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In scientific institutions, the pathway to digital transformation and IoT adoption 
requires laboratory automation as well as informatics. Connectivity of instruments 
is key to both, and hence it has become a crucial avenue in the product roadmaps 
of instrumentation manufacturers in life sciences. This thesis focuses on the 
market of manual widefield microscopes. These imaging systems are currently 
being developed to perform multiple smart functions and to be individually 
connected to cloud services. In general, connected instruments allow for 
scientists to remotely access their data in real time, share their results, 
collaborate with peers, and get prompt access to analysis and support tools 
provided by vendors. However, despite these potential benefits, the adoption of 
connected manual microscopes remains in general limited. In addition, not a 
single manufacturer has emerged as the clear leader in this space.  
The overall aim of this investigation is to gain a better understanding of the 
variables impacting adoption of connected microscopes, at the user level. A 
hypothetical model, using the general framework of the Technology Adoption 
Model (TAM), is proposed, and quantitatively tested here. The dimensions of 
perceived usefulness, perceived ease of use, perceived safety and perceived 
responsiveness are studied in relation with the intention to use connected 
microscopes. Statistically significant positive correlations are demonstrated to 
exist between either the perceived usefulness or the perceived safety and the 
intention to use connected instruments. Positive correlations are also observed 
between each of the two remaining dimensions (perceived ease of use and 
perceived responsiveness) and the intention to use, but they are not statistically 
significant. For these two cases it could be argued that the survey applied here 
is unable to capture the nuances associated to these constructs. Finally, an 
additional exploratory analysis allows to tentatively conclude that age and years 
of experience of the scientists are negatively correlated with their intention to use 
connected microscopes, albeit not in a statistically significant manner. 
Given the increasing rate at which connected instruments are being developed, 
the outcome of this investigation is relevant to shed light into drivers, patterns, 
and concerns, as well as to identify individual barriers impeding adoption of these 
instruments amongst the community of scientific users. Thus far, to the best of 
our knowledge, no other study has specifically addressed factors influencing 
adoption of connected manual widefield microscopes, at the user level. 

Keywords: Technology Adoption Model, connected microscopes, user adoption, 
intention to use, perceived usefulness, perceived safety.  
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1 INTRODUCTION  

The term ‘Internet of Things’ (IoT) was coined on the late 1990’s to refer to the 

interconnectedness of physical objects, which could communicate to each other 

and through the internet (Gill, 2018). Since then, the IoT has grown to include an 

overwhelming number of so-called smart connected devices that have become 

essential for us humans to be connected to each other and to our workplaces. 

The IoT market size was estimated to be worth  $ 309 Billions in 2020 with 25% 

CAGR forecasted for 2021-28 and it is currently dominated by the smart cities 

(26%) and the industrial IoT (24%) segments (Nižetić et al., 2020).  

 

In scientific institutions, the pathway to digital transformation and adoption of IoT 

has primarily been centered around two areas: laboratory automation and 

laboratory informatics (Bhuiyan et al., 2022). Because connectivity of instruments 

is key to both areas, this has become a crucial avenue in the strategic product 

roadmaps of instrumentation manufacturers in life sciences. As a result, 

manufacturers in life sciences have developed instrumentation that can perform 

multiple smart functions and that can be individually connected to cloud services 

to benefit the customer experience. In general, connected instruments allow for 

scientists to remotely access their data in real time, share their results, 

collaborate with peers, get prompt access to analysis as well as service support 

tools provided by manufacturers, all of which can potentially increase work 

productivity and reduce lab downtimes.  

 

During the last 5 years, there has been a significant uptick of connected 

instruments that are intended for general use (such as refrigerators or 

centrifuges), which allow laboratories to remotely monitor sample storage or 

workflow conditions in real-time (Gardner, 2022). However, despite the benefits 

indicated above, the user uptake of connected devices in more specialized life 

science instrumentation, such as widefield microscopes, has proceeded very 

cautiously. This has been hypothesized to be partly due to users’ concerns 

related to security and privacy, but also due to other reasons that span beyond 

individual attitudes, such as difficulties in integrating end-to-end solutions and the 

existence of fragmented legacy systems (Ali et al., 2022).  

 

https://www.thermofisher.com/uk/en/home/digital-solutions/connected-equipment.html
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To create a truly user centric IoT in the life sciences market that successfully 

connects scientists and their instruments in a sustainable ecosystem, multiple 

elements are important to be considered, among of which are: the establishment 

of trusted and standardized communications, the proper management of huge 

amounts of data and services, and particularly the individual willingness of users 

to adopt connected instruments. Within life sciences, this thesis will particularly 

address the Widefield Microscopy market. Widefield microscopes are regarded 

iconic instruments, and they are often used to represent life sciences in the public 

domain. Some of the well-established brands in this space include Olympus (now 

Evident), Nikon, Leica Microsystems, Zeiss and Thermo Fisher Scientific. 

Companies in the Widefield Microscopy space have adopted various strategies 

to develop their connected microscope platforms, and their success has differed 

between manufacturers. Thus far, not a single manufacturer has emerged as the 

clear leader in this space, and connectivity adoption remains in general limited.  

 

The overall aim of this investigation is to gain a better understanding of the 

variables impacting adoption of connected microscopes, at an individual user 

level. A hypothetical model, using the general framework of the Technology 

Adoption Model (TAM), is proposed, and tested here, to describe factors that 

could impact adoption of connected microscopes. Using quantitative correlation 

analysis, this thesis attempts to answer the following research questions:  

 

- Question 1 (Q1): To what extent does a relationship exist between the 

perceived usefulness of connected microscopes and the intention to use 

them?  

- Question 2 (Q2): To what extent does a relationship exist between the 

perceived ease of use of connected microscopes and the intention to use 

them?  

- Question 3 (Q3): To what extent does a relationship exist between the 

perceived safety of connected microscopes and the intention to use them? 

and finally,  

- Question 4 (Q4): To what extent does a relationship exist between the 

perceived responsiveness of connected microscopes and the intention to 

use them? 
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Given the increasing rate at which laboratory instruments are been developed 

with connectivity functionalities, the outcome of this investigation is relevant to 

shed light into drivers, to understand patterns and concerns, as well as to identify 

individual barriers impeding adoption of this new type of instruments amongst the 

scientific community of users. Thus far, to be the best of our knowledge, no other 

study has specifically addressed factors influencing adoption of connected 

manual widefield microscopes, at an individual level.  
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2 REVIEW OF THE LITERATURE 

 

2.1 Introduction to the Landscape of Connected Instruments 

To understand technology adoption of connected instruments it seems essential 

to begin by defining what such devices are. In this section, the general concept 

of ‘Internet of Things’ is presented, followed by the specific definition and 

components characterizing smart connected devices. Finally, an overview of the 

supporting technology infrastructure, otherwise known as ‘technology stack’, is 

outlined.  

 

2.1.1 “Internet of Things” and Smart Laboratories 

The term “Internet of Things” or IoT was originally proposed by Kevin Ashton, a 

computer scientist that founded the MIT’s Auto ID Center, where the concept of 

radio-frequency identification (RFID) was initially developed (Porter and 

Heppelmann, 2014). Today, IoT is widely used to reflect the interconnectedness 

of physical devices with smart and connectivity capabilities, which can interact 

with each other via Machine-to-Machine communications (M2M), enabling 

collection and exchange of data (Baker et al., 2017). While both the ‘smart’ and 

‘connected’ terms seems to be obvious to most readers and product users, an 

exact definition will be covered in the next section to help navigate this topic, from 

a theoretical standpoint. Suffice to say, these devices typically have some degree 

of on-board computational power as well as internet-enabled functionality for 

communication purposes. By an estimate from Cisco in 2020 (“Cisco Annual 

Internet Report - Cisco Annual Internet Report (2018–2023) White Paper - Cisco,” 

2020), the number of smart connected devices was largely to surpass in 2023 

the global population. Newer estimates are predicting it may reach 75-80 billion 

by 2025 (Ali et al., 2022).  

 

The importance of IoT has been considered so high that some authors have 

referred to it as the driver for the Fourth Industrial Revolution (Baker et al., 2017). 

Connected devices forming the IoT are widespread, as schematically 

represented in FIGURE 1. They are used in areas such as healthcare monitoring, 

commercial retail, smart city networks, robotics, intelligent transportation, video 

surveillance, logistics and package tracking. Similarly, they include smartphones 

and house devices, such as TVs and gaming consoles (Ali et al., 2022; Porter 
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and Heppelmann, 2014). The application of IoT has already proven to be 

successful in well-known areas such as smart parking, but extensive research is 

currently ongoing on other such as traffic congestion minimization (El-Sayed and 

Thandavarayan, 2018), smart grids (Tan et al., 2017) and healthcare (Baker et 

al., 2017).  

 

About 50% of the connections that are created when these devices are in use, 

are regarded to be M2M type. The so-called M2M connections can be defined as 

those involving automated exchange of information between devices, without any 

human intervention (Porter and Heppelmann, 2015). This includes, but it is not 

limited, to information that is collected directly from devices for the purposes of 

monitoring or controlling them.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. Schematic representation of the variety of smart, connected devices 

currently available.  

 

In scientific institutions, connected devices are one key component of the digital 

transformation landscape, which is essential for the creation of IoT centric 

laboratories. There is no one single accepted definition for ‘smart laboratories’ 

but it is generally accepted that this term refers to laboratories where the latest 

technology is used to manage scientific activities (Gill, 2018; Knight et al., 2020). 

Overall, smart laboratories are characterized by the implementation of laboratory 

automation and/or laboratory informatics. Laboratory automation relates to the 
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use of technology that replaces manual processes, using laboratory instruments. 

Laboratory informatics, on the other hand, refers to the digitalization of the 

process of handling laboratory data and information obtained from multiple 

laboratory instruments, to optimize lab operations (Poongothai et al., 2018).  

 

Smart, connected instruments in laboratories are essential in both avenues, and 

their utilization is expected to have a significant positive impact in increasing 

scientific productivity and data sharing. Productivity can be improved by 

simplifying procedures, reducing manual hands-on and instrument down times as 

well as minimizing human errors and providing higher data reproducibility (Rochi, 

2023). Sharing, on the other hand, is improved by allowing remote data access, 

facilitating easier collaboration and data integration (Gardner, 2022), which is 

also particularly important to enhance the reusability of scientific data (Kemmer 

et al., 2023). Expectedly, such benefits are not exempt of disadvantages. Overall, 

the major challenges that have been identified are related to data security and 

privacy, the difficulties of technical integration and the existence of a fragmented 

legacy of traditional instruments that are still in use across multiple sectors, which 

hampers standardization efforts (Ali et al., 2022). In addition, the differential 

degree to which data transfer can take place among different instruments is a 

concern (Rochi, 2023). However, thus far, no scientific study has specifically 

addressed the factors influencing adoption of these instruments in the Widefield 

Microscopy field, at an individual level. This will be the focus of current 

investigation.  

 

2.1.2 What are Smart Connected Instruments? 

To begin with, it is important to define what smart, connected instruments are, 

and how they differentiate from their conventional (non-smart and non-

connected) counterparts. Smart connected devices can be defined as those that 

consist of three primary components (Porter and Heppelmann, 2014):  

 

- Physical hardware (HW) components: These consist of the mechanical 

and electrical parts. These are typically the same components present in 

conventional devices.  

 



11 

 

 

- Components supporting smart functions: Smart functions are defined as 

those that help facilitate the interaction of the user with the device and 

amplify the capabilities of the physical components in a manner that 

provide ‘smartness’. Digital components in this group, supporting 

intelligent functions include microprocessors, data storage solutions, 

instrument- embedded operating systems having dedicated User 

Interfaces (UI) or companion computers having a dedicated application to 

control the device. The digital UI of a smart connected device can even 

reside into a tablet or a smartphone application, even eliminating the need 

for physical controls in the instrument (Siggelkow and Terwiesch, 2019). 

 

- Components supporting connectivity functions: Components in this 

category refer to elements such as ports, antennae as well as protocols 

which support the wired or wireless connections to a cloud ecosystem 

where the device data is stored. Connectivity functions further amplify the 

instruments capabilities in a manner that expands the value outside the 

boundaries of the physical device. These components can enable for 

example one-to-one connections (i.e. one device connecting to the user 

or the manufacture cloud ecosystem) or one-to-many connections (i.e. a 

central system simultaneously connecting to many devices) (Porter and 

Heppelmann, 2015).  

 

As discussed earlier, a staggering rise of smart connected devices has taken 

place over the last 10 years (Ali et al., 2022). Such increase has coincided with 

the latest wave of Information Technology (IT)- driven business transformation, 

in which IT has become part of the devices. These smart and connectivity 

components have significantly improved the functionality of the devices and have 

even created new capabilities. As described in FIGURE 2, these capabilities can 

be broadly divided into four types: monitoring, control, optimization, and 

autonomy functions, with an increasing level of complexity (Nižetić et al., 2020). 

Devices can have all four functions, but in the instruments used by scientists in 

life sciences these capabilities are currently limited primarily to monitoring and 

control.  
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FIGURE 2. Capabilities of smart connected devices, increasing in complexity 

from 1 to 4, adapted from (Porter and Heppelmann, 2014).  

 

2.1.3 What is the Technology Stack?  

The existence of smart, connected devices within the IoT is only possible via a 

supporting technology infrastructure that is commonly referred to as ‘Technology 

Stack’ (Porter and Heppelmann, 2014). FIGURE 3 presents a three-tier 

architectural model for smart connected devices consisting of layers that include 

the product, the communication network (or connectivity) and the cloud.  

 

The products (or ‘things’) are the primary layer of the model and given the variety 

of existing connected devices, this layer is consequently highly diverse. There is 

a multiplicity of components that are vendor-specific, as well as various modules 

and operating systems found at this level. As highlighted by (Ali et al., 2022), this 

layer is responsible for translating and propagating the heterogeneity of the entire 

technology stack. In the second layer, devices are connected to the cloud, and 

this includes all the protocols that enable such network communication. Lastly, 

the third, cloud technology layer, oversees handling raw data from smart 

connected devices. This includes, among others, big-data databases, that 

handles real-time and historical data captured from the product, application 

platforms to enable connected business applications using data access and 

visualization tools, as well as smart product applications, which are not 

embedded in the products, but significantly expand their functionality for users 
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(Baker et al., 2017). The cloud layer is populated by broad enterprise solutions 

such as Amazon, Azure and IBM, that offer a variety of IoT network applications 

(Ali et al., 2022) as well as niche, product-specific cloud services, that can be 

highly tailored to specific markets and specialized customer needs, as it will be 

later discussed, in the case of life scientists.  

 

FIGURE 3. Simplified representation of the Technology Stack, adapted from (Ali 

et al., 2022; Porter and Heppelmann, 2014). For abbreviations in the scheme, 

please refer to the List of Abbreviations. 

 

The technology stack has enabled significantly faster product development, and 

it has permitted the gathering, analysis and sharing of extremely large amount of 

data that can provide entirely new insights into the use of devices (Bhuiyan et al., 

2022; Porter and Heppelmann, 2014). From a development perspective, the 

smart and connectivity functionalities allow for a full exploitation of customization, 

which can ensure that product variability is successfully achieved at a very low 

cost. For instance, earlier, if new product functions were required to be 

introduced, new physical controls needed to be added to the hardware (HW) of 

the instrument with the high associated costs of developing new physical 

components and entirely new physical product generations. However, with the 

addition of the technology stack, the same changes are now entirely possible to 

CLOUD 

Different type of SW running on remote servers enabling the new capabilities of 
smart connected devices (monitoring, control, optimization, autonomy) 

CONNECTIVITY 

Protocols that enable communication between product and the cloud (Networking 
Communication Layer OS); Security (HW, SW, Encryption) 

PRODUCTS/ DEVICES (‘THINGS’) 

• Embedded OS, Wireless Protocols, Onboard Software Components 

• Components/Modules (MCU/CPU, Embedded Sensors/Actuators, Power Manage-
ment) that supplement traditional HW components. 
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accomplish through updates in software (SW) instead of HW, and such 

improvements can be effectively delivered directly through the cloud ecosystem. 

Similarly, products can be localized for different language needs just via the SW, 

also minimizing the need for HW changes (Porter and Heppelmann, 2015). From 

a service and support perspective, the myriad of information that is constantly 

collected on the products, allows for systematic monitoring of the device’s health, 

making it often possible to implement remote service and/or to improve the 

remote troubleshooting capabilities, all of which can reduce instrument’s 

downtimes as well as improve the user experience (Ali et al., 2022; Bhuiyan et 

al., 2021).  

 

As some physical device components become more simplified and are replaced 

by SW improvements, several aspects of the HW product development as well 

as manufacturing have consequently become more straightforward. By contrast, 

on the other hand, devices have now a larger number of sensors and ever-

growing SW capabilities, all of which drives the continuous needs for proper SW 

support infrastructure (Fountaine et al., 2019). As a result, building and 

supporting the technology stack for smart, connected products requires 

substantial financial investments and a change on company culture towards a 

more IT-driven organization, both of which cannot not be underestimated (Mann 

et al., 2022).  

 

2.2 Introduction to the Widefield Microscopy Market 

This investigation particularly focuses on specialized instruments used by life 

scientists to visualize microscopic biological samples, known as widefield 

microscopes. In this chapter, it is first covered the general definition of this 

microscopy modality, followed up by a comparison between connected and 

traditional widefield microscopes. Next, it is reviewed the most important 

companies that are currently playing in this space, and a summary of the 

strategies they have utilized to implement connectivity on their products. Finally, 

it is examined how the introduction of connected microscopes has shaped and 

will continue to shape the competition within this industry. For this analysis, the 

classical Porter’s Five Forces model is utilized (Porter, 1979).  
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2.2.1 What are Connected Widefield Microscopes? 

Technically speaking, widefield refers to a microscopy modality in which the 

whole specimen is exposed to a light source on a microscope stage. The most 

basic form of widefield microscopy is ‘brightfield microscopy’ in which the entire 

specimen can either be illuminated by white light either from above – what is 

known as an inverted configuration, or from below – what is referred to as an 

upright configuration (Wilson et al., 2017).  

 

An important type of widefield microscopy is the so-called ‘fluorescence 

microscopy’, in which the specific property of certain compounds that can be used 

to stain the cells, known as fluorophores, is utilized (Ockenga, 2011). In 

fluorescence microscopy, the specimen is illuminated with a light of a specific 

wavelength, instead of white light as in brightfield microscopy, which then excites 

the fluorophores, causing them to emit at longer wavelengths, creating 

fluorescent images. Scientists working in life sciences rely on the use of widefield 

microscopy, including both brightfield and fluorescence, to study live and fixed 

cells as well as tissues. Those cell-based assays using brightfield or fluorescence 

imaging are essential to address key questions in the fields of cancer biology, 

immunology, neuroscience and drug discovery, among many others (Lichtman 

and Conchello, 2005).  

 

From the perspective of their components, there are clear differences between 

traditional and smart connected microscopes. A components-based comparison 

is schematically shown in FIGURE 4. Both traditional and smart connected 

microscopes share physical components which include mechanical, electrical, 

and optical parts, enabling the basic magnification and visualization of cells and 

tissues. The addition of smart components allows improved or new functions that 

can be accessed through a customized UI either with an embedded computer, or 

a companion computer. These functions were earlier either unavailable or 

available to a certain extent only via direct interaction with the physical HW 

components. Examples of smart functions, are those that allow safety-proofing 

the instrument, thus minimizing errors that users can often make with traditional 

devices. For example, a smart microscope can automatically switch off the light 

when the user does not need it, to preserve the instrument lifetime and, more 

importantly, to protect the biological samples, as they can be altered by continued 
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light exposure. A smart microscope can also recognize the objective installed and 

correctly add scale bars that match the exact used magnification. Functions that 

were previously only available via the HW can now also be replaced by smart 

components. One example is the image focus, which in smart instruments can 

be done digitally on the UI, as opposed to using a manual knob in a traditional 

instrument.  

 

 

FIGURE 4. Comparison between traditional and smart, connected microscopes. 

This list of components is not comprehensive, as it is shown here only with 

illustration purposes.  

 

While in traditional microscopes the usage of the instrument relies exclusively on 

the physical product, the addition of connectivity components, allows for the 

functionality of the imaging device to further exist also outside of it. The 

instrument operation can be recorded and monitored remotely, and users can be 

alerted if a malfunction has taken place, without having to be in the physical 

vicinity of the microscope. The user can also have access to other remote 

functionalities for instance to control the instrument operation, and instrument-

generated images can be sent to a dedicated or a generic cloud ecosystem, 

where the user can have access to image analysis tools.  
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2.2.2 Landscape of Players in the Widefield Microscopy Market 

The Widefield Microscopy market is divided into the Manual and the Automated 

segments, in relation to the instrument capabilities for only manual (user-driven) 

or automated (user-independent) functions. The segment that will be the focus 

on this investigation is the manual segment, which has been valued at $170M 

in 2023, with a forecasted 5 years CAGR of 5%, according to various market 

reports (“Cell Analysis Market 2022– Global Forecast to 2027,” 2022; “Cell 

Culture Market – Global Forecast to 2025,” 2020; “Market Reports: Microscopy 

Global – Global Forecast to 2026,” 2021). This market accelerated significantly 

during the period 2020-22 owned to the acceleration of the Cell Culture market, 

which was strongly associated to the SARS-CoV-2 (COVID-19) pandemics.  

 

Manual microscopes are primarily used to evaluate the health of cells and tissues 

used by life scientists. It was estimated in late 2020 that the Cell Culture market 

is roughly worth $19B and is rapidly growing, with a forecasted CAGR of 11-

12.0% for the 2020-25 period (“Cell Culture Market – Global Forecast to 2025,” 

2020). Some examples of microscope models and their manufacturing 

companies competing in the cell culture imaging space, are shown in FIGURE 5. 

The basic cell culture imaging space is populated by established brands, 

particularly the four big renowned optical companies in the world, which include 

Olympus (since 2022, the microscopy business now belongs to Evident, a newly 

created, wholly owned subsidiary of Olympus), Nikon, Leica Microsystems (since 

2005, the company is part of the Danaher Corporation) and Zeiss. These four 

companies alongside another established brand, Thermo Fisher Scientific, 

represent about the majority (estimated over 70%) of the manual microscopy 

market. In addition, there are other relevant emerging players, such as ECho 

Labs (acquired in 2021 by CELLINK), as well as Bio-Rad Laboratories. 

Altogether, these players offer multiple manual instrument choices for customers, 

varying in functions as well as purchase prices, generally within the range 

between $5K and $15K.  
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FIGURE 5. Some examples of instruments currently available in the manual 

widefield microscopy space.  

 

The competition in this space has been traditionally characterized by a technical 

performance race, accomplished by manufacturers through continuous 

improvements in the optical or other hardware components and accessories. 

However, with digital transformation and IoT gaining traction in life science labs, 

players in the widefield microscopy space are also now competing in improving 

the user experience through the addition of smart as well as connectivity functions 

(Poger et al., 2023). From the connectivity perspective, the two most common 

strategies are summarized in FIGURE 6, followed by a description on what they 

encompass.  

  

Mateo TL (Leica) 

 

Zoe (BioRad Laboratories) 

 

EVOS XL Core  
(Thermo Fisher Scientific) 

Primovert (Zeiss) 

Rebel (ECho Labs, CELLINK) MilliCell (Merck) 

BioStudio-Mini 
(Nikon) 
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FIGURE 6. Main connectivity strategies utilized by widefield microscopy 

manufacturers. 

 

Large companies have opted for investing financial resources in developing their 

own customized cloud ecosystems, such for instance in the case of the Zeiss’s 

Labscope (“Share Your Microscopic Samples with Labscope for Windows,” 

2023), the Olympus Scientific Cloud (“The Olympus Scientific Cloud | Olympus 

IMS,” 2023) or Thermo Fisher Connect (“Thermo Fisher Connect Platform - FI,” 

2023). By connecting their microscopes to their own cloud environments, users 

can storage their acquired images while simultaneously having access to image 

analysis SW and remote service tools specifically developed by those 

manufacturers.  

 

Other often smaller companies have simply opted to leverage existing (generic) 

cloud platforms. That is the case for instance of ECho Labs which only offers 

connectivity to DropBox from their widefield microscopes. The strategy in this 

case has been to avoid any large investments associated to developing their own 

cloud ecosystems or SW analysis solutions, at the disadvantage of basically 

restricting their offering to third-party image sharing. It could be hypothesized that 

a combination of both strategies would probably provide the best outcome for 

users. Interestingly, despite encountering the same challenges in the 
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marketplace, the adoption of connected instruments has differed between 

manufacturers, and thus far, not a single manufacturer has emerged as a clear 

leader in this space. 

 

There are additional drivers behind the efforts of microscope manufacturers 

towards improving image sharing capabilities, which are at least partially 

associated to the volume of the produced data. The increasingly large amount of 

images that is being generated by microscopes (including widefield microscopes) 

has resulted in larger and more complex imaging datasets (Poger et al., 2023). 

As a result, microscopy has progressively moved into the so-called ‘big data’ era, 

which requires more rigorous standards for metadata, data management as well 

as dissemination procedures (Kemmer et al., 2023). In addition, there have been 

well-known reproducibility concerns that has justified the need for the release and 

reuse of scientific data in general (including imaging), and the development of 

minimum reporting guidelines (Sansone et al., 2012). Because of that, 

microscopy has begun to improve the Findability, Accessibility, Interoperability 

and Reusability of data by adopting to so-called FAIR guidelines (Wilkinson et al., 

2016). The FAIR data principles are a concise and measurable set of principles, 

applicable in a broader sense to biological research. They evolved from 

discussions between multiple stakeholders representing academia, industry, 

publishers, and funding agencies. When applied to microscopy, they have served 

as a foundational guiding tool to enhance the reusability of imaging data.  

 

Companies in the widefield microscopy space need to play an essential role in 

the dissemination and sharing of image acquisition tools and software, and they 

should work towards the development of better and more intuitive metadata 

acquisition (Kemmer et al., 2023). In practice, it has been primarily the larger 

companies (Zeiss, Evident, Nikon, Leica Microsystems and Thermo Fisher 

Scientific) that have actively participated in these efforts. For example, in Europe, 

research infrastructures have interacted closely with these five companies 

through the Euro-BioImaging Industry Board (www.eurobioimaging-

industryboard.com) in order to assist scientists in standardization efforts. The 

manner in which different manufacturers in this space react to the ongoing image 

data transformation, and how they develop strategies to improve acquisition and 
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data sharing with their instruments, in accordance with the FAIR principles, will 

have a significant impact on their future competitiveness.  

 

2.2.3 How Connected Microscopes Shape Industry Competition? 

As we earlier mentioned, digital technologies are profoundly impacting the nature 

of competition across multiple markets, including life sciences. Particularly, this 

widespread introduction of smart, connected devices has caused a dramatic shift 

in the manner companies operate and it has reshaped the structure of industries 

and their boundaries (Kavadias et al., 2016). The widefield microscopy market is 

no exception, and to further understand this impact, it is very useful to conduct 

an analysis using the classical Porter’s Five Forces model (Porter, 1979). The 

Porter’s five forces model considers all types of actors, not only the players 

already covered in previous section, which have a potential or interest in the said 

industry. This analysis is summarized in FIGURE 7 and each of the five forces 

are explained below.  

 

Bargaining Power of Buyers 

It can be assumed that smart connected microscopes can have, at least 

theoretically, a mixed and complex impact in the bargaining power of buyers. On 

one hand, they cause a reduction on this power, given the wealth of information 

that is available to manufacturing companies, which can provide an in-depth 

understanding of instrument’s usage, thus allowing the relationships between 

companies and users to potentially be more customized. For example, if a certain 

developed cloud application is repeatedly engaging more users than others for 

certain microscopes, the company can focus their development efforts into 

adding new functionalities on that cloud SW solution, thus creating even more 

reasons for users to be engaged, and consequently increasing their costs of 

switching to another manufacturer (Mann et al., 2022).  

 

Of note, this is a scenario that can have multiple effects: it can also allow 

companies to de-prioritized cloud development efforts when no significant user 

traction is gained, thus it can guide companies towards what to do, and what not 

to do (Siggelkow and Terwiesch, 2019). When solutions can constantly be made 

fit-for-their needs, users are less likely to abandon their existing manufacturers, 

assuming that companies are sufficiently agile in adjusting to those needs.  
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FIGURE 7. Five Forces Analysis for smart connected instruments in the manual widefield microscopy market
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On the other hand, the bargaining power of buyers can also be increased, 

because having access to remote SW analysis tools can empower users to better 

understand the competitive landscape and play one manufacturer off another (Ali 

et al., 2022). Getting access to microscope performance data can, also at least 

theoretically, allow users to judge the ‘true’ technical reliability of the instrument, 

also allowing them to better judge manufacturers’ quality. However, it is important 

to note, that in this manual widefield microscopy segment, customers may not 

necessarily be as technology-savvy as in other microscopy segments, for 

instance as in the case of automated microscopy, and therefore they may be less 

likely to focus on the technical performance of the instruments.  

 

In making decisions, scientists could be also nowadays influenced by the 

willingness of manufacturers to contribute to ‘common good’ initiatives, such as 

those improving adherence to the FAIR principles (Kemmer et al., 2023; 

Wilkinson et al., 2016) as discussed in section 2.2.2. It could be expected that 

buyers will also bargain in the favor of those companies which make more 

meaningful commitments to enhance data quality and sharing with their 

connected instrumentation. Based upon this, in my opinion, it is likely that the 

overall impact on bargaining power of buyers will remain mixed, at least for the 

near future.  

 

Bargaining Power of Suppliers 

The bargaining power of suppliers evaluates the ease with which suppliers can 

increase the prices of microscopes. Smart connected microscopes have also 

caused a redistribution of the bargaining power of suppliers. Because of the 

decline on the use of hardware, these traditional suppliers are more likely to 

experience a loss in their bargaining power. In contrast, suppliers of sensors, and 

embedded operating sensors and software components, which are increasingly 

more essential for manufacturers to maintain and develop the technology stack, 

are gaining bargaining power.  

 

Threat of New Entrants 

The introduction of smart connectivity has also impacted the entry of new players, 

in a mixed manner. It can reduce their threat because new entrants wishing to 

break into the market with new microscopes face now even higher development 
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costs, given the need for product-embedded technology as well as costs of 

developing and maintaining the technology stack. However, the shift towards 

more advanced smart functionalities have also opened the door to new product-

less players, offering highly advanced SW analysis solutions, that can be 

instrument agnostic and thus attractive to a larger customer base (Siggelkow and 

Terwiesch, 2019). Because of this increased threat, the large microscopy 

companies have responded with an increased number of acquisitions and/or 

collaborations with these product-less, SW providers.  

 

For instance, Zeiss acquired in December 2020 a majority equity in arivis AG, 

which was previously a highly specialized image analysis company, with 

solutions tailored to life sciences (“ZEISS invests by acquiring majority stake in 

arivis AG,” 2020). The acquisition allowed Zeiss to be better positioned in 3D 

image visualization, image processing and analysis software offering, while also 

reducing altogether the threat of a potential competitor. Because of the arivis AG 

acquisition, Zeiss has been able to adopt a broader competitive strategy and has 

now rebuilt its image analysis platforms to offer a full suite of SW tools applicable 

to Zeiss microscopes but also instrument agnostic, as presented in FIGURE 8.  

 

 

FIGURE 8. “Zeiss arivis” image analysis platform launched as the global Zeiss 

solution to scale, integrate and connect all image analysis pipelines, reproduced 

from (“arivis and APEER go ZEISS,” 2023) 

 

The new brand Zeiss arivis, was announced in April 2023 and it includes all the 

Zeiss SW products, toolkits and modules for all image analysis pipelines, thus 

generalizing Zeiss approach as a provider of end-to-end image analysis solution 

(“arivis and APEER go ZEISS,” 2023). This new approach is also particularly 

important in consolidating Zeiss’s path for further development of smart, 

connected widefield microscopes.  
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Another relevant example highlighting the higher impact of new product-less 

entrants in this space is offered by Leica Microsystems, which in 2021 acquired 

the SW-only provider Aivia (“Leica Microsystems acquires Aivia, a leading AI-

enabled 3D microscopy, image visualization and analysis software solution,” 

2021). The acquisition of Aivia, which had been founded in 2017, brought to Leica 

a wide range of Artificial Intelligence/Machine Learning (AI/ML) and Deep 

Learning algorithms for 2D and 3D image visualization, cloud-based model 

training modules and web applications, among others, while also eliminating a 

competitive threat. This approach mirrors the strategy applied by Zeiss in 

consolidating smart connected functions through advanced software and cloud 

computing.  

 

Threat of Substitute Products 

The threat from substitutes occurs when buyers in the market can achieve a 

similar result by using means other than the products/solutions available in the 

market under consideration (Porter, 1979). Overall, the addition of intelligence 

and connectivity-capability to microscopes increases the performance and 

customization of the instrument relative to their traditional counterparts. As a 

result, it is expected that substitution threats are lowered, and industry growth 

increased.  

 

It should be noted though, that an interesting phenomenon is also taking place 

here. Because manufacturers are developing microscope intelligence and 

connectivity capabilities, such as those provided by cloud’s imaging analysis 

apps and peer collaboration tools, they can in parallel lower the demand for other 

types of products such as Electronic Laboratory Notebooks (ELNs), thus 

increasing the threat of substitute products in other adjacent life science markets. 

The ELNs are SW tools enabling researchers to move towards digitally 

documenting their experiment, instead of using conventional laboratory 

notebooks. These ELNs also typically include collaboration tools, protocol 

templates and they support the tracking of results from laboratory instruments 

(Kwok, 2018). In this sense, their offering highly overlaps with the cloud platforms 

that some life science manufacturers have developed, such as Thermo Fisher 

Scientific (“Thermo Fisher Connect Platform - FI,” 2023), which also include 

image analysis tools. Thus, developments in the field of smart connected 
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microscopes can increase the threat of substitute products in other life-sciences 

associated markets.  

 

Rivalry among Existing Players 

It is not surprising, in view of what was discussed above, that the competitive 

rivalry among existing players in the Widefield Microscopy market has increased, 

as the primary battlefront has shifted from hardware to software, and new 

avenues has been created for product differentiation and customer engagement. 

Compared to the rivalry that existed on times of traditional microscopes, new 

competitive dynamics have now emerged, characterized by, for example:  

 

- The rate of acquisitions by bigger brands of smaller product-less players 

offering differentiating SW functionalities has become more commonplace 

as well as the establishment of partnerships. This is in response not only 

to a need to improve the SW offering, but also as a strategy to reduce the 

threat that such product-less companies can pose to the established 

brands in this market.  

 

- There is an increased pressure for more frequent SW releases delivered 

in connected instruments. This takes place in a continuous manner, in 

between product launches as part of multigenerational product plans. The 

aim is to keep customer engagement and provide greater level of 

advanced functionality for the instruments. Software updates are also 

extremely convenient for users as they require nearly no effort and are 

generally exempt of any costs.  

 

- The continuous access to companies' large image databases allows users 

to investigate cloud analysis tools. Players are racing for offering the better 

suited, more sophisticated set of image analysis tools in the cloud.  

 

- More recently, companies are similarly competing to reduce customer pain 

points by leveraging AI/ML.  

 

The latter point is particularly interesting as it benefits companies with long history 

and access to large diverse image repositories. Algorithms using AI/ML can be 
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trained in large image datasets to be able to perform multiple functions, 

particularly image enhancement and object segmentation (Tran, 2022). In both 

cases, users can access tools to speed up their image analysis and increase the 

quality of their imaging results, thus boosting their productivity. During a recent 

public survey published by Zeiss, it was found that users are generally interested 

in using AI/ML to improve their data quality, speed and resolution, with the first 

one being the most important application, as indicated by 60% of the study 

participants (SelectScience, 2023).  

 

2.3 Introduction to Technology Adoption 

The previous chapters have covered the basic aspects of connected devices, and 

particularly of connected widefield microscopes. In this chapter, the attention is 

shifted towards technology adoption. To be able to shed light into the process of 

adoption of connected manual microscopes by scientists, it is imperative to 

understand how innovations are typically adopted. The topic of technology 

adoption is complex, and can be studied at an individual, organizational as well 

as a societal level. It includes the acceptance, implementation and utilization of 

new technologies, with the general goal of improving performance (Dearing and 

Cox, 2018). In the following sections, it is outlined the basis of innovation 

adoption, and then it is reviewed, in greater detail, the most widely used theory 

providing a framework for technology adoption at an individual level.  

 

2.3.1 The basis of Innovation Adoption 

A great deal of innovation research has been aimed at understanding how and 

why people adopt new technologies. For most successful technological 

innovations, despite of how different they may look to be, adoption seems to 

follow an S-shaped curve, as illustrated in FIGURE 9 (curve highlighted in dark 

blue).  

 

The adoption is initiated by early adopters, which are followed by an early and 

then a late majority, and finally taken on by laggards. This model initially 

presented by (Rogers, 1983) proposed that users adopt technologies at different 

times, with an inflexion point after which an exponential flattening takes place that 

generally indicates market saturation. However, it should also be noted that 

competing or complementary innovations are also relevant since potential 
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adopters usually can select what to adopt. In addition, failures are important since 

many innovations do not ever get adopted or ‘diffuse’, particularly if they are 

perceived to be new but not necessarily better (Dearing and Cox, 2018).  

 

 

FIGURE 9. Innovation adoption curves, with each curve representing a separate 

hypothetical technological innovation, reproduced from (Dearing and Cox, 2018).  

The dark S-shaped curve represents an example of a successful adoption curve.  

 

An extensive number of articles has been published with a focus on developing 

and testing models that can predict technology use, starting as early as in the 

1970’s. The study by (Attié and Meyer-Waarden, 2022) has recently reviewed in 

detail the main accepted technology adoption theories, particularly in the context 

of the adoption of smart connected objects. Among these theories, the 

Technology Acceptance Model (TAM) (Davis, 1985) has been highly used and 

recommended in the literature for studying the adoption of disruptive 

technologies. This theory was first developed upon the introduction of email 

technology during the 1980’s, and its goal was to improve the understanding of 

user acceptance processes related to the new computer-based information 

systems. Thus far, TAM is regarded as the most influential theoretical framework 

for studying human behaviour when adopting new technologies (King and He, 

2006; Marangunić and Granić, 2015; Taherdoost, 2018). Because of that, the 

Technology Acceptance Model was selected for this investigation, and it will be 

covered in detail in the following chapter.   
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2.3.2 Technology Acceptance Model (TAM) and its Evolution  

The pioneering work conducted by Fred Davis to understand the adoption of 

email technology in a corporate organization (IBM), led to the proposal of the first 

version of the TAM (Davis, 1985). In this first model, Davis suggested that the 

usage or adoption of a new system (or technology) was primarily determined by 

the attitude of a user towards the system, which in turn was influenced by the 

perceived usefulness and the perceived ease of use (FIGURE 10).  

 

 

 

 

 

 

 

 

 

FIGURE 10. Original Technology Acceptance Model proposed by Fred David. 

The figure was redrawn from the original publication (Davis, 1985).  

 

The ‘perceived usefulness’ was regarded as the degree to which a user believes 

that using a new system or technology can benefit their job performance (or life 

overall). In the case of instruments used for scientists this could be considered 

the extent to which a user believes the new system can help solve a specific pain 

point and improve his/her lab work experience. The second element, ‘perceived 

ease of use’, was found by Davis to contribute directly to the perceived 

usefulness, and it was defined as the degree to which the user believes that using 

the new system is effortless. The model also postulated that perceived usefulness 

and ease of use were both influenced by the system design characteristics 

(schematically represented in FIGURE 10 by certain system-dependent factors 

X1, X2, X3).  

 

With research that was subsequently performed, the relationships presented in 

the original model were modified, some variables were removed, and new ones 

were added. For example, the attitude variable was found not to be directly 

mediating the relationship between perceived usefulness and perceived ease of 
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use on the actual system usage, and thus it was entirely eliminated from the 

model (Davis, 1989). In turn, a new variable was added, namely behavioural 

intention (or intention to use) which was found to be directly influenced by the 

perceived usefulness of the system (Davis et al., 1989). In many parallel studies 

that were carried out during the following years, it became consistently clear that 

perceived usefulness is a key determinant on the intention to use. Thus, after 

further exploring which specific variables could influence the perceived 

usefulness, a new extension of the TAM model was developed (FIGURE 11), 

which is nowadays known as TAM2 (Venkatesh and Davis, 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 11. Extension of the Technology Acceptance Model known as version 2 

(TAM2). The figure was redrawn from the original publication (Venkatesh and 

Davis, 2000). This model focused on identifying variables influencing the 

perceived usefulness (indicated in blue).  

 

In this new model, new variables were found to influence the perceived 

usefulness, and they were defined as follows:  

 

- Subjective norm: refers to the influence of other individuals on the user’s 

decision to use or not the technology. 

 

- Image: related to the desire of the user to maintain a favourable standing 

among others. 
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- Job relevance: corresponds to the extent to which the new technology is 

applicable and relevant to the user’s job. 

 

- Output quality: the degree to which the technology can deliver the 

promised results. 

 

- Results demonstrability: the extent to which the technology can produce 

or influence the generation of tangible results.  

 

This new extended model also identified the mediating effect of voluntariness and 

experience on the subjective norm by including two voluntary and two involuntary 

environments in a longitudinal research study (Marangunić and Granić, 2015; 

Venkatesh and Davis, 2000). The study conclusively demonstrated that intention 

to use is directly modulated by subjective norm, perceived usefulness (as in 

previous studies) as well as perceived ease of use. Those relationships are 

highlighted with thicker arrows in FIGURE 11.  

 

Another relevant extension of TAM was published the same year by one of the 

authors of TAM2, Viswanath Venkatesh (Venkatesh, 2000). In this model, now 

broadly known as TAM3, the focus was instead on the contributing factors to the 

perceived ease of use. As shown in FIGURE 12, two different types of variables 

are highlighted: the so-called anchors and the adjustments (Venkatesh, 2000).  

 

 

FIGURE 12. Extension of the Technology Acceptance Model known as version 3 

(TAM3). This model focuses on identifying variables influencing the perceived 

ease of use (indicated in blue). The figure was redrawn from the original 

publication (Venkatesh, 2000), but in a more simplified manner. 
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The ‘anchors’ were defined as general beliefs about computers and computer 

usage. The category of anchors includes variables, such as computer-self 

efficacy, computer anxiety and computer playfulness. On the other hand, 

‘adjustments’ are regarded as beliefs that are constructed based on the direct 

hands-on experience with the new system or technology. That category 

comprises variables such as perceived enjoyment and objective usability. In both 

cases, the variables, as defined by (Venkatesh, 2000), were not entirely new, but 

they were derived from previous research (Marangunić and Granić, 2015).  

 

Following these efforts, and in view of the growing body of work around TAM in 

multiple different fields, a unified theory of acceptance and use of technology 

(UTAUT) was formulated in 2003 (Venkatesh et al., 2003). This theory integrates 

multiple elements across eight prominent TAM-based models. Furthermore, the 

Technology Acceptance Model has continued to evolve as more research has 

been conducted on the acceptance of information and digital technologies (a.o. 

Creaser et al., 2022; Dutot et al., 2019; King and He, 2006; Marangunić and 

Granić, 2015; Yanto et al., 2023). The modifications that have introduced to the 

TAM model are summarized in FIGURE 13.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 13. Summary of the types of modifications that have been introduced in 

the Technology Acceptance Model (modifications are shown in blue and 

relationships with thicker arrows). The figure was redrawn from (Marangunić and 

Granić, 2015).  
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These modifications can be sub-divided into four major types: 

 

- External predictors: this refers to the multiple variables that have been 

identified as influencing the perceived usefulness and the perceived ease 

of use, some of which were discussed above for TAM1 and TAM2 models 

(FIGURE 11 and FIGURE 12). 

 

- Factors from other theories: this relates to factors derived from other 

theories of technology acceptance, like risk (Featherman and Pavlou, 

2003), trust (Wu et al., 2011) and user participation (Amoako-Gyampah, 

2007). 

 

- Usage measures: included here are actual measures of usage of the 

system or technology, which may not be interchangeable when applying 

TAM in different studies (Horton et al., 2001).  

 

- Contextual factors: comprise specific factors, including also environmental 

factors, which could have a moderating effect on adoption, such as 

gender, cultural differences, age, personality differences, etc. In particular, 

age is one important factor that can play a key role in the interaction with 

technology (Marangunić and Granić, 2015).  

 

It is important to note, however, that the Technology Acceptance Model is not 

exempt of limitations (Chuttur, 2009). For example, some studies using TAM have 

only included self-reported usage data, which is subjective and unreliable. In 

addition, different approaches to technology use (voluntary vs obligatory) have 

been shown to produce entirely different results (Chuttur, 2009). Furthermore, 

some authors have questioned the theoretical relationships between the different 

constructs of the model (a.o. Bagozzi, 2007). Therefore, it is important to be 

aware of these limitations when applying it to a new area, such as the adoption 

of connected microscopes.  
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3 METHODOLOGY 

In this section it is introduced the methodology that was used to carry out this 

investigation, including the theoretical model that was proposed, as well as the 

methods that were used for quantitative data collection as well as analysis.  

 

3.1 Research Model  

As discussed in section 2.3.2, TAM is considered the most influential theoretical 

model for studying factors driving human acceptance of new technologies 

(Taherdoost, 2018) and it was therefore the model selected for this investigation.  

Building specifically from TAM3 and taking into consideration the assumptions 

that will be discussed below, this investigation proposed the model presented in 

FIGURE 14 to help explain adoption of connected microscopes. It can be safely 

assumed that connected microscopes have multiple smart functions, but for the 

purpose of this investigation, the attention was exclusively directed towards 

connectivity. In FIGURE 14, Q1-Q4 indicate the research questions that are 

postulated in this investigation, as already presented in the Introduction chapter. 

 

 

FIGURE 14. Research model used in this investigation. The blue, yellow and gray 

shadowed rectangles represent the constructs that were tested as part of this 

quantitative research. The relationship indicated with the red arrow was not part 

of this study.  

 

After an extensive literature search, no publications directly focusing on studying 

adoption of connected laboratory instruments were identified. Therefore, other 

reference studies focusing on adoption of smart devices, particularly those with 
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connected functionalities, were utilized instead to draw theoretical parallels and 

assist in the development of the quantitative survey applied here. The selected 

reference studies covered adoption of self-driving cars (Nees, 2016; Koul et al., 

2018), smartwatches (Dutot et al., 2019), e-services in healthcare settings 

(Nazari-Shirkouhi et al., 2023) and virtual reality laboratories for educational 

purposes (Estriegana et al., 2019; Yanto et al., 2023).  

 

A total of five dimensions or constructs were tested in this investigation. These 

specific studies mentioned above, as well as the general body of work around 

TAM, have confirmed the relationship between perceived usefulness, perceived 

ease of use and the intention to use new technologies. It was therefore 

hypothesized similar relationships would also apply in the case of connected 

microscopes. In addition to those dimensions, it is also hypothesized here that a 

direct relationship exists between either perceived safety or perceived 

responsiveness, and the intention to use connected microscopes. These two last 

specific constructs were introduced in this investigation as they are considered 

general challenges of connected laboratory instruments (Ali et al., 2022; Rochi, 

2023). Thus, it was of great interest to test its relevance in the context of 

connected microscopes. 

 

Definitions of constructs are not always included in published TAM studies. 

However, building from those TAM studies where definitions have been explicitly 

outlined (Holden and Karsh, 2010; Estriegana et al., 2019; Dutot et al., 2019), the 

following definitions of the constructs were developed and used on the course of 

this investigation:  

 

- Intention to use: Defined as a scientists’ inclination or willingness to use 

connected microscopes. In the TAM framework it is assumed that the 

higher the intention to use connected microscopes, the higher the actual 

usage will be.  

 

- Perceived usefulness: Defined as use of the connected microscopes that 

leads to enhancement or gains in the job performance of a scientist.  
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- Perceived ease of use: Defined as either the lack of physical or mental 

efforts, or simply as the individual perception of how user-friendly a 

connected microscope is to utilize, in comparison with traditional (non-

connected) instruments. 

 

- Perceived safety: Defined as the lack of risk, or the existence of only 

minimal risks, when using connected microscopes. This is associated with 

a scientist’s trust, willingness to rely, and sense of security with this new 

type of instrument.  

 

- Perceived responsiveness: Defined as the capability of the instrument for 

fast and seamless data transfer to and from a cloud ecosystem, thus 

ensuring data preservation. The fastest this data transfer would occur, the 

more responsive the instrument is assumed to be.  

 

To ensure clarity in the quantitative survey presented to participants, the term 

‘connected microscopes’ was always explicitly stated as ‘microscope(s) 

connected to a cloud ecosystem’.  

 
 

3.2 Data Collection  

In this section, all relevant aspects of the quantitative data collection process that 

were undertaken in this investigation are presented. This includes general 

aspects of the respondent’s population, the survey design and the scenarios that 

were presented as part of the survey.  

 

3.2.1 Participants  

Participants in this quantitative study were all required to be scientists in any field 

within life sciences currently working with manual brightfield microscopes. The 

first question in the study served to qualify those that were active current users 

of the instruments and to exclude those that were not. Participants who 

responded negatively to the qualifying question, were immediately disqualified 

from responding to the survey. The total number of qualified respondents was 37. 

None of the users received any monetary compensation for their participation, 

and they were all contacted via the collaborative network of the author of this 

thesis.  
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Responders were all scientists working in academic and biotech/pharma 

institutions across Europe and the United States. Those institutions included the 

University of Helsinki in Finland, Uppsala University in Sweden, Institute for 

Cancer Research (ICR) in the UK, Research Center of the CHU de Québec, 

Université Laval, Canada, and companies such as Thermo Fisher Scientific, 

Zeiss and Evident (former Olympus). Basic demographic information was 

collected from all participants: age, years of experience using microscopes, 

academic degree, and the region of the world where they currently work.  

 

3.2.2 Quantitative Survey   

The survey was prepared and hosted on SurveyMonkey, and a link to it was 

distributed via email. The survey remained open for 10 business days. Each 

participant was randomly assigned to either a Control condition, coded C (no 

vignette, n= 11), the Idealized vignette condition, I (n= 14) and the Realistic 

vignette condition, coded R (n= 12). The vignette conditions are described in 

section 3.2.3. The study tested five dimensions and two to four statements were 

prepared for each dimension, as detailed in TABLE 2. Responses were measured 

on a 7-point Likert scale with anchors of ‘strongly disagree’ and ‘strongly agree’. 

The neutral scale was set at 4 with ‘neither agree nor disagree’. Participants were 

faced with a total of 18 statements, which were designed to assess the scientist’s 

attitude and willingness to adopt connected instruments.  

 

The statements related to the general dimensions (Intention to Use, Perceived 

Usefulness and Perceived Ease of Use) were directly adapted from the 

corresponding references listed in TABLE 1. Given the specialized target 

audience of this study, when adapting the statements specific attention was given 

to re-wording key terms that are essential for scientific comprehension. The 

statements related to the constructs of Perceived Safety and Perceived 

Responsiveness were created di novo. A catch question was added towards the 

middle of the questionnaire, to ensure participants were fully engaged. It stated: 

‘This question is a check to make sure you are reading the questions. Please 

select the answer ‘I am reading carefully’ below’. The correct answer was inserted 

at the ‘Neither agree nor disagree’, which is the neutral position on the Likert 

scale.  
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TABLE 1. Constructs and statements included in this quantitative survey utilized 

in this investigation.  

Construct Statement  Reference 

Intention to Use  

Connected Microscopes 

(IU) 

IU 1. I would like to have 

a microscope in my 

laboratory that is 

connected to a cloud 

ecosystem 

(Nees, 2016) 

IU 2. Given that I would 

have access to a 

microscope connected 

to a cloud ecosystem, I 

foresee that I would use 

it. 

(Koul et al., 2018) 

Perceived Usefulness 

of Connected 

Microscopes (PU) 

PU 1. I think using a 

microscope connected 

to a cloud ecosystem 

will allow me to work 

more productively.   

(Koul et al., 2018; Nees, 

2016) 

PU 2. A microscope 

connected to a cloud 

ecosystem will allow me 

to easily access and 

share my data. 

 

PU 3. Using a 

microscope connected 

to a cloud ecosystem 

will enhance my 

effectiveness. 

(Sagnier et al., 2020) 

PU 4. I believe that 

using a microscope 

connected to a cloud 

ecosystem will improve 

the service that I can 

receive from the 
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instrument 

manufacturer. 

Perceived Ease of Use 

of Connected 

Microscopes (PE) 

PE 1. I believe I would 

find a microscope 

connected to a cloud 

ecosystem easy to use. 

(Koul et al., 2018; Nees, 

2016) 

PE 2. I think it will be 

easy for me to become 

skillful at using a 

microscope connected 

to a cloud ecosystem. 

(Koul et al., 2018) 

PE 3. I think learning to 

operate a microscope 

connected to a cloud 

ecosystem will not be 

more difficult than 

learning to use a not-

connected microscope. 

(Koul et al., 2018) 

PE 4. I foresee that my 

interaction with a 

microscope connected 

to a cloud ecosystem 

will be clear and 

understandable. 

(Nazari-Shirkouhi et al., 

2023) 

Perceived Safety of 

Connected Microscopes 

(PS) 

PS 1. Using a 

microscope connected 

to a cloud ecosystem 

will be safe. 

 

PS 2. I think there are 

no major security risks 

associated to using a 

microscope connected 

to a cloud ecosystem 

 

PS 3. I feel comfortable 

using a microscope 
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connected to a cloud 

ecosystem even though 

I am aware that there 

are some associated 

risks. 

PS 4. I think that using a 

microscope connected 

to a cloud ecosystem is 

secure enough for my 

work in the lab. 

 

Perceived 

Responsiveness of 

Connected Microscopes 

(PR) 

PR 1. I believe a 

microscope connected 

to a cloud ecosystem 

will be fast to use. 

 

PR 2. I think a 

microscope connected 

to a cloud ecosystem 

will allow me to save my 

data easier than a non-

connected microscope. 

 

PR 3. I think that a 

microscope connected 

to a cloud ecosystem 

will be convenient for 

uploading and 

downloading relevant 

data. 

 

PR 4. I feel a 

microscope connected 

to a cloud ecosystem 

will be more reliable to 

preserve my original 

data than a non-

connected microscope. 

 



41 

 

 

3.2.3 Scenarios  

The vignettes prepared for the study are presented in TABLE 2. They consisted 

of two hypothetic scenarios involving a scientist friend whose laboratory had 

acquired a fluorescence microscope one year ago. Their rationale was inspired 

by (Nees, 2016). The participants were asked to assume that the presented 

scenario was accurate. The realistic scenario was written to emphasize two main 

challenges associated to the use of connected microscopes, namely data 

security and instrument responsiveness. However, to ensure a balanced portrait, 

it also included some of the expected benefits of adopting these systems, 

specifically improved sharing, and collaboration as well as higher convenience. 

A control group received no vignette. In this case, participants were directly 

presented with the following text, which was common to all scenarios: ‘In this 

survey, statements will be presented, and you will be given options to express 

your agreement or disagreement’. Selection of each scenario was randomized in 

the survey, as described in previous section.  

 

TABLE 2. Vignettes randomly presented to participants in the quantitative survey.  

Idealistic vignette Realistic vignette 

Imagine that in the cell culture laboratory of 

one your scientist friend, a manual 

fluorescence microscope was purchased 

about 1 year ago. This microscope can 

connect to cloud ecosystems (such as 

OneDrive) as well as to a cloud provided by 

the instrument manufacturer.  

 

Getting the instrument connected took no 

time and it was handled smoothly by the IT 

Department. Now, when your friend uses 

the instrument, he uploads his images at a 

high speed to the cloud. He can then access 

his images later, from his own computer or 

mobile phone, and analyze them remotely. 

Your friend enjoys that he can share his data 

with his supervisor in a more convenient 

Imagine that in cell culture laboratory of one 

your scientist friends, a manual 

fluorescence microscope was purchased 

about 1 year ago. This microscope can 

connect to cloud ecosystems (such as 

OneDrive) as well as to a cloud provided by 

the instrument manufacturer.  

 

Getting the instrument connected took some 

months, as they were some hurdles related 

to restrictions of the IT department. Now, 

when your friend uses the instrument, he 

often uploads his images to a cloud 

environment, and he shares and analyze 

them more easily. However, when working 

with many files, especially from time-lapsed 

or higher plex experiments, he has noticed 
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way. He feels the instrument is safe and his 

data is secured, even when working in 

confidential projects. Your friend also likes 

that he does not need to worry anymore 

about carrying an USB drive into the cell 

culture laboratory. Additionally, he now 

quickly downloads software upgrades, when 

they become available from the instrument 

manufacturer, to keep the instrument up-to-

date.  

that data transferring is not always fast. 

Thus, when he is in a hurry, he takes a USB 

drive into the cell culture lab. In few cases 

during the last month, he needed to wait for 

another user to finish this data uploading to 

the cloud before he could use the 

microscope. When working on confidential 

projects, he still uses the instrument offline 

due to concerns on data security. 

 

3.3 Data Analysis  

A D'Agostino & Pearson test was first applied to determine if the data was 

normally distributed. Once this was confirmed, parametric tests were 

subsequently selected to perform the relevant statistical comparisons. Means 

and standard deviations (SDs) for all survey constructs were calculated. To 

evaluate how a presented scenario could influence the acceptance of connected 

microscopes, differences between the responses across all survey items in the 

three tested groups (C, I or R) were subjected to one-way Analysis of Variance 

(ANOVA). To specifically establish the differences between pairs of groups, an 

unpaired t-test with Welch’s correction was applied. Welch’s correction was 

selected on the basis that it does not assume equal standard deviations (SDs).  

 

The relationships between PU, PE, PS, PR and IU for connected microscopes 

were investigated using Pearson Correlation. Descriptive statistics were used to 

assess the demographic variables tested in the study. Furthermore, an 

exploratory analysis was undertaken to assess if two of other variables measured 

as part of the survey (age and years of experience with microscopes) could have 

any correlation with the intention to use. For such exploratory analysis both 

descriptive statistics as well as Pearson Correlation were applied. In all cases, 

statistical significance for this study was set at p ≤ 0.05. All statistical analysis 

were performed using GraphPad Prism software version 10.2.1.  
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4 RESULTS  

Results that were obtained in this quantitative study are summarized in this 

section, alongside a discussion of key aspects associated to the data analysis.  

 

4.1 Vignette Effect and General Data Trends 

Prior to initiating any analyses, all scores obtained for all five constructs in the 

three tested groups (C, I or R), were subjected to a D’Agostino & Pearson test. 

As presented in TABLE 3, the data is binomially distributed across all groups. 

Based upon this, it was deemed adequate the application of parametric statistics 

for all statistical analysis performed in this investigation.  

 

TABLE 3. Results of D’Agostino & Pearson normality test for the survey results 

on the three tested scenarios (C, I and R).  

 

 Control (C) Idealized (I) Realistic (R) 

K2 1.227 3.869 0.050 

p value  0.541 0.145 0.975 

Passed normality test? 

( =0.05) 
Yes Yes Yes 

p value summary ns ns ns 

 

The average scores for all survey items were then compared across the three 

tested groups using one-way ANOVA, and results are presented in FIGURE 15.  

 

 

 

 

One-Way ANOVA Summary 

F (2, 178)  5.933 

p value 0.0032 

p value summary ** 

 

 

FIGURE 15. Statistical comparison of the overall survey scores obtained for the 

three tested scenarios (C, I and R). The ANOVA results are shown as an insert 

in the figure.   
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Higher scores in the survey indicated higher acceptance of connected 

microscopes. The obtained ANOVA results demonstrates that there is a 

significant difference between the three conditions. In particular, the overall 

scoring of participants on the idealized vignette (5.941  0.753) is significantly 

higher than in the control group (5.486  0.948), p= 0.0049 **) and higher as well 

than in the realistic condition (5.525  0.779, p= 0.0028 **). This is not surprising, 

as humans can be more accepting of new technologies under idealized 

scenarios, as reported for instance in adoption studies of self-driving cars (Nees, 

2016). By contrast, the realistic vignette and the control conditions are not 

significantly different from each other (p= 0.8112). Thus, it can be concluded that 

the realistic vignette does not negatively impact the outcome of the participant’s 

scores. 

 

An individual analyses of the five dimensions across the three groups was also 

conducted and the results are shown in TABLE 4.  

 

TABLE 4. Means and standard deviations calculated for all responses in each of 

the three tested scenarios (C, I and R) across the five measured dimensions.  

 

Dimensions Control (C) Idealized (I) Realistic (R) 

Intention to Use (IU) 6.09  0.89 6.43  0.73 5.96  0.72 

Perceived Usefulness (PU) 6.11  0.28 6.00  0.50 5.44  0.70 

Perceived Ease of Use (PE) 5.38  0.81 6.00  0.85 5.73  0.73 

Perceived Safety (PS) 4.66  0.78 5.21  0.53 4.98  0.76 

Perceived Responsiveness (PR) 5.18  1.79 6.08  0.58 5.53  0.73 

 

Via this descriptive analysis, it can be further concluded that participants in the 

idealized scenario score the highest for IU, PE, PS and PR across the three 

groups, but not for PU. This is an interesting observation as it suggests that 

usefulness of connected microscopes is clearly perceived and accepted among 

scientists, regardless of the vignette. Another observed noticeable pattern is that 

IU remains the highest scored attribute in the idealized group as well as in the 

realistic group, whereas PS is the lowest scored attribute in each of the three 
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groups. The realistic scenario presented to participants included statements 

highlighting the two main barriers commonly associated to connected instruments 

(data security and instrument responsiveness, see TABLE 2). However, the 

scores of participants for the corresponding dimensions of PS and PR, 

respectively, are higher in the realistic scenario when compared to the control 

condition. Overall, although idealized participants seem in general more willing to 

adopt connected instruments and to better perceive their ease of use, safety and 

responsiveness, the vignette condition is not the only one explaining the 

differences across the three groups.  

 

It is important to note that around 54% of the survey participants identify 

themselves as being at least ‘somewhat familiar’ with the topic of connected 

microscopes. Additionally, 57% of all participants possess at least 10 years of 

experience using brightfield microscopes, with that percentage being the highest 

(at 90%) for the control group. Thus, it is reasonable to also assume that across 

all groups, participants have formed an opinion on the topic of connected 

microscopes, that could be independent of the scenario that they were confronted 

with, during the survey.   

 

4.2 Descriptive Statistics for all Survey Variables  

Means, standard deviations, and medians for all individual items in the survey 

were calculated and they are presented in TABLE 5.  

 

From a descriptive standpoint, responses to most items in the survey (17 out of 

18) tend to positive agreement in the Likert scale, based on their medians being 

5 or higher. The highest received scores are for statement PU2 (A microscope 

connected to a cloud ecosystem will allow me to easily access and share my 

data), which emphasizes the benefits of better data access and shareability that 

is provided by connected instruments. None of the statements tend to negative 

agreement in the Likert scale, based on none of the medians being below 4. The 

only item in the survey having a median of the responses at the neutral position 

(4) is PS2, as respondents were in general unable to agree nor disagree with the 

statement: I think there are no major security risks associated to using a 

microscope connected to a cloud ecosystem. Overall, a comparison between 

variables indicates that PS scores are lower than the rest of the variables, as 
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already mentioned in previous section 4.1 (when describing TABLE 4). However, 

the overall score considering all four items within PS on was clearly above neutral 

(4.97).  

 

TABLE 5. Descriptive statistics calculated for all constructs in the survey across 

all participants. 

Construct Statement  Mean SD Median 

Intention to Use 

Connected 

Microscopes (IU) 

IU 1. I would like to have a 

microscope in my laboratory 

that is connected to a cloud 

ecosystem 

6.11 0.81 6.00 

IU 2. Given that I would 

have access to a 

microscope connected to a 

cloud ecosystem, I foresee 

that I would use it. 

6.24 0.89 6.00 

Perceived 

Usefulness of 

Connected 

Microscopes (PU) 

PU 1. I think using a 

microscope connected to a 

cloud ecosystem will allow 

me to work more 

productively.   

5.73 0.99 6.00 

PU 2. A microscope 

connected to a cloud 

ecosystem will allow me to 

easily access and share my 

data. 

6.43 0.87 7.00 

PU 3. Using a microscope 

connected to a cloud 

ecosystem will enhance my 

effectiveness. 

5.73 0.93 6.00 

PU 4. I believe that using a 

microscope connected to a 

cloud ecosystem will 

improve the service that I 

5.22 1.34 5.00 
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can receive from the 

instrument manufacturer. 

Perceived Ease of 

Use of Connected 

Microscopes (PE) 

PE 1. I believe I would find a 

microscope connected to a 

cloud ecosystem easy to 

use. 

5.60 1.17 6.00 

PE 2. I think it will be easy 

for me to become skillful at 

using a microscope 

connected to a cloud 

ecosystem. 

5.92 1.04 6.00 

PE 3. I think learning to 

operate a microscope 

connected to a cloud 

ecosystem will not be more 

difficult than learning to use 

a not-connected 

microscope. 

5.46 1.66 6.00 

PE 4. I foresee that my 

interaction with a 

microscope connected to a 

cloud ecosystem will be 

clear and understandable. 

5.76 1.12 6.00 

Perceived Safety 

of Connected 

Microscopes (PS) 

PS 1. Using a microscope 

connected to a cloud 

ecosystem will be safe. 

4.78 1.00 5.00 

PS 2. I think there are no 

major security risks 

associated to using a 

microscope connected to a 

cloud ecosystem 

4.14 1.18 4.00 

PS 3. I feel comfortable 

using a microscope 

connected to a cloud 

5.45 0.99 6.00 
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ecosystem even though I am 

aware that there are some 

associated risks. 

PS 4. I think that using a 

microscope connected to a 

cloud ecosystem is secure 

enough for my work in the 

lab. 

5.57 0.77 6.00 

Perceived 

Responsiveness 

of Connected 

Microscopes (PR) 

PR 1. I believe a microscope 

connected to a cloud 

ecosystem will be fast to 

use. 

5.14 1.48 6.00 

PR 2. I think a microscope 

connected to a cloud 

ecosystem will allow me to 

save my data easier than a 

non-connected microscope. 

5.76 1.36 6.00 

PR 3. I think that a 

microscope connected to a 

cloud ecosystem will be 

convenient for uploading 

and downloading relevant 

data.  

6.08 0.95 6.00 

PR 4. I feel a microscope 

connected to a cloud 

ecosystem will be more 

reliable to preserve my 

original data than a non-

connected microscope. 

5.00 1.55 5.00 

 

4.3 Correlation Analyses  

Most TAM studies have centered on the study of the relationships between PU, 

PE and the anticipated IU of many different types of new technologies (Holden 

and Karsh, 2010; Horton et al., 2001). The applications have been very broad, 

ranging from online learning and virtual laboratories (Estriegana et al., 2019), 
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smartwatches (Dutot et al., 2019), to driverless cars (Koul et al., 2018), near-field 

communication allowing mobile payments (Dutot, 2015) and e-services across 

multiple industries, such as healthcare (Nazari-Shirkouhi et al., 2023), just to 

mention a few.  

 

To test the relationships between the variables hypothesized in the initially 

proposed model (FIGURE 14), Pearson correlations were calculated. A matrix 

showing the correlation among all research variables is displayed in TABLE 6. 

The PU and the PS were found to be both positively correlated, in a statistically 

significant manner, with the IU connected microscopes. On the other hand, PE 

and PR were both positively correlated with the IU, but not in a statistically 

significant manner. More specific details on the research questions analyses are 

presented in TABLE 7. 

 

TABLE 6. Correlation matrix indicating relationships among all variables tested in 

this study. The shadowed cells correspond to the relationships studied as part of 

the research questions of this investigation.  

 

 
Intention to 

Use (IU) 

Perceived 

Usefulness 

(PU) 

Perceived 

Ease of 

Use (PE) 

Perceived 

Safety  

(PS) 

Perceived 

Responsiveness 

(PR) 

Intention to Use 

(IU) 
1.000     

Perceived 

Usefulness (PU) 
0.487** 1.000    

Perceived Ease 

of Use (PE) 
0.124 0.2070 1.000   

Perceived Safety  

(PS) 
0.354* -0.0884 -0.0406 1.000  

Perceived 

Responsiveness 

(PR) 

0.207 -0.0601 0.0708 0.4890** 1.000 

*p < 0.05; **p < 0.01; *** p< 0.001 
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TABLE 7. Specific statistical analyses performed to answer the research 

questions addressed in this study.  

 

Research Question Statistical Analysis Result  

Q1: To what extent does a relationship 

exist between the perceived 

usefulness (PU) of connected 

microscopes and the intention to use 

(IU) them?  

The PU of connected microscopes and the IU 

have a moderate, statistically significant 

positive relationship: r = 0.4873, R2= 0.2375, 

p= 0.0035 (** p < 0.01) 

Q2: To what extent does a relationship 

exist between the perceived ease of 

use (PE) of connected microscopes 

and the intention to use (IU) them?  

The PE of connected microscopes and the IU 

have a positive but not statistically significant 

relationship: r = 0.1237, R2= 0.01531, p= 

0.4856 (ns, p> 0.05) 

Q3: To what extent does a relationship 

exist between the perceived safety 

(PS) of connected microscopes and 

the intention to use (IU) them? 

The PS of connected microscopes and the IU 

have a weak, statistically significant positive 

relationship: r = 0.3538, R2= 0.1252, p= 0.0371 

(* p < 0.05) 

Q4: To what extent does a relationship 

exist between the perceived 

responsiveness (PR) provided by 

connected microscopes and the 

intention to use IU) them? 

The PR of connected microscopes and the IU 

have a positive but not statistically significant 

relationship: r = 0.2069, R2= 0.04280, p= 

0.2480 (ns, p> 0.05) 

 

With respect to Question 1, it was demonstrated in this study the existence of a 

positive and significant correlation between PU and the IU for connected 

microscopes. The statements used in this survey emphasized the main benefits 

expected from connected microscopes, among them: easier access to data, 

better data shareability (which also provides better capabilities for data 

traceability), better access to the services that are received by the instrument 

manufacturer as well as higher productivity. In particular, the highest scores 

obtained for PU2 serves as a key indication of the importance of remote data 

access and shareability for scientists. This is a finding that can be likely beneficial 

for manufacturers looking for effective ways to promote their connected 

microscopes. It is also significant that the usefulness statement associated with 

manufacturer’s services (PU4) received the lowest score within this dimension. It 
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would be worthwhile for manufacturers to gather more convincing evidence of the 

true benefits of using connected instruments from a service and support 

standpoint, to further increase the perception of usefulness among potential 

future users.  

 

In relation to Question 2, it was, unexpected, on the other hand, that PE and IU 

correlated positively but not in a statistically significant manner. In general, it is 

assumed that the ease of use of a system improves the self-confidence and self-

efficacy of an individual, which in turn creates a positive attitude towards the use 

and adoption of a new system (Nazari-Shirkouhi et al., 2023). The statements 

utilized in current survey emphasized, as in several earlier studies (Koul et al., 

2018; Nazari-Shirkouhi et al., 2023; Nees, 2016) multiple relevant aspects of this 

dimension, such as: the intrinsic easy to use; how easy would be to become 

skillful with a connected microscope, how easy would be to learn and operate a 

connected microscope (when compared to a traditional instrument) and how 

interactions would be clear and understandable.  

 

It is not immediately obvious why a significant positive relationship between PE 

and IU could not be demonstrated here. When looking at this specific correlation 

graph (shown in FIGURE 16), it could be noted that users who showed a high 

intention to use connected microscopes (with high IU scores, multiple overlapping 

datapoints ranking around 7 in the Likert scale), did not perceive connected 

instruments as easy to use, as they responded with lower PE scores.  

 

 

 

 

 

 

 

 

 

FIGURE 16. Correlation graph between dimensions of IU and PE, as recorded in 

this quantitative survey.   



52 

 

 

It could be hypothesized that user’s perceptions of ease of use for connected 

microscopes extents to ‘ease of installation’, even though this was not explicitly 

included in any of the survey PE statements. Engagement of IT and technical 

hurdles that need to be overcome during the installation of connected 

microscopes are often challenging aspects that have been known to impact 

adoption of connected lab instruments (Gill, 2018). Confounding ‘ease of use’ 

and ‘ease of installation’ could potentially explain why lower scores were obtained 

for PE. From instrument manufacturers standpoint, these results highlight the 

need for more development efforts to improve usability, particularly around 

design elements that are specifically associated to microscope connectivity. 

Lastly, it should also be kept in mind that the reduced size of the study population 

is a limitation of this present study. With a broader sample size, it is possible to 

have a more reliable result of any possible relationships between PE and the IU 

for connected microscopes.  

 

Another interesting outcome was the demonstration of a positive, albeit weak 

correlation, between PS and the IU for connected microscopes, which answers 

Question 3 of this investigation. The perception of safe usage is essential for 

instruments in which data is transferred outside of the physical location of the 

instrument to a cloud ecosystem, and/or shared, and it often associates with user 

trust. Trust has been shown to play a key role in the individual’s decision to 

develop a long-term relationship with a particular product, or a 

manufacturer/brand and it is thus essential for new technology adoption (Seong-

Ha and Ha-Kyun, 2023). In a prior study covering the adoption of smartwatches 

(a different, but yet also connected, device type), trust was defined as ‘willingness 

to rely’ on the other partner, which in that case was the smartwatch manufacturer 

brand (Dutot et al., 2019). Similarly, perceived safety can be associated with 

security, and research has suggested that customers, in this case scientists, need 

to be convinced that their data is secured and it cannot be intercepted, for them 

to be willing to use the products (Dutot, 2015).  

 

Many studies have demonstrated that trust is positively correlated to PU and PE, 

which in turn are both positively correlated to IU, in the TAM framework (Dutot, 

2015; Dutot et al., 2019; Sagnier et al., 2020). The PS statements in current study 

focused on the acceptance of risks, assuming that they are not major, as well as 
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in the willingness to accept that using a cloud ecosystem is ‘secure enough’ for 

the work in the lab. Once more this can be useful information for instrument 

manufacturers, in trying to offer proof points for scientists that their connected 

microscopes are safe. In future studies, it would be interesting to gather more 

insights into what can be considered ‘secure enough’. Similarly, it would be good 

to gather more insights into the PS perspectives of academic vs industrial users, 

as scientists working in industry, for instance in pharma or biotech, are often 

involved in confidential projects, and can therefore have more safety concerns 

than academic users. In our survey we unfortunately did not collect information 

on user segments, and thus it was not possible to perform any exploratory 

correlations around PS and end-user work segment.  

 

Finally, in assessing Question 4 of this study, it was demonstrated that PR and 

IU have a positive but not statistically significant correlation. Responsiveness was 

a variable selected for this study given the important implications of data transfer 

effectiveness for connected instruments (Poger et al., 2023). However, finding 

similar quantitative survey studies in the literature proved difficult, and thus the 

statements that were utilized here were created by the author based upon her 

own expertise. As a result, they lacked any direct validation from any previously 

published investigation. Additionally, it needs to be kept in mind, that PR is an 

attribute that could be challenging to gauge in a quantitative investigation, such 

as current study. This is because responsiveness in terms of ‘uploading and 

downloading’ or ‘saving data’, could be very differently perceived by users 

depending on their specific experiences in speed connectivity at their respective 

institutions. In retrospect, the survey should have included one or two open 

questions for the PR dimension, to gather a more nuanced understanding of what 

the responsiveness perceptions were among participants. For future 

investigations, it would be important to expand this type of investigations not only 

to a larger sample size, but also to include qualitative insights of users, on the 

topics of PR and PE. 

 

Finally, even though it was not initially intended as a research question in this 

study, it was also demonstrated the existence of a moderate, statistically 

significant positive relationship between PS and PR, with r = 0.4890, R2= 0.2391, 

p= 0.0039 (** p < 0.01). This relationship is worth exploring in further studies.  
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4.4 Demographic Analyses  

The collected demographic data in this study included participant’s age, years of 

experience in using brightfield microscopes, region of the world where they work, 

and their educational degree. A summary of this data is presented in TABLE 8.  

 

From participant’s age perspective 43% of participants belonged to the 25-34 

age group, while another 45% was distributed across 35-44 and 45-54 ranges. 

None of the participants was under 24, which could be regarded as ‘too young’ 

(from a scientific standpoint) as it is where undergraduates would be primarily 

included. Also, roughly 43% of participants had accumulated up to 9 years of 

experience working with brightfield microscopes and the vast majority (over 86%) 

had at least 5 years of experience. In addition, 50% of them had completed a 

Doctoral degree. In general, this indicates that the surveyed population, despite 

its limited size (n=37), provided a good representation of knowledgeable, skilled, 

and well-versed microscopy users.  

 

TABLE 8. Demographics data overview of survey’s participants.  

Variable Ranges Number Percentage 

Age 

18-24 0 0.0% 

25-34 16 43.2% 

35-44 11 29.7% 

45-54 6 16.2% 

55-64 4 10.8% 

65+ 0 0.0% 

Years of  

Experience  

< 5 years 5 13.5% 

5-9 years 11 29.7% 

10-14 years 12 32.4% 

15-20 years 8 21.6% 

> 20 years 1 2.7% 

Region 

Europe 20 54.1% 

North America 16 43.2% 

Asia 1 2.7% 

Educational  

degree 

BSc 3 8.1% 

MSc 13 35.1% 
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PhD 19 51.4% 

Adjunct (Docent) or  

Associate/Assistant Professor 1 2.7% 

Professor 0 0.0% 

Other 1 2.7% 

 

4.5 Additional Exploratory and Correlational Analyses 

In several new technology adoption studies, age has been found to influence the 

intention to use (Marangunić and Granić, 2015; Straub, 2009). In some specific 

cases, such in the adoption of driver-less cars, it has been demonstrated that age 

is negatively correlated with the usage intent (Koul et al., 2018; Nees, 2016). 

Thus, it would be plausible to assume that younger scientists, having spent less 

years of lab experience with traditional (non-connected) instruments, may show 

a higher disposition, be keener and more willing to use newer, connected 

microscopes. Correlations between the intention to use connected microscopes 

and the age as well as years of experience, were then separately investigated, 

and results are presented in TABLE 9.  

 

TABLE 9. Exploratory correlational analyses between IU and two other variables 

(age and years of experience).  

Additional Research 

Question 
Statistical Analysis Result 

To what extent does a 

relationship exist between the 

user age and the Intention to 

Use (IU) connected 

microscopes? 

The age of the user has a negative but not 

statistically significant relationship with the 

intention to use connected microscopes:  

r = -0.1134, R2= 0.01286, p= 0.5166  

(ns, p > 0.05) 

To what extent does a 

relationship exist between the 

years of experience of the 

user and the Intention to Use 

(IU) connected microscopes? 

The years of experience of the user has a 

negative but not statistically significant 

relationship with the intention to use 

connected microscopes:  

r = -0.03616, R2= 0.001308, p= 0.8366  

(ns, p > 0.05) 
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In alignment with previous studies, a negative correlation was identified in both 

cases, but they were not found to be statistically significant. It is possible that by 

increasing the sample size, more reliable correlations could be established 

between these variables.  

 

To further investigate a possible impact of age with the limited sample size that 

was gathered in this study, the responses were divided into two groups: under 34 

(representing 43% of participants) and over 34 (representing the remaining 57%). 

By dividing into only two groups, it was also possible to have a larger number of 

respondents in each group which would increase the statistical confidence of the 

test. Scoring results for each of the five survey dimensions were then compared 

between the groups (FIGURE 18). No statistically significant differences were 

identified in any of the cases.  

 

FIGURE 17. Comparison of results (mean  standard deviations) obtained for 

each of the survey variables, between respondents who were up to 34 years old 

and those who were above.  

 

A similar comparison was performed considering years of experience using 

brightfield microscopes. The responses were also divided into two groups: those 

who had up to 9 years of experience (also representing 43% of participants, like 

in the case of the users under 34 years old) and at least a decade of experience 

(the remaining 57%). In this manner, it could be exactly considered the user 

ns 
ns ns 

ns 
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experience with microscopes. Scoring results for all survey dimensions are 

presented in FIGURE 18. As in the age effect, there was no statistically significant 

differences on the overall acceptance of connected instruments as measured 

across all constructs between both groups.  

 

FIGURE 18. Comparison of results (mean  standard deviations) obtained for 

each of the survey variables, between respondents who had up to 9 years of 

experience and those with at least a decade of experience.  
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5 DISCUSSION AND CONCLUSIONS 

This chapter includes a summary of the main actionable findings of this thesis, 

alongside the repercussions that they may pose for instrument’s manufacturers 

wishing to succeed and continue to grow in the manual widefield microscopy 

market. To maintain an objective perspective of the implication of this thesis, the 

limitations of this investigation are also critically assessed, followed by key 

recommendations on opportunities for future investigations. 

 

The survey carried out in this investigation served to test an adoption model that 

helps explaining the main drivers behind adoption of connected manual widefield 

microscopy market, within the framework of the TAM and at an individual user 

level (FIGURE 14). This initially proposed model was revisited, and the confirmed 

and/or unconfirmed correlations accordingly reviewed, as shown in FIGURE 19.  

The statistically significant relationships demonstrated here (black straight 

arrows) serve to identify two main drivers for user adoption.  

 

 

FIGURE 19. Model for adoption of connected microscopes, as demonstrated in 

current study. The straight black arrows correspond to positive and statistically 

significant relationships confirmed during this study, whereas the dotted arrows 

correspond to positive, but not statistically significant correlations.  

 

In first place, the usefulness of connected microscopes, as perceived by 

scientists who currently are active users, correlates positively and significantly 

with their intention to use these instruments. Regardless of the vignette that they 

Perceived Usefulness of 
Connected Microscopes 

Perceived Ease of Use of 
Connected Microscopes 

Intention to Use a  
Connected Microscopes 

Usage 
Behaviour 

Perceived Safety of  
Connected Microscopes 

Perceived Responsiveness of  
Connected Microscopes  
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were shown during this quantitative survey, scientists tended to agree with 

statements associated with connectivity benefits, in particular higher productivity, 

increased data sharing, and enhanced work effectiveness. Given that findability, 

accessibility, interoperability and reusability of data, as per the FAIR guidelines 

(Wilkinson et al., 2016) have gained increasingly more importance in the 

biological imaging field, it is expected that the perceived usefulness of connected 

microscopes will only continue to grow. It is important to note that the specific 

benefit of improved service by manufacturers received the lowest score within the 

perceived usefulness construct. For instrument manufacturers, this provides an 

important guidance for their development and marketing strategies. It needs to 

be credibly and convincingly demonstrated to users that connecting their 

microscopes to cloud ecosystems indeed improves the service and support they 

could receive from vendors. From a communication standpoint, case studies 

could be highly valuable to convince scientists, for instance by using examples of 

installed instruments whose users have directly benefited from truly faster and 

more effective vendor support.  

 

In second place, the perception of safe usage correlates also positively and 

significantly with the intention to use connected microscopes. In other words, the 

safer a connected microscope is perceived to be, the more intention to use a 

scientist shows. Consequently, to ensure adoption, connected microscopes need 

to be demonstrably safe and solutions for storing data need to be proven secure 

to customers. For large companies that have developed their own customized 

cloud ecosystems, such as Zeiss, Evident and Thermo Fisher Scientific, data 

protection becomes imperative, and continuous investment to maintain secure 

platforms need to be prioritized, which consequently increases development 

costs in the long run. Interestingly, unlike usefulness, perception of safety on 

connected microscopes is less obvious for scientists across all the three 

scenarios that were tested in this thesis. Once more, this provides actionable 

guidance to manufacturers in the manual microscopy market. As shown in other 

studies Seong-Ha and Ha-Kyun, 2023), building a sense of trust and security 

ensures a long-term relationship with a provider. For connected microscopes, this 

is proven not to be an exception.  
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Additionally, this study demonstrates that there is a positive correlation between 

perceived ease of use and the intention to use connected microscopes, as well 

as between perceived perceived responsiveness and the intention to use such 

instruments, although in both cases the correlations are not statistically 

significant. It could be argued that the survey applied here was unable to capture 

the nuances associated to both dimensions. For example, the perception of ‘ease 

of use’ could have been confounded with ‘ease of installation’ or ‘ease to 

maintain’. It is plausible to expect that scientists could perceive a more complex 

instrument (a connected vs a traditional one) as more complicated to maintain. 

Similarly, the assessment of perceived ‘responsiveness’ using terms such as 

‘uploading and downloading’ or ‘saving data’ could be interpreted differently by 

users, based upon their specific individual experiences. Thus, other investigation 

approaches, possibly involving qualitative research, may be needed to confirm 

current findings.  

 

Finally, this study allows to tentatively conclude that age and years of experience 

of the scientists are negatively correlated with their intention to use connected 

microscopes, but not in a statistically significant manner. Consequently, targeting 

adoption to specific younger audiences does not seem to be an absolute pre-

requisite for manufacturers willing to increase their market share. By contrast, it 

could be potentially better not to prioritize age-targeted marketing, since decision 

making in instrument purchases is typically in the hands of more experienced 

scientists in senior positions, such as Principal Investigators, Group Leaders or 

Professors. In that direction, it seems better to simply create better proof points 

for scientists that connected microscopes do indeed increase individual 

productivity.  

 

Despite the reduced sample size, the quality of the responses in this survey could 

be regarded as high, judging from the fact that over 50% of surveyed participants 

expressed familiarity with the topic of connected microscopes and close to 90% 

of respondents had at least 5 years of experience with the target instruments. In 

addition, 50% of them were already in the post-doctoral phase of their careers. 

However, for future investigations it is recommended to broaden the sample size. 

It is also advisable to include a combination of both quantitative (such as surveys) 

as well as qualitative methods (such as interviews) when examining perceived 
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ease of use and perceived responsiveness. Similarly, it is important to specifically 

capture segmentation data among participants. For instance, discrimination 

between academic and industrial (pharma/biotech) users can be essential to 

better understanding the perceived safety dimension, and to better outline 

security needs for connected manual microscopes.  
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