

Ville Ruti

OPTIMIZATION OF 3D MODELS
FOR MOBILE GAMES

Balancing quality and performance

Bachelor’s thesis

Bachelor of Culture and Arts

Game Design

2024

Degree title Bachelor of Culture and Arts
Author(s) Ville Ruti
Thesis title Optimization of 3D Models for Mobile Games:

Balancing Quality and Performance
Year 2024
Pages 40 pages, 5 pages of appendices
Supervisor(s) Panu Vuoristo

ABSTRACT

Mobile gaming has reached a new level of popularity in recent years with an

increasing number of people playing games on their smartphones daily. While

smartphones have advanced significantly in terms of technology with high-end

devices being able to handle visually stunning games, the majority of users still

own mid-range smartphones. Hence, the need for optimization is still relevant to

game developers to ensure performance on older devices and help their games

reach a wider audience.

This bachelor’s thesis focuses on researching and discussing the optimization of

3D assets for mobile platforms, striking a delicate balance between visual quality

and performance.

To conduct this study, an extensive literature review was done to explore 3D

asset optimization theory, and an interview with an industry professional was

conducted to gain perspectives on best practices adopted in the mobile gaming

industry. Furthermore, a hands-on approach was taken by creating assets for a

mobile game project and optimizing them using the knowledge gained from this

research. This involved applying the revealed optimization methods and

assessing their effectiveness in achieving the desired balance between quality

and performance.

In conclusion, the study uncovered strategies for improving the performance of

3D models designed for mobile game environments providing practical guidance

for developers.

Keywords: 3d, modeling, optimization, mobile games

CONTENTS

1 INTRODUCTION .. 5

2 3D MODELING ... 6

2.1 Definition ... 6

2.2 Stages Involved .. 6

3 MOBILE GAMES .. 7

3.1 Characteristics and Constraints .. 8

3.2 Importance of Optimization ... 9

4 OPTIMIZATION TECHNIQUES .. 10

4.1 Real-Time Rendering .. 10

4.2 Image-Based Lighting ... 11

4.3 Polygon Reduction .. 12

4.4 Level of Detail (LOD) .. 13

4.5 Textures, Atlases, and Compression .. 14

4.6 Reducing Mesh and Material ID Count ... 16

5 QUALITY VS. PERFORMANCE ... 17

5.1 Trade-off Analysis ... 17

5.2 Finding the Optimal Visual Appeal .. 17

5.3 Performance Metrics and Profiling Tools .. 19

6 IN PRACTICE ... 19

6.1 Background of the Project .. 20

6.2 Idea Generation and Reference Gathering ... 20

6.3 Modeling the Assets ... 21

6.3.1 Modeling the Piranha .. 22

6.3.2 Modeling the Barrel ... 26

6.4 Optimizing for Mobile Platform .. 27

6.5 Performance Comparison ... 29

7 FUTURE TRENDS ... 33

7.1 Advancements in Mobile Devices ... 34

7.2 Emerging Technologies and Implications ... 35

8 CONCLUSION .. 36

REFERENCES .. 37

LIST OF FIGURES

APPENDICES

 Appendix 1. Interview with Emilia Haanpää

 Appendix 2. Unity Rendering Statistics window information

5

1 INTRODUCTION

In the realm of gaming, where adventures unfold with a swipe of a finger and

come to life on the compact screen of a smartphone, the immense effort behind

the scenes often goes unnoticed. While captivating worlds are created, a crucial

challenge arises – how to balance breathtaking visuals with the constraints of

performance. This thesis attempts to uncover the art of striking a balance

between brilliance and flawless functionality aiming to expand the author's

knowledge of 3D modeling and game art optimization in mobile game

development.

Qualitative research methods serve as the foundation for this study. A thorough

review of existing literature, including articles, books, and online resources

provides the foundation, and an interview with an industry expert contribute a

perspective on practices in mobile game development. The combination of these

will result in a better understanding of the methods and tools available for

optimization as the research advances to the practical part of this thesis project

where the theory is put into practice.

A significant component of this research involves hands-on application as the

objective is to create optimized 3D models specifically designed to be used in a

mobile game project, exploring various optimization techniques and comparing

the results. The models and their textures will be produced with combinations of

software including Maya, Zbrush, and Substance Painter. They will then be

imported into Unity and tested using Unity’s native performance profiling tools.

As a result, this thesis will offer an exploration of optimizing 3D game assets

tailored for those seeking insights into different optimization methods, within the

realm of mobile game development.

6

2 3D MODELING

2.1 Definition

3D modeling is the process that uses specialized computer software to create a

representation of a physical object or environment in a simulated 3D space using

vertices that are connected forming edges and faces. An edge refers to a straight

line that connects two vertices in a mesh structure while a face is formed when a

minimum of three vertices are connected in a closed loop of edges. The most

common types of faces are triangles and quads. (Slick 2020.)

A 3D modeling pipeline, on the other hand, refers to a process or a series of

steps used to create a 3D model. This pipeline usually includes stages starting

from the idea and concept to the ultimate visualization of a 3D object or scene.

(Collins 2018.)

2.2 Stages Involved

According to Irsayd (2023), the creation of 3D models represents only the initial

stage of 3D asset workflow, comprising roughly 40% of the process. The majority

of the effort revolves around ensuring the assets can be seamlessly integrated

into the game and delivered to the players while keeping them usable, appealing,

and fun. The created assets need to hit technical specifications so that they do

not cause problems to the game’s performance. While adhering to these

specifications, the assets still need to look appealing to the player and meet the

visual standards of art direction. Lastly, the assets should be fun to the player,

but it can be a subjective aspect as it is ultimately up to the player to make that

judgment. (Irsayd 2023.)

The stages involved in the 3D asset pipeline can vary from studio to studio,

depending on the software tools used and the complexity of the project. An

interview with an industry professional (Appendix 1), conducted as a part of this

research, revealed that the typical 3D modeling pipeline generally includes the

stages seen in Figure 1.

7

Figure 1. Stages involved in typical 3D asset pipeline

The stages color-coded in yellow (1-6) are typically handled by the art team or an

artist and stages 7 to 9 often fall in the hands of the non-artists, such as

programmers or game engine experts. Larger projects and companies may have

sizable teams and a dedicated person for each stage of the pipeline whereas in

smaller companies with compact team sizes, one team member tends to work on

multiple stages. For instance, a 3D artist in a smaller team may handle most, if

not all the stages in the pipeline. While some linearity can be found in the

modeling pipeline, the 3D asset creation is rarely a linear process but is rather

bounced back and forth among the stages involved (Appendix 1).

3 MOBILE GAMES

A mobile game is a game that is created and optimized for portable devices, such

as smartphones or tablets. It can also refer to games played on any mobile

device, such as portable game consoles. However, in regular conversations, the

term typically refers to games played on smartphones. In recent years, mobile

games have surpassed PC/Console games in popularity and have continued as

the most popular gaming device among gamers (Google 2023), despite the

growth cooling down in 2023 in terms of downloads (Data.ai 2024).

8

Figure 2. Global gaming device breakdown (Google 2023)

Gaming market research conducted by VGM reveals that gamers most often play

games on Android phones (71%) and/or Windows PCs/laptops (54%). Among

respondents who play games on mobile and PC/console, players most often say

mobile is their main gaming device. (Google 2023.) The report clarifies the scale

of mobile games’ popularity in today’s gaming landscape.

3.1 Characteristics and Constraints

One of the main defining characteristics of mobile games is portability. They are

designed to be consumed as on-the-go entertainment, allowing users to play at

the time and place of their preference. To cater to the mobile gamer’s tendency

for a convenient gaming experience, many mobile games are structured for short

play sessions. According to Scolastici & Nolte (2013), the player should have a

satisfying gaming experience in three minutes or less. This is supported by the

data from GameAnalytics (2021) which points out, that the median session length

for mobile games is only 4 to 5 minutes.

The differences between mobile platforms and PC / Console are significant,

ranging from hardware capabilities, control schemes, business models, and

9

pricing policies. Where PC / Console games are designed to be played with a

keyboard and mouse or a controller, mobile games are commonly played by

interacting with a touchscreen interface of smartphones, utilizing gestures, taps,

swipes, and other touch-based inputs. Due to the limitations of a touchscreen,

mobile games often feature intuitive controls to ensure accessibility for a broad

audience.

The smaller screen of a mobile device can also be a constraint for certain types

of games, affecting the gaming experience and user interface (UI) design. The

small screen, along with mobile device hardware limitations, imposes constraints

on the complexity of the game and limits developers' ambitions to fabricate highly

detailed visual assets. These limitations or constraints can ultimately be seen as

positive, encouraging developers to optimize for efficient battery consumption.

3.2 Importance of Optimization

User experience (UX) in mobile gaming is pivotal in determining a game’s

success. It shapes how players perceive and interact with the game, affecting

their emotions, behaviors, and overall enjoyment. Lengthy loading times, lack of

performance, and unresponsive controls may have a negative impact on user

experience and player retention rate.

Despite the advancements in high-end mobile device technology, most users still

have average devices with limited capabilities. Given the popularity of the mobile

market and its diverse consumer base, it is good practice to target the broadest

audience possible. While a game may function flawlessly on a top-tier device it

may encounter issues on lower-end smartphones. These factors will therefore

dictate stylistic and technological choices the developer can make. By ensuring

the game’s smooth performance on a wide range of devices, game developers

can influence the success of their game and how it is received by the players.

This underscores the significance of optimization. (Scolastici & Nolte 2013.)

10

4 OPTIMIZATION TECHNIQUES

One of the main challenges of 3D modeling for mobile games is to optimize the

models and make the game run smoothly on different devices. Mobile devices

have limited processing power, memory, and battery life; thus, game developers

need to ensure the 3D models are not too complex or heavy. In this context

“heavy” means they have very detailed shapes, containing an excess number of

polygons for the processing power of mobile devices to handle, or come with

large texture maps that require an overflowing amount of draw calls (Gosch,

2016). Draw calls are lookups for assets, which happen every frame, and the

number of draw calls for an application depends on unique meshes and unique

materials in the scene. According to Unreal Engine Documentation (2023), a high

number of draw calls is the largest contributor to low graphical performance. To

create optimized 3D assets for mobile games, it is necessary to understand the

optimization techniques and how and when to utilize them, for instance, how to

reduce the polygon count, use textures and materials wisely, and how to avoid

unnecessary details. It is also crucial to know how to test the models on different

devices and platforms, and how to fix any errors or glitches.

4.1 Real-Time Rendering

One of the initial factors for consideration is the rendering. It is vital to decide

whether it is worthwhile to create a real-time rendered 3D game for mobile

platforms, or if a pre-rendered approach would be a more suitable solution. Pre-

rendering, which is also known as offline rendering, is defined as a type of

rendering where the rendered image or sequence of images (animation) is

displayed later. Whereas in real-time rendering, as the name implies, the

rendering calculations are done in a much faster timeframe. (Unity n.d.a.)

The main benefit of pre-rendering is the ability to incorporate complex graphic

models that demand substantial computing power into your game. This is

because pre-rendered 2D animation sequences or sprites do not require as much

processing power as rendering 3D objects in real time. However, creating a

11

lighting setup for a 3D scene containing dynamic 2D characters, for instance, can

be challenging as 2D images do not react to lights the same way 3D models do.

Garbett (2023) discusses that lighting is the most resource-hungry operation

found in 3D games. Although, the lighting information can be baked into a scene

to help streamline the rendering process. The process in question prepares the

lighting in advance, saves the result to disk as lighting data, and loads the data at

runtime, alleviating the need for players to wait for real-time rendering

calculations. Baking lighting information into the scene is recommended in Unity

Documentation (2023) for static objects that do not change at runtime, such as

scenery, to reduce the rendering costs. It must be acknowledged that dynamic

shadows cannot be created with baked light. This might look strange with

dynamic or moving objects.

4.2 Image-Based Lighting

Several lighting and optimization techniques take advantage of image data,

typically in the form of 2D texture maps. These are called image-based lighting

algorithms. Examples of these types of texture maps include a normal map,

height map, displacement map, and specular/roughness map. (Gregory 2018.)

To avoid large quantities of polygons in a 3D model, which would require a lot of

computing power, the detail information from a high-poly model can be baked into

a texture map. The texture map can then be used to provide the rendering engine

with a highly detailed description of a surface’s shape. By using a normal map for

instance, a simple flat surface can be made to look like it was constructed from

millions of polygons, as demonstrated in Figure 3. (Gregory 2018.)

12

Figure 3. Surface with and without a normal map (LearnOpenGL 2017)

Normal maps can also be created without modeling in 3D. They can be converted

from photo textures, created with node-based graphs, or even hand-painted.

Nevertheless, a normal map baked from a high-poly 3D mesh will often yield

better results than one sampled from a texture, given that information is being

rendered from a highly detailed surface. (Polycount 2018.)

4.3 Polygon Reduction

Retopology and polygon reduction are important parts of the optimization

process, as a considerable number of polygons correlates with a high demand for

processing power. Polygon reduction can be done manually or automatically

using mesh simplification algorithms. (Edesberg, 2023)

13

Figure 4. Example of polygon reduction: from 1.07 million triangles to 14 151 (Lesterbanks 2013)

For most static models the automatic algorithms perform the task adequately.

Characters and other assets that will be animated typically need to undergo a

semi-automated or manual retopologization to preserve the optimal topology and

edge flow. This is essential to ensure the mesh does not break when deformed.

Semi-automated algorithms let the artist create guides to have control over the

result, while the manual method gives the modeler total control over the topology

but takes the most amount of time. (Gosch 2016.)

4.4 Level of Detail (LOD)

Detail becomes increasingly important the closer the player gets to an object in a

video game, but there is no need for a great amount of fine detail when the

camera is distant from the same game object. The developer can set game

engine to automatically switch to a simpler mesh, that contains lower number of

triangles, as its distance from the camera increases. This optimization technique

is called Level of Detail, or LOD. (Garbett 2023.)

14

Figure 5. Camera at LOD 0 and LOD 1 level (Unity 2022)

The way LODs work is that the developers first create meshes with different

levels of detail along with LOD groups for the game objects and decide whether

to favor higher or lower LOD levels at threshold distances. Level of Detail then

can adjust or switch objects as they move into the distance to use simpler

meshes, along with simpler materials and shaders to enhance GPU performance.

A simpler mesh in LODs can get as low as a single sprite. (Unity documentation

2023.)

4.5 Textures, Atlases, and Compression

Many 3D games use several texture maps for their 3D models, similar to 2D

games having many small art assets used in the game individually. According to

Roy (2016), this may cause lag for the game, and it is recommended to merge

assets into one sheet. Such a texture sheet is called a “Texture Atlas”. Texture

atlases can save memory by limiting the number of draw calls, earning a boost in

performance. Software examples for this task include the commercial

TexturePacker, the open-source packer of libGDX, or the Sprite Packer included

with Unity3d. (Gosch 2016.)

15

Figure 6. Example of a texture atlas (Bernardi 2018)

Textures can be compressed, and most game engines come with a built-in

compression system. It is recommended by Unity to compress the textures using

Adaptive Scalable Texture Compression (ASTC) for both iOS and Android as the

compressed textures require less memory. The vast majority of games in

development are targeted to devices that support ASTC compression, with the

only exceptions being Android devices prior to 2016 and iOS devices older than

iPhone 5. (Unity n.d.b.)

Using texture mipmaps can provide a rendering performance boost in a game

with 3D models at varying distances from the camera. Texture mipmaps can be

conceptualized as Level of Detail (LODs) for textures where a mip or mip level is

a version of a texture with a specific resolution. A lower mip level is used for

distant objects and a higher mip for 3D objects closer to the camera. There are

also times when mipmaps are not beneficial and can increase the size of a

texture by 33%, on disk and in memory. Mipmaps can be created manually or

automatically. For instance, Unity can generate the maps automatically when

instructed to do so. (Unity documentation 2023.)

Unity also has a built-in system called Mipmap Streaming. When enabled, it

forces Unity to load only the needed mipmap levels to render the current camera

position, instead of loading all of them by default. This system trades a small

16

amount of CPU resources to potentially save a large amount of GPU memory.

(Unity Documentation 2023.)

Figure 7. Example of channel packing

As revealed by the interview conducted, textures can also be combined to save

memory and draw calls. This method is known as channel packing. For instance,

instead of having separate textures for diffuse color, specular color, and normal

maps, all this information can be packed into a single texture by storing each type

of data in different channels (RGBA) of the texture (Appendix 1).

4.6 Reducing Mesh and Material ID Count

To ensure smooth performance and to save processing power mesh count can

be reduced by combining as many objects as possible into one mesh. This can

either be done manually in a 3D modeling software or a game engine. In Unity, a

function called Mesh.CombineMeshes can be used to combine the desired

meshes into one. Unity then renders the combined mesh in a single draw call

instead of one draw call per mesh. Combining meshes is very useful for

performance optimization. (Unity Documentation 2023.)

17

Reducing the number of unique materials can also decrease the number of draw

calls. The simplest way to reduce the number of unique materials on a mesh is to

use a program like Substance Painter to integrate multiple materials into the

same texture, instead of creating a separate material for every material type in a

game engine. (Unreal Engine Documentation 2023.)

5 QUALITY VS. PERFORMANCE

As mobile games become more popular each year, the expectations for premium

graphics grow with their popularity. However, a visually stunning game can fail if

it does not line up with the processing capabilities of mobile devices. Balancing

between stunning aesthetics and smooth gameplay is a difficult task every mobile

game developer face with each of their projects. As mobile devices and their

hardware capabilities vary widely, finding the right balance for the broadest

possible audience becomes even more challenging.

5.1 Trade-off Analysis

Prioritizing quality graphics can enhance the overall gaming experience and help

with the immersion. Captivating visuals, vibrant textures, and quality animations

can also make the game stand out in the competitive marketplace and attract

more players. First impressions matter and for mobile games that typically is the

graphics (Smith 2014). However, high-quality graphics can be performance-

heavy, cause lagging, and other problems such as rapidly draining battery or

overheating mobile devices.

5.2 Finding the Optimal Visual Appeal

Now that the optimization of 3D assets is understood, the task ahead is finding a

balance between performance and quality, achieving optimal visual appeal.

18

Answering this complex question necessitates defining the target audience and

comprehending the mobile phone market and the devices used for mobile

gaming. Figure 8 illustrates the most sold mobile phones in the first half of 2023

and for comparison, the same statistics of the first half of 2022.

Figure 8. Globally most shipped smartphones in the first half of 2023 and 2022 (Omdia 2023)

Every smartphone on the list displayed in Figure 8 has great processing abilities

and is capable of running demanding rendering calculations. However, there are

still many smartphones in use that have been purchased years ago. According to

Kim Komado (Usatoday 2023), the average lifespan of smartphones is

approximately 2.5 years but varies among brands with Apple’s iPhone having the

longest average lifespan of 4-8 years. Based on this data, it can be argued that it

might not be a top priority to optimize for devices older than 8 years. This is a

consideration to remember when identifying a mobile game's target audience.

After the target audience has been determined, the only way to understand how

the game runs on their smartphones is to test it, ideally with similar devices and

in an identical environment. The tests can be done with or without profiling tools,

but without tools one must rely on what they see on screen, such as visual

stuttering or noticeable FPS drops. Profiling tools are essential for pinpointing

where the GPU’s time is spent. More sophisticated tools even display a list of

bottlenecks, which can be enormously useful for the developer. (O’Conor 2017.)

19

5.3 Performance Metrics and Profiling Tools

Mobile games, like any other game, require performance testing to identify

possible bottlenecks and other problem areas of the game. Identifying where the

performance problem is should be the starting point for any optimization (Unity

Documentation 2023). The required test type varies depending on the game's

nature, graphics, gameplay, and many other things. Typically, mobile game

performance tests are performed to determine how the game performs regarding

responsiveness, refresh rate, and stability under certain conditions. The typical

metrics that are examined are CPU load, loading time, memory consumption,

draw calls, and FPS. Based on the data gathered from these tests, game

developers can further improve the game by scaling down and optimizing heavy

graphical assets. (Helppi 2014.) These topics will be covered in greater detail

later in the practical part of the thesis where performance profiling is taken into

further inspection.

There are many profiling tools available for performance testing. Some of the

popular and widely used profiling tools include Unity Profiler, Unreal Engine

Profiler, Intel Graphics Performance Analyzers, Android Studio Profiler, and

Xcode Instruments. They offer different features, such as deep profiling, frame

debugger, memory snapshot, event graphs, stat commands, and can monitor and

analyze CPU, GPU, power, and system performance. In most cases, game

developers have the tendency to use the profiler that comes with their game

engine of choice. (Modjadji n.d.)

6 IN PRACTICE

The practical part of this thesis consists of modeling 3D assets for a mobile game

titled: Captain Blacktail’s Purrfect Plunder. The task was to model in-game items

and environmental assets as well as characters, and texture them while keeping

them optimized for mobile platforms. Since the purpose of this thesis is to act as

20

a guide for mobile game 3D asset creation and optimization, the whole process is

documented and annotated beginning from the idea generation and reference

gathering.

6.1 Background of the Project

The story of Captain Blacktail’s Purrfect Plunder centers around a pirate cat who

reclaims a long-lost treasure from menacing sea creatures, much to the

monsters’ displeasure. The player takes the role of Captain Blacktail, tasked with

safeguarding the ship and the reclaimed treasure from attacks of displeased sea

creatures. The game’s setting unfolds in a maritime environment and the theme

is along the lines of pirate cats and sea monsters.

The game can be characterized as a tower defense game with a twist, where

merging items (merge two) plays a major role in the game’s mechanics. Separate

research was conducted when the art style of the game was decided, and the

team agreed on stylized art that is popular amongst mobile games and the target

audience of the game.

6.2 Idea Generation and Reference Gathering

First, a list of graphical assets required for the game was written down. For the

purpose of this thesis, only two of the list’s assets were selected to be featured in

the research: one character and one in-game item. A piranha character was

chosen to be created and optimized for the game and for the in-game item, a

barrel was selected.

The concept development of the piranha character started with examining the

already existing characters of the game and by gathering images of real-life

piranhas as well as images of other artists’ drawings and 3D renders into a

reference board. The reference board also contained color, mood, and style

references to guide towards the desired look. A video by FlippedNormals (2020)

21

describes a reference board as a collection of images that help the artist visualize

and fill the gaps in knowledge, making the piece feel grounded to reality,

regardless of the art style. It can include pictures of anatomy, poses, textures,

and other parts of the asset (FlippedNormals 2020).

Figure 9. Piranha reference board

PureRef is a software made for this purpose; it was used to gather images of

piranhas and barrels into their respective reference boards. While the piranha

required a more thorough gathering of images, only a handful of pictures were

selected for the barrel’s reference board, focusing on the art style references and

texture reference images. The reference board for the piranha character can be

seen in Figure 9.

6.3 Modeling the Assets

The two assets are very different from each other resulting in a different approach

to the modeling. While the modeling of each asset began from a block-out, the

workflow for the piranha model was backward compared to the barrel. A high-

poly model was initially created for the piranha, from which the low-poly model

was derived. In the barrel’s case, however, the low-poly model was crafted first.

22

6.3.1 Modeling the Piranha

The modeling process started with Zbrush, which is a software made specifically

for digital sculpting. Zbrush was selected to be the starting point of the modeling

process because of the number of organic shapes the asset being modeled

contained. Organic shapes are typically easier and faster to create by sculpting

than by polygonal modeling in a 3D modeling software like Maya or Blender,

which was ultimately the reason for the choice of software and workflow.

A blockout, which can also be referred to foundation of a 3D project, is where the

modeling process begins. It is the stage where primary forms are laid out on

which the secondary and tertiary forms are built later. Blockout is often

considered the most important part of the process, which essentially means if the

foundation is not strong enough, no amount of detail or texture will later fix it.

(Follygon 2020.)

Large defining shapes were implemented first. Using a sphere as a starting point,

the basic shape of the fish's body was formed, and more shapes could be added.

By adding more primitive shapes as new sub-tools or separate meshes, the

character got eyes, fins, and flippers. Also, the jaw was added as a separate

mesh, so that it could be easily edited until the shape and silhouette were

pleasing to the eye. As the model was in its blockout stage, the number of

polygons was irrelevant from an optimization perspective. Nevertheless, the

polycount was deliberately kept low to prioritize focus on large shapes and

maintain smooth surfaces. As the secondary and tertiary forms were introduced,

the mesh was subdivided accordingly, and polygons were added. The basic

23

brushes of Zbrush were used to quickly shape the mesh, such as the move tool,

standard brush, clay buildup, damStandard, and IMM Primitives.

Figure 10. Early blockout of the Piranha character

After completing the blockout, the mesh was moved to Maya for manual

retopology. There were two main reasons to retopologize the mesh: to reduce the

polycount and to ensure the shape would deform without breaking. The former is

an optimization method introduced in Chapter 4.3 of this thesis. The objective

was to minimize the polycount to ensure smooth rendering on mobile devices,

even if multiple instances were present on the screen simultaneously. This

needed to be achieved without compromising the silhouette and the defining

shapes. The second reason, and the reason for manual retopology instead of

automatic, was to guarantee proper topology and edge flow, particularly because

it was anticipated that the character would be animated later.

The polycount was successfully reduced from 16,384 triangles to 1,464 triangles

which accounts for over 90% polygon reduction. After the polycount was reduced

to optimal levels, the model was ready for UV maps and textures. UV maps were

created manually in Maya and the model was then exported back to Zbrush for

sculpting of finer details, despite the model was going to be relatively small when

displayed on a screen of a mobile device.

24

To sculpt detail into the mesh, it needed to be given more polygons to work with.

To achieve the desired polycount, the model was subdivided several times, but

as can be seen in Figure 11, there are sections in the model where polygons are

not distributed evenly. The uneven and stretched topology makes sections, such

as the tail, hard to sculpt details on. To fix this, a function known as DynaMesh

can be used. It maintains a consistent polygon distribution and resolution across

the entire mesh making it an ideal tool to be used in the beginning and middle

stages of the sculpting (Zbrush n.d.). Regardless of the tool’s original intended

use, artists had found creative ways to utilize it in later stages as well, such as in

this case. With the help of DynaMesh, the desired mesh resolution was achieved,

and the rest of the details were sculpted into the mesh.

Figure 11. Low-poly mesh, 920 vertex points (left). High-poly mesh, 978 841 points (right)

As a result of subdividing and dynameshing, the mesh now consisted of

hundreds of thousands of polygons and was extremely high resolution. As

explained in Chapter 4.2, there is no need to use the high-poly mesh in a game

when details from the mesh can be baked into a texture map that can be

provided to a game engine. In this case, opting for texture map baking meant a

977,921-point difference in vertex count.

This was an excessive amount of resolution even for texture baking and had to

be reduced to ensure a smooth and less time-consuming baking process in

25

Substance Painter. To achieve this, the Decimation Master tool was used.

Decimation Master is a tool inside Zbrush designed for efficient polygon reduction

while keeping all the sculpted detail. It is a fast solution that automatically

optimizes the high polycount models, allowing the user to export their models into

other 3D software packages. (Zbrush n.d.) As a result of decimation, the vertex

count was reduced to 189,236 points which in this case equals 386,088 triangles.

The models were exported into Substance Painter where the detail information

from the high-poly model was transferred to the surface of the low-poly model in

the form of a texture map that mimics the appearance of the high-poly model.

This is what essentially texture baking is (FlippedNormals 2021). A normal map

was generated, along with additional maps, such as curvature and ambient

occlusion (AO) maps. However, only the normal map was intended for later use

in the game engine, while the other maps were created solely to assist with

creating the albedo map.

Figure 12. Normal, AO and Curvature maps displayed on the model

The texturing process will not be described here in detail as it does not directly

relate to optimization. As explained previously, the created texture maps were

used in Substance Painter to help with texturing the model procedurally. Working

with texture maps helped achieve the desired look without the need to spend a

considerable amount of time hand-painting the entire character. After the

texturing was completed the albedo- and normal maps were exported into the

game engine. A roughness map was also exported but was not used in the game

26

as the team had decided to use a certain art style and shaders for the in-game

characters that did not utilize roughness maps. However, the roughness map

would later be used outside the game engine, for instance, when images for key

art were rendered.

Figure 13. Final render of the Piranha character

Finally, the character was brought to life with an animation which was carried out

in Maya. The model underwent rigging and animation within the software, and the

resultant animation, coupled with the 3D model, was exported in FBX format from

Maya to Unity for integration.

6.3.2 Modeling the Barrel

The modeling process of a second game asset, the barrel, started with reference

gathering, similar to the approach taken with the previous 3D model. As stated

before, the modeling process differed from the previous one in such a way that

this time a low-poly version was done first. After the final low-poly version, which

would be used in the game as it is, was finished, the high-poly mesh was created.

As the polycount was kept low from the beginning, the model did not have to go

through the time-consuming process of retopology and polygon reduction, which

27

ultimately, along with the non-complexity of the model, was the reason for low

poly to high poly workflow.

Figure 14. Wireframe, the final textured model, and high poly mesh

The process from here on followed the same steps as were taken with the

piranha model: the high-poly mesh was created from the low-poly and the details

were sculpted into the high-poly mesh in Zbrush. The detail information was then

baked into texture maps and the 3d model was then textured in Substance

Painter.

6.4 Optimizing for Mobile Platform

Once the 3d models were ready to be implemented in the game engine, it was

necessary to go through which optimization methods could be applied and which

measures would be useful, as not all the optimizations would be beneficial in

terms of performance. Polygon reduction was already done as explained in the

previous chapters as well as baking details from a high-poly model into a normal

map. With these optimization methods, a significant amount of the polygon

budget was saved as can be seen in Table 1. These measures also had a major

impact on the file size which would later translate into build size as well as the

loading time of the game.

The texture map size was decided for each asset individually by considering how

close the camera can get to a particular object. The goal was to use the lowest

28

possible texture map size that passes the eye test to achieve the best

performance and the most compact file size. Keeping the texture resolution small

also saves memory and shortens loading time. The textures were also

compressed by using Unity’s built-in ASTC compression system to reduce

memory load.

Figure 15. Texture map quality comparison in Unity. 512 resolution (left) and 4k resolution (right)

When inspecting the textures up close, only minor differences could be seen

between the visual quality of 512 and 4k-resolution texture maps (Figure 15).

Considering the tiny size of the characters on screen, it would not make any

sense to use 4k textures in this case as the difference between the two would be

unnoticeable on a screen of mobile device. In fact, the texture resolution could be

lowered even further without noticeable loss in quality should there rise a need

for further optimization.

Given that the camera angle and view distance do not change throughout the

gameplay experience, there was no necessity for mipmaps. The same applies to

Level of Detail (LODs). Using mipmaps or LODs would only decrease

performance as all the texture maps would be loaded into the GPU memory and

29

separate 3D models would have to be created for every LOD set, which would

increase the build size. Not opting for mipmaps also made the mipmap streaming

redundant. These optimization methods have their use cases, but for this game,

the decision was made not to employ them as they would not have provided any

boost in performance.

6.5 Performance Comparison

To receive performance data from the newly created 3d models, a performance

test had to be carried out. The device used for the performance test was an

Android phone released 6 years ago (2017) at the time of writing. The game, in

general, is not very performance-heavy and ran seamlessly on a testing device at

a stable 60 frames per second (fps) with no noticeable stuttering or lag. To

assess the game's performance on older mobile devices, an Android phone from

2015 was introduced for testing. Unfortunately, the game did not run beyond the

main menu into the gameplay for unknown reasons as the author was

encountered by a black screen. As a result, a performance test could not be

conducted on the device. Nevertheless, it was a valuable experiment as it

brought a different issue to the surface for the team to address.

It could be concluded from the initial test that further optimization of the game or

the 3D assets was unnecessary, and the optimizations carried out so far were

sufficient as the game was running smoothly on the target device. Instead of

attempting to further optimize for better performance, it was decided that a new

testing environment would be created. In this environment, the assets would

intentionally be de-optimized to obtain comparative data on how the game would

perform without any optimizations.

The performance tests were carried out on a desktop computer using the Unity

game engine and its performance profiling tools for collecting performance data.

A desktop computer was selected as a platform for testing instead of an Android

device to save time by avoiding the need to create and transfer builds between

devices. It is also more convenient to receive reliable performance data from

Unity Performance Profiler than from Android performance profiling apps that are

30

not as sophisticated. It is worth noting that profiling a Unity game from within the

editor provides different results than profiling a Unity game from a build as the

editor itself will take up resources.

In Table 1, a comparison between two different 3D models and two different

texture maps is displayed, along with their properties. The unoptimized model in

this case refers to the decimated high-poly mesh which was previously used for

texture baking.

Table 1. 3D model and texture properties in comparison

Piranha 3D model Unoptimized Optimized

Vertices 189236 points 736 points

Polycount 386088 tris 1464 tris

Filesize 17508 kb 94 kb

Texture map (albedo)

Resolution 4096x4096 512x512

Filesize 4013 kb 171 kb

Texture compression High Quality (ASTC 4x4) Low Quality (ASTC 8x8)

Memory load 21.3 MB 85.4 KB

The game was tested initially with the optimized Piranha 3d model in a test level

created solely for this purpose. This level included the same lighting setup, game

assets, and functionality identical to an actual level from the game. The goal was

to identify any possible bottlenecks or areas in the asset that could be optimized

further. A screenshot of the game along with Unity’s statistics panel and

performance profiler window from the initial test run can be seen in Figure 16.

More information on how to read the Unity statistics window can be found in

Appendix 2.

31

Figure 16. Screenshot of the test environment

As can be seen in Figure 16, the statics panel’s Visible skinned meshes display

the number 6 although there are only three animated characters in the scene.

This means that each of the characters consisted of two skinned meshes instead

of one. This is not recommended in the Unity manual as it states that using two

skinned meshes instead of one can roughly double the rendering time for that

model, and there is rarely any practical benefit to using multiple skinned meshes

(Unity Documentation 2023). Closer inspection of the model revealed that the tail

of the fish had not been merged with rest of the model and needed to be

combined for better performance. Not only did the performance test reveal an

optimization defect with this particular model but it was also able to bring similar

problems to the author’s attention, and the team was able to save a significant

amount of draw calls by fixing similar issues with other 3d assets.

32

In the second test, the number of piranhas was increased to fifteen to see how

much FPS would drop should there be high amounts of these characters

simultaneously in the scene. The drop in FPS was quite significant, despite the

relatively small increase in the number of vertices. Results are displayed in

Figure 17.

Figure 17. Performance test with 15 optimized models

The same amount of unoptimized piranha models (15) was used in the third test

to see how they perform versus the optimized 3d models. As expected, the

frames per second dropped significantly from around 150 to 95, which equals a

37% drop, as the scene now had a lot more triangles and vertices to render.

Figure 18. Performance test with 15 unoptimized models

33

One aspect that is not obvious and cannot be seen from the statistics window is

how the larger texture size affected the results. The short answer is they did not

as the texture size does not directly affect FPS or rendering time if there is

enough memory to accommodate the textures. However, larger textures can

indirectly impact performance if they exceed the available GPU memory, causing

the system to swap data in and out of memory, which can result in a loss of

performance. Additionally, problems with textures can arise when simultaneous

texture transfers consume a significant portion of memory bandwidth. Such a

situation may appear to the player as a game freeze, typically for a few

milliseconds, as the shader waits for data to arrive. (O’Conor 2017.)

It can be concluded from these tests that keeping the 3d model’s vertex count low

is important to ensure the game runs smoothly. The surprising result was that

only a 37% drop in fps was seen, with a vertex count difference being over 70x.

Although the drop could be more significant in a mobile environment, it was

anticipated by the author that the impact of a such high vertex count would be

more drastic.

7 FUTURE TRENDS

The initial purpose of this thesis was to explore ways artists can optimize their 3D

models for mobile games. However, as the research progressed it became

evident that the significance of optimization from the artist's perspective is

relatively diminished due to the limited selection of tools at their disposal, and

much of the optimization falls into the hands of a graphics programmer or a

technical artist (O’Conor 2017). Matthew Spencer (2023) demonstrated the

potential of Unity and pushed the engine to its limits in his YouTube video. The

results were remarkable as he showcased the ability to render 2.7 million beveled

and animated cubes at a frame rate of 20 frames per second (fps), compared to

the initial engine performance of 8 fps for only 90,000 cubes. This technology is

available today; new technology is being developed and released daily and

mobile devices are getting increasingly more powerful. It can be anticipated that

certain optimization methods presented in this thesis, such as polygon reduction,

34

may become outdated relatively quickly and may not be required in the future

when technologies similar to Unreal Engine’s Nanite become increasingly

common.

7.1 Advancements in Mobile Devices

The progress in smartphone technology related to hardware, processing

capabilities, and graphics has significantly boosted the popularity of mobile

gaming, surpassing PC and console gaming as was highlighted in the 2023

Gaming Trends Report (Google 2023). The advancements have allowed game

developers to create visually stunning and immersive virtual worlds that run

seamlessly on portable smartphones that can fit into gamers’ pockets.

In addition to processing power and graphics capabilities, the display technology

of mobile devices has advanced significantly. The displays are getting better with

richer colors and higher refresh rates to give players a seamless and engaging

gaming experience. The introduction of touchscreens and multi-touch capabilities

has transformed the gaming landscape, on smartphones and tablets.

Touchscreens offer a direct way to interact with games while multi-touch support

allows for gestures and complex inputs expanding the range of gameplay

possibilities.

These technological advancements bring an increasing number of games to

mobile platforms as the demand increases along with the device capabilities.

Given these advancements, more mobile games have turned into 3D graphics,

as 8 of 10 most downloaded mobile games in 2023 were 3D games (Curry 2024).

The availability of high-speed internet connection, including 4G and 5G networks,

has facilitated multiplayer gaming also for mobile. This has encouraged game

studios to bring their existing, highly successful multiplayer games to the mobile

platform. These developers have long documented the promise of a cross-

platform approach that allows game studios to reach a wider audience of players.

A prime example is Fortnite (2017) and Call of Duty (2019) whose creators

35

recognized the power of the mobile market long ago and brought their game to

the mobile devices.

Continuation of the advancements can be anticipated as the development of

mobile devices shows no signs of slowing down especially now as the

emergence of artificial intelligence (AI) and machine learning is forecasted to

exponentially accelerate the progress of technology. This will inevitably affect

mobile gaming as well. (Gilday 2022.)

7.2 Emerging Technologies and Implications

The game industry is rapidly expanding as is the technology around it. One

notable technological advancement is the Nanite feature released with Unreal

Engine 5. Nanite is an extremely efficient way to render triangles on screen. It is

a LOD system that uses a feature called cluster culling that splits the 3d models

into clusters that adjust based on size on screen, distance, and resolution. This

allows users to implement 3d models with millions of triangles into the scene

without a heavy drop in performance, essentially eliminating the need for

developers to create low poly models from their high poly meshes. (Faucher

2021.)

A similar system for Unity is currently under development at the time of writing.

Unity developer Chris Kahler unveiled his upcoming mesh rendering system,

Nano Tech, which was inspired by Unreal Engine 5’s Nanite. While the Nanite is

not built to work on mobile processors and does not support Android, Nano Tech

is promised to be available on mobile devices as well, allowing also mobile game

developers to improve the productivity and quality of their work. (McKenzie 2022.)

These are great examples of evolving technology and ways game developers

keep searching for solutions to improve their workflows and save time spent on

certain tasks. Despite the evolving technology and increasingly better access to

optimization tools, it is crucial to remember that these tools are not here to

replace human labor but rather to streamline the process. As discussed with

Haanpää during the interview (Appendix 1), often, the sacrifices made to visual

36

quality are not worth the time saved by using automation tools, and far better

results can be achieved by applying certain optimizations manually.

8 CONCLUSION

This thesis set out to discover the optimization methods available for mobile

game developers and deepen the author's knowledge of 3d game asset

optimization. Those goals were successfully met and research questions, such as

how to optimize 3d models without sacrificing too much quality, were answered

through the literature review and the interview conducted. The literature review

revealed numerous optimization methods available, while the interview provided

insight into industry best practices and methods currently in use, enhancing the

author’s knowledge in the form of a very comprehensive information package.

The revealed optimization techniques were put into practice later in the practical

part of the thesis. With the help of performance profiling and studied theory, the

author was able to pinpoint some of the weaknesses in the game's and its 3d

model’s performance and address them properly using the discovered

optimization methods. Unfortunately, the performance testing was mostly limited

to the Unity and PC environment due to limited devices and software available for

the author. Nevertheless, the impact of the optimization measures can be

calculated with good accuracy and translated to mobile environments now that

the cause-and-effect relationship is known.

In summary, this thesis emphasizes the role of optimizing 3D models in the

development of mobile games. Through experimentation and analysis, this

research showcases how effective 3D model optimization can enhance a game’s

performance leading to improved user experience and optimal efficiency on

mobile devices. By exploring optimization techniques and striking a balance

between performance and visual quality, this study offers perspectives for

advancing 3D mobile game development as the developers continue to create

engaging gaming experiences that can be enjoyed worldwide right from players'

pockets.

37

REFERENCES

Activision. 2019. Call of Duty: Mobile. Video game. Santa Monica, California:
Activision.

Collins, T. 2018. 3D Modeling Pipeline. Blog. 22 June 2018. Available at:
https://medium.com/@homicidalnacho/3d-modelling-pipeline-bd9be7dba136
[Accessed 06 April 2024]

Curry, D. 2024. Most Popular Mobile Games (2024). Web page. Available at:
https://www.businessofapps.com/data/most-popular-mobile-games/ [Accessed 13
April 2024]

Data.ai. 2024. State of Mobile Gaming. PDF Document. Available at:
https://www.data.ai/en/go/state-of-mobile-gaming-2024 [Accessed 06 April 2024]

Edesberg, A. 2023. Optimizing your 3D models for better video game
performance. Web page. Available at: https://www.sloyd.ai/blog/optimizing-your-
3d-models-for-better-video-game-performance [Accessed 03 December 2023]

Epic Games. 2017. Fortnite. Video game. Cary, North Carolina: Epic Games.

Faucher, W. 2021. Nanite: Everything You Should Know [Unreal Engine 5].
Youtube. Video clip. 15 June 2021. Available at:
https://www.youtube.com/watch?v=P65cADzsP8Q [Accessed 28 January 2023]

FlippedNormals. 2020. The Right Way to Use Reference when Sculpting.
Youtube. Video clip. 12 November 2020. Available at:
https://www.youtube.com/watch?v=6QMtydVP4ZM&ab_channel=FlippedNormals
[Accessed 23 December 2023]

FlippedNormals. 2021. What is Texture Baking?. Youtube. Video clip. 11
February 2021. Available at: https://www.youtube.com/watch?v=9NfVyxHtKW0
[Accessed 08 April 2024]

Follygon. 2020. Why Blockout?. Youtube. Video clip. 20 February 2020. Available
at: https://www.youtube.com/watch?v=F7frk_7P00o&ab_channel=Follygon
[Accessed 23 December 2023]

Garbett, S. 2023. How to optimize 3D models for game development. Web page.
Available at: https://www.makeuseof.com/optimize-3d-models-for-game-
development-tips/ [Accessed 03 December 2023]

Gilday, T. 2022. Accelerated Future: An Exponential Lens on Emerging
Technology and Risk. General Dynamics Information Technology. Blog. 3 June
2022. Available at: https://www.gdit.com/perspectives/latest/accelerated-future-
emerging-technology-and-risk/ [Accessed 30 December 2023]

https://medium.com/@homicidalnacho/3d-modelling-pipeline-bd9be7dba136
https://www.businessofapps.com/data/most-popular-mobile-games/
https://www.data.ai/en/go/state-of-mobile-gaming-2024
https://www.sloyd.ai/blog/optimizing-your-3d-models-for-better-video-game-performance
https://www.sloyd.ai/blog/optimizing-your-3d-models-for-better-video-game-performance
https://www.youtube.com/watch?v=P65cADzsP8Q
https://www.youtube.com/watch?v=6QMtydVP4ZM&ab_channel=FlippedNormals
https://www.youtube.com/watch?v=9NfVyxHtKW0
https://www.youtube.com/watch?v=F7frk_7P00o&ab_channel=Follygon
https://www.makeuseof.com/optimize-3d-models-for-game-development-tips/
https://www.makeuseof.com/optimize-3d-models-for-game-development-tips/
https://www.gdit.com/perspectives/latest/accelerated-future-emerging-technology-and-risk/
https://www.gdit.com/perspectives/latest/accelerated-future-emerging-technology-and-risk/

38

Google. 2023. Gaming Trends Report. PDF Document. Available at:
https://services.google.com/fh/files/misc/gaming_market_insight_research.pdf
[Accessed 20 January 2024]

Gosch, P. 2016. 3D model optimization for mobile games. Web page. Available
at: https://www.saphirestudio.at/wptest/3d-model-optimization-for-mobile-devices/
[Accessed 03 December 2023]

Gregory, J. 2018. Game engine architecture. Boca Raton: Taylor & Francis, CRC
Press.

Helppi, V. 2014. Mobile Game Testing – Part #3: Graphics Performance Makes
UX Good or Bad. Blog. 10 September 2014. Available at:
https://smartbear.com/blog/mobile-game-testing-part-3-graphics-performance/
[Accessed 30 December 2023]

Irsyad, N. 2023. The 3D art pipeline: from asset modeling to in-game integration.
Web page. Available at: https://medium.com/mighty-bear-games/the-3d-art-
pipeline-from-asset-modelling-to-in-game-integration-51ed16586704 [Accessed
03 December 2023]

Komado, K. 2023. How long before a phone is outdated?. Web page. Available
at: https://eu.usatoday.com/story/tech/columnist/komando/2023/10/22/how-to-
find-smartphone-expiration-date/71255625007/ [Accessed 26 December 2023]

McKenzie, T. 2022. Nano Tech: An Upcoming Mesh Rendering System for Unity.
80lv. Blog. 9 June 2022. Available at: https://80.lv/articles/nano-tech-an-
upcoming-mesh-rendering-system-for-unity/ [Accessed 28 January 2023]

Modjadji, K. n.d. What are the best profiling tools to identify performance issues
in your game? LinkedIn post. Available at:
https://www.linkedin.com/advice/0/what-best-profiling-tools-identify-performance-
4ng5c#what-are-the-best-profiling-tools-for-your-game? [Accessed 29 December
2023]

O’Conor, K. 2017. GPU Performance for Game Artists. Web page. Available at:
https://www.makeuseof.com/optimize-3d-models-for-game-development-tips/
[Accessed 09 April 2024]

Roy, A. 2016. The Android game developer’s handbook. Birmingham: Packt
Publishing Ltd.

Scolastici, C. Nolte, D. 2013. Birmingham: Packt Publishing Ltd.

Slick, J. 2020. What is 3D modeling?. Web page. https://www.lifewire.com/what-
is-3d-modeling-2164 [Accessed 29 November 2023]

Smith, A. 2014. Why first impressions matter for Free-to-play (F2P) games
especially. Web page. Available at: https://www.gamedeveloper.com/design/why-

https://services.google.com/fh/files/misc/gaming_market_insight_research.pdf
https://www.saphirestudio.at/wptest/3d-model-optimization-for-mobile-devices/
https://smartbear.com/blog/mobile-game-testing-part-3-graphics-performance/
https://medium.com/mighty-bear-games/the-3d-art-pipeline-from-asset-modelling-to-in-game-integration-51ed16586704
https://medium.com/mighty-bear-games/the-3d-art-pipeline-from-asset-modelling-to-in-game-integration-51ed16586704
https://eu.usatoday.com/story/tech/columnist/komando/2023/10/22/how-to-find-smartphone-expiration-date/71255625007/
https://eu.usatoday.com/story/tech/columnist/komando/2023/10/22/how-to-find-smartphone-expiration-date/71255625007/
https://80.lv/articles/nano-tech-an-upcoming-mesh-rendering-system-for-unity/
https://80.lv/articles/nano-tech-an-upcoming-mesh-rendering-system-for-unity/
https://www.linkedin.com/advice/0/what-best-profiling-tools-identify-performance-4ng5c#what-are-the-best-profiling-tools-for-your-game
https://www.linkedin.com/advice/0/what-best-profiling-tools-identify-performance-4ng5c#what-are-the-best-profiling-tools-for-your-game
https://www.makeuseof.com/optimize-3d-models-for-game-development-tips/
https://www.lifewire.com/what-is-3d-modeling-2164
https://www.lifewire.com/what-is-3d-modeling-2164
https://www.gamedeveloper.com/design/why-first-impressions-matter-for-free-to-play-f2p-games-especially

39

first-impressions-matter-for-free-to-play-f2p-games-especially [Accessed 03
December 2023]

Spencer, M. 2023. How To Render 2 Million Objects At 120 FPS. Youtube. Video
clip. 26 March 2023. Available at:
https://www.youtube.com/watch?v=6mNj3M1il_c [Accessed 29 December 2023]

Unity. n.d.a. What is real-time rendering in 3D and how does it work?. Web page.
Available at: https://unity.com/how-to/real-time-rendering-3d [Accessed 07
December 2023]

Unity. n.d.b. Mobile optimization tips for technical artists - Part I. Web page.
Available at: https://unity.com/how-to/mobile-game-optimization-tips-part-1
[Accessed 29 December 2023]

Unity Documentation. 2023. Web page. Available at: https://docs.unity3d.com/
[Accessed 10 December 2023]

Zbrush Documentation. n.d. Web page. Available at:
https://docs.pixologic.com/user-guide/ [Accessed 13 January 2024]

https://www.gamedeveloper.com/design/why-first-impressions-matter-for-free-to-play-f2p-games-especially
https://www.youtube.com/watch?v=6mNj3M1il_c
https://unity.com/how-to/real-time-rendering-3d
https://unity.com/how-to/mobile-game-optimization-tips-part-1
https://docs.unity3d.com/
https://docs.pixologic.com/user-guide/

40

LIST OF FIGURES

Figure 1. Stages involved in typical 3D asset pipeline ... 7

Figure 2. Global gaming device breakdown (Google 2023) 8

Figure 3. Surface with and without a normal map (LearnOpenGL 2017) 12

Figure 4. Example of polygon reduction: from 1.07 million triangles to 14 151

(Lesterbanks 2013) ... 13

Figure 5. Camera at LOD 0 and LOD 1 level (Unity 2022) 14

Figure 6. Example of a texture atlas (Bernardi 2018) .. 15

Figure 7. Example of channel packing .. 16

Figure 8. Globally most shipped smartphones in the first half of 2023 and 2022

(Omdia 2023) .. 18

Figure 9. Piranha reference board ... 21

Figure 10. Early blockout of the Piranha character .. 23

Figure 11. Low-poly mesh, 920 vertex points (left). High-poly mesh, 978 841

points (right) .. 24

Figure 12. Normal, AO and Curvature maps displayed on the model 25

Figure 13. Final render of the Piranha character ... 26

Figure 14. Wireframe, the final textured model, and high poly mesh 27

Figure 15. Texture map quality comparison in Unity. 512 resolution (left) and 4k

resolution (right) .. 28

Figure 16. Screenshot of the test environment .. 31

Figure 17. Performance test with 15 optimized models 32

Figure 18. Performance test with 15 unoptimized models 32

LIST OF TABLES

Table 1. 3D model and texture properties in comparison 30

Appendix 1/1

INTERVIEW 24.1.2024 - EMILIA HAANPÄÄ

1. Name and what do you do for a living? What is your background?

I’m Emilia, a Senior 3D Artist and I’ve been in the games industry for about 7
years. My upper secondary education is in 3d modeling & animation. Later I went
to Xamk to study Game Design and graduated in 2018.

2. What kind of games have you been involved in making?

I've been working on a mobile game called Redecor for several years, almost
from the very beginning of the project when I started in my current company as a
3D Artist. The game has been released for Android, iOS, and web server
platforms. I’ve previously worked as an artist in smaller companies and as a 3D
artist in several VR projects. My current company was a start-up as well when I
started on it, and it has grown since.

3. Do you use Unity, Unreal Engine, or any other proprietary game engine?

We don't use Unity or Unreal Engine, we have our in-house game engine, but I
am an experienced Unity user and have some experience with Unreal Engine as
well.

4. Can you tell me about the 3d modeling pipeline, what are the steps
involved? Are these steps usually clearly divided to whom each step
belongs? For example, artist’s / programmer’s task.

1. Conceptualization and ideation – The request often come from outside,
whether it’s a monetization expert, programmer, game designer, or
someone else, that we need such and such an asset for the game and it
should be of a certain type and have a certain purpose. Someone gives a
framework from which to start developing.

2. Sketch, suggestion – There are different ways of sketching, some people
like to gather a bunch of pictures from Pinterest and present their idea of
the 3d model they will be creating, and others like to sketch their ideas on
paper. The method doesn't matter if the idea and thoughts are conveyed
clearly.

3. 3D modeling – Either a high-poly or low-poly model is made first
depending on what we are creating, but either way both are being created
most of the time. The order doesn’t really matter.

Appendix 1/2

4. UV mapping and texturing – Once the low-poly is done, we move to UVs
and texturing.

5. Export and integration – 3D models and textures are exported to the
game engine.

6. Testing and iteration – The artist tests that everything works as it should
and looks good on the screen of the mobile device. This must be done by
the artist who created the asset.

7. Shaders and shader optimization – This is usually done by the dev side.
The artist can ask the coders if they need a specific type of shader. The
artist usually doesn't make the shaders or optimize them themselves, but
someone else does, such as a tech artist or programmer.

8. Performance testing – Someone (other than the Artist) does performance
testing for the newly created asset and if it needs more optimization, a
lower vertex count for instance, it comes back to the artist.

9. Finishing and publishing – Once the asset is game-ready and optimized
it can be published and integrated into the game.

5. When creating a mobile game, how do you determine for what and how
old devices will the game be optimized for?

Device optimization is mainly based on data collected from the Play Store and
Apple Store. For each game downloader, the store collects information such as
age, gender, and the device on which the game was downloaded. This data is
used to make optimization decisions. For example, if some less common devices
or operating system versions cause compatibility problems, it is necessary to
weigh up whether it makes sense to spend time on solving these problems.
Especially if a great amount of work is required to optimize for or fix the issues
occurring with these devices.

6. How do you optimize 3d models in your company? What optimization
methods are used?

The programmers know the game and its performance and constraints best, so
that's where the criteria come from, and those are what we usually try to follow.
These criteria may include file format (obj/fbx), maximum file size, texture size,
texture file format (jpg/png), which texture maps to use, and what vertex count to
aim for. However, the artist's primary task is to focus on making high-quality,
good-looking assets, with performance being a secondary consideration, without
losing sight of it. A balance between the two is constantly being sought, and this
strongly involves testing 3d models in a game environment. As for optimization
methods, LODs, for example, are not useful in our game.

Appendix 1/3

7. At what point in the pipeline do most of the optimizations of 3d assets
take place? And by whom?

The artist optimizes as much as they can. This can be for example reducing the
number of vertices or optimizing textures. The programmers also do their part.
For instance, the programmers may have built a compressor through which
textures and 3d models are passed, which then compresses the textures for
better performance. Developers can also control the amount of content players
download at once when playing the game for a smoother experience.

8. What is done with textures? How do you determine the size of the
textures? Do you use Texture Atlases?

There are specifications for textures that you should stick to, e.g. no texture maps
larger than 2048px, but the rules can be broken and deviated from if an asset
requires it or if it is otherwise well justified. Generally, no more than three texture
maps are used, e.g. diffuse, normal, and roughness. Maps can also be combined
to save memory and draw calls, such as combining roughness and metalness
maps into a single map. Atlases are not used that much, as they wouldn’t boost
our game’s performance that much. But they have their use cases too. For
example, if there is a lot of vegetation in the game, they can be put on the same
texture atlas. Also, trim sheets can be useful in some cases.

Textures are usually compressed and, partly because of that, testing them on a
mobile screen is extremely important. They may look very different on a phone
screen than on a computer screen, especially when compressed. In particular,
roughness and metalness maps can behave erratically.

9. How do you test 3d models and their performance?

Artists do not usually test the performance of 3d models or do performance
profiling unless it's an indie studio, where game developers often have to wear
many hats due to the small size of their team. This is often done by someone
else, such as a programmer, so I can't really answer that. Quality testing is done
by artists all the time, though, and as early as possible. The artist makes sure
that the assets they build look good and fit the environment it is intended for.
There are often situations where I feel I've done everything the 3d model I'm
working on is now as optimized as it can be, but it still comes back to my desk.
They tell me that my model didn’t pass the performance test and I should still be
able to tweak the number of vertices somewhere, or that the textures are too
large, and something needs to be done about them. Usually, they are right after
all, and I’ll find a way to optimize the 3d model further.

Appendix 2

THE RENDERING STATISTICS WINDOW

Statistic Description

FPS The current number of frames Unity is able to draw per
second.

CPU Main: The total amount of time taken to process one
frame. This number includes the time Unity takes to
process the frame update of your application and the
time Unity takes in the Editor to update the Scene view,
other Editor Windows, or process Editor-only tasks.
Render: The amount of time taken to render one
frame. This number includes the time Unity takes to
process the frame update for the Game view; it doesn’t
include the time Unity takes in the Editor.

Batches The total number of draw call batches Unity processes
during a frame. This number includes static, dynamic,
and instance batches.

Saved by
batching

The number of draw calls Unity combined into batches.
To ensure good draw call batching, share materials
between different GameObjects
 as often as possible. Batches group draw calls with the
same render state, so changing the material causes
Unity to create a new batch.

Tris The number of triangles Unity processes during a
frame. This value is important when optimizing for low-
end hardware.

Verts The number of vertices Unity processes during a
frame. This value is important when optimizing for low-
end hardware.

Screen The resolution of the screen, along with the amount of
memory the screen uses.

SetPass The number of times Unity switches which shader
 pass it uses to render GameObjects during a frame. A
shader might contain several shader passes and each
pass renders GameObjects differently. Each pass
requires Unity to bind a new shader, which might
introduce CPU overhead.

Shadow
casters

The number of GameObjects in the frame that cast
shadows.

Statistic Description

Visible
skinned
meshes

The number of Skinned Mesh Renderers in the frame.

Animation
components
playing

The number of Animation components playing during
the frame.

Animator
components
 playing

The number of Animator components playing during
the frame.

The Rendering Statistics window in Unity (Unity Documentation 2023)

