decades for educa-

tional and research purposes. On the research side the digitalized data can be used in training 

deep learning models that enable faster analysis, handle large datasets, reduce the annotation 

burden and predictive models capable of estimating patient outcome, disease progression likeli-

hood or treatment response. This requires that the experts making AI (artificial intelligence) sys-

tems and labeling digitalized image samples can trust that the data used follows Information secu-

rity triad (Stallings, 2019): Confidentiality, integrity, availability (CIA). The CIA-triad is a guideline 

for information security that aims to secure the systems in such a way that the system and the in-

formation in it is protected, trustworthy, not modified by any unauthorized party and available 

when needed in use.  

From a cybersecurity perspective healthcare is a critical sector and must be protected well and 

with all reasonable security controls available, both technical and non-technical. At the same time 

cost-saving requirements in healthcare, new legal requirements, legacy system maintenance and 

collaboration with resources external to the hospitals closed networks bring new challenges to the 

overall cybersecurity and governance models. From cybersecurity criminals’ perspective the 

healthcare sector has until now been a target for financial benefit (Finlayson et al., 2019) using 

ransomware and causing chaos among patients by attacking system availability through denial-of-

service attacks. But the deployment of new intelligent systems will bring new attackers and attack 

types into play, ones that are clever, more difficult to detect by humans and that will also require 

another intelligent system to protect them from adversaries. 

Currently, in clinical use, deep learning neural networks are used in an assisting role where the 

pathologist verifies the diagnosis produced by the artificial intelligence model (Parwani, 2019). So 

even if the risk for adversarial image attack is currently low and unlikely, the moment to build effi-

cient detection and defense for these new kinds of attacks is now when there is still plenty of time 

to prepare for more advanced types of attacks. When clinical analysis workflow is more and more 

automated, there should be ways to detect deviations on workflow, input data and output result. 
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In this thesis, chapters 1 and 2 explain the design science research method, goals, literature, and 

background concepts to give an overview and explain the importance of the topic. The goal was to 

show how in practice an adversary could perform an attack and what kind of ways there exists to 

detect and defend those special kinds of tailored attacks. Chapter 3 follows design science re-

search method solution implementation steps to explain the objectives, motivation, design, and 

actual implementation of the resulting artifacts. As a result, a convolutional autoencoder was pro-

duced (chapter 3.3.5) to detect adversarial perturbations. The latter part of chapter 3 covers the 

demonstration and evaluation of the implemented solution to show how well the resulting arti-

facts succeed in both the adversarial attack and defense side. Finally, chapters 4 and 5 cover the 

discussion and conclusion parts, also giving some ideas for further improvement of the initial solu-

tion. 

1.1 Research question 

The primary research question (RQ) can be defined as follows: 

• RQ1: How in practice can one detect and defend against digital pathology image analysis AI model 

attack? 

The answer to research question can be further divided into these detailed questions: 

• RQ2: What are known threats and vulnerabilities to digital pathology image analysis AI model? 

• RQ3: What are known adversarial AI attack techniques and types of attacks for image analysis? 

• RQ4: What detection and defense methods exist against adversarial AI attacks for image analysis 

and how well do they work? 

 

1.2 Thesis commissioner and topic selection justification 

The commissioner (assigning company) for this thesis is Aiforia Technologies Oyj.  The public web-

site of Aiforia Technologies describes the company with following introduction: “Aiforia equips 

pathologists and scientists in preclinical and clinical labs with powerful deep-learning artificial in-

telligence software for translating images into discoveries, decisions, and diagnoses. The cloud 

based Aiforia products and services aim to escalate the efficiency and precision of medical image 

analysis beyond current capabilities across various fields, from oncology to neuroscience and 

more.” (Aiforia Technologies Oyj, 2023) 
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During the writing of this thesis, I have worked both in Lead Cloud architect and Cyber security en-

gineer roles. In these roles the security of our company cloud-based image analysis system has 

been both an interest and duty. This thesis has been implemented using open-source AI platforms 

and tools. Aiforia’s image analysis systems, data sets or AI models have not been used in the ex-

periments presented in this thesis. Therefore, results or vulnerabilities do not directly apply to Ai-

foria products. I selected and agreed not to use Aiforia’s system so that all the tools, code, meth-

ods, and results can be published as is, results are platform independent and can be reproduced 

using free tools and frameworks available. Aiforia has provided time, education and advice when 

needed to support my thesis writing.  

From the early years of working with Aiforia I have been reading articles about theoretical attacks 

against image analysis and image recognition systems. Coming from a software developer back-

ground it seemed obvious that instead of seeking more methods for adversarial attacks, it was 

necessary to start looking for cost-effective, generic, and efficient methods to either detect the 

attacks and prevent them or make AI models more tolerant against attacks. Therefore, the se-

lected research method for this thesis is a design science approach which aims to produce con-

crete outcomes.  

1.3 Thesis topic delineation 

The topic of this thesis has been delineated as Practical Attack and Defense Methods for Integrity 

of Deep Neural Networks in the field of digital pathology image analysis. While there is a lot of ex-

citing adversarial attack research done in other fields such as traffic sign recognition (Eykholt et al., 

2018) with autonomous vehicles, this thesis focuses on medical imaging and specifically on digital 

pathology. 

From different adversarial attack methods, the scope of this thesis is limited to few-pixel modifica-

tions that allow attacker to modify the image data in ways that are hard to detect by digital pa-

thology experts and therefore more likely to pass detection and defenses.  

This thesis focuses on attacking an existing, published model that produces only single numerical 

result (mitosis probability in the image) as output. However, it is important to notice that many 

digital pathology AI models for cancer detection give more information than just Boolean 
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“Yes/No” or single numerical result as output. The output is often larger graphical and numeric re-

sult set indicating the important finding areas and severity. There is also research done about fool-

ing the image segmentation results such as Metzen et al., (2017) where the authors were able to 

create adversarial perturbations producing desired target segmentation and therefore fooling im-

age segmentation model not to recognize pedestrians from given landscape pictures. 

For the detection and defense, a method to detect attack using deep neural network was selected 

with the idea of creating separate subsystem that could be attached to existing digital pathology 

image analysis system. This detection method is focused on detecting adversarial perturbations on 

image tiles (of a larger image), but adversary attacks against image segmentation models can also 

use same or similar methods on detecting attacks. 

1.4 Research methodology 

The research method used will be design science-based research method (Peffers et al., 2007). The 

reason to use Design Science Research Methodology (DSRM) is that it fits well for solution imple-

mentation in the information system research area. DSRM provides a structured approach for de-

veloping and evaluating technological solutions and is also focused on addressing practical real-

world problems and creating innovative solutions and knowledge as outcome. This thesis focuses 

on developing knowledge about what attacks Medical Deep Learning AI models could be facing 

and design practical software-based solutions to defend against those attacks.  

 

Figure 1. The process model of Design Science Research Methodology (Peffers et al., 2007), 
modified. 

Design science-based research method aim is to prove the usefulness of the design with concrete 

sample solution or system. The six different steps of DSRM (Figure 1) are aligned with this thesis as 

follows. 

Identify problem and motivate 
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The process starts with identifying some information system or technology related problem or op-

portunity that needs to be addressed with a solution. The motivation needs to be clear so that 

both the researcher and the audience of this research can understand the value of the artifact pro-

duced by this research would bring (Peffers et al., 2007). 

For this thesis the chapter “3.1 Problem identification and motivation” describes the main motiva-

tion for this research is to help preventing damage to patient security by detecting adversarial at-

tack of digital pathology image analysis AI model using a separate trained AI model for anomaly 

detection on model input images. Chapter “2 Background and key concepts” covers the back-

ground information on the subject and prior research done on the subject to identify possible ear-

lier attempts to come up with a solution to the identified problem. It also introduces the audience 

to the key concepts related to the cybersecurity threats of an AI model. 

Define objectives of a solution 

The second step of the DSRM process is to determine what specific goals and objectives the re-

search project is trying to achieve with the proposed solution. Also, the scope should be deline-

ated so that boundaries and constraints are clear (Peffers et al., 2007). 

For this thesis the chapter “3.2 Objectives of a solution” describes what are the expected out-

comes and sets quantifiable objectives for the solution to be evaluated later. These rational expec-

tations will serve as design and evaluation criteria for the solution. 

Design & development 

In this third step the actual solution artifact is being developed to solve the problem. Usually, this 

step is iterative as it involves trying different technical approaches to solve the problem and exper-

iments with various design options. This step applies the theoretical knowledge gained in earlier 

steps to the actual problem solving (Peffers et al., 2007). 

As this thesis develops a software artifact to solve the identified problem, the chapter “3.3 Design 

& development” initially covers hardware and software used in the artifact implementation and 

then introduces the dataset preparation, attack sample creation (for testing the artifact) and im-

plementation of the actual solution artifact, the AI model to be used defending the attack input 

from reaching the target system. 

Demonstration 
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The demonstration step shows in practice how the developed artifact is used in action to solve the 

identified problem in form of prototype, experimentation, simulation, or such activity. This step 

also demonstrates knowledge of the researcher on how to correctly use the artifact (Peffers et al., 

2007). 

In this thesis the chapter “3.4 Demonstration of solution suitability” contains a demonstration of 

both successful attack and sufficient defense (or detection) of an adversarial attack against the se-

lected digital pathology image analysis AI model. 

Evaluation 

The goal of the evaluation step is to determine the effectiveness and practicality of the solution. It 

measures how well the implemented artifact supports an effective solution to the earlier identi-

fied problem. Results from the demonstration may be used in evaluating the solution. This step 

also offers researchers a possibility to jump back to design & development step to improve the so-

lution artifact to gain better results. An acceptable option is also to communicate on the results 

(as is) and leave the identified problem to be solved better in future projects. Sometimes a feasible 

solution cannot be developed or solving the problem needs a different solution approach (Peffers 

et al., 2007). 

For this thesis the chapter “3.5 Evaluation of the implemented solution” the results from the 

demonstration are evaluated quantitatively and qualitatively along with additional measures 

against larger set of testing data from various angles. Both attack and defense (or detection) re-

sults and performance are evaluated. 

Communication 

Sharing the insights acquired through the research, underlining the significance and novelty of the 

created solution artifact to both academia and industry professionals, serves as a catalyst for 

knowledge dissemination. It enables fellow researchers to gain knowledge, enhance existing meth-

odologies, pose new questions, or expand upon findings. Such collaborative efforts are invaluable 

for advancing the field of study (Peffers et al., 2007). 

Along with the thesis itself, in the last DSRM process step, a set of artifacts are produced and pub-

lished along with evaluation results and knowledge gained through researching the topic. 
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1.5 Information retrieval and source material 

Information retrieved using search keywords and scientific research databases. 

General information and initial searches for information were gathered from JAMK E-library sys-

tems Janet Finna International article search (https://janet.finna.fi/), arXiv (https://arxiv.org/), Re-

searchGate (https://www.researchgate.net/), ProQuest Ebook Central 

(https://ebookcentral.proquest.com/). Some of the search patterns used in information queries in 

Janet Finna and ProQuest Ebook Central: 

• (attack* OR defen*) "medical deep learning" 

• ("attack*" OR "defen*") "medical deep learning systems" 

• "cybersecurity" AND "threat" AND "digital pathology" AND "image analysis" 

• "one-pixel attack" AND "deep learning" 

• "one-pixel attack" 

• "one-pixel attack" AND "medical deep learning systems" 

• "few-pixel attack" 

• "few-pixel attack" AND "deep learning" 

• "adversarial" AND "attack" AND "black-box" 

• "Deep learning" AND ("attack" OR "defense") AND "adversary" AND "image analysis" AND "medi-

cal" 

• "adversarial attack" AND "medical" AND "deep learning" 

• "adversarial" AND "defense" AND "Digital Pathology" AND "deep learning" AND "image analysis" 

• "adversarial attacks" "medical deep learning systems" 

 

Following the references in some of the key research papers and articles such as Finlayson & 

Beam, (2019), Su et al., (2017), Chakraborty et al., (2018), gave good basis for starting to develop 

an initial solution implementation from both attack and defense point of view. 

Information retrieved from Finnish sources related to the topic 

In JAMK, there was already a research group studying model fooling attacks against medical imag-

ing so the articles published by Sipola et al., (2020), Korpihalkola et al., (2020) gave mode detailed 

information on the type of attacks that would be suitable for this thesis. As that research group 

https://janet.finna.fi/
https://arxiv.org/
https://www.researchgate.net/
https://ebookcentral.proquest.com/
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was focused on attacks against Digital Pathology images, the information and references were a 

good starting point for finding key research groups from outside Finland and articles focusing on 

same topics. 

Programming references and source codes 

For the implementation of the few-pixel attack with Differential Evolution and training of the Con-

volutional Autoencoder, several general programming references and reference implementations 

were studied. For the programming references, the main sources were: 

• Python scipy.optimize.differential_evolution documentation: 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolu-

tion.html 

• Keras reimplementation and tutorial of "One pixel attack for fooling deep neural networks" (Su et 

al., 2017) by Dan Kondratyuk: https://github.com/Hyperparticle/one-pixel-attack-keras/ 

• Building Autoencoders in Keras: https://blog.keras.io/building-autoencoders-in-keras.html 

• CODAIT/deep-histopath: https://github.com/CODAIT/deep-histopath  

 

Other information used in thesis 

For Digital Pathology overview, evaluation, history, terminology and current state, the articles of 

Pantanowitz et al., (2018) and Parwani, (2019) were helpful. The only physical book that is refer-

enced and that was used in this thesis for general Cybersecurity knowledge and terminology was 

(Stallings, 2019). 

 

1.6 Research reliability and ethics 

Reliability and suitability of data 

Results are based on tests done with image tiles from the original TUPAC16 dataset (Veta & et al., 

2024) which contains a subset breast cancer case images from The Cancer Genome Atlas (TCGA). 

TCGA is a well-known and widely used data set in digital pathology research. The TUPAC16 dataset 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://github.com/Hyperparticle/one-pixel-attack-keras/
https://blog.keras.io/building-autoencoders-in-keras.html
https://github.com/CODAIT/deep-histopath
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is available from Grand Challenge web site (https://grand-challenge.org/). Users of the dataset are 

encouraged to reference the challenge overview paper (Veta et al., 2019) and that recommenda-

tion is followed in this thesis. 

Image tiles selected for training, validation, testing, demonstration, and evaluation steps represent 

quite well common H&E-stained image samples in the data set. The presence of mostly white im-

age tiles affects anomaly detection results for normal samples (no mitosis) but is a common fea-

ture for digitalized WSI images.  Those usually contain a lot of empty background color. 

Data confidentiality, consistency, and quality 

Data quality will be controlled using well-known image data sources referenced in several scientifi-

cally reviewed articles. Data is anonymized and does not contain any identifiable patient infor-

mation. Data will be stored under safe, encrypted source control in personal encrypted hard drive, 

JAMK Office 365 and private GitHub environments and will be destroyed after thesis is completed. 

Access to the data will be limited to authorized persons only. 

Reliability of experimental setup 

The experimental setup in this thesis is realistic in a sense that digitalized WSI images are so large 

(the size can exceed 50,000 by 50,000 pixels) that splitting the image into smaller tiles (64X64 pix-

els in this thesis) for image analysis and viewing purposes is efficient and rational choice of imple-

mentation. Therefore, attacking individual image tiles will affect breast cancer prediction results 

when certain regions of interest (ROI) are selected for analysis. In practice one would attack sev-

eral image tiles at once to cause larger effect in ROI analysis results.  

Reliability and generalization of findings 

Findings presented in this thesis give specific answers to the research question using the selected 

solution implementation and align directly with the topic.  

If the AI anomaly detection model is used with other digital pathology WSI image staining models 

than H&E or with different data set created with a different WSI scanner (as example), the model 

must be trained again with samples from the new data set included. This is because color differ-

ences and other variation in the digitalized WSI data affect the model performance and may result 

in a situation where perfectly valid breast cancer image tile sample is considered as anomaly.  

https://grand-challenge.org/
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The AI anomaly detection model (Convolutional autoencoder) implemented in this thesis work has 

not been tested with other breast cancer data sets to see how it generalizes.  

Research Ethics 

This master’s thesis adheres to ethical research principles and guidelines (JAMK, 2018). Research is 

conducted in an ethical manner, with no intentional harm or damage being inflicted on any par-

ties.  

Research topic is selected so that it may reveal weaknesses in critical healthcare systems, but the 

aim is to make image analysis AI model producers and users aware of the vulnerabilities and 

therefore enable mitigating of vulnerabilities in early stage. Vulnerabilities listed in this thesis have 

already been discovered by other researchers and are known to the research community. 

The digitized whole slide image data set used in model training is freely available, anonymized and 

does not contain patient data.  Programming tools used are open source licensed and freely avail-

able. Results from test runs are reported honestly "as is" so that the validation of working solution 

can be repeated by other people interested in applying the public source code and results into 

their own solutions. Results can be reproduced using the same setup and parameters as described 

in this thesis. 

Python code produced in this research is implemented by thesis author, except open-source soft-

ware libraries and tools used. There are 1-2 efficient Python code methods referenced in the code 

that were originally implemented by other authors. Those code blocks are clearly referenced in 

code documentation with comments and link to original code. Code files used in solution imple-

mentation can be found from this thesis authors public GitHub library 

(https://github.com/amarkus/thesis_jamk). Code is available under MIT license. 

Thesis is written by the author and has gone through the Turnitin Originality Check plagiarism de-

tection software scanning. Author of this thesis has followed Jyväskylä University of Applied Sci-

ence’s ethical principles (JAMK, 2018). 

https://github.com/amarkus/thesis_jamk
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2 Background and key concepts 

2.1 Prior research and literature 

When thesis writing begun in February 2021, Senior Lecturer of JAMK University of Applied Sci-

ences was contacted to get approval to proceed with the thesis subject and to get thesis supervi-

sor. It was surprise to find out that inside JAMK there was already a research group studying 

model fooling attacks related to medical imaging (Sipola et al., 2020). They were using breast can-

cer whole slide images and deep learning models as their targets, so it was the best possible start 

to get a thesis supervisor who was already familiar with the subject. Thesis supervisor also in-

formed about the latest relevant research articles that could be useful knowledge for this thesis 

implementation. At the time thesis writing started, JAMK research group did not have any publica-

tions related to detection or defending AI model fooling attacks, so that confirmed my idea of the 

need for detection and defense methods.   

The selected approach for this thesis is based on older Convolutional Autoencoder and straightfor-

ward to implement with a dataset with just enough data representing the images to be analyzed. 

In this thesis the selected attack method is few-pixel attack. It adds only a few pixels (5 pixels in 

this thesis) perturbation to the target image but If pixel colors are close to original image, the per-

turbation can be hard to detect by human. That should cause more false results in the targeted AI 

model and often result attack success, compared to for example One-Pixel attack as more image 

data is tampered (Su et al., 2017). This approach and Alatalo et al., (2022) aim to detect the attack 

enabling image analysis system administrator or the person responsible for the data set to act 

upon findings and perform further analysis of the integrity of image data and the model created 

using the data set. 

During thesis writing, JAMK research group published an article titled “Detecting One-Pixel Attacks 

Using Variational Autoencoders” (Alatalo et al., 2022) which targeted finding an efficient way to 

detect specific attack called One-Pixel attack with promising results. The Variational Autoencoder 

approach (Alatalo et al., 2022) is based on technological improvements on the basic Convolutional 

Autoencoder but requires more knowledge for the implementer to find out the right optimization 

model. 
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Outside JAMK University of Applied Sciences, there have been several research groups researching 

adversarial attacks against medical deep learning systems. In the area of medical imaging, a group 

of researchers (Finlayson et al., 2019) performed adversarial patch attacks using Cleverhans (Pa-

pernot, Faghri, et al., 2016) library against medical classification models for fundoscopy, chest X-

Ray and dermoscopy images developed by their own team.  

PACS (Picture archiving and communication systems) and medical imaging security has been re-

searched by (Eichelberg et al., 2020) and closely relates to image format security (DICOM, TIFF) 

and the way digital pathology images are stored and transferred during the workflow. Weak PACS 

cybersecurity protection enables attackers to access ad tamper training and/or analysis data. 

Recently there have been more research articles comparing convolutional neural networks (CNNs) 

and vision transformers (ViTs) on their robustness against white-box and black-box attacks. One 

such paper is (Ghaffari Laleh et al., 2022) where researchers find vision transformers to be more 

robust against several gradient-based adversarial attacks than convolutional neural networks.  

2.2 Cybersecurity threats in Digital pathology image analysis 

In this chapter the main areas of digital pathology workflow and image analysis are covered to give 

the reader an overview related to research questions RQ2, RQ3 and RQ4 in chapter 1.1: What are 

the threats and vulnerabilities present in the image analysis process, what kind of adversarial at-

tacks can be used to attack the AI models used in digital pathology image analysis and how can 

one defend against the attacks in practice? 

Digitalization of pathology 

Digital pathology has been around for over 20 years now but the deployment of even the basic el-

ements such as creating a whole slide imaging (WSI) workflow are an ongoing task even in some of 

the world’s biggest and well-known hospitals. This is mostly because of the cost of setting up WSI 

workflow with scanning devices and because over the decades hospitals and research labs have 

collected tens of thousands (even hundreds of thousands) of glass slides so there is a lot to be 

scanned into digital formats. Glass slides have been earlier viewed by using common microscope 

or with different variations of “Virtual Microscopes”, earliest developed in 1996-1998 (Pan-
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tanowitz et al., 2018). Digitalization of vast amounts of glass slides is a huge task but it enables ef-

ficient storage, retrieval and sharing of the pathology samples for educational and research pur-

poses. This data (digital WSI images) is applicable for training machine learning models capable of 

assisting pathologists in the making of accurate diagnoses by performing different image analysis 

tasks. These image analysis tasks, such as classification, segmentation, scoring and counting of ob-

jects can be done in matter of minutes or seconds and save pathologist’s time. When robust AI im-

age analysis solution has been created, it can be scaled to analyze hundreds of images at the same 

time. 

Training deep learning models for use in digital pathology requires a well-chosen data set and an 

expert to label the interesting areas, objects, or images so that the resulting deep neural network 

(DNN) learns to recognize key features from the data set. When the model has been thoroughly 

tested by experts using relevant test data, the DNN model is then used in daily image analysis 

tasks to identify and outline regions of interest from pathological images. Such regions of interest 

can be, for example, tumor areas. 

Digital pathology workflow (see in Figure 2) contains many phases for attacker to manipulate the 

data in such way that the attack scenario described in the solution implementation part of this 

thesis will be possible.  



17 
 

 

 

Figure 2. Digital Pathology workflow (example) 

 

Legacy infrastructure and security misconfigurations 

While hospital networks and endpoints (such as desktops and mobile devices) are usually secured 

well from external threats, it is common that there are many existing vulnerabilities in the hospi-

tals internal systems (Finlayson & Beam, 2019) as some of those are legacy systems, monolithic 

and hard to update. Also, the updating of regulated systems requires long test cycles to be done 

before updates or new software/hardware is taken into production use. When updating hardware 

and software is hard and requires a lot of time for planning and deployment, there are usually 

plenty of opportunities for cybercriminals to penetrate the system. 

Legacy infrastructure may effect on the information security of digitalized pathology images, re-

vealing one or several points of attackers to tamper with images used in AI training of analysis 

phases.  

Motives of attacker and defender 

Motives of the attacker may vary by the application area of image analysis, mostly focusing on fi-

nancial gain and causing harm.  Table 1. lists motives for both the attacker and defender of digital 
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pathology deep learning networks. Some of the financial motives for the attacker are covered in 

(Finlayson et al., 2019). 

Table 1. Attacker and Defender motives 

Attacker motives Defender motives 

Financial Gain: Getting high-quality healthcare Avoiding of unnecessary use of resources 

and costs for treatments 

Financial Gain: Accepting treatment that is not nec-

essarily needed 

Avoiding of unnecessary use of resources 

and costs for treatments 

Financial Gain: Insurance fraud Avoiding of unnecessary costs 

Financial Gain, Data Manipulation: Getting pharma-

ceutical and device approvals through clinical trials 

by result manipulation 

Preventing damage to patients and ma-

nipulation of results 

Financial Gain, Data Manipulation: Drug abuse for 

getting recipe 

Preventing drug abuse and costs 

Extortion and Ransom: Manipulating results and re-

questing money for correct AI model predictions. 

Preventing damage to patients 

Cyber Warfare, Hacktivism, Disruption and Sabo-

tage, Data Manipulation: Causing harm to one pa-

tient or a group of patients 

Preventing damage to patients 

Competitive Advantage: Winning a commercial ten-

der by manipulating AI model evaluation results 

Preventing manipulation for competitive 

advantage 

 

The biggest motive for cybercriminals to attack against machine learning algorithms used in assis-

tance with medical decisions currently are the possible financial gains. As healthcare is trillion-dol-

lar business in US alone (Finlayson & Beam, 2019) and the number of adoptions of AI as part of 

medical reimbursement decisions, drug decisions, pharmaceutical and device approvals is grow-

ing, opportunity for fraud and extortion/ransom is considerable. 
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Measuring the possible threat impact and exploitability 

In cybersecurity there is a commonly used scoring system which is called the Common Vulnerabil-

ity Scoring System, CVSS (FIRST.Org, 2024) which is used to score exploitability and impact metrics 

so that teams responding to threats can prioritize responses and resources according to threat. 

When many threats and vulnerabilities exist and multiple attackers are trying to discover vulnera-

bilities in hospital systems as well as pharmaceutical research laboratories, the cybersecurity 

teams must focus on the most relevant common threats first. 

CVSS system is not meant to score AI/ML model vulnerabilities, but rather the computer systems 

in which they are run. When thinking about the exploitability and impact of Digital Pathology im-

age analysis system inference attack performed with perturbed input images in the field of digital 

pathology image analysis, then using CVSS criteria we could get these kinds of characteristics: 

• Exploitability Metrics 

o Attack Vector: Network/Adjacent Network/Local.  

- Depending on the implementation, parts of the image analysis system are accessible 

through network (or adjacent network.). Sometimes physical access to the local network 

where the system is running is required. 

o Attack Complexity: High.  

- Attack requires considerable amount of effort in both planning and executing the attack. 

o Privileges Required: High. Significant privileges are required over the vulnerable compo-

nent to affect the files and settings. 

o User Interaction: Required. 

- For the vulnerability to be exploited, user must select an image containing adversarial per-

turbations as input for the image analysis. 

• Vulnerable System Impact Metrics 

o Confidentiality: Low. 

- Ability to manipulate image analysis system results affects confidentiality of the system 

enabling attacker to gain control of some or all the predictions produced by the system. 

o Integrity: High. 

- Model behaves incorrectly due to tampering of data. Some or all inputs may be miscate-

gorized and AI model's behavior is not trustworthy anymore. 
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o Availability: Low/High. 

- Vulnerability does not necessarily affect system availability over the network but affects 

results availability for pathologists not being able to get expected results from the system 

either partially or completely. 

With these parameter values, the CVSS v3.1 calculator (https://www.first.org/cvss/calculator/4.0)  

would give CVSS Base Score between 5.0 - 7.0 and therefore rated as “Medium”. Generally greater 

focus and prioritization in resolving threats goes into categories “Critical” and “High”, so AI model 

vulnerability would not most likely result in immediate action or remediation. If the possibility of 

AI result tampering would seem likely or high-likely, then in hospital environment the temporary 

solution would be to perform analysis manually by the pathologists and temporarily bypass vulner-

able image analysis system. 

 

2.3 Deep Neural Networks attacks and defenses 

In the paper (Finlayson & Beam, 2019) authors go through some of the motives and methods that 

could make adversarial attacks to be realized also in the field of medical deep learning systems. 

They also describe the risks related to different stages of machine learning pipeline (Figure 3.). 

 

Figure 3. Adversarial attacks and risks related to machine learning pipeline (Finlayson & Beam, 
2019, modified). 

 

Various attacks can be performed during different phases of digital pathology workflow, causing 

risks to realize as privacy breach, system downtime, loss of trade secrets (model internals), misin-

terpretation of results, error in results, or even leading to a wrong clinical diagnosis. 

Attack methods related to digital pathology image analysis 

https://www.first.org/cvss/calculator/4.0
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There are several surveys and research articles published focusing on adversarial attacks against 

machine learning models analyzing images, sound, and text such as (Chakraborty et al., 2018) and 

(Xu et al., 2019). Attack methods often vary by the content type being analyzed. In this chapter, 

some of the most relevant attacks against digital image analysis are covered. The focus on selected 

attacks is on few-pixel perturbations and digital pathology, because in the field of digital pathology 

where pathologists are viewing very large images, some with tens of gigabytes in size and having 

over 10 gigapixels of information, cleverly made perturbations of carefully selected pixels will most 

likely be left unnoticed.  

The adversarial perturbations inserted into the image can be significant in size (adversarial patch) 

or change of colors and usually that will result in desired results faster than minor change of pixels 

both in percentage of area and color. But it has been shown that even carefully selected one-pixel 

change that blends into its surrounding will cause enough change that the attack can succeed and 

resulting change is hard if not impossible to be noticed by trained human specialist (Korpihalkola 

et al., 2021) .  

Table 2. Shows a sample of normal image and 2 attacked image, latter image having the attack 

pixel selected so that it is hard to spot by even an expert, considering the large amount of image 

data each pathologist must go through. 

Table 2. Hiding attack by selecting pixel color from existing color scale 

Image patch (mitosis_1.png) 

"probability": 0.03698 

Attack with yellow pixel 

"probability": 0.014664  

Attack with magenta pixel  

"probability": 0.02031 

   

 

One-pixel sized anomalies are also more difficult to find when analyzing single pixel color devia-

tions from a larger image. A very simple visualization is showed in Table 3. but generally, a more 

thorough analysis about pixels and their expected location in the image is needed to determine if 

any anomalies are occurring. This is what neural networks learn during their training iterations. 
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Table 3. Blending pixel sized changes 

Attack with yellow pixel Attack with magenta pixel 

  

 

For medical domain there are research articles covering attacks based on adversarial images on 

radiology as well as digital pathology. The difference between those two is that radiology images 

are often smaller in size and color variation. Digital pathology images may go through different 

kinds of staining process, leading to several variations in digitalized image pixels even using the 

same source WSI slide. 

Selected attacks, their efficiency and implementation related to few-pixel, or one-pixel perturba-

tions are covered in the following publications shown in Table 4., where some of the attacks are 

directly related to medical domain. 

Table 4. Selected adversarial attacks and their relation to medical domain 

Paper Black-box / white-box 

attack 

Medical domain? Few-pixel, one-pixel, or 

other type of attack? 

Su et al., (2017) "semi-black-box attack" 

(using only probability 

labels as information). 

No. One-pixel attack 

Korpihalkola et al., 

(2020) 

Black-box attack. DNN 

network queried using 

a REST based API. 

Yes.  

Digital Pathology. 

One-pixel attack 



23 
 

 

Finlayson & Beam, 

(2019) 

Both. For black-box at-

tack, results from inde-

pendently trained net-

work with similar 

architecture were used 

(transferred) in attack 

against victim. 

Yes.  

Digital Pathology. 

Radiology. 

Adversarial patch, Projected 

Gradient Descent (PGD) at-

tack 

Nguyen-Son et al., 

(2021) 

Black-box attack. No. One-pixel attack, Few-pixel 

attack 

Paschali et al., 

(2018) 

Black-box attack. Yes.  

Digital Pathology. 

Radiology. 

Fast Gradient Sign Method 

(FGSM), DeepFool and Sali-

ency Map Attacks 

Sorin et al., (2023) Black-box attack. 

White-box attack. 

Yes.  

Digital Pathology. 

Radiology. 

Multiple attacks (this paper 

is survey with references to 

actual papers on implemen-

tations) 

Narodytska & Ka-

siviswanathan, 

(2017) 

Black-box attack. No. Few-pixel attack 

Quan et al., (2021) "semi-black-box attack" 

(using only probability 

labels as information). 

 One-pixel attack, Few-pixel 

attack 

 

 

Attack strategy and prior knowledge about the target network  

This thesis uses black-box attack in testing how AI model behaves under attack. The distinction of 

Black-Box and White-Box attacks is closely related to attack strategy and prior knowledge that ad-

versary has about the target. This distinction is like the types that general software and security 
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testing uses. If an adversary can generate a successful attack with very little information, then the 

attack is considered more effective. Often black-box attack requires gathering information about 

model by testing the system using the targeted AI model. For commercial REST API interfaces that 

are billed per usage, optimizing cost of the attack is also a success criterion. 

Table 5. describes the differences between these two. In an article of (Chakraborty et al., 2018), 

the authors have given detailed information about Black-box and White-box attacks and their sub-

classes, such as Strict, Non-Adaptive and Adaptive Black-Box Attack. 

Table 5. Differences of black-box vs white-box attack in the context of adversarial attacks on 
images. 

 Black-box attack White-box attack 

Knowledge required 

to perform attack 

The attacker has restricted or no access 

at all to the target model. They might 

not know the model's architecture, pa-

rameters, or have access to its internal 

workings.  

The attacker possesses 

complete access to all as-

pects of the target model, 

including its structure, pa-

rameters, and the data it 

was trained on. This 

means the attacker knows 

how the model works.  

Attack strategy Attackers rely on observations and in-

teractions with the model, such as sub-

mitting input images and observing the 

corresponding outputs, to generate ad-

versarial examples. Techniques like 

transferability, where adversarial exam-

ples crafted for one model can fool an-

other model, are often used in black-

box attacks. 

Attacker may use gradient 

information to craft per-

turbations that are specifi-

cally designed to deceive 

the model. 

 

Some literature and research papers mention also attack strategy known as Semi-white (Gray) Box 

Attack. It is defined as when attacker has some prior knowledge (limited knowledge) about target 

AI model but can transfer that knowledge later in some form to be used in black-box attack. This is 

described shortly in (Xu et al., 2019). Transfer can happen for example by training a generative 

network in a white-box setup and then later using the generative network as a tool for adversarial 

attack. 
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Adversarial samples and Transferability 

Transferability is an important feature of adversarial attacks against machine learning models. 

Many attacks that are shown to succeed for one AI model, also succeed on another model even if 

those models have different architecture as shown by (Papernot, McDaniel, et al., 2016) . This 

makes it easier for an attacker to mimic the behavior of a target AI model locally and find such an 

attack that will most likely work also on target model and architecture. In such Black-box attack 

scenario, the advantage is on the attacker side as there is no need to use brute-force methods 

against target API to find the weakness. This allows the attacker to remain undetected as the be-

havior to perform the attack does not differ from legitimate use of target API or software. This is 

also a financial factor as calls to machine learning REST APIs may have per request costs and there-

fore brute-force approach might result in high costs per attack session, with one session having 

thousands or tens of thousands of requests. 

To succeed in training local target AI model of their own, the attacker must have knowledge of the 

domain to succeed. In the medical domain this is more difficult as training a predicting AI model 

for breast cancer proliferation score requires pathology expertise which cybercriminals rarely 

have. However, there are freely available AI models and AI training tutorials for multiple frame-

works that may give some medical domain knowledge to train a model like the one used in target 

system. 

Defense methods and strategies 

To be able to defend Deep Neural Network based AI models trained for image analysis from being 

attacked, different methods to prevent the effects of adversarial input and detecting those inputs 

have been developed. In this chapter, content of three articles Yuan et al., (2017), Xu et al., (2019) 

and Chakraborty et al., (2018)  are covered to get an overview of the different defense types and 

categories. Each defense type has its benefits and pitfalls in actual production use with digital pa-

thology image analysis AI models. Digital pathology is a highly regulated area when resulting appli-

cations and systems are used in clinical diagnostics or patient care. This often limits the possibility 

to use some methods that alter the input data, even if the intention behind those methods was 

good. 

Some of the well-known defense methods are introduced in Table 6 .  
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Table 6. Defense methods against Deep Neural Network attacks 

Defense methods  How it works? 

Adversarial Training Works by increasing model robustness by augmenting train-

ing set with adversarial examples. This defense works best 

on adversarial samples made using the original AI model. 

Robust Optimization Works by utilizing optimization techniques that improve ad-

versarial robustness during model training.  Robust optimi-

zation algorithm needs some prior knowledge of the poten-

tial threat/attack. 

Defensive Distillation Works by training the classifier in two-round process and 

using a specific distillation method. This leads to model 

learning smoother network, makes the AI model less sensi-

tive to small input changes and harder to attack against. 

Gradient Masking / Obfus-

cation / Hiding 

Works by obscuring or hiding gradient information to pre-

vent adversaries from crafting effective adversarial pertur-

bations. 

Blocking the Transferability Introduced NULL Labeling method to prevent adversarial 

example transferability. Works by augmenting a new NULL 

label in the dataset and training the model to reject adver-

sarial input and classify them as NULL. Benefits of this 

method is that accuracy of the clean data is not compro-

mised. 

Defense-GAN Defense-GAN is trained to recognize perturbed and unper-

turbed images. During inference it finds a close output to a 

given image without any adversarial changes. The resulting 

output is then passed to the classifier, making it hard to at-

tack against. This model may alter the data passed to target 

AI model. 
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MagNet MagNet combines two defense strategies: detector net-

works which detect adversarial inputs and reformer net-

works which correct adversarial perturbations in input sam-

ples. This model alters the data passed to target AI model. 

Adversarial detecting A method, such as DNN network is used in detecting adver-

sarial samples and preventing them to reach target AI 

model. 

 

Defensive strategies for defending Deep Learning models can also be categorized as proactive or 

reactive (Table 7.) based on preparations (like adversarial training) required before an adversarial 

example is detected (Yuan et al., 2017). Reactive strategies are used after DNN network is built 

and proactive strategies take an adversarial attack into account when DNN network is designed 

and trained. 

Table 7. Countermeasures for adversarial examples (Yuan et al., 2017, modified) 

 

Reasoning for selected method of defense in this thesis 

In this thesis, the selected defensive strategy is Adversarial detecting, meaning that a reactive ap-

proach is used. Whenever an adversarial input is detected, it is marked as anomaly. Detection in-

formation can be chained into further actions such as blocking the input and alerting system ad-

ministrator about the anomaly finding.  

Digital pathology image analysis reliability is bound to keeping the actual image data immutable 

for confidentiality and integrity reasons. Pathologists must be able to trust that the clinical analysis 

is done against unmodified image so that all important image areas remain unchanged, and the 

results predicted by the image analysis AI model are valid based on the original sample taken from 
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the patient. This mean that reconstructing digital pathology images using Generative Adversarial 

Networks (GANs) to erase/remove the adversarial perturbations is out of the question. 

Another important factor is the accuracy of the actual digital pathology image analysis AI model 

(DNN network). It should not be affected by the selected method of defense, not by its execution 

performance or the accuracy of the results it predicts from the input data. Defense methods that 

inject or augment adversarial data into the digital pathology image analysis AI model may affect 

the accuracy of the model predictions or even result errors in clinical analysis. 

So, based on the reasons explained, the easiest option to start with is detecting adversarial input. 

It does not modify (or reconstruct) the image data in any way, it allows blocking and alerting when 

anomalies are found and does not require changing the way the actual digital pathology AI model 

is trained. 

3 Solution implementation workflow 

This chapter goes through the solution implementation following design science research (DSRM) 

approach, following the six steps of DSRM. Solution implementation covers topics starting from 

problem identification, motivation, and objectives. After the objectives are set, thesis proceeds 

into planning, testing and evaluation of the implemented design artifacts. 

3.1 Problem identification and motivation 

Chapters 1 and 2 describe in detail the motivation, background, and the need to prevent severe 

consequences to patient security, caused by possible adversary attacks. Research focus in 2020 

year seemed to be on finding new ways to fool deep learning models, also on the field of digital 

pathology. But back then there was not much research done on the prevention, detection, and de-

fense side. While sharing knowledge about possible ways of attack is important also to defenders 

of cybersecurity, more focus should be put on practical defense activities. Therefore, in this thesis, 

one way of detection is implemented using known deep learning architectures and software tools 

to test in practice how difficult detection and defense really is.  

Based on initial literature review, there is no ultimate solution to the problem of defending against 

adversarial samples on image analysis or defending targeted image classification attacks. This is 

stated well in (Finlayson et al., 2019) where authors indicate that the defense should hold against 
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present and future threats while attacker only needs to defeat one specific way of defense. Cur-

rently the best options for defense are related in making the deep neural network more robust to 

attacks by including some adversarial samples into the training data, allowing the DNN network to 

tolerate some level of perturbation. The research problem is hard, and the number of possible 

types of attacks is considerable. Also attack type variations are easy to produce, and therefore one 

can currently only select one or more attacks to detect or defend against. But no universal solution 

exists that would tolerate all attacks and produce accurate and trustworthy results when under 

attack. 

The value of the proposed solution in this thesis is to offer an evaluated result on detecting adver-

sarial attack of digital pathology image analysis AI model using one known efficient method, Con-

volutional Autoencoder, trained with image tiles produced from a set of whole slide images.  With 

the results one can either adopt a proposed solution or, based on results gained, develop a differ-

ent or improved solution for the same research problem. Value for the digital pathology image 

analysis solutions is to have a way to detect when adversary input is given, then notify system us-

ers, and cybersecurity team or even reject (or put in quarantine) the malicious input. If detection 

works well, the benefits are obvious as there will be no damage to patients caused by deliberately 

created false analysis results. 

 

3.2 Objectives of a solution 

The objective of the proposed solution for the identified research problem is to produce a Convo-

lutional Autoencoder model, trained with image tiles generated from TUPAC16 data set, that can 

detect selected types of adversarial image attacks against digital pathology images with good de-

tection rate. The practical usefulness of the solution is defined by: 

• Performance of the model measured as detection rate. 

• Implementation complexity.  Solution should be easy to implement and take into use. 

• The computational effort (time, cost, number of data samples used) required to train the 
AI model. 

• The computational effort required to run the detection for single image tile. 

• The computational effort required to run the detection for complete whole slide image 
(WSI). 
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• Integrity of the digital pathology image data and trained AI model. Keeping the image data 
and AI model unchanged is essential for the trustworthy AI computing. If the analysis input 
image data has to be modified because of the method used in detection or defense, that 
may affect the results given by the medical AI analysis performed by the model. If AI model 
has to be constantly retrained (continuous learning etc.), then it’s use for clinical analysis 
will be hard from regulation point of view.  

 

Additional value for system users and administrators would bring if the solution would also be able 

to: 

• Detect other types of attacks (generalization) 

• Explain and show in detail the findings and the type of attack detected. This could be done 
by annotating detected possible attack areas. 

The list of additional value is out of scope of the main objectives of this thesis solution implemen-

tation. 

3.3 Design & development 

In the design and development step, following the selected research method, a Convolutional Au-

toencoder network was trained to be able to distinguish between image patches from the original 

data set and adversarial image patches generated by attacker. To be able to train such network, 

several Python code files were created for training, testing, evaluation, and adversarial image gen-

eration.  Trained AI model, images patches and code files had an important role in the develop-

ment, demonstration, and evaluation steps. But one of the most important elements was the 

knowledge gained to create both the attack and detection implementations. 

The main artifacts created in the design and development step were: 

• Convolutional Autoencoder network (AI model) that can detect selected types of 
adversarial image attacks against digital pathology images 

• Training data set image patches (size 64 X 64 pixels) 

• Python code for generating adversarial image patches (size 64 X 64 pixels) + resulting 
generated set of adversarial  patches 

• Python code for training the Autoencoder using Keras 

• Python code for attacking CODAIT model over REST API 
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• Python code for testing and evaluating success metrics 

• Knowledge on Autoencoders, Few-pixel attacks, Differential Evolution, training of 
Convolutional Neural Networks and how to attack AI models on black-box attack 
scenario 

 

3.3.1 Hardware and software requirements 

This section provides a minimum software requirement where a standalone laptop/desktop com-

puter is used. This setup has been used for training the models used and for running AI analysis 

tasks. But if cloud capacity or high-end computational server cluster is available, running the train-

ing and analysis tasks will take a lot less time. 

One can also use Docker based Jupyter notebook -environment for developing and documenting 

AI models, but when tested it seemed to result in 3-4 times slower performance. 

Minimum recommended hardware: 

• Memory (RAM): 16 GB (or more) 

• Processor: 64-bit, 8 cores 

• Hard disk space: 500 GB SSD drive or 120 GB SSD for system drive + ~300 GB for second drive 

o When generating image tiles for training, any additional hard disk space is beneficial. 

1 TB disk should be a good fit.  

• GPU: NVIDIA GeForce GTX 1060 (or later) / NVIDIA Tesla T4 (or later) 

o While CPU-only training is possible, things take about 3-5 times longer than with GPU. 

• Network Interface Card (NIC): An ethernet adapter with at least 1 gigabit/second throughput. 

o Training and testing image data download requires decent networking speed. 

Software: 

• Operating system: Windows 10/11 or Ubuntu Linux 

o At least these are proven to work fine with GPU libraries and NVIDIA display drivers. 

• IDEs used for development of solution (both available for Windows/Mac/Linux): 

o Visual Studio Code (Microsoft Software License Terms (Visual Studio Code product) MIT 

license (Code)): https://code.visualstudio.com/  

o Spyder (Scientific PYthon Development EnviRonment, MIT License): https://www.spyder-

ide.org/  

• Programming language used in this thesis: 

https://code.visualstudio.com/
https://www.spyder-ide.org/
https://www.spyder-ide.org/
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o Python (License: Python License, PSF-2.0. Python Software Foundation License (PSFL) is 

BSD-style license): https://www.python.org/ 

• Python programming language libraries used: 

o Numpy (License: NumPy license/BSD License): https://numpy.org/ 

o Matplotlib (License: Matplotlib license/BSD-style license): https://matplotlib.org/  

o Scipy (License: BSD-3): https://scipy.org/install/ 

o Pillow (License: Pillow is licensed under the open-source Historical Permission Notice and 

Disclaimer (HPND) license): Python Imaging Library (https://pillow.readthedocs.io/) 

o Split-folders (License: MIT License): https://pypi.org/project/split-folders/  

o Texttable (License: MIT License): https://pypi.org/project/texttable/  

• Whole Slide Image (WSI) processing: 

o OpenSlide (License: GNU LGPL): https://openslide.org/ 

• Machine learning frameworks and libraries: 

o TensorFlow (License: Apache License 2.0): https://www.tensorflow.org/  

o Keras (License: Apache License 2.0): https://keras.io/ 

o Scikit-learn (License: BSD-3): https://scikit-learn.org/stable/  

• Packaging and runtime configuration of applications 

o Docker engine (License: Apache License 2.0): https://docs.docker.com/get-started/over-

view/  

o Docker Compose (License: Apache License 2.0): https://docs.docker.com/compose/install/  

• CODAIT -project software: 

o CODAIT - deep-histopath (License: Apache License 2.0):  https://github.com/CODAIT/deep-

histopath  

▪ Matplotlib (License: Matplotlib license/BSD-style license): https://matplotlib.org/  

▪ Numpy (License: NumPy license/BSD License): https://numpy.org/ 

▪ Pandas (License: BSD-3): https://pandas.pydata.org/  

▪ Scipy (License: BSD-3): https://scipy.org/install/ 

▪ Jupyter Notebook (License: BSD-3): https://github.com/jupyter/notebook  

▪ IPython (License: BSD-3):  https://github.com/ipython/ipython  

▪ Scikit-learn (License: BSD-3): https://scikit-learn.org/stable/  

▪ Scikit-image (License: BSD-3): https://scikit-image.org/ 

▪ OpenSlide Python (License: GNU LGPL): https://github.com/openslide/openslide-

python  

 

https://www.python.org/
https://numpy.org/
https://matplotlib.org/
https://scipy.org/install/
https://pillow.readthedocs.io/
https://pypi.org/project/split-folders/
https://pypi.org/project/texttable/
https://openslide.org/
https://www.tensorflow.org/
https://keras.io/
https://scikit-learn.org/stable/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/compose/install/
https://github.com/CODAIT/deep-histopath
https://github.com/CODAIT/deep-histopath
https://matplotlib.org/
https://numpy.org/
https://pandas.pydata.org/
https://scipy.org/install/
https://github.com/jupyter/notebook
https://github.com/ipython/ipython
https://scikit-learn.org/stable/
https://scikit-image.org/
https://github.com/openslide/openslide-python
https://github.com/openslide/openslide-python
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3.3.2 Dataset preprocessing and splitting 

The dataset containing Digitalized whole slide images (WSI) used in the solution implementation is 

TUPAC16 dataset from the Tumor Proliferation Assessment Challenge 2016 (Veta et al., 2019).  

The original plan was to select and download a subset breast cancer case images from The Cancer 

Genome Atlas (TCGA) which is also the source for TUPAC16 dataset images. Having an expert se-

lected subset of images certainly helped as for a non-pathologist, selecting the right set of breast 

cancer case images using TCGA search only is not easy. 

The training dataset of TUPAC16 is made of 500 breast cancer cases from the data in The Cancer 

Genome Atlas (TCGA) where one case is represented with one whole-slide image (WSI). The size or 

the training data is 490 GB, and it includes one separate ground truth CSV file with 500 rows, one 

for each patient. The testing dataset is smaller (345 GB), and it is made of 321 cases.  

From the TUPAC16 dataset pages, one can also download auxiliary datasets for mitoses and re-

gions of interest (for annotations of ROIs where pathologists would perform mitosis counting). 

There is also mitosis detection testing dataset available without publicly available ground truth. 

Source file format 

Whole-slide images in the training and testing datasets are provided in the Aperio (.svs file exten-

sion) file format. According to (OpenSlide project authors, 2023) Aperio format is "single-file py-

ramidal tiled TIFF, with non-standard metadata and compression". Aperio format is owned by 

Leica Biosystems, a company that among other products manufactures whole slide image scan-

ners. Leica Biosystems offer Aperio ImageScope application for viewing .svs files (The Open Mi-

croscopy Environment, 2023). 

Dataset preprocessing into image patches 

With the Python scripts found in (https://github.com/CODAIT/deep-histopath) one can call com-

mand python3 preprocess_mitoses.py to generate image patches of size 64X64 from 

the large .TIF original image. While it would be simple to use OpenSlide python library to create 

the patches, the added value of deep-histopath project script is that is uses ROI area information 

from TUPAC16 csv data files to extract both normal and mitosis patches.  

In Table 8 the starting point with original TIFF files and resulting PNG image patches can be seen as 

folder and file hierarchy. 
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Table 8. Original image and produced image patches. 

Original TUPAC16 dataset (.TIF images + .CSV data) PNG patches generated from original files 

 

 

 

Splitting dataset into separate training, validation, and test sets 

When creating the dataset used in training AI models, it is a recommended good practice (Brown-

lee, 2020) to split the original source data into 3 different datasets (training/validatation/test). 

This is beneficial because it helps to prevent overfitting in training, helps the AI model to learn 

meaningful patterns from the source data, enables model to generalize better on new data and 

gives model creator honest feedback on model performance when trying with different hyperpa-

rameters. 

The dataset used in training the convolutional autoencoder model was created by splitting the 

larger image patch dataset (over 200000 images) generated with CODAIT python scripts into three 

(3) different datasets: 

• Training Set: Contains data on which the model learns. The model parameters are adjusted to mini-

mize the error on this data and it's the largest portion of the dataset. The training dataset can be 

labeled on non-labeled, sometimes using folder structure (subfolders) as labels.  

The data used in this thesis is kept in subfolders during training, but the training engine is in-

structed to ignore using folders as labels. This is because we want to see both mitosis and normal 
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image patched as “normal data” and the adversary images generated later by code as “anomaly 

data”. 

• Validation Set: Contains data that is used in tuning the hyperparameters of the model. Hyperpa-

rameters are the settings controlling the learning process. For example, the number of hidden lay-

ers in a neural network or the learning rate. The validation set helps in selecting the best hyperpa-

rameters to improve the trained AI model's performance. 

• Test Set: When the AI model has been trained and tuned using the separate training and validation 

sets, it's tested on the test set. This dataset provides an unbiased evaluation on how the model per-

forms on new, unseen data. 

The Python library called split-folders was used in splitting the dataset (Table 9).  

Table 9. Dataset split command 

import splitfolders 

splitfolders.fixed(input_folder, output=output_folder, seed=1337, fixed=(7000, 

2000, 1000), oversample=False, group_prefix=None, move=False) 

 

The resulting database contains 20000 images, split with a ratio of 0.7/0.2/0.1. The training da-

taset had 14000 images, validation dataset had 4000 images and test dataset had 2000 images 

(Figure 4). 

 

Figure 4. Dataset structure after splitting into train, validation and test folders 

 

Image patches used in demonstration and evaluation steps are picked from the test dataset. Also, 

the adversarial patches are created using same demonstration image patches as the goal is to 

measure how well the target AI model can be fooled and how well the convolutional autoencoder 

trained will perform with detecting anomalies from those same images. 
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3.3.3 Selecting attack target system and AI model 

One of the main reasons to use TUPAC16 dataset was to search for a publicly available (open 

source) digital pathology image analysis AI model that could be used as a target for black-box and 

white-box attacks. Currently there aren’t many of those freely available as the area of digital pa-

thology AI solutions if highly competed and companies do not reveal competitive models to public. 

Luckily IBM had released their CODAIT/deep-histopath model under Apache-2.0 license (Dusen-

berry, 2017). 

IBM has published a convenient Docker container (CODAIT - Center for Open-Source Data & AI 

Technologies, 2021) called “IBM Code Model Asset Exchange: Breast Cancer Mitosis Detector” that 

could be used as Black-box attack target. The model developed by IBM CODAIT uses 64 x 64 PNG 

image tiles for its input. Tiles can be extracted from one larger breast cancer whole slide image. 

Given an input image, CODAIT returns the predicted probability of the image patch containing mi-

tosis as a result. 

Inside the CODAIT Docker image "codait/max-breast-cancer-mitosis-detector” there is a REST API 

at port 5000 (default) that one can call with 64X64 pixel sized binary image patch and get back mi-

tosis probability score (between 0-1). REST API user interface is shown in Figure 5. 
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Figure 5. Swagger API description and test user interface for codait/max-breast-cancer-mitosis-
detector 

 

 

3.3.4 Generating adversarial images with Differential Evolution 

Finding few-pixel perturbations that can change the AI model prediction towards another class or 

another prediction certainty can be time consuming and challenging tasks, especially if using 

black-box attack scenario where the architecture, parameters, or internal workings of the neural 

network are unknown. To overcome difficulties and computational costs, one can select to use 

one of the many optimization algorithms that are proven to work efficiently in finding solutions to 

computationally challenging problems. 

For optimization algorithm in this thesis work, Differential Evolution (DE) was selected based on its 

successful usage in several research articles, including original One pixel attack article Su et al., 

(2017) and Korpihalkola et al., (2020). Differential Evolution (Storn & Price, 1997) is a population-
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based optimization algorithm that is often used for global optimization problems. Global optimiza-

tion algorithms are designed to explore the entire solution space to find the best solution globally 

even if there are multiple local optima present. This thesis used the Scipy library method scipy.op-

timize.differential_evolution as the DE implementation. 

The phases of DE are following: 

• Initialization 

o Control parameters for DE are initialized. 

o A population of candidate vectors (solutions) is randomly initialized to represent potential 

solutions to the optimization problem. 

• Mutation 

o For each candidate solution in the population, a new trial vector is created through the mu-

tation operation. This step combines the information from three randomly selected parent 

vectors to create a new ‘offspring’ candidate solution. 

• Crossover 

o The trial vector is then combined with the original candidate solution using a crossover (CR) 

operation, defining how much of the information (real valued factor in the range [0,1]) 

from the trial vector is incorporated into the original candidate solution. When CR is in-

creased, larger number of mutants progress into the next generation. 

• Selection 

o Now the candidate solution and original one is compared. A better solution is selected for 

the next generation. 

• Population Update 

o Solutions selected in selection phase will replace the corresponding solutions in the current 

population, forming a next generation. 

• Termination 

o This process is repeated for several generations defined by initialization criteria OR until a 

termination criterion is met. If the termination criterion is met, it means a solution satisfy-

ing given criteria is met. 
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o In the Scipy library method scipy.optimize.differential_evolution the termination is de-

fined by the result of the callback function. 

Downsides in using DE for attack optimization may be the challenge in finding parameters that 

work best for the current task under research and high learning curve when applying the method. 

 

3.3.5 Training convolutional autoencoder to detect anomalies 

Autoencoders aims to minimize the reconstruction error to be able to reconstruct the original in-

put as accurately as possible (Goodfellow et al., 2016). This reconstruction error gives a good tool 

for anomaly detection as it can show how much the input data differs from what the autoencoder 

has learned based on its training data. In the heart of the autoencoder is the hidden layer (“bottle-

neck”) which contains low-dimensional, compact representation of the most useful properties of 

the training data. Autoencoders do not contain a compressed, exact copy of the training data but 

rather features it has learned to well represent it. 

Training data set 

As the task was to develop an AI model that can recognize adversarial images from the original 

data set (TUPAC16 images), contents of both “Mitosis” and “Normal” folders were combined into 

“Training” data folder to learn the features common for both types of data. The original “Mitosis” 

and “Normal” folder image patches were later used to generate attack images of both types so 

that attack success can be compared for both mitosis-to-normal and normal-to-mitosis attacks. 

Information about sample patch image dataset: 

• Total number of image patches: 20000 

o Training set: 14000 

o Validation set: 4000 

o Testing set: 2000 

• Contains both mitosis and normal patches (see sample images in Table 10) 

• File type: PNG (Portable Network Graphic) 

• File size (patches): 5-9 KB 

• Dimensions: 64 X 64 pixels 

• Resolution: 96 pixels/inch 
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Table 10. Sample image patches from the dataset 

Normal image patch sample Mitosis image patch sample 

  

 

Architecture of the trained autoencoder 

The architecture of the deep neural network used in this thesis for detecting anomalies is Convolu-

tional Autoencoder. Given that the convolutional autoencoder architecture is good in image re-

construction, image generation, anomaly detection and computer vision feature extraction tasks, 

it seemed like a good choice to start with. 

The autoencoder used in this thesis has the following characteristics: 

• Undercomplete: The code dimension (hidden layer) is less than input dimension. Or can 

also be described as the number of hidden neurons is less than input/output layer neurons. 

• Structure: Encoder, Latent space, and Decoder. 

• Convolutional: It uses convolutional layers for both the encoder and decoder components. 

• Unsupervised learning type: The model learns from the input data itself without explicit 

external labeling. 

• Number of convolutional layers: 4 (2 in encoder and 2 in decoder) 

Training of the convolutional autoencoder model was done using machine described in 3.3.1 Hard-

ware and software requirements chapter using primarily Python code, Tensorflow 2 and Keras li-

braries. The training parameters used in convolutional autoencoder model training were as fol-

lows: 

• input_shape: (64, 64, 3) 

• batch_size: None (64) 

o As ImageDataGenerator is used in training data source, the batch size set in generator 

holds (it’s 64) 

• optimizer: 'adam' 

• loss function: 'mean_squared_error' 
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• metrics: ['accuracy', 'mse'] 

• early stopping: patience 30, monitor='val_loss' 

• steps_per_epoch: None (64) 

o ‘None’ = number of samples in dataset divided by the batch size (64) 

• epochs: 500 

• validation_freq: 1 

• validation_steps: None (64) 

o As ImageDataGenerator is used in training data source, the batch size set in generator 

holds (it’s 64) 

• callbacks: [early_stopping, csv_logger] 

• verbose: 1 

 

Neural network was visualized using commands shown in Table 11. 

Table 11. Commands for neural network visualization 

from keras.utils.vis_utils import plot_model 

model = Autoencoder() 

plot_model(model.encoder, 

to_file='model_plot_encoder.png', 

show_shapes=True, show_layer_names=True) 

plot_model(model.decoder, 

to_file='model_plot_decoder.png', 

show_shapes=True, show_layer_names=True) 

 

 

Detailed structure of both Encoder and Decoder parts of the convolutional autoencoder can be 

seen in Table 12. 
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Table 12. Architecture of the Autoencoder used in solution 

Encoder model Decoder model 

 

 

 

The model was trained against the training dataset of 14000 images (selected by ImageDataGener-

ator) and validated against the 4000 validation images (selected by ImageDataGenerator). Model 

was set to run 500 epochs with early stopping criteria of patience=30, which means that if there is 

no improvement for 30 epochs, training will stop and save the current model as the “best model” 

discovered. The progressing of loss and accuracy (common metrics to follow) can be seen in pic-

tures of Table 13. 
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Table 13. Autoencoder model training & validation loss  accuracy 

Model training and validation loss Model training and validation accuracy 

 
 

 

After the training ended during Epoch 218 when early stopping criteria were met, the resulting 

model was evaluated against the separate test dataset of 2000 images. Only a batch size of 64 im-

ages was used in evaluation. Then the first image from the test batch was evaluated for recon-

struction error and the resulting 2 images (original, reconstructed) were plotted. 

• Evaluate on test data: 

o Test loss: 0.0002075 

o Test accuracy: 0.9703534 

• Reconstruction error (sample image): 0.0004107 

To test how well the newly trained convolutional autoencoder model can reconstruct given image 

samples, some image patches from both mitosis and normal image patch folders were tested. In 

the Figure 6 test the reconstruction works well. 
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Figure 6. Original image (left) and image reconstructed by the autoencoder(right) trained for 
solution. 

Reasoning for selected convolutional autoencoder structure 

The selected model architecture and structure was based on experimenting with several different 

competing options and hyperparameter tuning. While the resulting model does not generalize ex-

tremely well, it performs well in reconstructing the image patches used in the dataset. 

Multiple sequential Keras models were tested with different series of convolutional and pooling 

layers. Usually, the training took a long time and resulting network had considerable reconstruc-

tion error even for normal images. So, to overcome these problems, Batch Normalization was 

added to the Encoder part. 

The decision to use Batch Normalization was made to make the training faster with reasonable 

sized dataset and to prevent the network from overfitting. Using batch normalization to autoen-

coders not only stabilizes training, improves the network against variations, and promotes 

smoother convergence but also facilitates more accurate reconstruction of input data in the end. 

 

3.4 Demonstration of solution suitability 

In the demonstration part of the design science research approach, the anomaly detection solu-

tion is tested in action to solve the original research problem defined in RQ1, chapter 1.1. 

To demonstrate how the convolutional autoencoder model works when is get an adversarial im-

age as input, the first task was to collect small enough data set to be used to demonstrate how the 

autoencoder model works under normal input. Then to demonstrate the effects of an attack, a 

similar set of adversarial images was needed. Those were crafted using python script that tested 

the image effectiveness by running a series of HTTP REST API queries, each with separate adver-

sarial mage variation. Last, both original and adversarial image patches were then given as input to 
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the convolutional autoencoder model to see if it can separate anomaly images from the normal 

ones (detection as defense), using a reconstruction error threshold value calculated from the origi-

nal images. 

Setting the demonstration environment 

The detailed installation manuscript for setting the demonstration environment to be used in both 

demonstration and evaluation steps is detailed in Appendix 2. The demonstration environment 

setup instructions.   

CODAIT prediction values and decision criteria for demonstration and evaluation 

The classification criteria used for CODAIT Docker image ("codait/max-breast-cancer-mitosis-de-

tector") prediction was that predictions over 0.5 are classified as “mitosis” and under 0.5 as “nor-

mal”. As values given by AI model are predictions, for an image to qualify as “mitosis” image with 

high certainty, the score predicted should near 0.9 and for “normal” images, the predicted values 

should be less than 0.1. But on the scale range of probabilities from [0,1], the value 0.5 can already 

be uncertain and in favor of both result outcomes. 

 

3.4.1 Selecting dataset for demonstration 

Demonstration dataset images were randomly selected from a subset of validation dataset im-

ages. Demonstration data set contained: 

• 50 randomly selected “mitosis” & 50 randomly selected “normal” image patches 

• Adversarial image patches generated from those 50 “mitosis” & 50 “normal” image patches 

• Total 200 images: 100 unmodified image patches & 100 adversarial image patches 

 

3.4.2 Attack demonstration 

Adversarial (attack) images were created from the same images that were used in validation data. 

This is because the goal is to measure how significant reconstruction errors can be caused by using 

adversarial image patches, compared to the original ones. The python code generated variations 

of 5-pixel perturbations injected into the given target image. Adversarial versions of both normal 

and mitosis image patches were generated. Another use for 200 demonstration images was to use 
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them when computing a good threshold value to use in defense demonstration and evaluation 

steps. 

Attack results for selected images of both type 

To demonstrate how well an attack is performed in most optimal cases, samples of both normal 

and mitosis images are visualized both before and after attack along with targeted AI model pre-

dictions. 

In the Table 14 below a couple of attack results are highlighted as sample on attack performance. 

For demonstration dataset, no single attack against “normal” image type was successful, later for 

evaluation dataset some success was achieved. A full result data table is available in Appendix 3. 

Demonstration attack & defense results table. 

Table 14. Attack efficiency samples 

Image patch type Normal (normal_9.png) Mitosis (mitosis_45.png) 

Before or after attack Before After Before After 

Image patch 

    

Mitosis probability 

prediction 

0,0001537 

(normal) 

0,0961711 

(normal) 

0.9984108  

(mitosis) 

0.0061978 

(normal) 

 

3.4.3 Threshold used for attack detection 

Finding a good threshold value is an essential task to be able to detect anomalies from original im-

ages well. The usual value to start with is 0.5 (from range [0,1]) which means that all the samples 

with predicted probability over 0.5 will be flagged as anomalies (adversarial images), and all values 

below 0.5 are normal samples. With the convolutional autoencoders we are using the reconstruc-

tion error (not prediction), that is calculated by first trying to reconstruct the given image using 

our trained autoencoder. Then we compare the result with the original image and evaluate the re-

construction error value (float, floating point number). And here it comes a bit tricky: anomalies 
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cannot be detected directly by using 0.5 (in general 0.5 is not a good final value to use), one must 

experiment with another dataset first and after finding a good anomaly threshold, use that in eval-

uating the autoencoder model performance as part of the defense/detection logic. 

Some useful values that can be used when finding a good threshold are: 

• Mean values of autoencoder model predictions on normal and anomaly datasets 

o Compute mean values of both normal data & anomaly data: Then take the mean of those. 

• Precision: Measures fraction of true positive predictions among the total positive predictions 

• Recall: Measures the fraction of true positive predictions among the total actual positives 

• F1 score: This score measures accuracy of the model taking into account both precision and recall 

(harmonic mean of precision and recall). 

• Accuracy: The fraction of samples that were predicted correctly 

 

Finding a good threshold is an iterative process, computing precision, recall, and other statistics 

along several given threshold values to understand how the threshold affects. Also, some 

tradeoffs must be made as the increasing of recall decreases precision.  

Finally, after several trial & error attempts, two methods to find good threshold value were se-

lected:  

• Mean values of autoencoder model predictions on normal and anomaly datasets 

o Compute mean values of both normal data & anomaly data: Then take the mean of 

those. 

• Threshold matching Best F1 score found after iterating F1 scores calculated 

o Compute mean values of both normal data & anomaly data reconstruction error 

values 

o Then iterate(test) over range of threshold values using np.arange(start, stop, step) 

so that: 

▪ Start = Average (mean) recognition error of validation images 

▪ Stop = Average (mean) recognition error of anomaly images 

▪ Step = 0.000005 (reasonable sized small step) 

o Get threshold values and F1 scores into list and find max F1 score. Return threshold 

value that was used to get that F1 score. 
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From these two, the “Best F1 score threshold” was chosen as it was tested to give good results on 

validation datasets. Using the “Best F1 score threshold” a corresponding threshold was found. Per-

formance was evaluated by using a confusion matrix in defense demonstration step. 

Values used are: 

• best_f1_score: 0.9056604 

• best_threshold (leading to best F1 score): 0.0005542 

• Threshold was rounded to 0.000554 for usage in Python scripts 

 

3.4.4 Defense demonstration 

To measure the efficiency of the Autoencoder model detection, same set of validation data image 

patches was used to: 

• First, measure the reconstruction error output of Autoencoder model using original image patch. 

• Second, measure the reconstruction error output using adversarial (perturbated) version of the 

same image patch. 

Results were calculated for 100 unmodified (normal/mitosis) image patches and 100 adversarial 

image patches. The convolutional autoencoder neural network was able to recognize anomalies 

with good rate but at the cost of false negative findings (normal images recognized as anomaly). 

 

Table 15. Autoencoder reconstruction errors and detection efficiency with validation set 

Autoencoder reconstruction error metrics 
Confusion matrix visualization of autoencoder classification  
performance for 100 normal and 100 anomaly images 

  Before attack After attack 

Maximum 0.0007119 0.0012089 

Mean 0.0004542 0.0007765 

Median 0.0004594 0.0007581 

Standard 

deviation 0.0001045 0.0001600 

Minimum 0.0001882 0.0004346 
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In the Table 16 below a couple of attack results are highlighted as sample on attack success. A full 

result data table is available in Appendix 3. Demonstration attack & defense results table. 

 

Table 16. Defense efficiency samples 

Image patch type Normal (normal_50.png) Mitosis (mitosis_251.png) 

Before or after attack Before After Before After 

Image patch 

    

Reconstruction error 0,0003872 0,0010391 0,0004432 0,0009099 

Anomaly Threshold: 0.000554 (images with reconstruction error over threshold are anomalies)  

Anomaly detection re-

sult 

Normal Anomaly Normal Anomaly 

 

 

3.5 Evaluation of the implemented solution 

Below in Table 17 is a summary of how well the implemented artifact contributes to the solution 

of a problem described in the objectives of a solution chapter. Each success criteria are evaluated 

based on how well the implemented convolutional autoencoder model meets the requirements as 

a defense (detection) solution. Both the attack and defense are evaluated separately in this chap-

ter and solution success will be evaluated by measuring digital pathology AI model behaviour be-

fore and after attack, and the performance of the implemented detector network (autoencoder). 

Evaluation results are calculated to each of the tested image patches, both for normal and mitosis 

image patches. 
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Table 17. Summary of the performance of the implemented solution 

Evaluation scale used: (5) Excellent, (4) Good, (3) Average, (2) Weak, (1) Poor 

Success criteria How does artifact 

support solution? 

Description 

Model performance as detection rate 4 Detection accuracy is below 

90%. 

Computational effort of AI model training 2 Training must be performed 

continuously with new mate-

rial to achieve good perfor-

mance. 

Computational effort of single image tile 

detection run 

5 For single tile the result com-

putation is milliseconds 

Computational effort of complete whole 

slide image (WSI) detection run 

3 Each tile (with information) 

must be checked. So, the time 

is x times single image detec-

tion run duration, where x = 

number of tiles in WSI. 

Integrity of the digital pathology image 

data 

5 Implementation does not re-

quire any changes to the origi-

nal image data 

Integrity of the Deep Neural Network 

used in digital pathology image analysis 

5 Implementation does not re-

quire any changes to the origi-

nal digital pathology image 

analysis model. 

 

3.5.1 Selecting dataset for evaluation 

Data for the evaluation dataset was a randomly selected subset of testing dataset images. This is 

to ensure result reliability when demonstration step uses validation dataset and evaluation step 

uses test dataset. 

The evaluation data set contained: 

• 50 randomly selected “mitosis” image patches 

• 50 randomly selected “normal” image patches 
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• Adversarial image patches generated from those 50 “mitosis” & 50 “normal” image 

patches 

• Total 200 images: 100 unmodified image patches & 100 adversarial image patches 

Crafting adversarial images from the testing data 

Adversarial (attack) images were created from the same images that were used in testing data. 

This is because the goal is to measure how significant reconstruction errors can be caused by using 

adversarial image patches, compared to the original ones.  

The python code generated variations of 5-pixel perturbations injected into the given target im-

age. Adversarial versions of both normal and mitosis image patches were generated. The effi-

ciency throughout the Differential Evolution iterations was measured by performing attack and 

measuring the attack success.  Parameters used in the creation of adversarial image using Differ-

ential Evolution are listed in detail in Appendix 1. Parameters used in adversarial image genera-

tion. 

3.5.2 Attack evaluation 

The attack against image analysis AI model was evaluated by gathering mitosis probability results 

before the attack and after attack (according to process defined in Figure 7) using adversarial ver-

sion of the image patch used in original “before attack” test. Also, the Black-box attack method 

was evaluated to measure the effort needed to perform an attack against single image patch and 

series of image patches. Results were calculated using python script. 

 

Figure 7. Attack evaluation process 
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Results for both “mitosis-to-normal” and “normal-to-mitosis” attack were evaluated separately as 

for the attacker perspective the goal can be either targeted attack or untargeted attack.  

The result evaluation for attacks shows that for “mitosis” image patches, the attack was able to 

change the original prediction in such a significant amount that the result for all the images is 

changed from “mitosis” to “normal” (see Table 18). This means this non-targeted black-box attack 

succeeded perfectly with reasonable amount of iterations (see Table 20, column “mitosis-to-nor-

mal”).  

Table 18. CODAIT Prediction change (mitosis-to-normal) 

CODAIT prediction metrics of mitosis patches 

before and after attacks were carried out 

Box plot visualization of CODAIT predictions of 100 mitosis patches 

before and after attacks were carried out 

  Before attack After attack 

Maximum 0.9967603 0.0093238 

Mean 0.5995929 0.0032371 

Median 0.7004911 0.0026079 

Standard 

deviation 0.3546401 0.0027327 

Minimum 0.0003032 0.0000028 
 

 

 

For normal image patches, the attack was not that of success (Table 19). In fact, trying to make as 

image with a lot of white-colored areas to look like a probable mitosis image was a hard task and 

would probably require more time and computing power to achieve. Some successful samples 

were created, even one with certainty over 0.9 to be a “mitosis” image.  Complete table of results 

from both mitosis-to-normal and normal-to-mitosis attacks are available in Appendix 4. Evaluation 

attack & defense results table. 
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Table 19. CODAIT Prediction change (normal-to-mitosis) 

CODAIT prediction metrics of normal patches 

before and after attacks were carried out 

Box plot visualization of CODAIT predictions of 100 normal patches 

before and after attacks were carried out 

  Before attack After attack 

Maximum 0.0134948 0.9160057 

Mean 0.0012509 0.0746376 

Median 0.0000268 0.0038450 

Standard 

deviation 0.0031723 0.1727071 

Minimum 0.0000001 0.0000061 
 

 

 

Evaluation of Black-box attack method 

As an additional item of evaluation, the Black-box attack method was evaluated to measure the 

effort needed to perform attack with adversarial images (few-pixel perturbation). It is important to 

acknowledge that there is a price for the attacker in both cost and time when trying to find a way 

to fool the AI model. Also, the attacker does not know if the query-based attack will be noticed be-

cause of the high query volume each attack produces. 

In Black-box attack using only queries against the attack target, the aim is to find such input or 

query that when used in the attack, that input will cause the AI model to change the returned re-

sult in such way that benefits attacker’s goals. Nowadays many of the commercial and open-

source AI models are published as subscription-based REST API implementations where subscribed 

user can operate over the common HTTP protocol by posting input and get the AI model predic-

tion result as output. This is also how the CODAIT Docker image is used, over HTTP protocol by 

posting queries and inspecting results.  CODAIT Docker image is free to use but commercial REST 

APIs usually charge per request or by the amount of data processed. 

In a query-based attack model, finding optimal or near-optimal adversarial attack inputs often re-

quires many queries with different input to be used to gather enough information about how the 

AI model behind the service works. Common cybersecurity network monitoring systems and API 

management services are usually setup to: 
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• monitor the traffic. 

• notice and trigger alarm from malicious network behavior or anomalies. 

• perform rate limiting. Rate limiting allows only a certain number of HTTP queries from 
same user account to complete and return result. 

This makes attacking REST API implementations more difficult from AI model attack perspective. A 

query-based attack is easier to detect by the cybersecurity experts monitoring AI service usage. 

Attackers can split the queries to be performed by multiple accounts created in advance or during 

a longer period that fits closely to the normal network and API usage patterns. In the Figure 8, be-

havior of script-based Differential Evolution is seen clearly as all the adversarial input combina-

tions generated by the DE optimization algorithm are sent as HTTP POST requests towards the at-

tack target. Posting hundreds of queries in milliseconds for digital pathology analysis task would 

clearly show as an anomaly compared to normal network and API usage.  

The amount of queries generated by the Differential Evolution based attack solution depends on 

the difficulty of the optimization task. For the attacks in this thesis, the mitosis-to-normal task is 

considerably easier than the normal-to-mitosis task. This can be seen in the recorded duration, 

number of attack requests performed, and average prediction change caused by the performed 

attack. See Table 20 for results calculated and stored as file under reports folder. 

Table 20. Metrics of the black-box attack agains AI model behind REST API 

 Mitosis-to-normal Normal-to-mitosis 

Average number of HTTP requests used 

(per generated adversarial image) 

742 11863 

Average time taken in seconds 

(solution found/max iterations reached) 

14.10 259.83 

Average prediction change 

(of all attacks performed) 

0.5963558 0.0733574 

 

As an attack improvement, there is a possibility to implement request throttling, divide attacks 

into smaller batches of HTTP request and wait for a static or random amount of time (implement 

“sleep time” into code) so that the traffic seems normal. Also, an AI-based solution could be 

trained to mimic normal REST API traffic. One could vary the source IP-address with different 

methods, by for example creating a set of server instances around the globe using commercial 

cloud platform, each server with its own unique IP address. 
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Figure 8. HTTP POST requests send towards target system 

 

 

3.5.3 Defense evaluation 

For defense evaluation, the evaluation dataset (100 normal and 1000 anomaly images) is used. Im-

ages are run against the trained convolutional autoencoder model and the reconstruction error of 

both normal images and attacked (adversarial) images are compared to measure how well detec-

tion can spot anomalies (Figure 9). 
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Figure 9. Defense evaluation process 

 

From the results (Table 21) the reconstruction error is almost double for the adversarial images 

compared to the original non-attacked images. This is helpful when trying to detect and defend 

against an attack where adversarial images are used. However, results also indicate that model 

might need more training, improvements on the dataset or a way to effectively discard outlier im-

ages on both sides. 

Table 21. Autoencoder reconstruction errors (before-after attack) for evaluation dataset 

Autoencoder reconstruction error metrics 
Confusion matrix visualization of autoencoder classification  

performance for 100 normal and 100 anomaly images 

  Before attack After attack 

Maximum 0.0007372 0.0012749 

Mean 0.0004787 0.0008074 

Median 0.0004702 0.0008144 

Standard 

deviation 0.0001235 0.0001774 

Minimum 0.0001733 0.0005179 
 

 

 

Performance of the convolutional autoencoder model developed for detecting adversarial images 

is measured by confusion matrix. It enables an easy way to visualize the performance of AI model 

by comparing predicted classes with actual classes. The structure of confusion matrix in Keras is a 
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table with predicted classes on one axis and actual classes on another. This is illustrated in Table 

22. Anomalies are marked as positive and non-anomalies as negative. 

Table 22. Structure of confusion matrix 

Confusion matrix 
Predicted 

Negative Positive 

Actual 
Negative True Negatives (TN) count False Positives (FP) count 

Positive False Negatives (FN) count True Positives (TP) count 

 

For this thesis, the confusion matrix was created by using confusion_matrix, classification_report 

and ConfusionMatrixDisplay from Scikit-learn library. Figure 10 shows how well the trained AI 

model was able to detect adversarial images from the normal ones. To determine if the image is 

an adversarial image(anomaly) or normal one, the threshold & F1 score values from the demon-

stration step were used (3.4.3 Threshold used for attack detection). Threshold value was com-

puted for a demonstration dataset, but it worked equally well also against evaluation dataset. 

Values used are: 

• best_f1_score: 0.9056604 

• best_threshold (leading to best F1 score): 0.0005542 

• Threshold was rounded to 0.000554 for usage in Python scripts. 
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Figure 10. Confusion matrix based on anomaly detection test set 

 

As the goal was to optimize the convolutional autoencoder to detect attack images, the threshold 

value used worked well to achieve this goal. It must be noted that while the amount of false posi-

tives (normal images flagged as anomaly) is ~30% in this test set, it is still acceptable as not being 

able to catch true positives (adversarial images) would be dangerous from the patient security per-

spective. Result indicated by the test set run (visualized by confusion matrix) still give room for im-

provement. 

Classification report Table 23 given by sklearn.metrics library shows the following metric 

values for the autoencoder model used: 

• Precision: ratio of TP / (TP + FP) 

o True Positive (TP): Instance that the AI model correctly classifies as positive. 

o False Positive (FP): Instance that the AI model incorrectly classifies as positive. 

o False Negative (FN): Instance that the AI model incorrectly classifies as negative. 

o True Negative (TN): Instance that the AI model correctly classifies as negative. 

• Recall: ratio of TP / (TP + FN) 

• F1-score: It is the harmonic mean of the precision and recall scores obtained for the positive class. 

• Support: The number of occurrences of each class in the dataset. 
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• Accuracy: Proportion of correct matches. Accuracy = correct predictions/total number of predic-

tions. 

• Macro avg: It is the sum of metric values for all classes, divided by the total number of classes. 

• Weighted avg: Calculates the average performance by considering the weighted contribution of 

each class to the overall metric. 

 precision recall f1-score support 

Normal (0) 0.92 0.71 0.80 100 

Anomaly (1) 0.76 0.94 0.84 100 

accuracy   0.86 200 

macro avg 0.84 0.82 0.82 200 

weighted avg 0.84 0.82 0.82 200 

Table 23. Classification report 

 

 

3.6 Communication of results and knowledge 

Following the Design Science Research Method (DSRM), finding of the research and the designed 

artifact must be communicated to academic community and parties involved. This thesis is pub-

lished to Theseus (https://www.theseus.fi/) system under “JAMK University of Applied Sciences” 

school thesis collection to be publicly available for anyone to read. The importance of this solution 

design and information contained by this thesis is in indicating a rather new area of threats and 

their mitigations in Digital Pathology cybersecurity. Finding practical defense methods for Deep 

Neural Networks attacks in Digital Pathology Image Analysis system is a challenge that must be 

tackled in advance so that the patients and pathologists can rely on trustworthy AI solutions also 

in the future. 

The DSRM in this thesis produced following artifacts: 

• Convolutional autoencoder deep neural network architecture for detecting possible attack against 

Digital Pathology Image Analysis system. 

• Trained Convolutional Autoencoder as Keras (.keras) model file for detecting possible anomalies in 

the input data. Also the weights are saved into their own HDF5 (.hd5) file.  The HDF5 (Hierarchical 

Data Format version 5) is a file format used to store both the architecture of the model and its 

learned weights. 

https://www.theseus.fi/handle/10024/5
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• Results of the trained Convolutional Autoencoder effectiveness to solve the problem at hand. Re-

sults are evaluated in the chapter “Evaluation of the implemented solution”. 

• Attack code for generating Few-pixel attacks to demonstrate Black-box type of attack against a 

deep neural network served over REST API 

• Finally, suggestions on how to improve detection and defense of Deep Neural Networks (DNN) in 

Digital Pathology Image Analysis system. 

In addition to the information provided by this thesis and its attachments, code files used in solu-

tion implementation can be found from authors public GitHub library. Code is available under MIT 

license. For source code of his thesis, see GitHub repository: https://github.com/amarkus/the-

sis_jamk. 

 

4 Discussion 

The goal for the thesis was to study practical attack and defense methods for integrity of Deep 

Neural Networks in Digital Pathology Image Analysis systems. This was done by using a design sci-

ence-based research method, producing concrete software artifacts (code) that will demonstrate 

how attack can be performed against DNN and to test if there is a way to detect the attack by us-

ing another neural network implementation. The primary idea in the thesis was to implement ad-

versarial images and then try the detection with a rather simple and straightforward autoencoder 

solution that could be taken into use with reasonable implementation knowledge and computa-

tional resources.  

Performance for the implemented few-pixel attack was good against “mitosis image patches” but 

moderate or poor against “normal image patches”. This is quite expected result as generating such 

perturbations that would make some of the mostly white images to be predicted as mitosis images 

is hard task or would have required hand-picking of such “normal image patches” that would be 

closer to mitosis image based on their original prediction values. 

The evaluated performance of the implemented autoencoder detector model was moderate and 

could be further improved with more training and better selection of the training data set. In this 

https://github.com/amarkus/thesis_jamk
https://github.com/amarkus/thesis_jamk
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demonstration a threshold value was used to separate normal images from anomalies, but by ad-

justing the threshold value it could be used to spot only the most likely anomalies from the image 

analysis data. 

From a production usage perspective, the demonstrated setup needs to be improved so that de-

tection is more accurate and that most likely requires different kind of neural network implemen-

tation than convolutional autoencoder. The continuous scanning of image data in the training or 

inference data set to find anomalies requires considerable amount of computing resources to be 

done in fast and efficient manner. Cost/benefit ratio of implementation and actual risks should be 

considered before implementing any adversarial image detection services. 

 

4.1 Autoencoder suitability for image anomaly detection 

During the implementation step the goal was to find near-optimal deep neural networks-based 

solution for the problem of detecting adversarial attack images to prevent attacks from succeed-

ing. It is a common fact of convolutional autoencoders (AE) that when AE is used for image recon-

struction, one can compare the goodness of AE based on reconstruction error. Further reading of 

source literature and web articles showed that indeed AE image reconstruction error has been 

used for image anomaly detection with success. 

When implementing initial models using convolutional autoencoders and TensorFlow it soon be-

came obvious that creating “near-perfect” detector using only convolutional autoencoder model 

would be very difficult, if not impossible task. Reason is that when splitting a large whole slide im-

age into tiles, there are a lot of different areas that can all be part of normal tissue but unlike dis-

tinction between apples and oranges, tissue areas (+ slide background color) can vary a lot both in 

shape and in color scale. This requires a well-formed and clean training data set and a lot of sam-

ples of valid (no anomalies) image tiles. Problems of Autoencoder sensitivity to outliers in the 

training data set and shortcomings are detailed in (Beggel et al., 2019). 
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4.2 On the probability of attacks against Digital Pathology Image Analysis sys-
tems 

There isn’t much research literature available on how likely it is that deep learning models used in 

medical imaging, especially in Digital Pathology would be attacked by adversarial samples by ac-

tual cybercriminals. Therefore, the estimates done in this chapter are educated estimates based 

on the current state of deployments in hospitals and the adaptation of AI models in Digital Pathol-

ogy. In the Table 24 the two common types of attack using adversarial images are estimated based 

on the likeliness to happen in near future or longer period. 

Current wars and confrontations between countries certainly affect by slightly increasing the prob-

ability of any kind of cyberattacks. However, cybercriminals and even nation state actors usually 

select targets of high financial value, high attention value or significant psychological effect. Natu-

rally the easier targets requiring less effort are preferred. Therefore, the value of attacking a cur-

rently small number of live digital pathology image analysis and their training systems is not 

enough to justify the effort. Also, many of the current systems require second opinion and ap-

proval of clinical analysis results from a pathology expert. 

During the next decades we will see more systems requiring less and less human intervention in 

the analysis process, and significant volume increase of image analysis to whole slide images in 

digital pathology. That increases the financial benefit of clinical analysis result manipulation and 

probability of attacks to occur. 

Table 24. Probability for inference or training attack occurrence 

Attack type Probability Time assessment Description 

Cybercriminals perform attack 

against digital pathology im-

age analysis (inference) using 

adversarial image perturba-

tions 

Highly improbable 0-5 years Not probable as eas-

ier targets exist with 

less effort required 

from the attacker. 

Small number of AI 

deployments. Finan-

cial benefit not signifi-

cant.  

Probable 5-10 years Probably the first live 

attack seen or at least 

attempted. Enabled 

by larger deployment 



63 
 

 

of AI software in hos-

pitals all around the 

work with varying se-

curity policies. 

Greater financial ben-

efit and attention 

value. 

Cybercriminals perform poi-

soning of digital pathology 

training data using adversarial 

image patches 

Probable 0-5 years Much of the training 

data comes from the 

same open-source or 

commercial sources. 

Easier targets for ma-

nipulation of data and 

damage done is con-

siderable. Reliability 

of the data may not 

be questioned or 

measured. 

Highly probable 5-10 years Progress and adop-

tion of defense meth-

ods against adversar-

ial attacks in 

production systems, 

makes manipulation 

of training data easier 

target from effort vs 

benefit perspective. 

 

4.3 Improvement ideas for adversarial image detection 

During the information retrieval and solution design & development steps there were a lot of in-

formation sources available about different techniques and methods used in both attacking and 

defending the DNN models used in image analysis systems. Many such alternative methods were 

published during 2022-2023. In this chapter some of those methods are covered to give ideas for 

improving adversarial image detection and defense. 

Using Kernel Density Estimation (KDE) as additional anomaly detection criteria 

If the training data set contains some outlier images, then in many cases only using the convolu-

tional autoencoder’s reconstruction error as an anomaly detection criterion will result in degrade 



64 
 

 

of detection performance in autoencoder (Beggel et al., 2019). Then one way to improve the inad-

equacies of the trained autoencoder is to chain multiple detection criteria and form the decision-

making process based on the thresholds in multiple criteria instead of just one. One must carefully 

consider this, as the need to use additional criteria or methods may also be an indication of poor 

initial deep neural network implementation. 

In paper (Beggel et al., 2019) the researchers use the likelihood of the image in the latent space. In 

this thesis, the corresponding latent space would be produced as the most compressed (last) layer 

in the “encoder” part of Autoencoder network. Using the latent space resulting from the Autoen-

coder “encoder” part training as low-dimensional representation of images, a density distribution 

can be calculated using KDE that represents well kernel density scores of normal images and used 

as threshold value to indicate anomaly image when given as input (KDE calculated for the input 

image). Combination of Autoencoder reconstruction error threshold and KDE threshold for anom-

aly images could improve the anomaly detection compared to using only the Autoencoder recon-

struction error threshold. 

Using 3rd party adversarial attack and anomaly detection libraries 

An interesting open-source approach has been developed by the Linux Foundation AI & Data 

Foundation (LF AI & Data) called Adversarial Robustness Toolbox (Nicolae et al., 2019). ART source 

code is published under MIT License. ART contains samples for both Red and Blue Teams to use 

when trying to attack or defend machine learning models. 

Foolbox (Rauber et al., 2018) is a Python library to run adversarial attacks against machine learning 

models such as deep neural networks. For measuring ML system vulnerability to adversarial exam-

ples, one can use Python library called CleverHans (Papernot et al., 2018). 

Alibi Detect Python library contains code for outlier detection, adversarial detection, and drift de-

tection (Klaise et al., 2020). It contains a sample for Adversarial Autoencoder detection and correc-

tion on CIFAR-10 dataset. 

Moving from Convolutional autoencoder to Vision Transformers 

Vision transformers (ViTs) have been an active target of research and in the paper(Ghaffari Laleh 

et al., 2022)  researchers find vision transformers are more resilient against several gradient-based 

adversarial attacks than convolutional neural networks. While CNNs can be trained to have better 

resiliency against adversarial attacks, a notable discovered fact is that vision transformers did not 
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require adversarial pretraining or architectural modifications to achieve better robustness. It 

would be interesting to research further on the weaknesses of vision transformers and types of 

adversarial attacks that work well with those models. Therefore, it would make sense to further 

study the effectiveness of vision transformers to see pros and cons of ViTs compared to CNNs in 

both robustness against adversarial attacks and ability to detect adversarial samples in training of 

inference input data. 

5 Conclusion 

In this thesis the aim was to demonstrate an answer the research questions presented in chapter 

1.1 about how one can in practice attack against Deep Neural Networks (DNN) in the context of 

Digital Pathology Image Analysis system, and as a defense, to present one practical option on how 

to detect such attack and prevent it from happening. This is an important step towards teaching 

more generalizable models that can detect multiple types of attacks. The code required to train 

the convolutional autoencoder, generate adversarial images and calculate metrics for evaluation 

used in this thesis is published in GitHub to be freely available and to allow anyone to repeat the 

experiment or further develop upon the codebase used. 

Another very important finding during the solution design and implementation step was that the 

problem is difficult and in the constant battle between attacker and defender, the advantage is 

always on the attacker’s side. While there are multiple research articles on detecting adversarial 

attacks against image classification and segmentation models, even more articles exist on the dif-

ferent attacks one can use to fool them. That should not stop researchers from trying to find effec-

tive ways for defending against attacks but gives a realistic view on what to expect on the com-

plexity of the task. 

The answer to the main research question RQ1 of this thesis is the sum of the answers to detailed 

research questions RQ2-RQ4. One must know what is currently known to be possible from the at-

tack point of view to be able to defend or detect those attacks. This is a common theme for cyber-

security blue team (defender) members. Also, the defense and detection largely depend on the 

type of attack performed. No single attack type or defense type will rule them all. A good start is 

to try to tackle the most common attack types first, as those require less from the attacker to im-

plement. 
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Following the design science research approach, a solution artifact was implemented by training a 

convolutional autoencoder network to recognize adversarial image patches from original image 

patches. Results from the implemented solution indicate that as there is a wide variance of colors 

in digital pathology image patches from almost completely white patches to very colorful ones, the 

task of finding adversarial images is hard but still results in sufficient performance to start with. 

Results can be improved through more careful selection of the training data and using other ma-

chine learning methods than convolutional autoencoders. 

Part of the task was to implement a practical Black-box attack that one can perform against DNN 

model without knowing the exact implementation and architecture of the targeted model before-

hand. This attack was performed as query-based by issuing a series of HTTP requests towards the 

target. For improving the attack result, Differential Evolution was used as an optimization algo-

rithm to incrementally improve the few-pixel perturbations used in adversarial input images. 

When evaluating attack results, it was shown that normal image patches were more difficult to at-

tack compared to mitosis images, and therefore mitosis-to-normal (hide results requiring treat-

ment) attack is easier to perform for the attacker. This is most likely because many “normal” im-

ages contain a lot of white/empty areas and making CODAIT/deep-histopath model predict those 

as “mitosis” images would require more perturbation than just 5 pixels that were used in the at-

tack in this thesis. 

To ensure research reliability and ethics, publicly available TUPAC16 data set was selected in the 

context of Digital Pathology as it contains breast cancer case images from well-known The Cancer 

Genome Atlas (TCGA). Also, a publicly available Digital Pathology image analysis system implemen-

tation was needed to be the target of Black-box attack scenario.  IBM CODAIT/deep-histopath was 

selected as it is free to use, has been used in TUPAC16 challenge, includes a scientific paper about 

the implementation and allowed attack to be performed safely in an on-premises setup where 

HTTP requests were done inside the same restricted local host network. 

For research reliability it must be mentioned that the generalization of the network was not meas-

ured thoroughly against other attack targets (image analysis services) or other Digital Pathology 

image data sets. This is because different Digital Pathology image data sets have usually been cre-

ated with different Whole Slide Image scanners, affecting the image quality and color scheme, and 

therefore would have required retraining of the Convolutional Autoencoder model.  
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7 Appendices 

Appendix 1. Parameters used in adversarial image generation 

Adversarial image generation parameters: 

• Number of adversarial samples to generate: 

o Normal images: 50 

o Mitosis images: 50 

• Amount of change expected: 

o expected_change_factor_mitosis: 100 

o expected_change_factor_normal: 80 

▪ Normal images are harder to attack against and setting change factor higher 

might only be a waste of computing time without significant change in result. 

• Number of pixels to attack: 5 

• Color bounds used in attack: 

o Normal images: near_black_bounds = [(0, 5), (0, 5), (0, 5)] 

o Mitosis images: pink_bounds = [(220, 225), (170, 175), (200, 205)] 

• Image patch locations: 

o normal_images_path: "data/normal_patches" 

o mitosis_images_path: "data/mitosis_patches" 

o adversarial_images_path: "data/adversarial_patches" 

Parameters for Differential Evolution: 

• func (objective function to be minimized):  

o Different functions are used for ‘normal’ and ‘mitosis’ images. 

o We want to minimize it for ‘mitosis’ images and maximize it for ‘normal’ ones. 

• bounds (variable bounds):  

o Different bounds are used for ‘normal’ and ‘mitosis’ images. 

o See “Color bounds used in attack” in 3.4.1 Selecting dataset for demonstration. 

• strategy (selected differential evolution strategy): "best1bin" 

• maxiter (maximum number of generations): 500 

• popsize (multiplier for setting the total population size): 30 

• mutation (mutation constant / differential weight): (0.3, 1) 
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• recombination (recombination constant / crossover probability): 0.7 

• atoll (Absolute tolerance for convergence): -1 

• disp (print the evaluated func at every iteration): True 

• polish (polish the best population member at the end): True 

• population initialization: "latinhypercube" 

 

Appendix 2. The demonstration environment setup instructions 

The demonstration environment is setup using the following manuscript: 

• Initialize the attack target: 

o The actual attack is implemented through a series of HTTP POST queries against the 

CODAIT/deep-histopath model running as Docker container. HTTP REST API of 

CODAIT/deep-histopath was accessible on localhost port 5000. 

o If using Windows/Mac/Linux there is an option to use Docker Desktop. Download and 

install Docker desktop. Then Start Docker desktop. 

▪ Notice: There are multiple ways to run Docker containers, also without Docker 

Desktop. But that is the simplest option for most users. 

o Install Python 3.x by using Anaconda installer or command line 

o Download the CODAIT/deep-histopath container using the following command: docker 

pull codait/max-breast-cancer-mitosis-detector 

• Create Python virtual environment and install requirements (python libraries) 

o Open terminal/command prompt and run command: pip install virtualenv 

o Create a new folder (for the project), navigate to project folder in your terminal (cd com-

mand): 

▪ mkdir <project-name> 

▪ cd <project-name> 

o Then run the following command: python<version> -m venv <virtual-environment-

name> 

o Run command to activate virtual environment: source <virtual-environment-

name>/bin/activate 

▪ Note: After the virtual environment is created, you can use it in VS Code, Ana-

conda.Navigator, Spyder and many other tools. 

• Download code used in development, demonstration, and evaluation steps: 
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o On your computer, under the project folder you created run command: git clone 

https://github.com/amarkus/thesis_jamk.git 

o This will download the source code containing all the code used in different steps of this 

thesis, except the image patch generation from TUPAC16 images 

(https://github.com/CODAIT/deep-histopath)  

o In your tool of choice, set the current working directory as “<some_dir_path>\the-

sis_jamk”: 

▪ One-liner to check the current working directory: 

python -c "import os; print(os.getcwd())" 

o Install required python packages: 

▪ Navigate to src folder 

▪ Run command: pip install -r requirements.txt 

• If not already done in training the convolutional autoencoder: 

o Prepare image patches from TUPAC16 dataset (see 3.3.2 Dataset preprocessing and 

splitting) 

o Copy some 100000-200000 images (mitosis folder needs to have over 10000) from 

patches from CODAIT\data\mitoses\patches\train folder to dataset\patches folder un-

der the project folder. 

o Navigate into the “solution_design_and_development” folder and run prepare_train-

ing_data.py. This will generate train, val and test folders under training_data folder (di-

rectly under datasets folder). 

o Navigate into the “solution_design_and_development” folder and run train_anom-

aly_detector.py. As a result, the folder src/run_results/<run_id>/models will contain a 

keras file. That is your convolutional autoencoder model. The folder src/run_re-

sults/<run_id>/ will also contain screenshots, logs, and model summary for debugging 

needs. 

Now you should be able to run the scripts for demonstration and evaluation also. 

 

Appendix 3. Demonstration attack & defense results table 

Image name Initial prediction Prediction af-
ter attack 

Initial reconstruc-
tion error 

Reconstruction error 
after attack 

mitosis_1.png 0,148413569 0,000735580 0,000459316 0,000774894 

https://github.com/amarkus/thesis_jamk.git
https://github.com/CODAIT/deep-histopath
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normal_1.png 0,000041971 0,009503714 0,000513094 0,000831877 

mitosis_2.png 0,922306359 0,007309685 0,000224037 0,000608885 

normal_2.png 0,000001702 0,000380007 0,000506389 0,000715072 

mitosis_3.png 0,543869495 0,004026819 0,000400077 0,000558080 

normal_3.png 0,000012727 0,006169492 0,000538159 0,000756408 

mitosis_4.png 0,157493040 0,000435463 0,000572376 0,000763913 

normal_4.png 0,000004124 0,000066945 0,000376544 0,000657802 

mitosis_5.png 0,417111874 0,003761098 0,000471778 0,000850438 

normal_5.png 0,000012809 0,006896434 0,000494574 0,000793531 

mitosis_6.png 0,955929995 0,009479479 0,000358863 0,000651374 

normal_6.png 0,000047098 0,000515505 0,000402633 0,000916627 

mitosis_7.png 0,431792140 0,003948513 0,000608882 0,000781549 

normal_7.png 0,000386461 0,013763451 0,000607773 0,001075869 

mitosis_8.png 0,346063435 0,002397292 0,000506101 0,000851330 

normal_8.png 0,000014482 0,001597611 0,000477807 0,000804672 

mitosis_9.png 0,729875982 0,005932807 0,000425172 0,000679207 

normal_9.png 0,000153686 0,096171118 0,000374779 0,000681507 

mitosis_10.png 0,117708840 0,000241658 0,000344551 0,000594535 

normal_10.png 0,000012478 0,000986555 0,000562975 0,000888699 

mitosis_11.png 0,977434158 0,001612379 0,000455520 0,000755749 

normal_11.png 0,000165269 0,012995451 0,000633106 0,000992789 

mitosis_12.png 0,963935912 0,009143808 0,000288653 0,000677566 

normal_12.png 0,000016052 0,000610318 0,000583112 0,001037779 

mitosis_13.png 0,897652924 0,001752942 0,000292758 0,000434632 

normal_13.png 0,000001292 0,000340625 0,000418452 0,000830780 

mitosis_14.png 0,998695672 0,320512086 0,000448726 0,000764912 

normal_14.png 0,000093107 0,001791153 0,000316912 0,000752405 

mitosis_15.png 0,300658047 0,002991061 0,000592037 0,000765517 

normal_15.png 0,000105568 0,025303578 0,000343787 0,000579192 

mitosis_16.png 0,475262255 0,001495939 0,000650389 0,000950290 

normal_16.png 0,000001314 0,000020806 0,000527908 0,001044561 

mitosis_17.png 0,708144724 0,001151610 0,000373309 0,000697099 

normal_17.png 0,000000510 0,000003508 0,000512268 0,000759002 

mitosis_18.png 0,879327178 0,007079005 0,000338766 0,000585314 

normal_18.png 0,000026389 0,022385601 0,000510679 0,000899967 

mitosis_19.png 0,203910992 0,001742448 0,000464506 0,000657389 

normal_19.png 0,000007310 0,003639274 0,000327715 0,000793213 

mitosis_20.png 0,975126565 0,003535033 0,000365537 0,000757173 

normal_20.png 0,000004855 0,000574146 0,000572748 0,001096880 
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mitosis_21.png 0,203611642 0,001192780 0,000349845 0,000740107 

normal_21.png 0,000024900 0,019636095 0,000475079 0,000802950 

mitosis_22.png 0,537590981 0,001949711 0,000360358 0,000664426 

normal_22.png 0,000000889 0,003671370 0,000594335 0,000959667 

mitosis_23.png 0,341924250 0,002120507 0,000459512 0,000611895 

normal_23.png 0,000079310 0,001024267 0,000556149 0,000955571 

mitosis_24.png 0,880136192 0,004757602 0,000402609 0,000636143 

normal_24.png 0,000001878 0,000497219 0,000519868 0,001034495 

mitosis_25.png 0,290616304 0,000292063 0,000528872 0,000740660 

normal_25.png 0,000013901 0,009991005 0,000529542 0,000989252 

mitosis_26.png 0,963564575 0,007676982 0,000475212 0,000808516 

normal_26.png 0,000062225 0,001310628 0,000474056 0,000726044 

mitosis_27.png 0,813812256 0,006990579 0,000393369 0,000747075 

normal_27.png 0,000016552 0,002715214 0,000440478 0,000717063 

mitosis_28.png 0,784856081 0,007029271 0,000406684 0,000676100 

normal_28.png 0,000023335 0,000353302 0,000354228 0,000675525 

mitosis_29.png 0,851696134 0,003199333 0,000317658 0,000560948 

normal_29.png 0,000002587 0,000289122 0,000403808 0,000654283 

mitosis_30.png 0,274329156 0,000070314 0,000352982 0,000720285 

normal_30.png 0,000005340 0,000076600 0,000479827 0,000776059 

mitosis_31.png 0,531968772 0,004610776 0,000382672 0,000617131 

normal_31.png 0,000008099 0,013352522 0,000447822 0,000839770 

mitosis_32.png 0,976763606 0,005248149 0,000479618 0,000725932 

normal_32.png 0,000001493 0,000556821 0,000550196 0,000895875 

mitosis_33.png 0,936972916 0,000589918 0,000521675 0,000804988 

normal_33.png 0,000038136 0,000278694 0,000381965 0,000859856 

mitosis_34.png 0,090065710 0,000675426 0,000188178 0,000437867 

normal_34.png 0,000029371 0,008464520 0,000393075 0,000632904 

mitosis_35.png 0,740434289 0,001459896 0,000402481 0,000632345 

normal_35.png 0,000021989 0,001536802 0,000500422 0,000926090 

mitosis_36.png 0,262425482 0,002271656 0,000428102 0,000586888 

normal_36.png 0,000001255 0,000177536 0,000528869 0,001082251 

mitosis_37.png 0,765155137 0,000460444 0,000362311 0,000687527 

normal_37.png 0,000004080 0,002228478 0,000464842 0,000836157 

mitosis_38.png 0,039777346 0,000387052 0,000467323 0,000649182 

normal_38.png 0,000042465 0,001053018 0,000502394 0,000879077 

mitosis_39.png 0,002447123 0,000008824 0,000388801 0,000619520 

normal_39.png 0,000000713 0,000645112 0,000534446 0,000801638 

mitosis_40.png 0,514352322 0,000502599 0,000453803 0,000754409 
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normal_40.png 0,000526292 0,038574133 0,000540067 0,001025475 

mitosis_41.png 0,950375676 0,005177333 0,000678369 0,000998959 

normal_41.png 0,000012877 0,002525970 0,000503823 0,000797285 

mitosis_42.png 0,596053958 0,003930310 0,000464670 0,000608197 

normal_42.png 0,014112246 0,072855488 0,000658165 0,001121363 

mitosis_43.png 0,114015333 0,000743672 0,000508351 0,000745800 

normal_43.png 0,000018849 0,004824089 0,000437686 0,000915101 

mitosis_44.png 0,969435096 0,008734260 0,000346385 0,000709688 

normal_44.png 0,000016008 0,005539660 0,000526471 0,000904132 

mitosis_45.png 0,998410821 0,006197840 0,000443224 0,000909922 

normal_45.png 0,000272839 0,011999988 0,000553122 0,000882455 

mitosis_46.png 0,299752563 0,002330190 0,000286664 0,000474421 

normal_46.png 0,000311008 0,015046140 0,000367788 0,000558693 

mitosis_47.png 0,617649257 0,005823713 0,000711869 0,000859951 

normal_47.png 0,000000392 0,000009144 0,000660069 0,001208907 

mitosis_48.png 0,990627408 0,008096716 0,000597812 0,000974689 

normal_48.png 0,000214633 0,003455861 0,000310276 0,000685424 

mitosis_49.png 0,007887042 0,000059159 0,000340301 0,000602807 

normal_49.png 0,000004125 0,000162429 0,000331757 0,000524227 

mitosis_50.png 0,934542537 0,000212351 0,000266848 0,000568269 

normal_50.png 0,000043786 0,000720795 0,000387180 0,001039097 

 

Appendix 4. Evaluation attack & defense results table 

Image name Initial prediction Prediction af-
ter attack 

Initial reconstruc-
tion error 

Reconstruction error 
after attack 

mitosis_1.png 0,861586809 0,002933479 0,000403515 0,000694025 

normal_1.png 0,000000125 0,000006046 0,000654039 0,001034940 

mitosis_2.png 0,508837402 0,003429842 0,000558350 0,000849870 

normal_2.png 0,000088287 0,015161656 0,000638837 0,001024484 

mitosis_3.png 0,976993203 0,008370327 0,000344540 0,000761791 

normal_3.png 0,000021582 0,006168855 0,000508193 0,001079600 

mitosis_4.png 0,040070117 0,000283404 0,000343472 0,000616856 

normal_4.png 0,000008508 0,000024747 0,000466306 0,000646110 

mitosis_5.png 0,942859530 0,006173938 0,000419355 0,000631905 

normal_5.png 0,005960859 0,543592095 0,000529099 0,001029449 
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mitosis_6.png 0,951725364 0,002114710 0,000423353 0,000725156 

normal_6.png 0,000001338 0,000026185 0,000417315 0,000819426 

mitosis_7.png 0,662126899 0,005187168 0,000628526 0,000842162 

normal_7.png 0,000094111 0,004635017 0,000500958 0,000756711 

mitosis_8.png 0,993190706 0,003885588 0,000389265 0,000818062 

normal_8.png 0,000015341 0,000286067 0,000471179 0,001051436 

mitosis_9.png 0,988112629 0,009323802 0,000581883 0,001008967 

normal_9.png 0,000008260 0,000286751 0,000665288 0,000901613 

mitosis_10.png 0,975726903 0,005520195 0,000545166 0,000823079 

normal_10.png 0,000016696 0,003009412 0,000560992 0,000789938 

mitosis_11.png 0,996760309 0,002569380 0,000173283 0,000551101 

normal_11.png 0,000006222 0,001185444 0,000527690 0,000873499 

mitosis_12.png 0,152778775 0,000348541 0,000283078 0,000732881 

normal_12.png 0,000452658 0,290014535 0,000592616 0,000857122 

mitosis_13.png 0,093522131 0,000685714 0,000435727 0,000613879 

normal_13.png 0,000005982 0,000532239 0,000596250 0,000994258 

mitosis_14.png 0,984991252 0,000671417 0,000285611 0,000603182 

normal_14.png 0,012027426 0,054091424 0,000423403 0,000736616 

mitosis_15.png 0,555196762 0,002646575 0,000342206 0,000585478 

normal_15.png 0,000035430 0,000922100 0,000507059 0,000951306 

mitosis_16.png 0,133751780 0,000747747 0,000568632 0,000852862 

normal_16.png 0,000013655 0,011056987 0,000322551 0,000646458 

mitosis_17.png 0,852719724 0,008195848 0,000496698 0,000739022 

normal_17.png 0,000006990 0,004050226 0,000451216 0,001040308 

mitosis_18.png 0,901980758 0,004354236 0,000339345 0,000746069 

normal_18.png 0,000373711 0,010094131 0,000544319 0,000930654 

mitosis_19.png 0,206469983 0,000714460 0,000598259 0,000912544 

normal_19.png 0,000097254 0,005270306 0,000361893 0,000556447 

mitosis_20.png 0,792511344 0,004817124 0,000305439 0,000563664 

normal_20.png 0,000033047 0,009772085 0,000407767 0,000709176 

mitosis_21.png 0,827489853 0,006083493 0,000320813 0,000614566 

normal_21.png 0,000004269 0,000710378 0,000619536 0,000902113 

mitosis_22.png 0,482688248 0,003692272 0,000356787 0,000665832 

normal_22.png 0,000077331 0,238524631 0,000610591 0,000823337 

mitosis_23.png 0,912186742 0,000045685 0,000725277 0,001005554 

normal_23.png 0,000477635 0,005277387 0,000539185 0,000833929 

mitosis_24.png 0,080556132 0,000773440 0,000370304 0,000559779 

normal_24.png 0,013494822 0,040900834 0,000723363 0,001094747 

mitosis_25.png 0,180041835 0,000788218 0,000439219 0,000776875 
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normal_25.png 0,000005982 0,000499840 0,000596250 0,000995177 

mitosis_26.png 0,034925595 0,000231816 0,000461911 0,000565518 

normal_26.png 0,008238786 0,380933434 0,000341740 0,000517954 

mitosis_27.png 0,990396857 0,009108635 0,000680095 0,001021950 

normal_27.png 0,007635538 0,394852161 0,000459155 0,001081589 

mitosis_28.png 0,908827603 0,004196631 0,000364350 0,000544776 

normal_28.png 0,000004815 0,009165278 0,000595764 0,000878691 

mitosis_29.png 0,000303229 0,000002749 0,000308762 0,000673548 

normal_29.png 0,000017036 0,000306312 0,000322630 0,000837066 

mitosis_30.png 0,924608111 0,006086867 0,000238724 0,000533590 

normal_30.png 0,000002369 0,002294043 0,000497339 0,000852417 

mitosis_31.png 0,657065034 0,002821964 0,000545104 0,000918871 

normal_31.png 0,000001181 0,000072544 0,000510476 0,000730158 

mitosis_32.png 0,738855243 0,003363867 0,000534546 0,000810682 

normal_32.png 0,000951621 0,916005731 0,000571423 0,000920070 

mitosis_33.png 0,394089550 0,000699077 0,000469128 0,000650055 

normal_33.png 0,000000494 0,000237823 0,000649482 0,001042027 

mitosis_34.png 0,833088636 0,002429518 0,000408609 0,000596312 

normal_34.png 0,000420977 0,023655837 0,000358105 0,000586153 

mitosis_35.png 0,924941063 0,005847837 0,000544753 0,000914407 

normal_35.png 0,000010368 0,000225086 0,000414711 0,000908144 

mitosis_36.png 0,547642052 0,005148123 0,000372587 0,000665996 

normal_36.png 0,000012867 0,000807639 0,000630015 0,000939428 

mitosis_37.png 0,959904552 0,003680790 0,000459890 0,000706456 

normal_37.png 0,000001109 0,000127522 0,000694194 0,000994339 

mitosis_38.png 0,969527423 0,009250625 0,000375798 0,000679238 

normal_38.png 0,000283154 0,009045467 0,000300523 0,000617744 

mitosis_39.png 0,796106696 0,002230616 0,000547540 0,000894445 

normal_39.png 0,000025291 0,003639846 0,000590286 0,001274992 

mitosis_40.png 0,098639891 0,000609463 0,000368121 0,000608158 

normal_40.png 0,000061714 0,001210482 0,000384634 0,000544199 

mitosis_41.png 0,375225991 0,001880224 0,000247568 0,000525189 

normal_41.png 0,001031355 0,244819820 0,000595024 0,000880439 

mitosis_42.png 0,622190595 0,002417985 0,000504503 0,000693577 

normal_42.png 0,000015125 0,002785343 0,000727062 0,001077682 

mitosis_43.png 0,191802621 0,001516148 0,000369241 0,000585079 

normal_43.png 0,000044519 0,011891786 0,000613268 0,001051413 

mitosis_44.png 0,532338023 0,004602729 0,000400386 0,000679548 

normal_44.png 0,000029134 0,001194934 0,000479315 0,001036730 
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mitosis_45.png 0,167223439 0,000804042 0,000540781 0,000709515 

normal_45.png 0,000028328 0,001623439 0,000481210 0,001037945 

mitosis_46.png 0,831625998 0,007252574 0,000452184 0,000756052 

normal_46.png 0,008872952 0,232463703 0,000737232 0,001256906 

mitosis_47.png 0,157239035 0,000297302 0,000409302 0,000738732 

normal_47.png 0,000479103 0,044775996 0,000464226 0,000898477 

mitosis_48.png 0,096121520 0,000242361 0,000385462 0,000713385 

normal_48.png 0,000021607 0,000282375 0,000614566 0,001024582 

mitosis_49.png 0,217245176 0,000437816 0,000529805 0,000884339 

normal_49.png 0,000001167 0,000031124 0,000432330 0,000676310 

mitosis_50.png 0,954838574 0,002342672 0,000376643 0,000705945 

normal_50.png 0,001031355 0,203333601 0,000595024 0,000920043 
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