
1

Binh Nguyen

RESEARCHING AND AI TESTING STRATE-

GIES FOR VIDEO MANAGEMENT SYSTEM.

Technology and Communication
2024

2

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

THESIS ACKNOWLEDGEMENT

Foremost, the author extends heartfelt gratitude to all the readers for the pa-

tience and understanding throughout the upcoming thesis journey. Special

thanks are reserved for Kenneth Norrgård and Sanna-Liisa Kiikkala, whose guid-

ance contributed significantly to refining this work. The author also expresses

sincere appreciation to the ITD Software department and Vaasa University of Ap-

plied Sciences for providing the conducive environment necessary for the suc-

cessful completion of this thesis.

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Binh Nguyen
Title Researching and AI API Testing for Video Management

System
Year 2023
Language English
Pages 84
Name of Supervisor Kenneth Norrgård

This thesis focuses on examining testing strategies for ITD Group’s Smart Video
Management System within the context of software development. The study
delves into the realm where cutting-edge technology converges with boundless
information. The Video Management System is simulated employing with Py-
thon, facilitating a comprehensive understanding of its intricate working.

This thesis also moves readers with the transition from manual testing API into
more advanced methods such as unit testing or real cam testing, unveiling the
features of AI APIs, system bugs, script tests. Moreover, the thesis will analyze
similar video management system, such as Milestone, Axis for the valuable in-
sights and will offer further knowledge on the field of Software Testing as well as
contribute necessary value for the intelligent video management system (iVMS)
industry.

With all the above activities, this study illuminates a pathway to be a responsible
Software Engineer within the realm of Video Management System.

Keywords Video Management System, unit testing, AI APIs, system
bugs, script tests, Milestone, Axis.

CONTENTS

ABSTRACT

1 INTRODUCTION .. 10

1.1 Smart Video Management System.. 10

1.2 API Functionalities ... 11

2 LITERATURE REVIEW ... 13

2.1 Overview Of Video Management Systems With AI Capabilities 13

2.2 Best Practices For Testing And Quality Assurance In VMS 15

2.3 Description Of The Software And Hardware ... 17

2.4 Overview Of Similar Video Management Systems 18

2.4.1 VMS Milestone (Milesight) .. 18

2.4.2 VMS Axis ... 23

2.5 Key Insights From Literature Review... 26

3 SIMULATION OF AN AI CAMEARA APPLICATION 28

3.1 Training Visual Intelligent Model - Step By Step 28

3.2 Intrusion Warning Project ... 37

Building Intrusion Warning System Application (Simulation): 40

3.3 Guiding AI Growth: Personal Reflection On Understanding And

Supervising The Development ... 55

4 TESTING STRATEGIES IN PRACTICE ... 56

4.1 Manual Testing With Postman And Unit Testing With Pytest 56

4.2 Writing Script Test For Object Tracing Feature 71

4.3 Summary ... 75

5 CONCLUSIONS .. 77

REFERENCES .. 80

LIST OF FIGURES AND TABLES

Figure 1. Detected object if it is inside the restricted area (Ngo 2022)................ 14

Figure 2. Facial recognition (Refaces 2020) .. 14

Figure 3. Front Page of Milesight VMS. (Screen capture) 19

Figure 4. Camera view of Milesight VMS. (Screen capture) 22

Figure 5. Streaming view of VMS Axis. (Screen capture) 25

Figure 6. File structure for using in training data. (Draw.io screen capture) 29

Figure 7. Create task for labelling the image dataset. (CVAT screen capture).... 30

Figure 8. Basic configuration for labelling task. (CVAT screen capture) 30

Figure 9. Opening the task project for labelling. (CVAT screen capture) 30

Figure 10. Going to the job#[id] for labelling. (CVAT screen capture) 31

Figure 11. Labelling the objects manually. (CVAT screen capture) 31

Figure 12. Exporting labelled dataset. (CVAT screen capture) 32

Figure 13. Export task dataset. (CVAT screen capture) 32

Figure 14. Modifying the export format into YOLO1.1. (CVAT screen capture) 33

Figure 15. `obj_train_data` in the person.zip that we exported. (Screen capture) 33

Figure 16. Set up folder for labelled training data. (Google Drive screen capture)

 ... 34

Figure 17. `google_colab_file.yaml` file content. (Source code screen capture) 34

Figure 18. Connecting to Google Drive. (Google Colab screen capture) 35

Figure 19. Permission request for connecting to Google Drive. (Google Colab

screen capture) .. 35

Figure 20. Mounting to Google Drive successfully. (Google Colab screen capture)

 ... 35

Figure 21. Initialize 'ROOT_DIR' variable in Google Collaboratory. (Google Colab

screen capture) .. 36

Figure 22. Installing ‘ultralytics’ library in Google Colab Python notebook.

(Google Colab screen capture) .. 36

Figure 23. Importing `os` module and integrate `ultralytics` to train the model.

(Google Colab screen capture) .. 37

Figure 24. Google Collaboratory Python notebook for training YOLOv8 AI model.

(Google Colab screen capture) .. 37

Figure 25. Workflow of Intrusion Warning project. (Draw.io screen capture) ... 39

Figure 26. Pipeline of the Intrusion Warning project. (Draw.io screen capture) . 39

Figure 27. Centroid of human example. (Ngo 2022) ... 40

Figure 28. Activating Miniconda virtual environment. (Terminal screen capture)

 ... 40

Figure 29. Required external libraries for our project. (Source code screen capture)

 ... 41

Figure 30. Installing necessary libraries for Intrusion Warning project (screen

capture) .. 41

Figure 31. Use project to turn on webcam. (Source code screen capture) 42

Figure 32. YOLOv3 pre-trained model folder structure. (Visual Studio Code screen

capture) .. 43

Figure 33. Importing external libraries for file ‘yolodetect.py’. (Source code screen

capture) .. 43

Figure 34. Defining the ‘isInside(point, centroid)’ function. (Source code screen

capture) .. 44

Figure 35. Defining a class ‘YoloDetect’ class for object detection. (Source code

screen capture) .. 44

Figure 36. Defining ‘read_class_file’ function in the ‘YoloDetect’ class. (Source

code screen capture) .. 45

Figure 37. Defining ‘get_output_layers’ function in the ‘YoloDetect’ class. (Source

code screen capture) .. 45

Figure 38. Defining ‘draw_prediction’ function in the ‘YoloDetect’ class. 45

Figure 39. Declaring variables ‘label’ and ‘color’ inside the ‘draw_prediction’

function. (Source code screen capture) ... 45

Figure 40. Declaring variables for Calculating the coordinates inside the

‘draw_prediction’ function. (Source code screen capture) 46

Figure 41. Declaring variables for Calculating the width and height of the adjusted

bounding box inside the ‘draw_prediction’ function. (Source code screen capture)

 ... 46

Figure 42. Drawing the bounding box inside the ‘draw_prediction’ function. 46

Figure 43. Calculating the centroid point. .. 46

Figure 44. Conditional statement for sound alerting. (Source code screen capture)

 ... 47

Figure 45. Defining ‘alert’ function in the ‘YoloDetect’ class for triggering an alert.

(Source code screen capture) .. 47

Figure 46. Defining ‘detect’ function in the ‘YoloDetect’ class. (Source code

screen capture) .. 48

Figure 47. Modifying the ‘telegram_utils.py’ file. (Source code screen capture) 49

Figure 48. Import various libraries in file main.py. (Source code screen capture)

 ... 49

Figure 49. Declare necessary constants and parameters in file main.py. (Source

code screen capture) .. 50

Figure 50. Initialize video stream and YoloDetect model and list for drawing points

constants. (Source code screen capture).. 50

Figure 51. Define ‘handle_left_click’ function in file main.py. (Source code screen

capture) .. 51

Figure 52. Define ‘draw_polygon’ function in file main.py. (Source code screen

capture) .. 51

Figure 53. Define ‘rescaleFrame’ function in main.py. (Source code screen

capture) .. 51

Figure 54. Define main function in file main.py. (Source code screen capture) . 53

Figure 55. Stop video stream feature in main.py. (Source code screen capture) . 53

Figure 56. Main function execution in file main.py. (Source code screen capture)

 ... 53

Figure 57. Detected person inside the restricted area successfully. (Screen capture)

 ... 54

Figure 58. Our Intrusion Warning system sends telegram warning message

successfully. (Telegram screen capture) ... 55

Figure 59. Register a face to ITD's database successfully via API URL of ITD

company 8004/face_registration. (Postman screen capture) 58

Figure 60. Create a Workspace for testing project. (Postman screen capture) 59

Figure 61. Allocating each API into separate collections with Postman. (Postman

screen capture) .. 60

Figure 62. Setting up the url environment with Postman. (Postman screen capture)

 ... 61

Figure 63. Shortcut for the URL address. (Postman screen capture) 61

Figure 64. Set request format as JSON in Postman. (Postman screen capture) ... 61

Figure 65. Delete the base64 data tag before comma `,`. (Postman screen capture)

 ... 62

Figure 66. Importing necessary libraries for Unit Testing with Pytest. (Source code

screen capture) .. 63

Figure 67. Declaring the constants for API URL. (Source code screen capture) 63

Figure 68. Define a function ´decodeToBase64Img´ for decoding images into

Base64. Simultaneously, declare base64 image variables. (Source code screen

capture) .. 64

Figure 69. Declare template data variables. (Source code screen capture) 65

Figure 70. Test case registering a cat into the face recognition system. (Source code

screen capture) .. 65

Figure 71. CLI command for test our test case. (Source code screen capture) 66

Figure 72. Folder structure for scalability test (Visual studio code screen capture)

 ... 67

Figure 73. Declare different face list for scalability test in file ‘face_list.py’.

(Source code screen capture) .. 67

Figure 74. Import libraries and define API endpoint. (Source code screen capture)

 ... 68

Figure 75. Defining ‘encodeToBase64Img’ function for scalability testing. (Source

code screen capture) .. 68

Figure 76. Defining `test_registration_multiple_faces` function for scalability

testing. (Source code screen capture) .. 69

Figure 77. Defining `test_update_multiple_faces` function for scalability testing.

(Source code screen capture) .. 70

Figure 78. Defining `test_delete_multiple_faces` function for scalability testing.

(Source code screen capture) .. 71

Table 1. List of Software and Hardware tools in project. 17

1 INTRODUCTION

Computer vision in the AI industry is playing a crucial role in digital transformation

revolution. That is also the great motivation for this thesis to be written. The goal

is to provide software engineers different ways to approach practical projects re-

lated to computer vision in general or specifically video management systems with

AI integrated.

This thesis comes from teaming up with ‘Isecurity’ project at ITD Vietnam Group.

The hope is that it becomes a solid starting point for software testing engineers in

the future. At the current time, ITD Group is a big player in making remarkable

developments unfold as Vietnam gets ready for a digital transformation in 2023.

They have worked on many projects, including the creation of a smart camera

management system that holds great potential in various domains such as time

attendance management, home security, smart home, road traffic system, moni-

toring, and highways.

This thesis provides a solid basis for entering the profession by examining a few

intriguing problems and offering insight into the mindset of an AI software testing

engineer. These concerns include of knowing how to build a camera management

system, how to train an AI vision system, and how to test an AI system in a real-

world corporate environment. Additionally, the thesis will cover the critical com-

ponent of what a tester must comprehend regarding end user demands.

1.1 Smart Video Management System

The comprehensive nature of the Video Management System project is extremely

extensive, as it is built using a microservice architecture1. Currently, during the

1 Microservice architecture is like building with Lego blocks. Instead of one big piece, we have lots
of smaller, independent pieces that do specific jobs. Each piece talks to the others using a clear set
of rules, and we can work on, put in place, and grow each piece on its own.

writing of this thesis, the project is still in progress and involves several distinct

scopes, including the backend, backend API, AI training model (updated to YOLO

v8 at the present), API of AI, and various frontend modules for administrator.

However, this thesis specifically focuses on in-depth testing of AI APIs for support-

ing improving recognition features purpose such as Face recognition, Person de-

tection, writing script test for end user of object tracking feature. Additionally, it

delves into VMS research, providing valuable references for the development of

ITD Group’s product as well as provides a strong point of view in how to make a

pilot project related an AI video management system, which is a helpful

knowledge for people who would like to become an AI testing engineer in the fu-

ture.

The scope of the thesis is related to AI, Data, and research. Therefore, since nu-

merous figures will be provided, readers are urged to exercise patience as they

navigate through the thesis sequentially for a smooth and comprehensive under-

standing.

1.2 API Functionalities

First and foremost, it is necessary to understand how the API works. One im-

portant starting point for the thesis is described in ITD AI API Camera System Doc-

umentation (Nguyen & Le 2023d, 2-13).

Reading and thoroughly understanding the API documentation is always the most

important thing-to-do in the rule list of any tester. This helps every tester to know

what the system is talking about, how to request and the ways the system re-

sponse for those requests.

This way of building things helps make software more flexible, scalable, and easier to take care of.
It is like having a bunch of small, specialized teams working together instead of one huge team
trying to manage everything at once. For further exploration of microservice architecture princi-
ples, refer to foundational resource such as Microservices (2014) by Martin Fowler (Fowler 2014).

Moreover, reading the API documentation for an AI project is crucial for more rea-

sons, such as understanding functionality, integration, and development, use

cases, data requirements, model performance, scalability, troubleshooting, secu-

rity, cost and pricing, updates and versioning, legal and ethical considerations, and

collaboration. After knowing the API functionalities that we will work with, the

thesis will implement several researches related to the AI Camera System industry.

The next chapter gives a literature review of one of the most important develop-

ments in this generation.

2 LITERATURE REVIEW

In this chapter, the thesis will dive into the World of AI-powered camera systems.

There are also investigations into these camera tools that are helpful to know how

they can handle and process video recordings, the methods used to rigorously as-

sess their proper functioning, as well as the specific software and hardware will be

used.

Concluding the preliminary investigation, attention will be directed to similar

Video Management Systems Milestone and Axis. This chapter sets the stage for a

deeper exploration into how AI impacts video management system while simulta-

neously laying the academic groundwork for researching analogous software

products. It serves as a practical guide in crafting effective solutions for contem-

porary software challenges.

2.1 Overview Of Video Management Systems With AI Capabilities

Video management system (VMS) are software platforms designed to manage,

record, and analyse video footage from surveillance cameras. The integration of

Artificial Intelligence (AI) within VMS has significantly transformed the landscape

of video surveillance by enabling advanced functionalities that go beyond tradi-

tional video management system. (Samsara 2021).

AI in VMS allows the system with the functionality of real-time video analytics,

such as object detection, tracking, and recognition. With these features, VMS can

identify and classify objects, individuals, vehicles, or events easily in a video

stream. For example, AI can monitor suspicious behaviour, monitor crowd density,

or detect unauthorized access.

Besides, the integration of AI enables a VMS to predict security breaches by ana-

lysing historical data and identifying trends. Anomaly detection algorithms trigger

alerts when unusual behaviour or events are detected, enabling for a proactive

approach to security.

Figure 1. Detected object if it is inside the restricted area (Ngo 2022)

Additionally, AI-powered VMS can automatically generate alerts and notifications

based on predefined parameters. This functionality guarantees swift response to

critical situations so that the security professionals can receive alerts via email or

mobile apps, allowing them to take prompt actions.

The integration of facial recognition technology into VMS also enables the identi-

fication and verification of individuals. This helps with visitor management, access

control, and strengthening security procedures.

Figure 2. Facial recognition (Refaces 2020)

Moreover, AI-driven VMS can extract useful information from video footage to

support decision-making. The layout of stores and marketing tactics, for instance,

can be improved by studying client mobility patterns in retail settings. (Barton &

Court 2012).

2.2 Best Practices For Testing And Quality Assurance In VMS

To ensure the dependability and effectiveness of VMS with AI capabilities, strin-

gent testing and quality assurance practices are required. Thorough testing en-

sures that the system works is functioning properly and provides accurate insights

and secure monitoring. This section goes into the important best practices for AI-

powered VMS testing and quality assurance.

Firstly, understanding the project documentation provides a solid basis. Under-

standing the system's architecture, technical specification, and expected function-

ality are all part of this. Clear project documentation establishes the context re-

quired for effective testing and quality assurance initiatives. As an AI Test engi-

neer, at some companies, this is also the responsibility to become one of the edi-

tors for those project documentations.

Besides, every tester needs to know clearly the survival way in any working envi-

ronment. Chapters 3 and 4 demonstrate how the system work, how to fetch cam-

era from its IP address, RTSP (Real Time Streaming Protocol), how to connect it

with the company API, how to connect the AI System Camera into the personal

machine (Laptop, PC), and how to draw on it for testing the AI by using OpenCV

library.

When entering a project, it is necessary to ensure that the software backend as

well as the AI API function as expected. During the development process, testers

or software engineers could employ a variety of technical tools, such as Postman

or Pytest. If there is a system bug, AI testing engineers must provide relevant re-

port to both the AI team and the IT team as soon as possible. In other words, AI

testing engineers should serve as a bridge between a company's AI and IT depart-

ments. Those contribution would affect positively to further automation testing

processes.

The understanding of a comprehensive testing framework also plays an important

role that spans functional, performance, and security testing. Functional testing

assesses individual aspects, such as object detection and alert generating, perfor-

mance testing measures system responsiveness under varying loads, and security

testing detects exploitable flaws. (Nist 2023).

Furthermore, a good software testing strategy should consider concluding the pro-

cess of Chaos testing. It is the process of deliberately putting a system to stressful

and unexpected conditions. This is critical for robustness since it checks the system

resilience, fault tolerance, and capacity to recover gracefully from faults.

According to Shivani Naidu (2023), “Chaos Testing, also known as Chaos Engineer-

ing, is a methodology that involves running controlled experiments to test soft-

ware systems’ resilience to unpredictable, real-world events. “

Chaos Testing is normally gone with a big project which is structed as a micro-

service structure. The testing idea is turning off one of the services but still ensure

that the other services as well as the whole system are still working. Based on the

research on similar projects, almost intelligent camera management systems

(iVMS) are built based on the microservice architecture. Therefore, applying strat-

egies for chaos testing before it reaches the end user must be performed accord-

ingly. The list of the top chaos engineering tools can be found in the article “The

top chaos engineering tools” (Schillerstrom 2022).

Finally, in any typical software testing strategy, User Acceptance Testing (UAT)

only accounts for 20 percent of effort but determines 80 percent of the success of

a software on the market. End-users evaluate the system's usability and function-

ing during the user acceptance testing. Real-world user feedback assists in finding

areas for improvement and aligning the system with realistic requirements.

As a test engineer, “putting ourselves into the shoes of the end user” is something

worth paying attention to.

2.3 Description Of The Software And Hardware

This section provides an overview of the software and hardware components used

in the execution of thesis project.

Table 1. List of Software and Hardware tools in project.

Software & Hardware
Tools

Description

Python Python, a versatile programming language, acts as a
foundation for the AI-powered video management sys-
tem's development. Python's numerous libraries and
frameworks enable rapid data handling and AI algo-
rithm integration.

OpenCV OpenCV (Open-Source Computer Vision Library) is a
critical tool for image and video analysis. Its capabilities
are used within the AI-infused video management sys-
tem to process video streams, detect objects, and per-
form other analysis.

Pytest To automate testing operations, Pytest, a popular test-
ing framework, is used. Its simplicity and extensibility
simplify the validation of numerous system functional-
ities.

Postman Postman, a popular API testing tool, assists in testing
the AI API's functioning. Its user-friendly UI makes it
easier to validate API endpoints and answers.

Github The collaborative platform GitHub is essential for ver-
sion control and project management. It is helpful for
cloning necessary code on the practical chapter like
chapter 3 and chapter 4 of this thesis.

Yolov3 A pre-trained AI model which contains several class
names for label defined before, such as person, bird,
phone, objects. (Keineahnung2345 2023).

Telegram An application which is helpful for API integration for
our simulation demo project.

IDE Visual Studio Code (For building a simulation), Google
Colab (For training an AI model).

Security Camera at ITD
company, Laptop
Webcam

For implementing the practical process as building pro-
ject and testing AI functions.

2.4 Overview Of Similar Video Management Systems

Doing research on similar camera management systems allows AI software testing

engineers to have a more intuitive perspective. Thereby, the integration of neces-

sary features for a company’s products will be significantly improved. In this sec-

tion, the thesis will focus mainly on some research on VMS Milestone and VMS

Axis.

The reports below are based on real work done at ITD Group, which is the focus

of this thesis. The summary of features and functions are recorded through the

software product trial experience which was offered by client service of Axis Com-

munication and Milestone Learning. It is worth noting that there will not be spe-

cific citations for each feature because Milestone and Axis do not offer detailed

instruction resources in the way of user experience. Instead, they provide basic

training to customers through tutorial videos or training courses as well as several

guidance of basic to advanced configurations in their products.

2.4.1 VMS Milestone (Milesight)

Milesight VMS stands out as a versatile video management system designed for

using across diverse environments, catering to both small businesses and larger

scale enterprises.

Figure 3. Front Page of Milesight VMS. (Screen capture)

In this section, the features of Milesight VMS are presented based on practical

experience and software trial reports conducted at ITD Group in 2023. The infor-

mation is derived from real-world usage and observations. Besides, the clients of

Milesight VMS can also explore these features via the training program offer by

Milestone Learning (Milestone Learning 2023a).

 The features of the system include:

Video Recording and Storage: Milestone VMS records and stores video

footage from with customizable settings like frame rate, resolution, and

compression. The free version supports up to 8 cameras, while more ex-

pensive versions accommodate a significantly larger number, possibly up

to 13,000+ supported cameras and other devices (Milestone System

2024a).

Video analysis: Advanced video analysis capabilities include object detec-

tion, face recognition, motion changes, etc in different environments or

contexts, for example, bank and finance, transportation, public facilities

and buildings, city surveillance, intrusion warning, wrong way alarm, and

stolen object alarm. (Milestone System 2022e).

Remote Access: Users can access video footage and analytics remotely

through web browser or mobile app, ensuring monitoring and manage-

ment from anywhere at any time (Milestone System 2024b).

User Management: The software incorporates a user management mod-

ule allowing administrators to control access and permissions for each

user. Ensuring the security of sensitive video data. Milestone offers detailly

useful information in configuring user profile on server as well as other ad-

ministrator features in their product documentation (Milestone System

2023a).

Customizable: Highly customizable and can be tailored to meet the specific

needs of different organizations, including customization of the user inter-

face, video analytics settings, and integration with third-party software.

(Milestone Learning 2023b).

Reports: Advanced reporting capabilities enable the analysis of video data,

user access, and system performance (Milestone System 2024a).

For more details, Milestone VMS offer user manual for experiencing as well as

configurating the application on their official documentation (Milestone Learning

2023b).

AI Integrated Features:

Milestone VMS seamlessly integrates with various features, offering a comprehen-

sive security solution.

Motion Detection: Detects motion in a specific area of camera view and

trigger alerts or recordings, distinguishing between different types of mo-

tion, such as human movement or vehicle movement. (Milestone System

2023b).

Face Recognition: Recognize faces in real-time and compare them with a

known database, enhancing security (Milestone System 2022c).

Object Detection: Detects and tracks specific objects, triggering alerts or

logs based on predefined rules (Milestone System 2023b).

People Count: Count people entering and exiting a specific area, such as a

store or building. This feature is useful in managing crowds, analysing pur-

chase data, checking attendance, improving customer service (Milestone

System 2022d).

Audio Analysis: Analyse audio data from the cameras and microphones,

detecting specific sounds such as screaming, vehicle crashes, gunshots, or

broken glass, and activate alarm or recording. This feature is useful for solv-

ing crime contexts even in blind spots. (Milestone System 2022a).

Heat Map: Generate heatmaps showing activity frequency and duration,

valuable for analysing customer behaviour (Milestone System 2022b).

Anomalous Behaviour Detection: Detects unusual behaviour, such as a

person loitering in a restricted area or a vehicle driving in the wrong direc-

tion. Enhancing security (Milestone System 2022c).

Disappearance object detection: Detects when an object is removed from

a specific, preventing theft and increases security through stolen object

alarm (Milestone System 2022e).

Queue management: Detect and monitor queues or queues in real time.

Useful for optimizing queue management (Milestone System 2022d).

Fall detection: Detect and track when someone falls, such as in a hospital

or nursing home, train station, dangerous area, … Or simply slippery streets

during Finnish winter and generate alerts or notifications to aid in emer-

gency response (Milestone System 2022c).

Smoke and fire detection: Detect and monitor smoke and fire in real time,

enhancing safety (Milestone System 2022c).

Figure 4. Camera view of Milesight VMS. (Screen capture)

Features that need improvement:

The discussion on areas that could be enhanced for a better user experience is

presented as personal opinions and recommendations based on the CTO of ITD

Software department’s assessment.

Simplify advanced features: Make advanced feature more accessible to all

users.

Improve app accessibility: Provide alt text for images and icons to enhance

app accessibility.

Resolve Technical issues: Address crashing and freezing issues reported by

some users.

Adjust costs: Consider adjusting costs and implementing promotional cam-

paigns to attract and retain customers.

Optimize Smartphone Integration: Improve integration with smartphones

or mobile devices for better performance.

Distance monitoring AI integrated feature: Monitors and detects if people

maintaining a safe distance from each other and trigger an alert or record

if the social distancing rules are violated.

2.4.2 VMS Axis

AXIS Camera Station stands out as a comprehensive video management software

tailored for small and medium businesses. Drawing parallels with Milesight, Axis

offers an user-friendly integration feature, particularly notable for its seamless in-

tegrating smartphones.

In this section, the features of AXIS Camera Station are presented based on prac-

tical experience and software trial reports conducted at ITD Group in 2023. The

information is derived from real-world usage and observations. Additionally, the

clients of Axis communication can also explore these features via the training pro-

gram offer by Axis communication (Axis Communications 2023). Unlike the docu-

mentation or the video courses offer by Milestone Learning, Axis Communication

offer their clients training schedules on their training program.

Note: In this section, we will primarily delve into the intelligence integration and

advanced features provided by Axis Communications, highlighting its similarities

with Milesight VMS in system features.

AI Integrated and advanced Features:

Motion Detection: Supports motion detection, triggering recording and

alert in the monitored area (Axis Products 2024a).

Alarm Management: Supports alarm management, allowing users to con-

figure and manage alarms for various events, such as motion detection,

fake camera impersonation. network problems, or even set excluded ob-

jects to avoid sending unnecessary alarm (Axis Products 2024a).

License Plate Recognition (LPR): LPR technology for recognizing and cap-

turing license plate information from vehicles, enhancing applications like

parking management and security monitoring (Axis Solutions 2024a).

Behavioural Analytics: Utilizes AI-based behavioural analytics for detect-

ing suspicious or unusual behaviours, such as loitering, object left behind,

or crowd detection. This feature is very helpful for example traffic manage-

ment, or parking lot services. (Axis Products 2024b).

Audio Analytics: Analyses audio data using AI, detecting specific sounds or

anomalies, such as gunshots, breaking glass, or raised voices. Thereby en-

hancing situational awareness (Axis Communications 2024).

Privacy Masking: AI can be used to automatically blur or obscure sensitive

information, such as faces and license plates, to address privacy concerns.

(Axis Solutions 2024b).

Integration with Access Control: Integrate with access control systems, al-

lowing seamless interaction between video surveillance and access con-

trol, facilitating actions like automatically unlocking doors based on visual

identification. Those features can be applied to for example smart home

projects. (Axis Developer Community 2024).

Mobile App: The Axis Camera Station mobile app provide convenient ac-

cess to the surveillance system from mobile devices (Axis Support 2024a).

Figure 5. Streaming view of VMS Axis. (Screen capture)

Integration Capability:

Third-party device integration: Supports integration with third-party de-

vices, offering a comprehensive security solution managed from a single

interface. Supported third-party devices list could be found on Axis Com-

munication user manual (Axis Public 2023).

API: Provides a wide range of APIs that allow integration with other soft-

ware solutions for example network video, audio systems, radar, and so

on. (Axis Vapix Library 2024).

Cloud integration: Integrates with cloud-based solutions, such as Mi-

crosoft Azure, enabling remote access to a cloud-based video surveillance

and storage system (Axis Support 2024b).

Video Analytics Integration: Supports integration with video analytics so-

lutions, enhancing video footage insights (Axis Products 2024b).

Features that need improvement:

The discussion on areas that could be enhanced for a better user experience is

presented as personal opinions and recommendations based on the CTO of ITD

Software department’s assessment.

Resource-intensive live view: Live view can be resource-intensive, impact-

ing system performance. Optimizing the live view feature to reduce re-

source usage is recommended.

Storage Management: Continuous writes can result in large amounts,

which can be challenging to manage. Improving storage management can

enhance user experience, especially for those interested in integrating

data with cloud services. There would be more requirement for the users

in other cloud services like Google Cloud Platform or Amazon Web Ser-

vices.

False alarms: Motion detection can be prone to false alarms, causing frus-

tration for users. Axis Camera Station can work to improve the accuracy of

motion detection to reduce the frequency of false alarms.

Alarm Management: Setting up and managing alarms can be time consum-

ing. Improving alarm management capabilities to make the alarm setup

and management process more efficient.

Mobile app functionality: Mobile apps may not provide the same level of

functionality as the desktop version. Enhancing the functionality of mobile

applications will contribute to a more comprehensive remote access expe-

rience for users.

2.5 Key Insights From Literature Review

In the second chapter, the thesis generally has offered an overview of several soft-

ware testing concepts as well as has showed the outstanding features that current

AI-integrated video management system software have through research of Axis

and Milestone VMS.

With all the precious information, in the next two chapters, this thesis hopes to

bring the stated theories and apply them into practice by training a sample model,

simulating an intrusion warning project, conducting some testing for an AI-inte-

grated video management system at ITD company, and writing a sample of script

test that will give an AI test engineer a more realistic view in this industry.

3 SIMULATION OF AN AI CAMEARA APPLICATION

Gaining insight into the workflows of both the AI and IT teams is critical for an AI

testing engineer. This chapter seeks to provide a thorough overview of the tools

and procedures used to accelerate AI model training. In addition, an implementa-

tion of an Intrusion Warning project is presented. This exploration not only deep-

ens comprehension but also proven invaluable for future endeavors in smart cam-

era system projects. "Initiating a pilot project serves as the foundational step in

the workflow of the AI industry today, aiming to gain momentum." (Ng 2023).

3.1 Training Visual Intelligent Model - Step By Step

Preparation: Google Drive, Google Colab, training dataset image, training dataset

label.

Firstly, setting up a drive folder and ensuring the folder structure looks like the

folder structure for training AI model of the project belong to this thesis (Nguyen

2023f).

To commence the process of incremental refinement, commonly referred to as

"cake-eating from the size down," let us direct our focus towards the data folder.

This folder embodies the standard file structure utilized for training data in com-

puter vision AI models, as depicted below.

Figure 6. File structure for using in training data. (Draw.io screen capture)

Step 1: Configuration for Labeling Task.

Labeling image datasets for supervised learning can be executed through various

tools. For a fast and straightforward approach, explore the UI web-based platform

at cvat (Cvat 2024).

After registering and signing in, click into the “Task” (1) on the web navbar, then

interact to the “+” button (2) and choose “Create a new task” (3) for creating a

new task to label from an uploaded dataset.

Figure 7. Create task for labelling the image dataset. (CVAT screen capture)

Figure 8. Basic configuration for labelling task. (CVAT screen capture)

After configuring the label task, go back to the link in the navigation bar as “Tasks”

and click on “Open” button on the chosen task.

Figure 9. Opening the task project for labelling. (CVAT screen capture)

Step 2: Labeling Interface.

Figure 10. Going to the job#[id] for labelling. (CVAT screen capture)

Figure 11. Labelling the objects manually. (CVAT screen capture)

It is recommended to implement the labelling process as much as possible. It is

because, the more dataset, the more in accuracy rate for machine to detect the

defined object.

Step 3: Exporting Labeled Dataset

After labelling throughout the dataset and saving, go back to the “Tasks” on the

navigation bar, hover mouse to “Action”, then click on “Export task dataset”.

Figure 12. Exporting labelled dataset. (CVAT screen capture)

Step 4: Exporting Task Dataset

Figure 13. Export task dataset. (CVAT screen capture)

Figure 14. Modifying the export format into YOLO1.1. (CVAT screen capture)

Figure 15. `obj_train_data` in the person.zip that we exported. (Screen capture)

Extract the downloaded "person.zip," revealing a folder named `obj_train_data`.

Place this folder into the designated path on Google Drive as: My Drive/Com-

puterVision/TrainYoloV8/data/labels/train.

Figure 16. Set up folder for labelled training data. (Google Drive screen capture)

Step 5: Creating `google_colab_file.yaml`

Now, create a ̀ google_colab_file.yaml` file which play a role as a pipeline between

the dataset and the defined classes:

Figure 17. `google_colab_file.yaml` file content. (Source code screen capture)

Step 6: Modifying Google Colab Python notebook

Initiate a connection between Google Drive directory and the current Google

Colab Python notebook. Set up the folder structure refer to the project belong to

this thesis (Nguyen 2023g).

After accessing to the Python notebook file (.ipynb) in google colab. The first 2

lines are created in the first cell or first code block is importing class ‘drive’ in the

`google.colab` library and then use it to mount the current Python Notebook to

the created drive folder.

Figure 18. Connecting to Google Drive. (Google Colab screen capture)

Figure 19. Permission request for connecting to Google Drive. (Google Colab

screen capture)

After signing in successfully on the Drive with the account that we used for creat-

ing necessary folder, the output in the terminal would be “Mounted at /con-

tent/gdrive”.

Figure 20. Mounting to Google Drive successfully. (Google Colab screen capture)

Figure 21. Initialize 'ROOT_DIR' variable in Google Collaboratory. (Google Colab

screen capture)

Figure 22. Installing ‘ultralytics’ library in Google Colab Python notebook. (Google

Colab screen capture)

Modify the YOLOv8 training code to work within the Google Colab environment

like Figure 23.

Overall, this cell loads a pre-trained YOLO model, specifies a custom dataset and

training settings through a YAML configuration file, and then starts the training

process for one epoch.

Figure 23. Importing `os` module and integrate `ultralytics` to train the model.

(Google Colab screen capture)

After successfully training data, export the model file and use the trained model

with the implementation in the following cell:

!scp -r /content/runs '/content/gdrive/My Drive/ComputerVision/TrainYoloV8'

Generally, the Google Collaboratory Python notebook should look like the follow-

ing figure:

Figure 24. Google Collaboratory Python notebook for training YOLOv8 AI model.

(Google Colab screen capture)

The clarity on creating a pilot project to train an AI model raises the next question

is: "How can a software engineer initiate an AI camera system pilot project to gain

momentum?" The next section will dig deeper into this inquiry using the pre-

trained YOLOv3 model to provide comprehensive insights into its functionality.

3.2 Intrusion Warning Project

What is intrusion warning?

Intrusion Warning system in the context of this thesis is a compact AI Camera Sys-

tem, which firstly detect an object, specific here is person object defined by a pre-

trained YOLOv3 model (Keineahnung2345 2023). Additionally, the system enables

the drawing of a polygon area to allocate the restricted zone via the monitored

camera. It dynamically updates the warning status whenever the centroid of the

detected object resides within the drawn polygon area.

Moreover, the integration of a Telegram bot API into our application ensures no-

tifications are sent whenever the system detects a person within the restricted

area.

This application is not limited to the security industry; it has versatile applications,

including marketing strategy to understand customer product preferences. Its util-

ity extends to various industries such as Agriculture, Health Care, Military, and

more.

The workflow of the Intrusion Warning project is illustrated in Figure 25, depicting

a clear representation of the project's intricacies.

Figure 25. Workflow of Intrusion Warning project. (Draw.io screen capture)

Figure 26. Pipeline of the Intrusion Warning project. (Draw.io screen capture)

The centroid is a geometric property that represents the centre of mass or point

of balance of an object. For shapes like the human body, the centroid is the aver-

age position of all the individual points that make up the object.

Figure 27. Centroid of human example. (Ngo 2022)

Building Intrusion Warning System Application (Simulation):

The source code of the project is taken from (Nguyen 2023d).

Getting Started:

Create an empty folder named ´Intrusion Warning´ in Visual Studio Code. Open

new Terminal and enter the command ´conda activate myenv´ to activate the vir-

tual environment.

Figure 28. Activating Miniconda virtual environment. (Terminal screen capture)

Create a ´setup.txt´ file indicating the required external libraries for the project.

Figure 29. Required external libraries for our project. (Source code screen capture)

Run the command ‘pip install -r setup.txt’ to install all the needed libraries.

Figure 30. Installing necessary libraries for Intrusion Warning project (screen cap-

ture)

Ensure that the application can connect to the real camera. This report uses the

personal webcam for this purpose via the ´main.py´ file with the following initial

code block:

Figure 31. Use project to turn on webcam. (Source code screen capture)

Code Overview in ‘main.py’ file:

Line 1-3: Import necessary libraries.

Line 5: Start a video stream from the default camera (src = 0 is laptop webcam

as default).

Line 7-13: Enter a loop to continuously capture and display video frames ‘while

True’.

Line 15: Stop the video stream using ‘video.stop()’.

Line 16: Close all OpenCV windows with ‘cv2.destroyAllWindows()’.

Using the YOLOv3 AI model for object detection:

Next, download the pre-trained model from Pre-trained YOLOv3 model for human

detection (Nguyen 2023e). Then put the model folder into the current project.

Figure 32. YOLOv3 pre-trained model folder structure. (Visual Studio Code screen

capture)

Implement of yolodetect.py:

In this step, create a new file yolodetect.py and copy the whole content in the file

yolodetect.py of intrusion warning project (Nguyen 2023d).

The provided Python code is part of a program designed for real-time object de-

tection, specifically for detecting humans using YOLO model. It integrates various

functionalities, including object detection, drawing bounding boxes, calculating

centroids, and triggering alerts.

Figure 33. Importing external libraries for file ‘yolodetect.py’. (Source code screen

capture)

Take a look at the function ´isInside(points, centroid)´ where will check if the cen-

troid of detected person is inside a specified polygon area using Shapely geometry.

Figure 34. Defining the ‘isInside(point, centroid)’ function. (Source code screen

capture)

On the following step, initializes parameters, such as YOLO model files, confidence

thresholds, and frame dimensions.

Note: Modify the sending telegram alert in each 15 second (in line `alert_tele-

gram_each = 15`) so that whenever an object is detected in the restricted area.

This helps to avoid sending notification messages uncontrollably repeated, causing

negative impacts on server resources, as well as the inconvenience of users who

subscribed for the service of the application.

Figure 35. Defining a class ‘YoloDetect’ class for object detection. (Source code

screen capture)

The upcoming lines of code show the implementation of several foundational con-

figuration of the YOLO model via Figure 36 and Figure 37.

Figure 36. Defining ‘read_class_file’ function in the ‘YoloDetect’ class. (Source

code screen capture)

Figure 37. Defining ‘get_output_layers’ function in the ‘YoloDetect’ class. (Source

code screen capture)

Next, the ́ draw_prediction´ function inside the ́ YoloDetect´ class is responsible for

drawing predictions on a given frame based on the results of object detection. It

specifically draws bounding boxes around detected objects, labels them, calcu-

lates the centroid of each bounding box, and performs additional actions when a

centroid is inside a specified polygon area.

Figure 38. Defining ‘draw_prediction’ function in the ‘YoloDetect’ class.

Inside ‘draw_prediction´ function, retrieve the class name based on the ’class_id’

and define the ’color’ for drawing the bounding box (in this case, green).

Figure 39. Declaring variables ‘label’ and ‘color’ inside the ‘draw_prediction’ func-

tion. (Source code screen capture)

Additionally, ‘draw_prediction´ function ensure that the bounding box coordinates

(´new_x´, ´new_y´, ´new_x_plus_w´, ´new_y_plus_h´) do not extend beyond the

image boundaries to avoid errors when drawing.

Figure 40. Declaring variables for Calculating the coordinates inside the ‘draw_pre-

diction’ function. (Source code screen capture)

Figure 41. Declaring variables for Calculating the width and height of the adjusted

bounding box inside the ‘draw_prediction’ function. (Source code screen capture)

Figure 42. Drawing the bounding box inside the ‘draw_prediction’ function.

Calculate the centroid of the new bounding box by finding the midpoint of its

width and height and mark this centroid point with a small green circle.

Figure 43. Calculating the centroid point.

Then, the `isInside` function is called to check if the centroid of the bounding box

is inside a specified polygon area (covered by `points`). If the centroid is inside the

polygon, an alert is triggered, and the alert sound will be played.

Figure 44. Conditional statement for sound alerting. (Source code screen capture)

Figure 45. Defining ‘alert’ function in the ‘YoloDetect’ class for triggering an alert.

(Source code screen capture)

Figure 46. Defining ‘detect’ function in the ‘YoloDetect’ class. (Source code screen

capture)

This comprehensive analysis of the ´YoloDetect.py´ file demonstrates its indispen-

sable role in our project. The functions in the ´YoloDetect´ class are critical to the

core functionality of the program. A deeper exploration of these functions will pro-

vide a deeper understanding of their implementation and importance in the class.

Telegram Integration:

After finishing the ‘yolodetect.py’ file, follow the instruction of creating a telegram

bot with BotFather (Nguyen 2023b).

After following the given instruction and creating a Telegram bot, get Bot ID and

User ID via telegram API. Then, create another file in the project named ‘tele-

gram_utils.py’ with the following content, it is notable to assign the User ID with

‘my_token’ variable and Bot ID with ‘chat_id’ variable.

Figure 47. Modifying the ‘telegram_utils.py’ file. (Source code screen capture)

Implementation of ´main.py´:

Finally, modify the ‘main.py’ file like the relevant file in intrusion warning project

which belong to this thesis (Nguyen 2023d).

First and foremost, import necessary libraries.

Figure 48. Import various libraries in file main.py. (Source code screen capture)

Next, the declaration of used constants and parameters in main.py should be ex-

plained as:

‘VIDEO_SOURCE’: Specifies the video source (0 as default for laptop webcam).

´RESIZE_SCALE’: Sets the scale by which the video frame will be resized.

‘POLY_COLOR’ and ‘CIRCLE_COLOR’: Define the colours (Red and Blue) used for

drawing the polygon and circle points.

Figure 49. Declare necessary constants and parameters in file main.py. (Source

code screen capture)

In the following step, the code block offers the initialization of video stream and

Yolo model.

‘video’: A video stream is initiated using the specified video source (0 as default

camera, normally is the laptop webcam).

‘points’: An empty list, points, is initialized to store polygon points.

‘model’: The YoloDetect model is initialized for detecting "person" objects.

Figure 50. Initialize video stream and YoloDetect model and list for drawing points

constants. (Source code screen capture)

On the next lines, the ‘handle_left_click’ function is triggered when the left mouse

button is clicked. This function records the x and y coordinates in the points list.

Figure 51. Define ‘handle_left_click’ function in file main.py. (Source code screen

capture)

The ‘draw_polygon(frame, points)’ function draws a polygon based on the points

in the points list and marks the ‘points’ with circles. This function then returns the

updated frame based on drawn points.

Figure 52. Define ‘draw_polygon’ function in file main.py. (Source code screen

capture)

Then, the ‘rescaleFrame’ function resizes the video frame based on the specified

scale.

Figure 53. Define ‘rescaleFrame’ function in main.py. (Source code screen capture)

Last but not least, the ‘main()’ function come up with several functionalities.

‘While True’: A main loop processes video frames continuously.

‘frame’ and ‘frame_resize’: The frame is captured from the video stream and

resized.

‘frame_resize = draw_polygon(frame_resize, points)’: The drawn polygon area is

superimposed on the frame.

‘if detect’: If detect is True, the YoloDetect model is used to detect "person" ob-

jects within the polygon area.

“key == ord(‘q’) || key == ord(‘d’)”: User inputs ('q' for quit and 'd' for finalizing or

drawing the polygon) are captured.

‘cv2.imshow’: The frame is displayed with the polygon.

‘cv2.setMouseCallback’: Mouse events are detected, and the points list is updated

accordingly.

Figure 54. Define main function in file main.py. (Source code screen capture)

Figure 55. Stop video stream feature in main.py. (Source code screen capture)

Figure 56. Main function execution in file main.py. (Source code screen capture)

Finally, the main function is executed within an asyncio event loop, enabling asyn-

chronous functionality. The script waits for user inputs and displays the video

stream.

Start the application:

After setting up all the code, go to the terminal at the path of root project, use the

command as “python main.py” to execute the intrusion warning program.

Figure 57. Detected person inside the restricted area successfully. (Screen cap-

ture)

Figure 58. Our Intrusion Warning system sends telegram warning message suc-

cessfully. (Telegram screen capture)

3.3 Guiding AI Growth: Personal Reflection On Understanding And Supervising The

Development

Through the process of training an AI model and the simulation of Intrusion Warn-

ing Project. This thesis hopes to give a broader view in the industry of iVMS. How-

ever, for an AI product to gain a strong foothold in today's competitive market,

continuous updating, optimization, and research are stories that deserve atten-

tion.

When a human being is born and grows up, from infancy to adulthood, they always

make mistakes and stumble but through these become more and more mature.

Besides, the logistics and support of parents and teachers around are also very

important on this path.

The same goes for a machine, humans are the one who gradually creating them.

In terms of social relationships, humans are now like the parents of artificial intel-

ligence. Therefore, as a human we need to correct, teach, and supervise these

children conscientiously, ready to point out the errors that this brainchild is mak-

ing, so that the child can have better and better performance in its development

lifecycle.

4 TESTING STRATEGIES IN PRACTICE

After thoroughly examining the documents that describe the complexity of AI or

APIs in any business or project (illustrated here with reference to the ITD Group),

the AI testers should understand the processes that involve performing tests for

the system, specifically focusing on the “intelligence” of the AI possessed by the

organization. This requires a broader view of the testing processes related to the

organization’s AI capabilities.

Furthermore, testers’ mindset needs to become more independent from the soft-

ware construction and development team, which means that testers and the end

users will be the one side and will not hesitate to point out defects that the general

system or software is experiencing.

Test engineers will play a very important part in the stage of before publishing the

final product, ensuring that the software will be carefully packaged to help in-

crease competitiveness and customer satisfaction once the product is available on

the marketplace.

In this chapter, the thesis will bring a preliminary look at testing a project for the

purpose of “Support improving the recognition features” from using tools such as

Postman, several useful tips when using Postman and basic algorithms of writing

Unit Tests. At the same time, this thesis will go deeper into writing a script test for

the “Object Tracing” feature to help organization having a better point of view to

improve this module.

4.1 Manual Testing With Postman And Unit Testing With Pytest

To address confidentiality concerns with ITD, this section provides a general over-

view of applying manual testing and unit testing to AI APIs.

Manual Testing With Postman

Manual testing with Postman is a straightforward approach for validating backend

APIs developed by the IT team. The process involves ensuring that the responses

of the system align with the specifications documented in the ITD AI API Camera

System Documentation (Nguyen et al. 2023c, 2-13).

Encoding image into Base642 format can be implemented by webapp services

(Base64 image 2024).

To illustrate the manual testing process, it is necessary to follow an example in two

simple steps.

Step 1: Register a face to the AI recognition system

API URL of ITD: 8004/face_registration.

Image used. (ITD 2023a)

Request:

{

 "TimeSend": "2023-01-06T09:10:49,182",

 "Item": {

 "ImageData": "[Base64Image]",

 "FaceID": -1,

 "OpCode": 0

 }

}

2 Base64 is a way to represent binary image data (like pictures) using only letters, numbers, and a
few special characters. It's like turning a picture into text so that it can be easily included in docu-
ments, web pages, or data transmissions. This format is often used to embed images directly into
HTML or CSS, making it a convenient way to handle images in various applications.

Figure 59. Register a face to ITD's database successfully via API URL of ITD com-

pany 8004/face_registration. (Postman screen capture)

Response Data (ITD 2023b)

The response data confirms the successful registration of a “full-body” photo,

aligning with our expectations.

Step 2: Check if the software correctly verifies the registered person in the case of

that person change his outfit.

API URL of ITD: 8004/face_verification

Images Used (ITD 2023c)

Request:

{

 "TimeSend": "2023-01-06T09:10:49,182",

 "Item": {

 "ImageData": "A91h3jyjksi1",

 "FaceID": 0,

 }

}

Response Data 1 (ITD 2023d)

Response Data 2 (ITD 2023e)

The results met the expectations, with a successful confirmation of the same per-

son, even with changes in outfit, achieving a verification rate of 74% and 69% for

the respective images.

As a tester, exploring beyond defined successful cases is crucial. However, testing

error cases, such as adjusting time formats or sending incorrect data, reveals sys-

tem responses not caught by the backend. Reporting these findings aids in opti-

mizing the software system.

Postman Environment Configuration

Looking at some examples of the above information may seem quite vague to sev-

eral newcomers. Therefore, in the following pages, this thesis will focus on some

setting up tips to make manual testing workflow become faster and more handy

every time testers step into a similar project.

1. Create a Workspace:

Maintain a clean and reusable workspace, like creating one named “Isecurity.”

Figure 60. Create a Workspace for testing project. (Postman screen capture)

2. Allocate APIs into Collections:

Figure 61. Allocating each API into separate collections with Postman. (Postman

screen capture)

3. Setting up the URL Environment:

Configuring the URL environment provides a shortcut for connecting with the

organization’s API address. Follow these steps:

(1) Access to Environments.

(2) Choose environment that we will use, if there is no environment yet,

create one by clicking on the `+` button.

(3) Configure the working environment.

(4) Select the working environment.

Figure 62. Setting up the url environment with Postman. (Postman screen capture)

After setting up the URL environment, use the shortcut `{{name_of_url}}` to

quickly access the API address, for example `{{url4}}`.

Figure 63. Shortcut for the URL address. (Postman screen capture)

4. Configure request message:

Follow the JSON format specified in the AI description documentation (Nguyen

et al.2023c, 2-13). Navigate to Body, then change the format to JSON.

Figure 64. Set request format as JSON in Postman. (Postman screen capture)

5. Handling Base64 image Format:

Figure 65. Delete the base64 data tag before comma `,`. (Postman screen capture)

Overall, manual testing with Postman lays the foundation for understanding the

testing process, setting the stage for implementing algorithms for Unit Tests. The

subsequent section will explore the implementation of unit testing using Pytest

based on information gathered from the API description documentation and Post-

man manual testing.

Writing Unit Testing with Pytest

Algorithm Overview and Implementation in Pytest:

Due to confidentiality constraints, this section presents fundamental algorithms

for unit testing and scalability testing without revealing ITD Group's private source

code.

Figure 66. Importing necessary libraries for Unit Testing with Pytest. (Source code

screen capture)

Figure 67. Declaring the constants for API URL. (Source code screen capture)

‘URL_FR’: URL of the face_registration API for registering a face in the AI video

database system at ITD company.

‘URL_FR_LIST’: URL of the face_list_registration API for registering a face list in the

AI video database system at ITD company.

‘URL_FV’: URL of the face_verification API for verifying a face in the AI video data-

base system at ITD company.

‘URL_FE’: URL of the face_existence API for Checking if a face is existed in the AI

video database system at ITD company.

Figure 68. Define a function ´decodeToBase64Img´ for decoding images into

Base64. Simultaneously, declare base64 image variables. (Source code screen cap-

ture)

‘decodeToBase64Img(link)’: In this function, we got a parameter ‘link’ and decode

the path of the image in .jpg format into base64 using `b64encode` method.

For enhancing code structure to be reusable, declare template variables contain-

ing the model request data that will be sent to the system. Consequently, when-

ever a message is requested, inherit these templates with the desired data (e.g.,

Person image)

Figure 69. Declare template data variables. (Source code screen capture)

Figure 70. Test case registering a cat into the face recognition system. (Source

code screen capture)

Use the ̀ deepcopy` module from imported `copy` library to copy the template that

is declared earlier. (`template_data_fr` for face registration data).

Modify the image data requested test. Remember to change both the request and

the response data into JSON format.

Utilize the `assert` module of Pytest to evaluate the test result, determining

whether it passed or not.

Execute the test case with the command `pytest [file_path]::[test_case] `.

For example: `pytest face_recognition_test.py::test_fr_add_2`.

Figure 71. CLI command for test our test case. (Source code screen capture)

This unit testing approach ensures the functionality of various components within

the AI system, verifying that each unit performs as expected. The subsequent sec-

tion will delve into an illustrative example of scalability testing, shedding light on

the system’s performance under varying workloads. Moreover, writing unit tests

help testers or developers understand deeply how everything works behind the

scenes of a typical software project.

Writing Scalability Test With Pytest

By applying these basic testing algorithms workflow, Unit Testing can be extended

to cover various cases. For scalability testing, where manual testing of hundreds

or thousands of images become more time consuming, Pytest offers an efficient

solution. The algorithm idea of scalability test in API of face registration can be

found at the Scalability test with Pytest for ITD group (Nguyen 2023a).

Figure 72. Folder structure for scalability test (Visual studio code screen capture)

The first folder named `face_registration_multiple_create` with 2 files inside as

`face_list.py` and `face_registration_test.py`. The second folder named `imgs`,

contains the person face images data:

Figure 73. Declare different face list for scalability test in file ‘face_list.py’. (Source

code screen capture)

In the ´face_list.py´ file, two different face lists are declared. ´face_list2´ is a ran-

domly shuffled version of ´face_list1´ to save time and resources while ensuring

the test process is implemented as expected.

The Scalability Testing Workflow in ´face_registration_test.py´ is implemented

next.

Firstly, Import Libraries included base64, requests, cvut.time, face_list, and pytest,

then define ‘URL_FR’ variable for fetching the Face Registration API URL of ITD:

Figure 74. Import libraries and define API endpoint. (Source code screen capture)

Next, define function that takes an image file path as input, reads the image, en-

codes it to base64 format, and returns the encoded string. It prepares images for

registration in the tests.

Figure 75. Defining ‘encodeToBase64Img’ function for scalability testing. (Source

code screen capture)

Later, define `test_registration_multiple_faces` function to initialize an empty list

`face_ids` to store the registered face IDs. It then encodes each image into base64

format, constructs a JSON payload with the image data, FaceID, and OpCode. After

that, it sends a POST request to the registration API. The function asserts that the

response indicates success, has a StatusCode of 1, and that the returned FaceID

matches the expected value (based on the iteration).

Figure 76. Defining `test_registration_multiple_faces` function for scalability test-

ing. (Source code screen capture)

After that, defining `test_update_multiple_faces`, this function is similar to the

registration test but focuses on updating existing faces. It iterates over a list of

image paths (´face_list2´) and updates each face with an OpCode of 1. The function

then verifies the response.

Figure 77. Defining `test_update_multiple_faces` function for scalability testing.

(Source code screen capture)

Then, defining `test_delete_multiple_faces` function, the function Iterates over

the FaceIDs of previously registered faces and sends a request to delete each face

with an OpCode of 2. It then verifies that the deletions were successful and en-

sures the company's database is returned empty after the test to avoid resource

overflow.

Figure 78. Defining `test_delete_multiple_faces` function for scalability testing.

(Source code screen capture)

The purpose of scalability testing is to evaluate how a system performs as it scales

to handle an increasing load or number of users, ensuring the system remains re-

sponsive and stable as demand is increasing.

4.2 Writing Script Test For Object Tracing Feature

According to Akash7 “Test Scripts are line-by-line description that contains infor-

mation about system functions that must be performed to verify an application or

system under test.” (Akash7 2023)

In the context of security-focused AI applications, particularly at ITD, the scripting

test for the AI API’s tracing feature is crucial. This script aligns with ITD Software

department’s requirements and serves as an educational example for every AI

Testing Engineers.

Objective: Verify the functionality of the AI API’s tracing feature for the camera

system at ITD building.

Prerequisites:

1. Ensure proper installation and configuration of the smart camera system.

2. Confirm installation and configuration of the AI API for the smart camera sys-

tem.

3. Enable the AI API tracing feature.

Testing step:

1. Start the smart camera system and make sure it works normally.

2. Access the AI API interface and navigate to the tracing feature.

3. Configure trace settings, specifying duration and objects to be traced.

4. Start the tracking and verification feature of the specified object by clicking on

the specific ID or image displayed on the tracing interface (further, we can click

on the object that needs to be traced in streaming cam).

5. Interrupt the tracing feature and confirm that it stops capturing objects.

6. Save the traced objects to a file and verify that the file is saved correctly.

7. Open the traced objects file and confirm the traced objects are represented

correctly.

8. Repeat steps 3-7 with different tracking settings and objects to be traced.

9. Disable tracing and verify that it is no longer capturing objects.

Expected result:

1. AI API Tracking Feature:

Accurately capture the specified objects. Once the object is clicked, the en-

tire camera system will identify the object in real time.

In streaming camera: Switches camera views continuously, displaying the

moving location of the identified object within the building.

In camera recording: Allow access to image and video data files related to

the identified object, considering similarities in appearance over time.

2. Tracking Interruption:

Tracking stops capturing objects when interrupted.

3. Traced Object File:

Property saves and accurately represents the traced objects.

4. Tracing Disablement:

Disabling tracing halts object capturing.

Investigation and Fix: If any of the above steps or expected results fail, the tracking

feature of the AI API for smart camera systems will be further investigated and

fixed.

Features That Can Be Integrated Into The Tracking/Tracing Object Feature

Real-time alerts: Configurable alerts to security personnel or building managers

for detected traced object.

Object recognition: Tracking of various objects, such as vehicles, packages, or de-

vices.

Analyze historical data: Identification of patterns or anomalies in movements for

enhanced security.

Integration with other systems: Integration with access control or building auto-

mation systems for a comprehensive view of building operations and security.

Purpose Of Writing Script Test

Script tests for object tracing in an AI Video Management System (VMS) offer mul-

tifaceted benefits include:

Quality Assurance: Ensures quality and reliability of the object tracing fea-

ture.

Early Issue Detection: Detects and addresses tracking issues early in devel-

opment.

Reliability: Ensures consistent and reliable object tracing across different

scenarios.

Documentation: Serve as documentation for expected tracing behavior,

making it easier for AI and IT teams to understand requirements.

Regression Testing: Detects regressions caused by code changes, ensuring

tracing remains functional.

Scalability: Scales with the VMS to handle more cameras and scenarios,

ensuring tracing accuracy at scale.

Continuous Integration: Automates testing in CI/CD pipelines3, validating

tracing functionality with each code change.

Cost Saving: Identifies and resolves issues early, reducing the need for ex-

tensive manual testing and troubleshooting.

Confidence: Builds confidence in the reliability and correctness of object

tracing, enhancing user satisfaction.

Compliance: Demonstrates compliance with industry standards and certi-

fication requirements.

Advanced Features: Allows integration of advanced features for a more

comprehensive security solution.

In summary, script tests for object tracing improve the AI Video Management Sys-

tem's quality, reliability, and efficiency, ensuring it satisfies user expectations and

industry requirements while enabling additional security features.

3 CI/CD stands for Continuous Integration and Continuous Delivery (or Continuous Deployment). It
is a software development method that involves automating testing and pushing code changes
into production in a streamlined and automated manner.

4.3 Summary

In conclusion, Chapter 4 of this thesis serves as a resource for the next generation

of AI testing engineers, offering insights into navigating the complex terrain of AI

and APIs. Inspired by real-world scenarios at ITD Group, this chapter provides val-

uable guidance and strategies to empower future engineers in their professional

endeavors.

At its essence, this chapter underscores the critical value of comprehensive com-

prehension. AI testing engineers are urged to expand their roles beyond tradi-

tional boundaries, actively immersing themselves in AI workflows. This evolution

positions them as advocates for software quality and user satisfaction.

Independent thinking is emphasized. AI testing engineers must stand with the end-

users, fearlessly pointing out defects, ensuring AI systems meet the highest stand-

ards - an essential trait of a great AI tester.

Moreover, practical testing comes alive with insights into manual testing via Post-

man and automated unit testing using Pytest. These are not just tools; they are

powerful instruments. Additionally, understanding API documentation becomes a

superpower, enabling meticulous AI system validation and effective issue report-

ing.

Efficiency thrives here. Valuable tips optimize manual testing with Postman, fos-

tering a clean workspace, organized collections, and smart URL environments.

These tips save time and boost efficiency.

Furthermore, unit testing with Pytest is demystified step by step, paving the way

for automating testing, ensuring robust software quality—a skill essential for any

AI tester.

Finally, a notable aspect of the thesis involves the examination of script tests for

object tracing within AI Video Management Systems. These tests provide numer-

ous benefits, including quality enhancement, scalability assurance, and compli-

ance adherence. They enable AI testing engineers to inspire trust in AI systems,

ensuring their reliability and effectiveness beyond mere functionality.

5 CONCLUSIONS

Generally, this thesis delved into the complexities of AI testing and its important

role in ensuring the reliability and performance of AI systems. The journey so far

explored many topics, from practical testing methods to scalability testing or even

handing on a script test.

In the following some key lessons and extended directions are highlighted for fu-

ture work in similar industry.

Firstly, throughout the research, the thesis brings more knowledge about smart

camera system software, the needed features in any iVMS and the basic applica-

tions of AI or computer vision to make monitoring security to be easier. Besides,

there are also detailed reports as well as basic instructions for an engineer to have

a clearer view when embarking on a similar project. The thesis also provides a typ-

ical style of writing reports in ITD company.

However, while this thesis delves into software testing concepts and gained in-

sights into major AI-integrated Camera systems, it is apparent that the role of an

AI testing engineer is vast and continually evolving. Our understanding and ex-

pertise in this field go beyond the scope of a regular thesis. To excel in this role, a

software engineer must commit to continuous learning and expanding

knowledge every day.

Moreover, due to compliance with ITD's privacy policy, this thesis has con-

straints, and direct access to the source code of the original project software is

unavailable. Access to such resources would greatly enhance the testers’ testing

capabilities.

Furthermore, the thesis also would like to contribute in several aspects to the in-

dustry of iVMS. Obviously, developing an intelligent camera system relies on rich

data sources. The rising demand for data-related professions underscores the

need for a robust data strategy tailored to business needs. This includes customer

camera installations, security management, and observation systems.

After implementing a data strategy, the focus shifts to system automation, reduc-

ing the need for extensive human intervention. To avoid legal issues, companies

must review customer data protection policies. Ethical considerations, such as pri-

vacy invasion through deepfake tools, underscore software engineers' duty to an-

ticipate and prevent adverse consequences.

Prioritizing security in AI camera systems is crucial for business benefits and user

privacy. Looking ahead, incorporating decentralization principles is essential for

optimal security, protecting individual rights, and ensuring software integrity. Key

considerations include data privacy, resilience against unauthorized access, ethical

AI practices, interoperability, user-friendly interfaces, decentralized data storage,

user education, and regular security testing. These aspects collectively contribute

to advancing AI surveillance responsibly and innovatively.

However, this thesis has not delved deeply into data analysis. For a testing engi-

neer, a deeper understanding of the output data from training models is invalua-

ble. Therefore, further exploration in this area would be beneficial and not re-

dundant.

To summaries, this thesis has been an investigation of the fundamental princi-

ples and mindsets required of an AI testing engineer. The thesis has not only ex-

plored the complexities of working flow in this industry, but also provided ideas

into building AI camera systems and core software testing abilities.

This work is valuable because it provides a larger perspective on research, learn-

ing, and software development, bridging the theoretical and practical divides.

Furthermore, the final chapter introduces critical aspects to further expand un-

derstanding in the sector, moving technology towards a future with even greater

promise for humanity.

While this thesis may be extensive, it comes with its limitations. However, there

is a reminder that learning and fostering curiosity are ongoing challenges in every

phase of careers in software industry. To excel as a software engineer, it is essen-

tial to combine technical talent with ethical integrity or virtue.

With a vision of continued progress and innovation, this thesis aspires to bring

more value not only to the iVMS domain but also to all related software develop-

ment fields.

REFERENCES

Akash7, May 24th, 2023. Software Testing Test Script. Accessed 30.06.2023.
https://www.geeksforgeeks.org/software-testing-test-script/.

Axis Communications, 2023. Axis Learning Documentation. Accessed 01.07.2023.
https://www.axis.com/learning.

Axis Communications, 2024. Secure insights. Accessed 01.07.2023.
https://www.axis.com/blog/secure-insights/audio-analytics-ip-cameras/.

Axis Developer Community, 2024, Access control integration. Accessed
25.02.2024. https://www.axis.com/developer-community/access-control-inte-
gration.

Axis Products, 2024a. Axis Video Motion Detection. Accessed 25.02.2024.
https://www.axis.com/products/axis-video-motion-detection.

Axis Products, 2024b. Axis Object Analysis. Accessed 25.02.2024.
https://www.axis.com/products/axis-object-analytics.

Axis Products, 2024c. Analytics. Accessed 25.02.2024.
https://www.axis.com/products/analytics.

Axis Public, 2023. Third-party devices user manual. Accessed 25.02.2024.
https://www.axis.com/dam/public/10/f5/23/axis-camera-station-and-third-
party-device-support-en-US-388160.pdf.

Axis Solutions, 2024a, License Plate Recognition. Accessed 25.02.2024.
https://www.axis.com/solutions/license-plate-recognition.

Axis Solutions, 2024b, Privacy in surveillance. Accessed 25.02.2024.
https://www.axis.com/solutions/privacy-in-surveillance.

Axis Support, 2024a, Axis Camera Station Mobile App. Accessed 25.02.2024.
https://help.axis.com/en-us/axis-camera-station-mobile-app.

Axis Support, 2024b, Device-to-cloud integration for Azure Cognitive Service for
Vision. Accessed 25.02.2024. https://help.axis.com/en-us/device-to-cloud-inte-
gration-for-azure-cognitive-service-for-vision.

Axis Vapix Library, 2024, Vapix Library. Accessed 25.02.2024.
https://www.axis.com/vapix-library/.

https://www.geeksforgeeks.org/software-testing-test-script/
https://www.axis.com/learning
https://www.axis.com/blog/secure-insights/audio-analytics-ip-cameras/
https://www.axis.com/developer-community/access-control-integration
https://www.axis.com/developer-community/access-control-integration
https://www.axis.com/products/axis-video-motion-detection
https://www.axis.com/products/axis-object-analytics
https://www.axis.com/products/analytics
https://www.axis.com/dam/public/10/f5/23/axis-camera-station-and-third-party-device-support-en-US-388160.pdf
https://www.axis.com/dam/public/10/f5/23/axis-camera-station-and-third-party-device-support-en-US-388160.pdf
https://www.axis.com/solutions/license-plate-recognition
https://www.axis.com/solutions/privacy-in-surveillance
https://help.axis.com/en-us/axis-camera-station-mobile-app
https://help.axis.com/en-us/device-to-cloud-integration-for-azure-cognitive-service-for-vision
https://help.axis.com/en-us/device-to-cloud-integration-for-azure-cognitive-service-for-vision
https://www.axis.com/vapix-library/

Base64 image, 2024. Base64 encoder web application. Accessed 25.02.2024.
https://www.base64-image.de/.

Barton, D., Court, D., October 2012. Making Advanced Analytics Work for You. Ac-
cessed 20.10.2023. https://hbr.org/2012/10/making-advanced-analytics-work-
for-you.

Cvat, 2024. Cvat platform for labelling image dataset. Accessed 25.02.2024.
https://app.cvat.ai/.

Fowler, M., March 25th, 2014. Microservices. Accessed 04.12.2023. https://mar-
tinfowler.com/articles/microservices.html.

ITD, 2023a. Image for manual testing step 1. Accessed 25.02.2024.
https://drive.google.com/file/d/10Qv3TGcrAxSs-
QTzXAASYQZSbr3j9z6V5/view?usp=drive_link.

ITD, 2023b. Image of response data in manual test step 1. Accessed 25.02.2024.
https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazo-
naws.com%2Fsecure.notion-static.com%2F50754711-74d5-4b4f-8308-
bb35bfc5619d%2F2.png?table=block&id=19e679fb-0368-4a7d-81ff-
db21145f190d&spaceId=2ee80eb6-7237-44d9-b9ed-
be4959866b3b&width=2000&userId=8111ef9f-03d9-46db-a6bb-
c48ce8127521&cache=v2.

ITD, 2023c. Images for manual testing step 2. Accessed 25.02.2024.
https://drive.google.com/drive/fold-
ers/1kbzqbSqdqTj7_WXi_xtavGRMU20VOaTy?usp=sharing.

ITD, 2023d, Image 1 of response data in manual test step 2. Accessed 25.02.2024.
https://www.notion.so/AI-h-tr-n-ng-cao-t-nh-n-ng-nh-n-di-n-
227d0d99077143a79ef59b59748e5308?pvs=4#60314d44dac24f8eb7b34272b42
77960.

ITD, 2023e. Image 2 of response data in manual test step 2. Accessed 25.02.2024.
https://www.notion.so/AI-h-tr-n-ng-cao-t-nh-n-ng-nh-n-di-n-
227d0d99077143a79ef59b59748e5308?pvs=4#9fa40cbc21f74aca8bf97ea0b111
9a5f.

Keineahnung2345, 2023. Darknet pre-trained YOLOv4, v3 and v2 model Open
Source. Accessed 21.08.2023. https://github.com/AlexeyAB/darknet.

Milestone Learning, 2023a. Training for Milestone products. Accessed 15.05.2023.
https://learn.milestonesys.com/index.htm.

https://www.base64-image.de/
https://hbr.org/2012/10/making-advanced-analytics-work-for-you
https://hbr.org/2012/10/making-advanced-analytics-work-for-you
https://app.cvat.ai/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://drive.google.com/file/d/10Qv3TGcrAxSsQTzXAASYQZSbr3j9z6V5/view?usp=drive_link
https://drive.google.com/file/d/10Qv3TGcrAxSsQTzXAASYQZSbr3j9z6V5/view?usp=drive_link
https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F50754711-74d5-4b4f-8308-bb35bfc5619d%2F2.png?table=block&id=19e679fb-0368-4a7d-81ff-db21145f190d&spaceId=2ee80eb6-7237-44d9-b9ed-be4959866b3b&width=2000&userId=8111ef9f-03d9-46db-a6bb-c48ce8127521&cache=v2
https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F50754711-74d5-4b4f-8308-bb35bfc5619d%2F2.png?table=block&id=19e679fb-0368-4a7d-81ff-db21145f190d&spaceId=2ee80eb6-7237-44d9-b9ed-be4959866b3b&width=2000&userId=8111ef9f-03d9-46db-a6bb-c48ce8127521&cache=v2
https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F50754711-74d5-4b4f-8308-bb35bfc5619d%2F2.png?table=block&id=19e679fb-0368-4a7d-81ff-db21145f190d&spaceId=2ee80eb6-7237-44d9-b9ed-be4959866b3b&width=2000&userId=8111ef9f-03d9-46db-a6bb-c48ce8127521&cache=v2
https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F50754711-74d5-4b4f-8308-bb35bfc5619d%2F2.png?table=block&id=19e679fb-0368-4a7d-81ff-db21145f190d&spaceId=2ee80eb6-7237-44d9-b9ed-be4959866b3b&width=2000&userId=8111ef9f-03d9-46db-a6bb-c48ce8127521&cache=v2
https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F50754711-74d5-4b4f-8308-bb35bfc5619d%2F2.png?table=block&id=19e679fb-0368-4a7d-81ff-db21145f190d&spaceId=2ee80eb6-7237-44d9-b9ed-be4959866b3b&width=2000&userId=8111ef9f-03d9-46db-a6bb-c48ce8127521&cache=v2
https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F50754711-74d5-4b4f-8308-bb35bfc5619d%2F2.png?table=block&id=19e679fb-0368-4a7d-81ff-db21145f190d&spaceId=2ee80eb6-7237-44d9-b9ed-be4959866b3b&width=2000&userId=8111ef9f-03d9-46db-a6bb-c48ce8127521&cache=v2
https://drive.google.com/drive/folders/1kbzqbSqdqTj7_WXi_xtavGRMU20VOaTy?usp=sharing
https://drive.google.com/drive/folders/1kbzqbSqdqTj7_WXi_xtavGRMU20VOaTy?usp=sharing
https://www.notion.so/AI-h-tr-n-ng-cao-t-nh-n-ng-nh-n-di-n-227d0d99077143a79ef59b59748e5308?pvs=4%2360314d44dac24f8eb7b34272b4277960
https://www.notion.so/AI-h-tr-n-ng-cao-t-nh-n-ng-nh-n-di-n-227d0d99077143a79ef59b59748e5308?pvs=4%2360314d44dac24f8eb7b34272b4277960
https://www.notion.so/AI-h-tr-n-ng-cao-t-nh-n-ng-nh-n-di-n-227d0d99077143a79ef59b59748e5308?pvs=4%2360314d44dac24f8eb7b34272b4277960
https://www.notion.so/AI-h-tr-n-ng-cao-t-nh-n-ng-nh-n-di-n-227d0d99077143a79ef59b59748e5308?pvs=4%239fa40cbc21f74aca8bf97ea0b1119a5f
https://www.notion.so/AI-h-tr-n-ng-cao-t-nh-n-ng-nh-n-di-n-227d0d99077143a79ef59b59748e5308?pvs=4%239fa40cbc21f74aca8bf97ea0b1119a5f
https://www.notion.so/AI-h-tr-n-ng-cao-t-nh-n-ng-nh-n-di-n-227d0d99077143a79ef59b59748e5308?pvs=4%239fa40cbc21f74aca8bf97ea0b1119a5f
https://github.com/AlexeyAB/darknet
https://learn.milestonesys.com/index.htm

Milestone Learning, 2023b. User manual. Accessed 15.05.2023. https://doc.mile-
stonesys.com/sc/pdf/2023r3/en-US/MilestoneXProtectSmartClient_UserMan-
ual_en-US.pdf.

Milestone System, 2024a. Product information. Accessed 25.02.2024.
https://www.milestonesys.com/products/software/xprotect/.

Milestone System, 2024b. XProctect Clients – Stay in control wherever you are.
Accessed 25.02.2024. https://www.milestonesys.com/products/software/video-
management-software/XProtect-Clients/.

Milestone System, 2023a. Configure user profile on server (administrator). Ac-
cessed 25.02.2024. https://doc.milestonesys.com/latest/en-US/add-ons/add-
on_access/mobc_configureuserprofil.htm.

Milestone System, 2023b. Ai Smart City Counter. Accessed 25.02.2024.
https://www.milestonesys.com/technology-partner-finder/imotion-analytics/ai-
smart-city-counter/.

Milestone System, 2022a. AI-based Abnormal Sound and Voice Analytics System.
Accessed 25.02.2024. https://www.milestonesys.com/it/technology-partner-
finder/ivs-technology-co.-ltd/ai-based-abnormal-sound-and-voice-analytics-sys-
tem/.

Milestone System, 2022b. Vezha Heatmap. Accessed 25.02.2024.
https://www.milestonesys.com/technology-partner-finder/incoresoft-llc/vezha-
heatmap/.

Milestone System, 2022c. AI-Smart Surveillance. Accessed 25.02.2024.
https://www.milestonesys.com/fr/technology-partner-finder/a.i.tech-srl/ai-
smart-surveillance/.

Milestone System, 2022d. AI-Smart Retail. Accessed 25.02.2024.
https://www.milestonesys.com/technology-partner-finder/a.i.tech-srl/ai-smart-
retail/.

Milestone System, 2022e. VTrack – Video Analysis for intelligent VS. Accessed
25.02.2024. https://www.milestonesys.com/technology-partner-finder/tech-
noaware-srl/vtrack---video-analysis-for-intelligent-vs/.

Naidu, S., February 21st, 2023. Chaos Testing – A Guide to Chaos Engineering. Ac-
cessed 25.11.2023. https://www.qatouch.com/blog/chaos-testing/.

Ng, A., 2023. Building an AI project, AI and society. Accessed 01.08.2023.
https://www.coursera.org/learn/ai-for-everyone.

https://doc.milestonesys.com/sc/pdf/2023r3/en-US/MilestoneXProtectSmartClient_UserManual_en-US.pdf
https://doc.milestonesys.com/sc/pdf/2023r3/en-US/MilestoneXProtectSmartClient_UserManual_en-US.pdf
https://doc.milestonesys.com/sc/pdf/2023r3/en-US/MilestoneXProtectSmartClient_UserManual_en-US.pdf
https://www.milestonesys.com/products/software/xprotect/
https://www.milestonesys.com/products/software/video-management-software/XProtect-Clients/
https://www.milestonesys.com/products/software/video-management-software/XProtect-Clients/
https://doc.milestonesys.com/latest/en-US/add-ons/add-on_access/mobc_configureuserprofil.htm
https://doc.milestonesys.com/latest/en-US/add-ons/add-on_access/mobc_configureuserprofil.htm
https://www.milestonesys.com/technology-partner-finder/imotion-analytics/ai-smart-city-counter/
https://www.milestonesys.com/technology-partner-finder/imotion-analytics/ai-smart-city-counter/
https://www.milestonesys.com/it/technology-partner-finder/ivs-technology-co.-ltd/ai-based-abnormal-sound-and-voice-analytics-system/
https://www.milestonesys.com/it/technology-partner-finder/ivs-technology-co.-ltd/ai-based-abnormal-sound-and-voice-analytics-system/
https://www.milestonesys.com/it/technology-partner-finder/ivs-technology-co.-ltd/ai-based-abnormal-sound-and-voice-analytics-system/
https://www.milestonesys.com/technology-partner-finder/incoresoft-llc/vezha-heatmap/
https://www.milestonesys.com/technology-partner-finder/incoresoft-llc/vezha-heatmap/
https://www.milestonesys.com/fr/technology-partner-finder/a.i.tech-srl/ai-smart-surveillance/
https://www.milestonesys.com/fr/technology-partner-finder/a.i.tech-srl/ai-smart-surveillance/
https://www.milestonesys.com/technology-partner-finder/a.i.tech-srl/ai-smart-retail/
https://www.milestonesys.com/technology-partner-finder/a.i.tech-srl/ai-smart-retail/
https://www.milestonesys.com/technology-partner-finder/technoaware-srl/vtrack---video-analysis-for-intelligent-vs/
https://www.milestonesys.com/technology-partner-finder/technoaware-srl/vtrack---video-analysis-for-intelligent-vs/
https://www.qatouch.com/blog/chaos-testing/
https://www.coursera.org/learn/ai-for-everyone

Nguyen, B., May 21st, 2023a. Scalability test with Pytest for ITD group. Accessed
07.09.2023. https://github.com/tripplen23/thesis/tree/main/scalability_test_ex-
ample.

Nguyen, B., August 2023b. Instruction for using Telegram Bot. Accessed
03.09.2023. https://github.com/tripplen23/thesis/blob/main/Intrusion%20warn-
ing/telegram_bot_instruction.md.

Nguyen, B., Le, K., July 2023c. ITD AI API Camera System Documentation English
Version. Accessed 01.08.2023. https://livepuv-my.sharepoint.com/:w:/g/per-
sonal/e2001352_edu_vamk_fi/Eax4uC-bhZZLrEjvmCRANUcB0Lbi3oeN-
Sdn7jfqfClUnQ.

Nguyen, B., August 2023d. Intrusion Warning project. Accessed 15.09.2023.
https://github.com/tripplen23/thesis/tree/main/Intrusion%20warning.

Nguyen, B., August 2023e. Pre-trained YOLOv3 model for human detection. Ac-
cessed 22.09.2023. https://drive.google.com/drive/fold-
ers/19Dx4WInLRKh5TnUkdTucFQ8gi0yB4D4a?usp=sharing.

Nguyen, B., 2023f. Folder structure for training AI model. Accessed 22.09.2023.
https://drive.google.com/drive/folders/1aUHAatJnt-
Giw8ntURGBxJGkLB8wkV2ut?usp=sharing.

Nguyen, B., 2023g. Computer vision Google Drive folder. Accessed 22.09.2023.
https://drive.google.com/drive/folders/1XakorSccF6LC8ve8AG-
psKdDVwQCe_X0A?usp=sharing.

Ngo, H., 2022, Intrusion Warning Project. Accessed 03.07.2023.
https://github.com/ngominhhaibk/Intrusion_Warning-.

Nist, 2023, Comprehensive testing. Accessed 30.11.2023.
https://csrc.nist.gov/glossary/term/comprehensive_testing.

Refaces, 2020. What is facial recognition used for. Accessed 04.12.2023.
https://recfaces.com/articles/what-is-facial-recognition-used-for.

Samsara, July 29th, 2021. What is an Intelligent Video Management System? Ac-
cessed 01.09.2023. https://www.samsara.com/guides/ivms/.

Schillerstrom, M., October 11th, 2022. The top chaos engineering tools. Accessed
05.09.2023. https://www.harness.io/blog/chaos-engineering-tools.

https://github.com/tripplen23/thesis/tree/main/scalability_test_example
https://github.com/tripplen23/thesis/tree/main/scalability_test_example
https://github.com/tripplen23/thesis/blob/main/Intrusion%20warning/telegram_bot_instruction.md
https://github.com/tripplen23/thesis/blob/main/Intrusion%20warning/telegram_bot_instruction.md
https://livepuv-my.sharepoint.com/:w:/g/personal/e2001352_edu_vamk_fi/Eax4uC-bhZZLrEjvmCRANUcB0Lbi3oeN-Sdn7jfqfClUnQ
https://livepuv-my.sharepoint.com/:w:/g/personal/e2001352_edu_vamk_fi/Eax4uC-bhZZLrEjvmCRANUcB0Lbi3oeN-Sdn7jfqfClUnQ
https://livepuv-my.sharepoint.com/:w:/g/personal/e2001352_edu_vamk_fi/Eax4uC-bhZZLrEjvmCRANUcB0Lbi3oeN-Sdn7jfqfClUnQ
https://github.com/tripplen23/thesis/tree/main/Intrusion%20warning
https://drive.google.com/drive/folders/19Dx4WInLRKh5TnUkdTucFQ8gi0yB4D4a?usp=sharing
https://drive.google.com/drive/folders/19Dx4WInLRKh5TnUkdTucFQ8gi0yB4D4a?usp=sharing
https://drive.google.com/drive/folders/1aUHAatJntGiw8ntURGBxJGkLB8wkV2ut?usp=sharing
https://drive.google.com/drive/folders/1aUHAatJntGiw8ntURGBxJGkLB8wkV2ut?usp=sharing
https://drive.google.com/drive/folders/1XakorSccF6LC8ve8AGpsKdDVwQCe_X0A?usp=sharing
https://drive.google.com/drive/folders/1XakorSccF6LC8ve8AGpsKdDVwQCe_X0A?usp=sharing
https://github.com/ngominhhaibk/Intrusion_Warning-
https://csrc.nist.gov/glossary/term/comprehensive_testing
https://recfaces.com/articles/what-is-facial-recognition-used-for
https://www.samsara.com/guides/ivms/
https://www.harness.io/blog/chaos-engineering-tools

