

Gagan Diwan

Adopting SwiftData: A Simplified
Approach to Persistence in Native
iOS Application

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication

Bachelor’s Thesis

6 May 2024

Abstract

Author: Gagan Diwan
Title: Adopting SwiftData: A Simplified Approach to Persistence

in Native iOS Application
Number of Pages: 53
Date: 6 May 2024

Degree: Bachelor of Engineering
Degree Programme: Information and Communication Technology
Professional Major: Software Development
Supervisors: Janne Salonen (Director of School)

iOS development is ever evolving and has kept pace with recent shift towards
declarative programming practices by introducing new frameworks such as SwiftUI
and SwiftData that enables persistence using declarative code.

This thesis explores the seamless integration of SwiftData, a persistent framework,
with SwiftUI applications. By leveraging Swift's native types for data
modeling, SwiftData bridges the gap between code and data definition.

The adoption process involves five steps: building models, importing SwiftData &
annotating model class, defining relationships and property attributes, setting model
container and finally, accessing model context object to work with data.

The adoption process is explored through three demo applications. A book
application demonstrates one-to-one relationships and core SwiftData adoption
steps. A messaging application showcases one-to-many relationships, while a
learning diary application discusses many-to-many relationships and the final
adoption step. Additionally, the thesis explores CRUD operations
(Create, Read, Update, Delete) alongside filtering, sorting, searching, and migration
strategies.

While SwiftData offers tight SwiftUI integration and features like automatic lightweight
migrations and custom migration support, the framework is still under
development. The current limitations include compatibility only with iOS 17 onwards
and a smaller API compared to Core Data. However, SwiftData's potential for the
future is promising as it continues to evolve.

This thesis concludes that a detailed evaluation of SwiftData's functionality based on
specific application needs is recommended before adopting it for new
projects. Further research opportunities include a comparative study between
SwiftData and Core Data and exploring SwiftData in networking environment for real-
world application implementation. These investigations will solidify SwiftData's
position as a powerful tool for building persistent enabled SwiftUI applications.

Keywords: SwiftData, SwiftUI, Swift, iOS, Persistence, Core Data

The originality of this thesis has been checked using Turnitin Originality Check
service.

Contents

1 Introduction 7

1.1 The Advent of Declarative Frameworks 7

2 Object Graph 8

3 SwiftData 9

3.1.1 Data Models 10
3.1.2 Data Types Supported by SwiftData 12
3.1.3 Model Container 13
3.1.4 Model Context 14

4 Thesis Delimitations 15

5 SwiftData in Practice 16

5.1 One-to-One Relationships 16
5.1.1 Making App persistence ready 17

5.2 One-To-Many relationship 23
5.3 Many-To-Many Relationships 25

5.3.1 Accessing Model Context 28
5.3.2 CRUD (Create) 29
5.3.3 CRUD (Read) 29
5.3.4 CRUD (Update) 31
5.3.5 CRUD (Delete) 32

5.4 Migration 32
5.5 Filter & Search 33

6 Conclusion & Future Research 35

References 37

Appendices

Appendix 1: Source code for Book App

Appendix 2: Source code for Messaging App

Appendix 3: Partial Source code for Learning Diary App

List of Abbreviations

App: Mobile application or App file in Xcode project.

OGM: Object Graph mapping. How objects in a program connects and

relates to other objects.

ORM: Object-relational mapping. The set of rules for mapping objects in a

programming language to records in a relational database, and vice

versa.

Model: Swift file that describes entities (objects of an application) in code.

Schema: Object Graph. Represents relationships and connections between

model entities.

7

1 Introduction

Native iOS development has kept pace and evolved with the advancement of

technology. Apple introduced its first iPhone on January 9, 2007 [1], and soon

after there was tremendous interest in developing applications for iOS devices.

Earlier iOS application development was done in Objective-C, a C-based

object-oriented programming language [2]. More precisely, mobile applications

were developed in Objective-C using Cocoa Touch an application development

environment that includes Objective-C runtime and frameworks [3].

As the complexity of applications increased Apple introduced the new multi-

paradigm programming language Swift in 2014 [4] which incorporates many

modern language features such as automatic memory management, type

inference, generics, first-class functions, etc [5].

Swift was designed for safety and includes numerous features such as

mandatory initialization of variables before usage, overflow checks on integers

and arrays, and so on. National Security Agency (NSA) of America in its latest

brief recommends developers adopt memory-safe language such as Swift [6].

1.1 The Advent of Declarative Frameworks

Complex application workflow and responsive user interfaces are symbol of

modern mobile applications. Industry has reacted to the requirement to simplify

application development and decrease time to market by introducing frameworks

that adopt declarative paradigms in application development such as React and

React Native.

Declarative programming focuses on the desired result “What”, without explicitly

specifying “How”, to achieve the result. Although Swift programming made iOS

8

programming safer and more manageable, it still relied on the imperative

paradigm of coding using the UIKIT framework.

SwiftUI framework introduced in 2019 is a framework that utilizes declarative UI

paradigms to create dynamic user interfaces for iOS and Mac devices. The

framework is interoperable with UIKit and other Apple APIs. Moving forward

apple’s roadmap is to transition application development toward SwiftUI and

gradually phase out UIKit.

Figure 1. Evolution of iOS frameworks.

Core Data is a mature persistence framework that has served as a main

persistence solution since the days of Objective-C. That brings it the advantage

of stability and time-tested functionality [7]. However, maturity also means the

importance of keeping backward compatibility, following old design patterns, and

thus introducing rigidity in future development. Therefore, its integration with

modern frameworks like SwiftUI is not seamless.

SwiftData is built on Core Data and takes advantage of recent developments in

Swift language functionality such as Macros. It is built from the ground up to

integrate with SwiftUI development practices.

2 Object Graph

Objects in an object-oriented programming are related to each other in simple

or complex networks. For instance, a collection of string is a simple graph,

Objective-C

 +

Cocoa Touch

 Swift

 +

 UIKit

 Swift

 +

 SwiftUI

9

whereas collection of big objects, that reference other big objects, with their own

views and navigations are called complex object graph. This grouping /network

of objects is known as object graphs [8].

Object graphs tend to become more complex as they evolve with the addition of

new objects as application grows due to usage or introduction of new

functionality [9]. For instance, a learning diary application could have tag object

and diary object. Each diary entry could be associated with multiple tags and

vice versa. Tag could keep track of all entries it is attached to. This would create

complex graph as the number of diary entries increases.

Apple has history of utilizing object graphs in their persistence framework. In

fact, core data is defined as an advance graph management framework that is

adept in storing and managing large volumes of data [10]. Since, SwiftData is

built on Core Data it leverages schema (object graph) to manage persistence.

OGM (object graph mapper) insulates developer from underlying mechanism

involved in managing relationships and persistence layer. This abstraction

enables developer to interact with persistence mechanism using Swift

programming language. Therefore, complexity of development decreases as

developers are exempted from writing custom persistence code for various

storage medium such as SQLite or XML.

The concept of OGM (Object Graph Mapping) shares similarities with ORM

(Object Relational Mapping). They both provide abstraction layer between

objects and underlying persistence mechanism, but they differ in their

implementation. Due to this similarity Core Data / SwiftData is also mistakenly

called ORM. The following section will elaborate on SwiftData.

3 SwiftData

SwiftData is a persistence framework that facilitates on-device data storage using

declarative code. SwiftData enables iOS developers to use regular Swift

language constructs to create and manage data models. As such, it offers familiar

10

workflow and syntax to SwiftUI developers thus creating a seamless application

development and integration experience [11].

SwiftData achieve this fluency by leveraging Swift language features such as

macros; a central concept in SwiftData. Macros are keywords that at compile time

modifies the code they are annotated to [12]. @Model being the most prominent

macros in SwiftData simplifies and reduces the amount of code that needs to be

written by a coder to make class properties persistent. Following sections will

briefly discuss key components that constitutes SwiftData.

3.1.1 Data Models

Data models are the visual representation of entities in an application. It outlines

the relationships between entities and the type of attributes that are stored in the

database [13].

Data models in essence represents the business logic of an application and

describe the data attributes and its relationships. It separates the views from the

data that defines business logic [14].

Defining model is the first step in developing SwiftData application. Unlike in Core

Data, in SwiftData applications, data models are normal classes and not created

in special editor. Figure 2 depicts data model class in swift and Figure 3 provides

snippet of SwiftData model class. Model class describes the type of data, entities

hold. In this simple model, Item entity has single property named timestamp of

type Date.

11

Figure 2. Example of Data Model

However, to persist data and turn data model into SwiftData model, SwiftData

needs additional instructions. This functionality is achieved by annotating data

models with the @Model macro [15][16]. As previously discussed, macros are a

cornerstone within the SwiftData framework. Macros inject additional code in the

data model class, describing for instance, what properties will

persist(@_persisitedProperty) and what won’t (@Transient). Figure 3 Depicts

SwiftData models with code auto injected by @Model macro. Furthermore,

SwiftData represents reference types as relationships and the type of schema

(object graph of the application) that gets generated is dependent on the

annotations applied to the properties. These annotations and their effect on

schema will be explored further in the thesis.

12

Figure 3. Example of SwiftData Model

3.1.2 Data Types Supported by SwiftData

In SwiftData computed properties are not stored as by definition computed

properties calculates (computes) rather than store data [17][18]. Except for

computed properties, SwiftData can persist properties of various types (primitive

and complex) as long as they conform to Codable protocol. Codable protocols

facilitates saving and transfer of data [19].

Table 1: Data types supported by SwiftData model.

Primitive Types Complex Types
Integers, Decimal, Double, Float Enums

Boolean Structs, Classes

String Arrays

Data (images/blobs)

Date

URL

UUID

13

3.1.3 Model Container

ModelContainer object acts as an intermediary between the in-memory transient

workspace of model objects (model contexts) and the underlying persistent

storage [20].

Model containers assume the responsibility of creation and management of

physical data persistence layer. It defines how the data is stored on device (in-

memory or on disk) and is responsible for maintaining the versioning, migration,

and graph separation of corresponding data model and storage.

As discussed earlier in Data model section, Schema (object graph

representation) is automatically created by SwiftData. Schema represents the

data model and encapsulates all changes made to the model. ModelContainer is

instantiated with Schema reference and act as conduit between the Schema and

its persistence. ModelContainer facilitates automated schema migrations to

ensure the persisted data remains compatible with evolving schema definitions.

Figure 3. API reference for initializing model container [20].

Figure 4. Conceptual overview of model container

14

ModelContainer persists data based on the Schema persistence behaviour

described in ModelConfiguration object. ModelConfiguration controls where the

data is stored, whether in-memory for transient data or on disk for persistent data.

ModelConfiguration can be further configured to enable read-only mode for

persisted data to prevent writes to sensitive data [21].

Figure 5. API reference for Model configuration initializer [21].

3.1.4 Model Context

ModelContext is an in-memory workspace in SwiftData. It serves as the central

location for all CRUD (Create, Read, Update, Delete) operations before they are

saved by ModelContainer. ModelContext is also responsible for keeping track of

changes to in-memory data and persists edits through ModelContainer [22].

Furthermore, model context is equipped to recognize the schema graph via root

model and perform necessary operations on related models without explicit

insertion of individual model in context. This is achieved due to integration

between model container and model context. As it is model container that

provides knowledge about schema and storage to model context. When Model

container is attached to a view it establishes a binding between key in

environment and the container’s mainContext. This binding enables Swift data

applications to perform queries using context on saved data. Figure 6 depicts

modelContext being accessed via @Enviornment property wrapper and figure 7

provides conceptual overview of SwiftData framework.

15

Figure 6. Accessing model context via @Environment property wrapper [22].

Figure 7. Conceptual view of SwiftData Framework.

4 Thesis Delimitations

The purpose of thesis is to explore SwiftData framework and how to adopt it in

native iOS application built using SwiftUI framework. As such, this thesis is not a

comparative analysis between Core Data and SwiftData.

SwiftData and SwiftUI are still evolving with inclusion of new API and deprecation

of older. Therefore, this thesis is not an exhaustive compilation of every

functionality provided by SwiftData. Instead, this thesis focuses on the core

concepts of CRUD (Create, Read, Update, Delete) and how it can be

implemented in SwiftData.

16

The thesis explores these topics by building three demo applications that each

represents most adopted entity relationships in an application, namely: one-to-

one relationship, one-to-many relationship and many-to-many relationship.

Furthermore, to avoid duplication of efforts, API functionality is demonstrated as

it is deemed relevant and as such not all functionalities will be demonstrated in

each application.

Finally, as this thesis is about SwiftData. SwiftUI functionality has been kept to

minimal. The interface is designed to take input, remove, and display list items

with basic navigation capabilities. Optimization of views and refactoring of SwiftUI

code has not been implemented in this thesis.

Subsequent sections will demonstrate practical aspects of SwiftData.

5 SwiftData in Practice

Following section will explore SwiftData via demo applications. First demo

application, a book application, explores One-To-One relationships and crucial

four out of five steps required in adopting SwiftData in an application. Second

application, a messaging application, explores One-To-Many relationships and

finally a learning diary application that explores remaining fifth step and Many-to-

Many relationships. Additionally, CRUD functionality along with Filter, Sort,

Search, and migration strategies are discussed in following sections.

5.1 One-to-One Relationships

Two entities are said to be in a one-to-one relationship when single record in

the first table is related to only one record in the second table and vice-versa

[23]. In the demo application, Book entity relates to ISBN entity via the isbn

property in the book. Each book record will be associated with only single isbn

record and each isbn will only be associated with single book record.

17

Figure 8. One-to-One Relationship Entity diagram

In the book application model, it is optional to include reference to isbn property

and vice versa. Optionals are donated by “?” in swift and it denotes whether a

property has value or not (nil). Therefore, a book item can be created without

providing corresponding isbn record and isbn record can be created without

associating it with the book record.

5.1.1 Making App persistence ready

First step is to build a data model for an application. Data models represents

application logic in code. This demo app consists of two models namely:

Book.swift and ISBN.swift. Models are kept simple to understand how SwiftData

handles one-to-one relationships.

18

Figure 9: Setting up SwiftData models.

Secondly, SwiftData library must be imported, and model class must be

annotated with @Model macro as depicted in figure 9. Although, structs are

widely used in iOS applications. Models are constructed using classes since

classes have inbuild identification features thereby making them suitable for

reuse across various views. Annotation of class with @Model enables SwiftData

to understand the schema (object graph) of the application and it monitors the

class for any changes to adjust schema accordingly. Furthermore, this class is

the interface against which the code is written to interact with data as

ModelContainer consumes this class Schema to setup database for persistence.

Thirdly, attributes that are linked to other models are annotated with

@Relationship macro.

Figure 10. Relationship macro parameters [24].

1

2

3

3

19

@Relationship macro informs SwiftData about how to manage annotated

property for relationship between models. It outlines the delete rules that are

enforced when records are deleted [25]. For instance, in Book application

presented above in Figure 9. cascade rule deletes any associated record in

another model along with the book record, ISBN record in this case. Other rules

are as follow:

Cascade Deletes related record in associated

model alongside

Deny Record cannot be deleted if it contains

reference to another model. For

instance, ice-cream factory record

cannot be deleted if there are

associated records of ice-creams it

produces in product model.

noAction No changes are made to related

models.

nullify It nullifies the related model’s

reference and swift garbage collector

(Automatic reference counting)

handles the memory reclaim. This is

default option if not explicitly selected.

Table 2. Delete rules of Relationship [25]

Inverse parameter is the keypath of the inverse property in the related model. It

is sufficient to define inverse parameter in one of the models. In fact, it is not

permitted to declare inverse relationship on both sides of the relationship. In Book

model isbn property is related to the book property in ISBN model. This is

SwiftData process of making bi-directional connection between models.

20

However, relationship can also be inferred implicitly if at least one of the

referencing properties is optional. For instance, a Book model can be defined

using non-nil isbn property and isbn model with optional book. In this instance,

SwiftData will infer relationships implicitly as depicted in figure 11.

Figure 11. Implicit Relationship in SwiftData

Additionally, properties can also be annotated using @Attribute macro to mark

property as unique or to further customize property behaviour. For instance,

@Attribute(.unique) in case of ISBN model, ensures that isbn record is unique

and attempt to re-use value results in UPSERT operation instead of INSERT as

depicted in figure 14. That is, record is updated with the new book object instead

of another object being created as depicted in app workflow diagram. This arises

from the fact that, If the insert collides with existing data, it automatically becomes

an update due to unique attribute and SwiftData updates the properties of the

existing data instead of creating new record [26].

Another commonly used @Attribute option is externalStorage used in case of

storage of data blobs such as images [26].

Finally, Model container is created in App file to make it available for the entire

lifecycle of an application as depicted in figure 12.

21

Figure 12. Model container modifier attached to Scene.

The model container provides the persistent storage for application model types.

It can be initialized to use the default settings as in this case by specifying

schemas (Book, ISBN), or it can be customized with configurations and migration

options. By attaching modelContainer modifier within scene or view code, the

application environment is configured to bind the new modelContext key to the

container’s mainContext property [22]. It is via this automatic binding

modelContext can track changes and persist edit through the ModelContainer.

At this stage, application can store data. However, data is not directly

communicated to container, model context works as a conduit to get input data

from views or to fetch saved data via container to display in view. Subsequent

sections will elaborate on model context and its usage. Figure 13 depicts four

steps required in adopting SwiftData in an application. Fifth step, accessing

model context is discussed under Many-to-Many relationship sub-chapter.

Figure 13. Four steps process to adopt SwiftData.

4

22

Figure 14. One-to-One relationship Book app workflow.

23

5.2 One-To-Many relationship

A one-to-many relationship is established between two entities when a single

record in the primary table can be linked to multiple records in the secondary

table. Conversely, each record within the secondary table can only be associated

with a single record in the primary table [23].

Figure 15. One-To-Many relationship Entity

In SwfitData this relationship is represented using Arrays for child properties

(figure 16). In above model (figure 15) a social user can have one or more

associated posts, however, a single post object is only associated with one user.

SwiftData can implicitly determine this relationship as long as one property is an

array and its corresponding property in other model is an optional type [27].

24

Figure 16. SwiftData models depicting One-To-Many relationship.

In the above model (figure 16), delete rule is nullify (default) as no rule is explicitly

provided. Therefore, SwiftData will delete user object without deleting associated

posts in corresponding model as depicted in figure 17.

Figure 17. Messaging App, workflow representing 1-to-Many relationship.

25

Furthermore, as the schema has relationship information, relational query can be

made using the parent model. Parent model (SocialUser) in this case has all the

necessary information to display post content described in child (UserPost)

model. Below (figure 18) is the code snippet demonstrating this relationship

query.

Figure 18. Accessing associated records in child model

5.3 Many-To-Many Relationships

In Many-to-Many relationship, a record in one model can be associated with one

or more record in corresponding model [23]. In this demo application, a diary

entry can be associated with multiple tag entries and a single tag can be attached

to many diary entries as depicted in figure 19.

Figure 19. Many-To-Many relationship entity

26

Many-to-Many relationship can be expressed in Swift in terms of Arrays on both

sides of the relationship. However, SwiftData doesn’t infer many-to-many

relationships implicitly. Therefore, inverse relationship must be explicitly

established on one side of the model as depicted in Figure 20.

Figure 20. SwiftData model with explicit inverse relationship.

27

Figure 21. Learning Diary app workflow representing Many-To-Many
relationships.

Figure 21 depicts app workflow of a demo application named learning diary. This

app is built to explore CRUD functionalities, basic sorting, filtering, search, and

light migrations of a data model. However, before data creation and storage, a

SwiftData app needs access to model context. As discussed in theoretical

section, context act as a workspace to perform CRUD operations and it

communicates with container to save data in persistence storage. This is the fifth

step in enabling SwiftData ready application as depicted in figure 22. Following

sections will elaborate on each of these topics.

28

5.3.1 Accessing Model Context

As discussed earlier, context is the workspace where data is accessed and

manipulated before it is saved in persistence storage via container. Attaching of

modelContainer modifier to view/Scene automatically provide us access to

container’s context via @Enviornment property wrapper. It can be accessed by

importing SwiftData library in respective app view and accessing environment

property as depicted in the figure 22 below.

Figure 22. Accessing Model Context

Besides the context, environment property also provide access to other useful

system wide environment keys such as dismiss, it dismisses the current

presentation and is widely used to return control in save and cancel action

buttons.

Figure 23. Accessing dismiss Environment Key path.

29

5.3.2 CRUD (Create)

Adding new entries to a database requires creating respective objects and calling

context’s insert method to save the object in persistent storage as depicted in

figure 24. SwiftData context’s has default autosave enabled, that is data is saved

on insert call without explicitly calling context’s save method. This example makes

explicit save call to catch errors in development.

In context of many-to-many relationship, at least one side of the relationship

should be initialized and inserted first. Although, each side can exist

independently in certain cases it could cause problems where there is tight

coupling [28]. Moreover, it is sufficient to insert one model object. SwiftData can

insert corresponding entries based on the attribute’s relationship. In this case, tag

object is populated via diary model entry.

Figure 24. Creating new record

5.3.3 CRUD (Read)

Reading items from database is straight forward process of using query macro to

fetch objects from the database as depicted in figure 25.

30

Figure 25. Query macro to fetch data.

Query macro also provide options for sorting and filtering. In above code snippet

(figure 25), Tag names are queried and presented in ascending order. Sorting

order can be defined in order parameter, reverse option organizes items in

descending order as depicted in figure 26.

Figure 26. Query macro with sorting in descending order.

Subsequently, “tags” variable can be iterated in a list view to display individual

record as shown in figure 27.

Figure 27. Iterating through Query variable in list view

Figure 28. provides conceptual overview of Query macro. Query loads the

records from database in a collection object that can be consumed in a view to

access and manipulate data in a database.

31

Figure 28. Query loads records from database.

5.3.4 CRUD (Update)

Updating a record is a multistep process of accessing an existing record, making

edits, and saving the result. This can be achieved by accessing internal backing

properties (_propertyName) of each of these state properties and initializing it

with passed data as depicted in figure 29.

Figure 29. Accessing backed properties in initializer

Thereafter, edits can be made in a view and context’s save method can be

invoked to save the data.

32

5.3.5 CRUD (Delete)

Deleting a record is straightforward. Delete action can be triggered from a view

for instance, by attaching an onDelete modifier to a list cell as depicted in figure

30.

Figure 30. onDelete modifier and delete function.

deleteItems function takes an IndexSet; a collection of integers representing

indexes of elements in another collection. It iterates through this IndexSet and

delete the item at a given index. It is not required to call save method of context

at the end of delete operation.

5.4 Migration

As the app development progresses, schema evolves as per the app

requirements. SwiftData adopts lightweight migration and custom migration

strategies for complex scenarios when changes are made to model schema.

In lightweight migration SwiftData automatically migrate persisted data to newer

schema without any intervention. Renaming an attribute, adding computed

properties or Transient properties doesn’t require formal versioning and Schema

migration plan as depicted in figure 31 [29].

However, in a production app it is recommended to create custom migration plan

as users may not perform timely updates and even for lightweight migrations,

SwiftData doesn’t offer automatic migrations with gaps in schema versions. For

instance, user data will not automatically migrate from version 1 to version 6 while

skipping all the versions in between.

33

Custom migration will entail providing schema versions and migration plan.

Developer must also provide logic to tackle scenarios in case of conflicts and

omissions. This thesis doesn’t cover custom migration plans.

Figure 31. Lightweight migration: Rename property, add computed property.
Transient macro doesn’t persist data.

5.5 Filter & Search

Besides Sorting, Query is capable of Filtering data as well. As can be observed

in figure 32, filter parameter expects a Predicate macro. Predicate is a logical

condition evaluating to true or false, used to test values in searching and filtering

operations [30].

The predicate in figure 32, returns only tags that are associated with at least one

diary entry. Therefore, when a new tag is created it will not display in filtered tag

list until it has been assigned to a diary entry.

34

Figure 32 Display tags with at least one diary entry.

In SwiftData search function is implemented by adding searchable modifier to a

view. It displays search field to make queries. Context’s fetch method is invoked

based on the input (searchKey), and it returns an array of models that match the

specified criteria as indicated in figure 33.

Figure 33 Searchable modifier and fetch method

35

6 Conclusion & Future Research

SwiftData integrates seamlessly with SwiftUI Application. The fact that models

are regular swift classes decreases the distance between code and data model

definition. As explored in the thesis, adopting SwiftData in an application is a 5-

step process. Four steps to enable SwiftData and fifth step is to manipulate and

interact with data. These five steps are illustrated below (figure 34):

Figure 34: Five step process to adopt SwiftData

However, due diligence is required while designing models. Although, third step

of defining relationships is not mandatory for some relationships for example, in

one-to-one and one-to-many relationship, it is recommended to explicitly declare

relationships to enhance readability and validate intent. Explicit declaration will

also assist in spotting logical errors and is mandatory for defining delete rules.

In addition, SwiftData provides easy mechanisms for searching, sorting, and

filtering data within an application. Query macro has in-built sort and filter

functions that returns collection of objects based on specified criteria. Likewise,

context’s fetch method is well equipped to integrate search functionality in an app.

Moreover, SwiftData provides unattended automatic lightweight migrations and

custom migrations for complex schema evolution.

Nevertheless, as the framework is evolving and since each app have its distinct

requirements, it is bound to encounter limitations of the framework. Although,

during the research and development of demo applications, no limitations were

encountered except for few related to SwiftUI.

36

One of the main limitations of SwiftData is that it only supports iOS 17 onwards

and most commercial application tends to maintain backward compatibility for at

least three previous versions. Hudson has listed few of the limitations in

comparison to Core Data [31].

Therefore, detailed evaluation of SwiftData's functionality based on specific

application needs is recommended before adopting it for new projects.

Furthermore, a comparative study of SwiftData and Core Data framework might

assist in decision making for companies considering adopting SwiftData for

newer projects, migrating from Core Data to SwiftData would assist companies

planning migration to SwiftData or custom migrations of complex data models in

SwiftData to further understand migrations in SwiftData. In Addition, a study

exploring SwiftData in networking environment is crucial for real-world production

application.

37

References

1 https://www.apple.com/newsroom/2007/01/09Apple-Reinvents-the-Phone-
with-iPhone/. Accessed on: 14/04/2024.

2 https://developer.apple.com/library/archive/documentation/Cocoa/Concept
ual/ProgrammingWithObjectiveC/Introduction/Introduction.html. Accessed
on: 14/04/2024.

3 https://developer.apple.com/library/archive/documentation/General/Conce
ptual/DevPedia-CocoaCore/Cocoa.html. Accessed on: 14/04/2024.

4 https://en.wikipedia.org/wiki/Swift_(programming_language)#:~:text=Swift
%20was%20first%20released%20in,version%206%2C%20released%20in
%202014.&text=Chris%20Lattner%2C%20Doug%20Gregor%2C%20John
,Joe%20Groff%2C%20and%20Apple%20Inc. Accessed on: 14/04/2024.

5 https://developer.apple.com/swift/. Accessed on: 14/04/2024.

6 https://media.defense.gov/2023/Apr/27/2003210083/-1/-
1/0/CSI_SOFTWARE_MEMORY_SAFETY_V1.1.PDF. Accessed on:
14/04/2024.

7 https://www.hackingwithswift.com/quick-start/swiftdata/swiftdata-vs-core-
data. Accessed on: 14/04/2024.

8 https://developer.apple.com/library/archive/documentation/General/Conce
ptual/DevPedia-CocoaCore/ObjectGraph.html. Accessed on: 14/04/2024.

9 https://learning.oreilly.com/library/view/objective-c-recipes-
a/9781430243717/Chapter09.html#s497-497. Accessed on: 3/05/2024.

10 https://developer.apple.com/library/archive/documentation/Cocoa/Concept
ual/CoreData/Performance.html. Accessed on: 16/04/2024.

11 https://developer.apple.com/videos/play/wwdc2023/10187/. Accessed on:
16/04/2024.

12 https://docs.swift.org/swift-book/documentation/the-swift-programming-
language/macros/. Accessed on: 17/04/2024.

13 https://www.ibm.com/topics/data-
modeling#:~:text=Data%20modeling%20is%20the%20process,between%
20data%20points%20and%20structures. Accessed on: 24/04/2024.

14 https://developer.apple.com/documentation/swiftui/managing-model-data-
in-your-app#. Accessed on: 24/04/2024.

15 https://developer.apple.com/tutorials/develop-in-swift/save-data. Accessed
on: 12/03/2024.

38

16 https://developer.apple.com/documentation/swiftdata/preserving-your-
apps-model-data-across-launches# . Accessed on: 17/03/2024.

17 https://docs.swift.org/swift-book/documentation/the-swift-programming-
language/properties/ .Accessed on: 20/04/2024.

18 https://stackoverflow.com/questions/77218060/swiftdata-filtering-query-
with-computed-property. Accessed on: 20/04/2024.

19 https://www.kodeco.com/books/swift-cookbook/v1.0/chapters/4-use-
codable-protocol-in-swift. Accessed on: 20/04/2024.

20 https://developer.apple.com/documentation/swiftdata/modelcontainer.
Accessed on: 20/03/2024.

21 https://developer.apple.com/documentation/swiftdata/modelconfiguration .
Accessed on: 20/03/2024.

22 https://developer.apple.com/documentation/swiftdata/modelcontext.
Accessed on: 20/03/2024.

23 https://learning.oreilly.com/library/view/database-design-
for/9780133122282/ch10.html#ch10lev1sec3. Accessed on: 27/04/2024.

24 https://developer.apple.com/documentation/swiftdata/relationship(_:deleter
ule:minimummodelcount:maximummodelcount:originalname:inverse:hash
modifier:). Accessed on: 26/03/2024.

25 https://developer.apple.com/documentation/swiftdata/schema/relationship/
deleterule-swift.enum. Accessed on: 26/03/2024.

26 https://developer.apple.com/documentation/swiftdata/schema/attribute/opti
on. Accessed on: 26/03/2024.

27 https://www.hackingwithswift.com/quick-start/swiftdata/how-to-create-one-
to-many-relationships. Accessed on: 28/03/2024.

28 https://www.hackingwithswift.com/quick-start/swiftdata/how-to-create-
many-to-many-relationships. Accessed on: 28/03/2024.

29 https://www.hackingwithswift.com/quick-start/swiftdata/lightweight-vs-
complex-migrations. Accessed on: 23/04/2024.

30 https://developer.apple.com/documentation/foundation/predicate.
Accessed on: 14/04/2024.

31 https://www.hackingwithswift.com/quick-start/swiftdata/what-is-
swiftdata#:~:text=One%20downside%20is%20that%20SwiftData,watchOS
%2010%2C%20and%20visionOS%201.0. Accessed on: 03/05/2024.

Appendix 1

1 (5)

Source Code for Book App

Below is project Structure of Book App.

Figure 1. Book App project structure

ContentView.Swift is the entry point of application. Models Group and view group

contains their respective models and views files.

Appendix 1

2 (5)

// AddBookView.swift
// ProjectX-1-1
//
// Created by Gagan on 28.4.2024.
//

import SwiftUI
import SwiftData

struct AddBookView: View {

 @Environment(\.modelContext) private var ctx
 @Environment(\.dismiss) private var dismiss

 @State private var name: String = ""
 @State private var isbn: Int?

 var body: some View {
 NavigationStack{
 Form{
 VStack {
 TextField("Book Name", text: $name)
 .textFieldStyle(.roundedBorder)
 TextField("ISBN", value: $isbn, format: .number)
 .keyboardType(.numberPad)
 .textFieldStyle(.roundedBorder)
 HStack{
 Button(role: .destructive) {
 dismiss()
 } label: {
 Text("Cancel")
 }
 Spacer()
 Button("Save"){
 if let isbn = isbn {
 let newISBN = ISBN(isbn: isbn)
 let newbook = Book(name: name,isbn: newISBN)
 ctx.insert(newbook)
 } else {
 let newbook = Book(name: name)
 ctx.insert(newbook)
 }

 do {
 try ctx.save()
 print("Data Saved")
 }catch{
 print(error.localizedDescription)
 }
 dismiss()

 }

 }
 .padding(.horizontal)

 }
 }

 }
 }
}

Appendix 1

3 (5)

//
// BookListView.swift
// ProjectX-1-1
//
// Created by Gagan on 28.4.2024.
//

import SwiftUI
import SwiftData

struct BookListView: View {

 @Environment(\.modelContext) private var ctx

 @Query(sort: \Book.name) private var books: [Book]

 @State private var showAddNew = false

 var body: some View {
 NavigationStack {
 List{
 ForEach(books){ book in
 BookSubView(book: book)
 }
 .onDelete(perform: deleteItems)

 }

 .navigationTitle("Books")
 .toolbar{
 ToolbarItem(placement: .confirmationAction){
 Button{
 showAddNew.toggle()

 }label: {
 Image(systemName: "plus")
 }
 }
 }
 .sheet(isPresented: $showAddNew, content: {
 AddBookView()
 .presentationDetents([.fraction(0.3)])
 })
 }
 }
 private func deleteItems(offsets: IndexSet) {
 withAnimation {
 for index in offsets {
 ctx.delete(books[index])
 }
 }
 }

}

#Preview {
 BookListView()
}

struct BookSubView: View {
 let book: Book
 var body: some View {
 HStack {
 Image(systemName: "book")
 VStack{
 Text(book.name)
 .font(.title)

Appendix 1

4 (5)

 .fontWeight(.black)
 if let isbn = book.isbn {
 Text("\(isbn.isbn)")
 .font(.footnote)
 } else {
 Image(systemName: "number")
 }
 }
 }
 }

}
//
// ISBNListView.swift
// ProjectX-1-1
//
// Created by Gagan on 28.4.2024.
//

import SwiftUI
import SwiftData

struct ISBNListView: View {
 @Query private var isbns:[ISBN]
 @Environment(\.modelContext) private var ctx

 var body: some View {
 NavigationStack{
 List{
 ForEach(isbns){ isbn in
 Text("\(isbn.isbn)")
 .fontWeight(.black)
 }
 .onDelete(perform: deleteItems)
 }
 }
 }
 private func deleteItems(offsets: IndexSet) {
 withAnimation {
 for index in offsets {
 ctx.delete(isbns[index])
 }
 }
 }
}

#Preview {
 ISBNListView()
}

// Book.swift
// ProjectX-1-1
//
// Created by Gagan on 28.4.2024.
//

import Foundation
import SwiftData

@Model
class Book {

 var name: String

 @Relationship(deleteRule: .cascade, inverse: \ISBN.book)
 var isbn: ISBN?

Appendix 1

5 (5)

 init(name: String, isbn: ISBN? = nil) {
 self.name = name
 self.isbn = isbn
 }

}
//
// ISBN.swift
// ProjectX-1-1
//
// Created by Gagan on 28.4.2024.
//

import Foundation
import SwiftData

@Model
class ISBN {
 @Attribute(.unique)
 var isbn: Int
 @Relationship(deleteRule: .cascade)
 var book: Book?

 init(isbn: Int, book: Book? = nil) {
 self.isbn = isbn
 self.book = book
 }

}
//
// ContentView.swift
// ProjectX-1-1
//
// Created by Gagan on 28.4.2024.
//

import SwiftUI

struct ContentView: View {
 var body: some View {
 TabView {
 BookListView()
 .tabItem {
 Label("Books", systemImage: "book")
 }
 ISBNListView()
 .tabItem {
 Label("ISBNs", systemImage: "number")
 }
 }
 }
}

#Preview {
 ContentView()
}

Appendix 2

1 (6)

Source Code for messaging App.

Below is project Structure of messaging App.

ContentView.swift is the entry point of application. Views and models groups

contains their respective files.

Appendix 2

2 (6)

//
// SocialUSer.swift
// ProjectX-1-M
//
// Created by Gagan on 29.4.2024.
//

import Foundation
import SwiftData

@Model
class SocialUser {
 var userId: UUID = UUID()
 var userName: String

 @Relationship(inverse: \UserPost.socialUser)
 var userPosts: [UserPost] = []

 init(userName: String) {

 self.userName = userName

 }

}
//
// UserPost.swift
// ProjectX-1-M
//
// Created by Gagan on 29.4.2024.
//

import SwiftUI
import SwiftData

@Model
class UserPost {

 var postID: UUID = UUID()
 var postText: String
 var dateCreated: Date = Date.now

 var socialUser: SocialUser?

 init(postText: String, dateCreated: Date = .now, socialUser: SocialUser?
= nil) {

 self.postText = postText
 self.dateCreated = dateCreated
 self.socialUser = socialUser
 }

}
//
// UserListModel.swift
// ProjectX-1-M
//
// Created by Gagan on 29.4.2024.
//

import SwiftUI
import SwiftData

struct UserListModel: View {

Appendix 2

3 (6)

 @Environment(\.modelContext)private var ctx
 @Query private var users: [SocialUser]
 @Query private var posts: [UserPost]
 @State private var showAdd = false

 var body: some View {
 NavigationStack {
 Group{

 List{
 ForEach(users){ user in

 Section("\(user.userName)"){
 ForEach(user.userPosts){post in
 Text(post.postText)
 .padding()
 .background(.blue)
 .foregroundStyle(.white)
 .clipShape(RoundedRectangle(cornerRadius:
19))
 .overlay(alignment: .bottomLeading){
 Image(systemName:
"arrowtriangle.down.fill")
 .font(.title)
 .rotationEffect(.degrees(45))
 .offset(x:-10,y:10)
 .foregroundStyle(.blue)
 }

 }

 }

 }
 .onDelete(perform: deleteItems)
 }
 .headerProminence(.increased)

 }
 .toolbar{
 ToolbarItem(placement: .topBarTrailing){
 Button{
 showAdd.toggle()
 }label: {
 Image(systemName: "plus")
 }
 }
 }
 .sheet(isPresented: $showAdd, content: {
 AddNewUser()
 .presentationDetents([.fraction(0.30)])
 })
 }

 }
 private func deleteItems(offsets: IndexSet) {
 withAnimation {
 for index in offsets {
 ctx.delete(users[index])
 }
 }
 }
 }

Appendix 2

4 (6)

#Preview {
 UserListModel()
}
//
// AddNewUser.swift
// ProjectX-1-M
//
// Created by Gagan on 29.4.2024.
//

import SwiftUI
import SwiftData

struct AddNewUser: View {

 @Environment(\.modelContext) private var ctx
 @Environment(\.dismiss) private var dismiss

 @State var userName: String = ""
 @State var postText: String = ""

 var body: some View {
 NavigationStack{
 Form{
 VStack{
 TextField("User Name", text: $userName)
 .textFieldStyle(.roundedBorder)

// TextField("Post", text:$postText)
// .textFieldStyle(.roundedBorder)
 }

 }
 .navigationTitle("New User")
 .toolbar{
 ToolbarItem(placement: .topBarTrailing){
 Button("Save"){
 let newUser = SocialUser(userName: userName)
// newUser.userPosts.append(UserPost(postText:
postText))
 ctx.insert(newUser)
 do {
 try ctx.save()
 }catch {
 print(error.localizedDescription)
 }
 dismiss()
 }
 }
 ToolbarItem(placement: .topBarLeading){
 Button("Cancel"){
 dismiss()
 }
 }

 }

 }
 }
}

#Preview {
 AddNewUser(userName: "User One")
}

Appendix 2

5 (6)

//
// AddPostView.swift
// ProjectX-1-M
//
// Created by Gagan on 29.4.2024.
//

import SwiftUI
import SwiftData

struct AddPostView: View {

 @Environment(\.modelContext) private var ctx
 @Environment(\.dismiss) private var dismiss

 @Query(sort: \SocialUser.userName) private var socialUsers: [SocialUser]
 @Query private var allPosts: [UserPost]
 @State var selectedUser: SocialUser?
 @State var message: String = ""

 var body: some View {
 NavigationStack{
 Form{
 Picker("Select User", selection: $selectedUser) {
 ForEach(socialUsers){ user in
 Text(user.userName)
 .tag(Optional(user))
 }
 }
 TextField("Message:", text: $message)
 HStack{
 Button("Save"){
 let msg = UserPost(postText: message)
 msg.socialUser = selectedUser
 ctx.insert(msg)
 dismiss()
 do {
 try ctx.save()
 }catch {
 print(error.localizedDescription)
 }
 }
 Button("Cancel", role: .destructive){
 dismiss()
 }
 }

 }
 }
 }
}

//#Preview {
// AddPostView()
//}
//
// PostListView.swift
// ProjectX-1-M
//
// Created by Gagan on 29.4.2024.
//

import SwiftUI

import SwiftData

struct PostListView: View {

Appendix 2

6 (6)

 @Environment(\.modelContext)private var ctx
 @Query private var posts: [UserPost]
 @State private var showAdd = false

 var body: some View {
 NavigationStack {
 Section("All Posts"){

 List{
 ForEach(posts){ post in

 Text(post.postText)

 }
 .onDelete(perform: deleteItems)
 }
 .toolbar{
 ToolbarItem(placement: .topBarTrailing){
 Button{
 showAdd.toggle()
 }label: {
 Image(systemName: "plus")
 }
 }
 }
 .sheet(isPresented: $showAdd, content: {
 AddPostView()
 .presentationDetents([.fraction(0.30)])
 })

 }
 .headerProminence(.increased)

 }

 }
 private func deleteItems(offsets: IndexSet) {
 withAnimation {
 for index in offsets {
 ctx.delete(posts[index])
 }
 }
 }
}

#Preview {
 PostListView()
}

Appendix 3

1 (4)

Source Code for Learning Diary App.

Below is project Structure of Learning Diary App.

Full source code is not shared here as this application will be developed further

into production ready app with inclusion of Artificial intelligence to assist in

learning. Models are shared as they are relevant for SwiftData and Schema will

change in final app. Furthermore, snippets of other relevant code is already

shared in the thesis.

Appendix 3

2 (4)

//
// Diary.swift
// ProjectX
//
// Created by Gagan on 27.4.2024.
//

import Foundation
import SwiftData

@Model
final class Diary {

 @Attribute(originalName:"noteText")
 var noteT: String

 var entryDate: Date

 @Relationship(deleteRule: .nullify, inverse: \Tag.diaries)
 var tags = [Tag]()

 init(noteText: String, entryDate: Date = .now) {
 self.noteT = noteText
 self.entryDate = entryDate
 }

}

//
// Tag.swift
// ProjectX
//
// Created by Gagan on 27.4.2024.
//

import Foundation
import SwiftData

@Model
class Tag {

 var name: String
 var diaries = [Diary]()

 @Transient
 var tagCounts: Bool{
 diaries.count > 0
 }

 init(name: String) {
 self.name = name
 }
}

//
// ProjectXApp.swift
// ProjectX
//
// Created by Gagan on 27.4.2024.
//

import SwiftUI
import SwiftData

Appendix 3

3 (4)

@main
struct ProjectXApp: App {
 var sharedModelContainer: ModelContainer = {
 let schema = Schema([
 Diary.self,Tag.self
])
 let modelConfiguration = ModelConfiguration(schema: schema,
isStoredInMemoryOnly: false)

 do {
 return try ModelContainer(for: schema, configurations:
[modelConfiguration])
 } catch {
 fatalError("Could not create ModelContainer: \(error)")
 }
 }()

 var body: some Scene {
 WindowGroup {
 ContentView()
 }
 .modelContainer(sharedModelContainer)
 }

 /*
 NavBar title color customization Adpated from :
 https://stackoverflow.com/questions/77664511/how-to-change-navigation-
title-color-in-swiftui
 Book: Mastering SwiftUI 5. Chapter 11, Page:268. Author: Simon Ng. 2023.
 Sourced on: 23/4/2024

 */
 init() {
 let navBarAppearance = UINavigationBarAppearance()
 navBarAppearance.largeTitleTextAttributes = [.foregroundColor:
UIColor(named: "NavigationBarTitle") ?? UIColor.magentoBar, .font:
UIFont(name: "ArialRoundedMTBold", size: 25)!]
 navBarAppearance.titleTextAttributes = [.foregroundColor:
UIColor(named: "NavigationBarTitle") ?? UIColor.magentoBar, .font:
UIFont(name: "ArialRoundedMTBold", size: 15)!]
 navBarAppearance.backgroundColor = .clear
 navBarAppearance.backgroundEffect = .none
 navBarAppearance.shadowColor = .clear

 UINavigationBar.appearance().standardAppearance = navBarAppearance
 UINavigationBar.appearance().scrollEdgeAppearance = navBarAppearance
 UINavigationBar.appearance().compactAppearance = navBarAppearance
 }

}
//
// ContentView.swift
// ProjectX
//
// Created by Gagan on 27.4.2024.
//

import SwiftUI

struct ContentView: View {
 var body: some View {
 TabView {
 DiaryListView()
 .tabItem{
 Label("Notes", systemImage: "pencil.and.list.clipboard")
 }

Appendix 3

4 (4)

 TagListView()
 .tabItem {
 Label("Tags", systemImage: "tag")
 }
 FileteredView()
 .tabItem{
 Label("Filtered", systemImage: "magnifyingglass")
 }
 }
 }
}

#Preview {
 ContentView()
}

