

Melissa Gimenes Alvarenga Ferrari

INTELLIGENT INCIDENT MANAGEMENT

Ticketing Software API Integration for Efficient Visualization and

Statistical Insights

School of Technology
2024

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology, Bachelor of Engineering

ABSTRACT

Author Melissa Gimenes Alvarenga Ferrari
Title Intelligent Incident Management

Ticketing Software API Integration for Efficient Visualization
and Statistical Insights

Year 2024
Language English
Pages 43
Name of Supervisor Anna-Kaisa Saari

This thesis focuses on creating an application based on the TOPdesk ticketing
system, aiming to produce a more efficient and user-friendly software. By
incorporating advanced filtering options, statistical insights, and intuitive design
elements, the webpages created seek to simplify the ticket management process.

Implemented through the utilization of tools and technologies such as Visual
Studio Code, Node.js, and SQLite, the project offers a comprehensive exploration
of the iterative development process. HTML, CSS, and JavaScript facilitate the
creation of an intuitive and visually appealing interface, while backend
development ensures integration with the TOPdesk API for data retrieval. The
resulting webpage enables users to navigate ticket categories efficiently, access
detailed ticket information, and gain insights into ticket resolution metrics.

The thesis achieved its main goal of creating a filtered version of the TOPdesk
ticketing system and revealing statistics of incident-solving processes.

Keywords Web Development, full-Stack, UI, ticketing system

CONTENTS

1 INTRODUCTION .. 8

2 INCIDENT MANAGEMENT... 9

2.1 Methods for Solving Incidents .. 9

2.2 Ticketing Systems in Detail ... 10

3 CONTEXT OF THE PROJECT ... 12

3.1 Client’s Background .. 12

3.2 CitizenM and the Author of the Thesis ... 12

3.3 IT Support Office Ticketing System: TOPdesk ... 12

3.4 Issue Acknowledgement ... 15

3.5 General Idea .. 15

4 PROJECT DEFINITION .. 17

4.1 Theoretical Background .. 17

4.1.1 The Importance of Chunking Information 17

4.1.2 Intuitive Design ... 17

4.2 Conceptualization of the Project .. 18

4.3 Landing page: Ticket Categories and Count ... 20

4.4 Unassigned Tickets Webpage: Tickets Information 21

4.5 Statistics Page: Performance Graph ... 22

5 TECHNOLOGIES USED ... 24

5.1 Languages and Programming Tools .. 24

5.2 Visual Studio Code .. 24

5.3 Google Chrome ... 25

5.4 Node.js .. 25

5.5 Sqlite ... 25

5.6 Postman .. 26

5.7 TOPdesk API .. 26

6 IMPLEMENTATION .. 28

6.1 Information Flow .. 28

6.2 Database ... 29

6.3 Implementation of the Landing Webpage .. 35

6.4 Implementation of the Unassigned Tickets Webpage 35

6.5 Implementation of the Statistics Webpage .. 36

7 TESTING .. 39

7.1 TOPdesk Tickets URLs ... 39

7.2 Updating Times ... 40

7.3 Lack of Keywords to be Identified .. 40

8 DEPLOYMENT ... 41

9 CONCLUSIONS .. 43

REFERENCES .. 44

LIST OF FIGURES

Figure 1. Typical flow of tickets .. 10

Figure 2. TOPdesk ticketing system interface. .. 13

Figure 3. TOPdesk’s individual ticket interface. .. 13

Figure 4. Options of statuses of a ticket. .. 14

Figure 5. The status of a ticket .. 14

Figure 6. Initial design for application categories. .. 20

Figure 7. Landing page UI design .. 21

Figure 8. Ticket information UI design .. 22

Figure 9. Statistics UI design ... 23

Figure 10. The variable "offset" as a query parameter .. 30

Figure 11. API test using Postman .. 30

Figure 12. API response example (Postman screen capture) 31

Figure 13. Data needed to compose the project .. 32

Figure 14. Example of extraction of data for month and year 32

Figure 15. Code snippet of Class categorization based on keywords. 33

Figure 16. Screen capture of the landing webpage .. 35

Figure 17. Screen capture of the unassigned tickets webpage 36

Figure 18. Statistics webpage with no operator specified 37

Figure 19. Statistics webpage with specified operator... 37

Figure 20. Unassigned tickets webpage updated with "Copy ID" buttons 39

Figure 21. Deployment of the application .. 41

LIST OF ABBREVIATIONS

API Application Programming Interface

CSS Cascading Style Sheets

FIQL Feed Item Query Language

HTML HyperText Markup Language

IT Information Technology

SQL Structured Query Language

UI User Interface

JSON JavaScript Object Notation

GLOSSARY

First-line support: The first point of contact with IT support, normally contacted

for simple problems.

Second-line support: Issues that cannot be solved by the first-line support and

require the involvement of personnel with extended knowledge or access to solve

the given problem.

Front-end: The part of a website that is visible to the users.

Back-end: The structure that supports the front-end and is not visible to users,

such as servers and databases.

Bot: A computer program designed to act as a user or another program, mimicking

human actions.

Runtime Environment: Environment in which a program is executed.

JSON: File and data format often used for data interchange.

FIQL: Query language mainly used for filtering and querying feed items in

syndicated feeds. It enables users to specify queries in a human-readable format.

8

1 INTRODUCTION

In modern organizations, ticketing systems serve as tools that provide structured

and efficient means of managing various requests and inquiries. They offer a

centralized platform where employees can submit their issues, questions, or

service requests that are transformed into tickets that are later answered by the

designated department.

The efficiency and usability of user interfaces (UI) play an important role in

improving user experience and productivity across several applications. This thesis

is about the creation of a webpage aimed at refining the user interface of a ticket

system known as TOPdesk, taking into consideration the specific needs of the

client - CitizenM Hotels. The goal is to not only enhance the interface visually but

also to add new functionalities and statistics. The inclusion of advanced filtering

options and statistical insights allows users to make informed decisions and

effectively address emerging challenges, thus maximizing the utility and

effectiveness of the ticket system. /1/

This thesis includes the conceptualization, development, and implementation

stages, providing an in-depth exploration of the iterative process of creating an

intuitive and efficient webpage. From initial ideas and sketches to the practical

application of codes, this thesis offers a comprehensive insight into the evolution

of the project.

9

2 INCIDENT MANAGEMENT

Incidents within a company are nearly impossible to avoid entirely, even in the

most meticulously organized and equipped systems. Despite the implementation

of rigorous protocols, advanced technologies, and trained personnel, unpredicted

circumstances and variables can still lead to disruptions in operations. Technical

glitches, human errors, or external factors beyond the company's control -

incidents have the potential to arise unexpectedly. For that reason, it is

fundamental that a company develops protocols and designates employees to

both troubleshoot and solve these problems.

Incident management includes detecting, investigating, and answering incidents

as early as possible. Early detection and prompt resolution of incidents are crucial

to mitigate their impact on the organization. By identifying and resolving issues at

their early stages, companies can prevent minor disruptions from escalating into

major crises. Moreover, proactive incident management demonstrates a

commitment to maintaining operational continuity, protecting higher customer

satisfaction, and preserving the company's reputation, while benefiting from

increased efficiency and team productivity, also auxiliating in future incident

mitigation. Therefore, investing in effective incident management strategies is an

essential characteristic of an agile and organized company. /2/

2.1 Methods for Solving Incidents

Several different incident management tools can be implemented within a

company. Chatbots, for example, can support users using artificial intelligence,

while chat rooms allow users to receive help from specialists. Documentation tools

can contain instructions on how to solve a problem, and ticketing systems store

and display requests from users that can be replied by the system operators.

Ideally, a combination of these methods is used so incidents are solved more

quickly and efficiently – for example, a chatbot can be used as a first-line support,

and the issue is escalated to the second-line only if necessary. /3; 4/

10

2.2 Ticketing Systems in Detail

Ticket systems are platforms that facilitate the management of incidents. It is a

shared online space where the requester can send messages, also known as

“tickets”, detailing the problem and sending it to the software operators who can

solve the incident, give advice or re-assign the issue to others. The communication

is consolidated in a single thread, facilitating easy reference to the ongoing

dialogue for both parties. In a company, departments that are responsible for

ticket solving can be either working resolving complaints and requests within the

company, communicating exclusively to employees, and/or outside the company

with customer support.

Upon the resolution of the issue, a ticket can be closed, only being re-opened in

case further assistance or clarification is needed. This ensures continuity in

communication, allowing the customer to resume interactions with the same

operator, which is important to shorten the resolution time of problems,

consequently improving customer experience. A typical and simplified ticket flow

is illustrated in Figure 1. /5/

Figure 1. Typical flow of tickets

It is essential to note that ticket flow processes may vary. For instance, within a

company, requesters might have the ability to directly submit tickets to second-

11

line support. Alternatively, tickets can be de-escalated from second-line to first-

line support. In some cases, tickets may even be redirected to entirely different

departments when necessary.

Ticketing systems offer several advantages, including personalized support, which

can provide more accurate information to the requester. Additionally, they

facilitate incident tracking, enabling operators to refer to past tickets, including

the ones solved by other colleagues, to resolve new ones encountering similar

issues, possibly also being combined with other documentation software. Besides,

these systems possibilitate data collection, enabling the identification of trends

and patterns over time.

12

3 CONTEXT OF THE PROJECT

3.1 Client’s Background

CitizenM is a multinational hotel chain founded in 2008 in the Netherlands. After

the COVID-19 pandemic, the company has experienced rapid growth, nine new

hotels have been opened in the past two years. This expansion has led to the

recruitment of new employees and the initiation of various projects. Given the

dynamic nature of the company, daily operations often require access to a diverse

range of applications. /6/

In the context of CitizenM, employees seeking tech support must utilize a ticketing

system platform called TOPdesk to create tickets to get support. Another

alternative is sending emails to the department, which are also connected to

TOPdesk and automatically transformed into tickets. These tickets are answered

by the Operators from the IT Support Office team.

3.2 CitizenM and the Author of the Thesis

In September of 2023, the thesis author was hired by CitizenM as an intern in the

IT team. The duties of an Office IT Support Intern include helping to fix issues

related to computers, answering questions, resolving computer problems for

CitizenM employees, and providing technology assistance in general inside of the

office.

The most important task of an Office IT Support Intern is to have active

participation in answering and resolving the tickets on TOPdesk. This means, most

of the workload is about incident management.

3.3 IT Support Office Ticketing System: TOPdesk

TOPdesk is a company that develops and supplies help desk software, founded in

1997 in Delft, Netherlands. TOPdesk’s software is the ticketing system platform

utilized by the IT department at CitizenM to address employee requests. Its user

13

interface resembles an email inbox, but it displays additional information that is

useful for the operators, as seen in Figure 2. /7/

Figure 2. TOPdesk ticketing system interface.

Upon selecting an incident, a new page is opened, providing details about the

caller and their request, as seen in Figure 3.

Figure 3. TOPdesk’s individual ticket interface.

14

The "Processing" section enables operators to assign tickets to themselves or

colleagues. Besides, operators can also set the ticket status based on the ongoing

situation, as seen in Figure 4.

Figure 4. Options of statuses of a ticket.

Once a ticket appears on the inbox, it is initially labeled as "Logged." As it

progresses, it remains in this state unless an operator intervenes. Once an

operator takes ownership of the ticket or delegates it to colleagues, the status is

typically switched manually to "In progress" to signal that work is underway. If

additional information is required from the ticket requester, the status is changed

to "Waiting for user" while awaiting their response. If the resolution depends on

a supplier's input, the status becomes "Waiting for supplier." Otherwise, once all

requirements are met, the ticket can be set as “Completed” and subsequently

“Closed”, following the typical status flow outlined in Figure 5.

Figure 5. The status of a ticket

15

It is important to mention that when a case is marked as “Completed”, updates

from users can still be received. On the other hand, a “Closed” status hides future

replies from the main tickets page. After 5 days of inactivity on a ticket, a bot

implemented by CitizenM causes TOPdesk to automatically transition the status

of "Completed" tickets to "Closed," where Completed = True and Closed = True.

3.4 Issue Acknowledgement

The IT Support Office functions are often similar to a system administrator's work,

and the role demands meticulous attention to detail. It is crucial to emphasize that

possessing administrative access to critical applications requires a thorough

understanding of the systems utilized. As the company grows, new team members

are hired, making it necessary to mitigate potential risks associated with

newcomers, so there is a careful approach to granting administrator rights. Instead

of immediately providing such privileges, individuals are allowed to familiarize

themselves with the work environment first. Consequently, each team member

possesses distinct admin accesses tailored to their responsibilities.

TOPdesk’s interface includes all requests sent to the team and it lacks a variety of

content filters. Given the collaborative nature of TOPdesk as a shared workspace,

team members tend to address issues within their expertise and leave the

remainder to their colleagues. Furthermore, the organization utilizes more than

80 applications, which makes it challenging to ascertain which team member has

access to specific tools or platforms. Therefore, due to occasional ambiguity in role

delineation, certain tickets may accumulate in the expansive mailbox, leading to

delays in resolution.

3.5 General Idea

The general idea of this thesis emerged when the author identified a significant

surge in tickets related to a common subject. Faced with a lack of necessary access

16

to address these tickets, the author meticulously compiled a categorized list built

on Google Sheets, intending to seek assistance from colleagues at a later stage.

Categorizing and delegating incidents manually was helpful for the given occasion;

however, it is not sustainable in the long run because the list has to be constantly

maintained manually and data gets deprecated. The author brought the matter to

the attention of the team leader and offered to initiate a project aimed at

addressing the issue of unresolved tickets that often were forgotten and left in the

queue. The team leader accepted it with one condition: in the project, the author

should also create automatic reports about the number of tickets solved by each

operator.

17

4 PROJECT DEFINITION

4.1 Theoretical Background

4.1.1 The Importance of Chunking Information

Numerous studies in the field of cognitive psychology and education explore the

effectiveness of chunking information for learning. These studies often investigate

how breaking down information into smaller, organized chunks can improve

memory retention, comprehension, and problem-solving skills.

A study by George A. Miller, titled "The Magical Number Seven, Plus or Minus Two:

Some Limits on Our Capacity for Processing Information", discusses the limitations

of human working memory and suggests that people can generally retain around

seven pieces of information at once. This study demonstrates the importance of

chunking information to overcome these limitations. Coherent chunks facilitate

learning compared to delivering it in a more overwhelming format. /8/

On TOPdesk, while the information is presented as a whole, instead of chunks,

operators can feel overwhelmed and overlook tickets. Considering George A.

Miller’s study, it is valid to assume that dividing this information (requests) into

chunks (categories) can help operators retain more attention and improve

engagement regarding work. Even though Miller’s project is mostly about

learning, memory and attention, aspects can be taken into account during the

development of this project.

4.1.2 Intuitive Design

Don Norman's book "The Design of Everyday Things" explores the principles of

good design and usability in everyday objects. Objects should intuitively suggest

their use, and/or have clear indicators of how they should be used. Users should

receive immediate and clear feedback about their actions, systems should be

18

forgiving of user errors and allow for easy recovery, and limiting the possible

actions can prevent errors. /9/

Implementing these principles enables the development of products that

prioritize intuitiveness, user-friendliness, and the enhancement of user

experience. Such principles apply not only to physical products but also to

software design. Introducing software embodying these traits, particularly in

professional contexts, plays a crucial role in ensuring a smooth transition when

engaging with a new tool. Enhanced usability facilitates quicker user adaptation

and proficiency, a key priority for companies seeking to optimize productivity and

efficiency.

Within a company's Technology Support departments, efficiency holds particular

significance, given the indispensable role of technology in the operations of

numerous other departments. A malfunctioning software can rapidly disrupt the

workflow of an entire company, underscoring the imperative for IT to swiftly and

accurately address any issues that arise. Hence, it was decided that the project

described in this thesis would possess an intuitive, self-explanatory, and simple

user interface while ensuring it encompasses all essential tools to enhance the

department's operations.

4.2 Conceptualization of the Project

The initial phase of the project involved the rudimentary categorization of

applications used within the company. To accomplish this, a list featuring these

applications was inserted into a new document and then categorized as follows:

• “Okta admin is enough”

• “Easy tickets”

• “Difficult tickets”

• “Others”

• “Send to other departments or request form”

19

• “Hardware, new equipment”

The categorization presented takes into consideration the process involved when

onboarding new team members, where the initial administrative access provided

is to Okta. Okta serves as the main software solution for IT Support to efficiently

manage employee access to various applications. Within this category, access

provisioning is automated between Okta and other software systems.

Consequently, this category is regarded as foundational, including tickets that can

often be promptly resolved by new hires. /10/

However, within the organization, certain applications lack automation,

necessitating additional internal administrative access during the access

provisioning process for employees. This delineates a distinction in the complexity

of ticket resolution, with some applications posing greater challenges than others.

While new operators can proficiently handle tickets related to easily accessible

applications, those of more complex systems require the expertise of more

experienced IT operators. Hence, it was necessary to establish two distinct

categories: "Easy Tickets" and "Difficult Tickets."

The classification of "Send to other departments or request forms" includes tickets

that are received by the team but do not fall within their direct responsibility.

Tickets categorized under "Hardware, new equipment" necessitate either on-site

resolution or remote control assistance, while the "Others" category comprises

exceptional or miscellaneous requests. (See Figure 6.).

To maintain organization and enhance clarity, all potential categories were

systematically listed in a spreadsheet, each identified with a distinct color code.

Subsequently, a comprehensive list of applications utilized within CitizenM was

incorporated into the spreadsheet, with each application color-coded according

to the designated category scheme. This methodical approach facilitates the

development of the website before the process of coding is started.

20

Figure 6. Initial design for application categories.

After sketching the initial idea, it was necessary to understand how to put it into

practice. The most viable option was to create webpages from scratch, considering

that then the software would be fully customizable according to the needs of the

Office IT Support team, and would grant the client full ownership over its content

and data.

4.3 Landing page: Ticket Categories and Count

The initial phase of the project involved translating the Google Sheets sketch into

a webpage featuring categories, the count of open tickets, application names or

descriptions, and interactive buttons redirecting users to the next page. Before

starting the webpage programming, the concept was designed on paper, as seen

in Figure 7.

With a sketch in hand, translating the concept into code becomes easier. Drawing

before coding aids the programmer in understanding the progress of the program

and visualizing what tasks remain. It serves as a visual roadmap, helping to bridge

21

the gap between design and implementation, as explained by Jonathan C. Roberts,

the professor of visualisation at the School of Computer Science and Electronic

Engineering of Bangor University. For that reason, all webpages were planned

following this method. /11/

Figure 7. Landing page UI design

4.4 Unassigned Tickets Webpage: Tickets Information

After clicking the category buttons on the landing webpage, the concept involved

redirecting the user to a second page that would display a table containing ticket

information, such as the ticket ID, title, and a field not available in TOPdesk:

subject. The design for the page is shown in Figure 8.

The program would categorize these tickets based on predefined groups using

keyword search. IT Support team members could open the ticket in TOPdesk by

clicking on the ticket ID which is linked to a URL. The displayed ticket table on the

unassigned tickets webpage would only include requests that are yet to be

resolved and are not assigned to any operator.

22

Figure 8. Ticket information UI design

4.5 Statistics Page: Performance Graph

On the landing webpage, a new button had to be created to redirect the user to

the statistics page. This new webpage concept involved incorporating a dropdown

menu containing operators' names, along with an option for "IT Support Office

Specialists", which would represent the sum of every operator’s ticket.

Upon selecting a specific name from the dropdown menu, on the left-hand side, a

bar chart is generated. This chart features a bar for each month on the x-axis,

depicting the number of tickets on the y-axis. On the right-hand side, pizza graphs

are displayed, one for each month, representing the percentage of tickets

responded to by each operator compared to the amount solved by the team as a

whole (see Figure 9).

Integrating functionality that allows users to adjust the displayed time frame, such

as selecting specific months or custom date ranges, promotes flexibility and

usability. These features contribute to a more complete dashboard, catering to

diverse user preferences and requirements.

23

Figure 9. Statistics UI design

24

5 TECHNOLOGIES USED

5.1 Languages and Programming Tools

Hypertext Markup Language (HTML) serves as the standardized language for

building webpages, and is essential for web development, as it composes the main

structure for webpages. Cascading Style Sheets (CSS) defines the visual style of the

webpages, such as layout, colors, and fonts. HTML and CSS are indispensable for

developing a webpage project. /12, 13/

For the addition of working buttons and other complex features, it is necessary to

add scripts; that means instructions that the computer will follow to guarantee a

dynamic and interactive webpage. This is possible with the use of JavaScript, which

is one of the most common script languages. Later, during the code development,

JavaScript was again utilized due to its versatility. The creation of servers for both

front and back ends was achievable by combining this language with Node.js, a

JavaScript runtime environment. /14/

In order to store ticket information, a database table is required. SQL serves as the

industry-standard language for creating and managing databases, with SQLite

functioning as a library that implements SQL database engines. Thus, these tools

constitute the technological framework of the project. /15/

5.2 Visual Studio Code

The execution of the project requires a text editor, or preferably, a code editor. In

that case, the chosen tool was Visual Studio Code - one of the most used code

editors in the present day - due to its easy-to-use nature and appealing interface.

/16/

Visual Studio Code supports various programming languages, including HTML, CSS,

JavaScript, and SQL if accompanied with the aid of appropriate extensions and

programs. This facilitated the consolidation of all coding tasks within a single

25

software platform, organized in separate files, enabling a compact and organized

coding environment.

5.3 Google Chrome

Google Chrome is a web browser developed by Google, being also the only

browser supported and used at CitizenM. For that reason, it was the one chosen

to test and foster the web application.

Chrome has a console tab that displays scripts on the current webpage. It was

useful for observing information flow, allowing the identification of errors in the

code script.

5.4 Node.js

To execute scripts on Visual Studio Code, a runtime environment is needed. Even

though a web browser was being used, Node.js was also an important

environment for building both the front and back-end servers with JavaScript.

A back-end server was necessary to store data on the database and make it always

available, while the front-end server was responsible for serving the webpage.

Node.js is efficient and versatile to accomplish these tasks, making up the author’s

runtime environment choice. /17/

5.5 Sqlite

A database to store ticket information was needed, and, for that reason, SQL was

used. SQLite is a C-language library that implements SQL and is the most used

database engine in the world. /18/

Due to the author’s familiarity with this library, it was the option chosen over

others. SQLite is easy to use and free source, guaranteeing that the project would

not have extra costs.

26

5.6 Postman

API testing is crucial for ensuring the reliability and functionality of an application's

backend services, helping to detect and prevent issues before they impact end-

users. For that reason, choosing the right API testing software was critical. For

example, Postman, Insomnia, and Newman. were viable options, but Postman was

the preferred choice due to colleagues' recommendations.

Postman is one of the most popular software for API testing, allowing users to

visualize data retrieved from the API to be later implemented on codes. The vast

support available online for this software was what made it the top choice for this

project. /19/

5.7 TOPdesk API

An API, or application programming interface, serves as a software bridge

facilitating communication between two applications. APIs provide a convenient

means to retrieve and exchange data within and between organizations. /20/

This project was fully conceptualized around the TOPdesk Application

Programming Interface (API). In this case, the API is a bridge between TOPdesk,

and the webpage being developed in this project, and it is where information

about tickets, senders, receivers, and such can be found, all in the context of

CitizenM.

The TOPdesk API provides information in JSON format. That means once the FIQL

query is properly set up on an API testing Software such as Postman, the user

should be able to visualize the data in JSON format. Even though the information

is readable, it is still not ideally displayed for end-user viewers. When creating a

webpage, it is important to know which information to extract from the API, if that

is the case, and how to display it. In this project, some JSON values could be used

without alterations, but some information had to be modified after being

27

gathered, including extraction of keywords from string values or modification of

data format, which will be further explained.

28

6 IMPLEMENTATION

6.1 Information Flow

The information flow of the project is based on the following schema:

Step 1: Basic authentication is done - variables containing username and password

to access the API are stored in a file that is separated from the code, making this

information hidden from users; these variables are read by the API, guaranteeing

that the program can access it with safety.

Step 2: Subsequently, the program dispatches a request to the API, triggering the

execution of a FIQL (Feed Item Query Language) query.

Step 3: The system then proceeds to retrieve tickets specifically designated for the

"IT Support Office Specialists EU".

Step 4: A comparison is made between the newly retrieved results and the existing

entries in the database. Initially, the database starts empty, but over time it

accumulates ticket data. Each ticket is uniquely identified by its ID, which is the

database key, ensuring no duplication. New tickets are added to the database

while existing tickets are updated with any changes.

Step 5: Continuing the process, tickets with new IDs are integrated into the

database. Conversely, tickets with IDs that have been previously encountered

undergo thorough updates, ensuring the database remains current and accurate.

Step 6: Once the database is up-to-date, the program utilizes queries to select only

the necessary information for the correct functioning of each webpage.

Step 7: The values meant to be displayed are properly transferred to the HTML

code.

Step 8: The values are displayed accordingly.

29

This schema represents a simplified version of the information flow, being detailed

further in the following paragraphs.

6.2 Database

After the creation of sketches, it was possible to predict what information from

TOPdesk would be crucial for this project. With that in mind, the next step was

finding this data and identifying these properties in the API. With the API URL, it

was possible to visualize data in JSON format, but an API testing software would

facilitate the process.

The API testing software Postman was chosen to make the visualization of ticket

data easier. After setting up a basic authentication to access the information, it

was possible to see requests from every department of CitizenM. It is important

to note that TOPdesk is utilized by several teams, but for this project, only the

tickets from the operator group of IT Office Support EU were intended to be

retrieved, so the FIQL query had to be adapted for this purpose. FIQL operates by

allowing users to construct queries using a set of parameters, and these queries

are inserted into URLs. The initial URL utilized was:

https://citizenm.topdesk.net/tas/api/incidents

After adding a query, the URL changed to:

https://citizenm.topdesk.net/tas/api/incidents?query=operatorGroup.name==\'IT

%20Office%20Support%20Specialists%20EU\'&start=${offset}

where

“'operatorGroup.name==\’IT%20Office%20Support%20Specialists%20EU’\”

represents a command that guarantees only tickets from IT Office Support EU are

being retrieved, while

'&start=${offset}' determines the page of tickets being retrieved from the TOPdesk

API, considering its limitation of fetching only 10 tickets per request. By default,

https://citizenm.topdesk.net/tas/api/incidents=
https://citizenm.topdesk.net/tas/api/incidents?query=operatorGroup.name==

30

the variable start, even if hidden, is set to 'start=0', the retrieval begins with the

newest tickets, numbered 0 through 9. Altering this parameter to 'start=10' would

result in retrieving the subsequent set of tickets, from 10 to 19, and so forth.

To retrieve a larger number of tickets, the variable 'offset' was introduced. This

variable increments by 10 with each retrieval until a total of 200 tickets is

obtained. Consequently, with each iteration, the offset value increases, facilitating

the retrieval of tickets in batches. Figure 10 provides a simplified representation

of this iterative logic.

Figure 10. The variable "offset" as a query parameter

Knowing which FIQL query parameters to use allows the visualization of the

intended incident information on Postman, as seen in Figure 11.

Figure 11. API test using Postman

31

The API responses are given in JSON format, and it is possible to verify all the

available information about tickets received on TOPdesk. Figure 12 is an example

of response, having undisclosed information for privacy reasons.

Figure 12. API response example (Postman screen capture)

Moreover, it is important to consider the architectural implications of this data

retrieval process. By using tools like Postman, not only was data visualization made

easier, but it also set the stage for a scalable and modular system architecture.

This means that the project architecture prioritized flexibility, scalability, and

maintainability, crucial factors in the long-term viability of the solution.

Once only the tickets from IT Office Support were listed, the process of finding the

necessary API values (properties in JSON response) was easier. These values

included Status, ID, Title, Operator Name, Closed date, and Creation Date. Figure

13 showcases a mental map of what information is required to build which

webpage, without considering duplicated values. However, the values Subject and

Class (highlighted in green on the figure) are non-existent on TOPdesk and would

later be artificially set up on the code.

32

Figure 13. Data needed to compose the project

After analyzing the values individually, a few obstacles were noticed, and it was

necessary to evaluate and modify them further:

Closed Date and Creation Date were both shown in the format yyyy-mm-

ddThh:mm:ss.000+0000. To facilitate the creation of graphs, it was decided that

transforming this data into a different format would be a better option to later

store it in the database. So, from that, it was possible to get Closed Month, Closed

Year, Creation Month, and Creation Year instead. That means only the month

names and years would be stored. A simplified example of how this worked for

Closed Date is shown in Figure 14. The same logic applies to the Creation Date.

Figure 14. Example of extraction of data for month and year

33

Subject and Class values were idealized by the thesis author, in order to set up

filters on the TOPdesk ticketing system. This information was not directly

receivable via the API as a property in the JSON response. To get the values, it was

necessary to develop a functionality that identifies keywords from the “request”

string (which represents the body of the text inserted by the requester), and, from

the first keyword identified, the request is categorized.

The “Subject” value then can only be based on the keywords that were chosen

manually by the author. Upon encountering the first keyword, the program stops

reading the request, and the logic that applies is “Subject = the first keyword

found”. That means, each ticket has only one subject and it is classified into only

one category, even if there are several keywords from different classes into that

request. That was set up to avoid having duplicates on the table.

Depending on the identified keyword, the ticket is classified into categories

ranging from 1 to 5. If no categories are identified, the ticket is assigned to

category 6, labeled as "Others"(see Figure 15).

Figure 15. Code snippet of Class categorization based on keywords.

For a better understanding of this process, examples were set up as shown:

34

Example 1: Request – “Hello, IT! Could you please provide me access to Amadeus,

Business Central, and update my computer?”. In this case, the Subject is

“Amadeus”, because this is the first keyword identified. Even though “Business

Central” and “Update” are also classified as keywords in this code, these are

discarded. Only the first one is considered, and, because of that, the ticket belongs

exclusively to Class 1.

Example 2: Request – “Hi! Can you give me the wifi password?”. In this request, no

keyword is found, so it goes to Class 6 “Others”.

To store all of the necessary information, the creation of a SQL database was

crucial. A server for this database was created with Node.js, so the data can be

accessed from the webpage.

Once the data has been retrieved and edited, it is stored in the newly created

'ticketsIT' table in the database. Initially, the program was executed to collect all

tickets processed by the department. However, given the substantial volume of

tickets solved over the years, this operation may endure for hours. Recognizing

the inefficiency of repeating this process each time the program is executed, an

optimization was needed. So, the program retrieved all the tickets only one time,

and then it was modified to exclusively retrieve the most recent 200 tickets daily

at 8 am. This adjustment offers a significant margin to ensure data integrity. It is

important to mention that the TOPdesk API does not offer methods for retrieving

specifically new or modified tickets from the previous hours; it is only possible to

retrieve 10 tickets per query, and for that reason, the FIQL had to be updated every

10 tickets and all of them needed to be analyzed, not only the modified ones.

Consequently, during program execution, new tickets are inserted into the table,

while any modifications to existing tickets — such as transitioning from "Closed =

False" to "Closed = True" — are updated. This functionality is made possible

through the utilization of the SQL query commands 'INSERT OR REPLACE INTO

ticketsIT'.

35

6.3 Implementation of the Landing Webpage

In order to have an organized and easy-to-manage workspace, three different files

were created to compose the landing webpage, excluding the back and front-end

servers. These files contained the HTML, CSS, and script (JavaScript) parts of the

code. The HTML and CSS were the first part developed, with the creation of divs,

styled and containing the necessary information of each category. With the script

file, buttons were created to redirect the user to a second webpage, later

mentioned in this thesis. The numerical data showcases the amount of non-

completed tickets (see Figure 16), which, in database terms, means the count of

tickets (rows) where the column “completed” is 0 (false).

Figure 16. Screen capture of the landing webpage

6.4 Implementation of the Unassigned Tickets Webpage

The unassigned tickets webpage went through alterations from its initial paper

and pen sketch (Figure 8) to accommodate a bar chart on the right-hand side,

which is the number of open tickets (even the ones with operators assigned).

JavaScript was utilized to introduce a dropdown menu, enabling users to select a

category of tickets and check on the table the preview, containing the ID, subject,

and title, of non-completed tickets with no assigned operator. On the graph, the

total amount of open tickets in each category was displayed. The Chart.js library

36

was utilized to facilitate the creation of these graphs and provided a visually

appealing aspect. As explained in more detail later in this thesis, with the TOPdesk

API it is not possible to generate URLs that redirect the user directly to each

corresponding ticket on TOPdesk, but the presence of the IDs is enough to indicate

the exact ticket that has to be accessed.

It is also important to mention that the buttons created on the landing webpage

redirect the user to the unassigned tickets webpage showcasing the preselected

category. For example, if a user clicks on “IT Experienced Ninjas” on the landing

webpage, the unassigned tickets webpage is opened with the table displaying the

“IT Experienced Ninjas” category. After that, the category can also be changed in

the dropdown menu, as seen in Figure 17.

Figure 17. Screen capture of the unassigned tickets webpage

6.5 Implementation of the Statistics Webpage

The execution of the statistics webpage followed similar steps as the previous two

pages; however, it deviated from the initial idea to present more relevant

information. On the left-hand side block, the number of completed tickets is

displayed, while the right-hand side block showcases the number of received

requests. At the top left, there is a dropdown list with the names of operators, and

37

it is also possible to observe buttons to navigate through the years. On this same

list, an option “IT Office Support Specialists” was added, to represent the sum of

all operators. (Figure 18, Figure 19).

Figure 18. Statistics webpage with no operator specified

Figure 19. Statistics webpage with specified operator

The dropdown menu, in this case, interacts exclusively with the left-hand side

block. Once an operator is chosen, the purple graph changes accordingly,

displaying the number of completed tickets on the y-axis, and the names of the

months on the x-axis, always taking into consideration the year chosen. This

38

mechanism, on the back end, works by using different SQL queries. For example,

when the operator “Melissa Ferrari” is chosen in the dropdown menu, the query

utilized contains “WHERE operator == “Melissa Ferrari”. This same logic is applied

to every operator, except “IT Office Support Specialists EU”, which has no operator

specified in the query, to get a sum of the tickets of all the operators.

The right-hand side block, representing the amount of received tickets, only

changes when the button to change the year is clicked. This graph operates

independently of the dropdown menu, as its value remains unaffected by the

operator resolving specific tickets.

39

7 TESTING

Following the completion of the software development phase, it was necessary to

test it. To facilitate this, the author of the thesis and IT employees utilized the

software as intended.

7.1 TOPdesk Tickets URLs

Initially, the author intended to have in the unassigned tickets webpage

embedded links on each ID that would redirect the user to the corresponding

ticket in TOPdesk. It was noted that this information was not available on the API,

however, after receiving feedback from the users, further research was made by

opening different tickets directly on TOPdesk and observing their corresponding

URLs. The URL of each ticket was not unique, making it unfeasible to redirect the

employees to specific incidents directly from the unassigned tickets webpage. The

workaround for this problem is copying the ID from the table and pasting it on the

TOPdesk search engine, which still proved to be a simple and fast process, even

though it involves a few more steps. For simplicity, a clipboard icon was also added

to each ticket so the ID can be copied with only one click, as shown in Figure 20.

Figure 20. Unassigned tickets webpage updated with "Copy ID" buttons

40

7.2 Updating Times

The database of the project is configured for daily updates at 8 am, but this

approach has proven to be inefficient. Users have observed that when x tickets

are resolved in a day, an additional x tickets are erroneously displayed in the table.

Consequently, operators frequently encounter already resolved tickets upon

opening them, leading to delays in processing requests. To solve the problem, it

was necessary to configure database updates every hour, reducing the number of

closed tickets being displayed.

7.3 Lack of Keywords to be Identified

A large number of tickets was also noted and categorized as “Others” (category 6),

which defeats the purpose of the program and showcases an inefficient

application of filters. The solution was investigating the tickets falling under this

category and identifying words that could be utilized as keywords for the

categories from 1 to 5. Words such as “update” and its variations (“updating”,

“updates”, etc.) are examples of keywords that were added after the deployment.

This change cooperated, so the number of tickets in the category “Others” was the

closest to zero, as this class is only meant to be used in exceptional requests.

However, it was also noted that misspelling of application names would be

categorized as “Others”, and this issue could not be resolved due to the

unpredictability of the requester’s input.

41

8 DEPLOYMENT

After finalizing the application for its official launch, it was necessary to decide

how to deploy it. With careful consideration, the team leader recommended

setting up a physical server. The option chosen was a compact Dell R210 server

that was available to be used in the company, popularly known as a “pizza box

server”, due to its compact format. That guaranteed adequate performance and

integration into the company’s infrastructure. The server runs Ubuntu Linux and

uses Apache web server, SQLite, and all needed libraries. Due to security concerns,

the application was only reachable from the internal CitizenM network, and not

from the public internet. The server had internet access to use the TOPdesk API to

retrieve data, and finally, it was available to users. A scheme of how the server

hosts the program is shown in Figure 21. /21/

Figure 21. Deployment of the application

42

In other words, the server connects to the internet so the software can retrieve

tickets from the TOPdesk API, this information is stored on the database, and once

a user is connected to the CitizenM network, it is possible to access the

application.

43

9 CONCLUSIONS

The project described in this thesis has successfully achieved its objectives of

improving the user interface and functionality of the Topdesk ticketing system for

CitizenM Hotels. By integrating advanced filtering options and statistical insights,

the project has significantly improved the usability of the ticket management

process.

The thesis author, working within the IT Support Office team, ensured a deep

understanding of user needs and operational challenges. The identification of key

issues, such as ticket categorization and statistics tracking, and the development

of solutions showcase the practical significance and impact of the project.

The development process, documented throughout the thesis, highlights the

implementation of various technologies such as Node.js, SQLite, HTML, CSS, and

JavaScript. Through careful planning and execution, the project has integrated

frontend and backend components to create a functional web application.

Finally, this thesis is a resource for understanding the process of conceptualizing,

developing, implementing, and deploying intelligent incident management

solutions within a real-world organizational context. The successful outcome of

this project not only impacts IT operations at CitizenM Hotels but also

demonstrates the potential of technology to optimize business processes and

enhance user experiences in diverse industries.

44

REFERENCES

/1/ Hakuna. 2023. How Can UX/UI Improve Your Business? Accessed 15.02.2024.

https://www.linkedin.com/pulse/how-can-uxui-improve-your-business-

studiohakuna#:~:text=Greater%20efficiency%3A%20A%20well%2Ddesigned,kno

ws%20the%20value%20of%20that.

/2/ Team Asana. 2024. What is incident management? Steps, tips, and best

practices. Accessed 13.04.2024. https://asana.com/resources/incident-

management

/3/ Atlassian. What is incident management? Accessed 13.04.2024.

https://www.atlassian.com/incident-management#incident-management-tools

/4/ WhosOn. The difference between first and second line support. Accessed

13.04.2024. https://www.whoson.com/customer-service/the-difference-

between-first-and-second-line-

support/#:~:text=First%20line%20support%20is%20for,day%20as%20soon%20as

%20possible.

/5/ Fontanella, Clint. 2022. What’s a ticketing system? Accessed 13.04.2024.

https://blog.hubspot.com/service/ticketing-system

/6/ CitizenM. A New Breed of Hotel. Accessed 19.03.2024.

https://www.citizenm.com/company/about-citizenm

/7/ TOPdesk. 2022. 10 Things You Don’t Know About TOPdesk. Accessed

15.02.2024. https://www.topdesk.com/en/blog/esm/service-culture/10-things-

you-dont-know-about-topdesk/

/8/ Miller, George. Psychological Review, 1956. Massachusetts. The Magical

Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing

Information.

https://www.linkedin.com/pulse/how-can-uxui-improve-your-business-studiohakuna#:~:text=Greater%20efficiency%3A%20A%20well%2Ddesigned,knows%20the%20value%20of%20that
https://www.linkedin.com/pulse/how-can-uxui-improve-your-business-studiohakuna#:~:text=Greater%20efficiency%3A%20A%20well%2Ddesigned,knows%20the%20value%20of%20that
https://www.linkedin.com/pulse/how-can-uxui-improve-your-business-studiohakuna#:~:text=Greater%20efficiency%3A%20A%20well%2Ddesigned,knows%20the%20value%20of%20that
https://asana.com/resources/incident-management
https://asana.com/resources/incident-management
https://www.atlassian.com/incident-management#incident-management-tools
https://www.whoson.com/customer-service/the-difference-between-first-and-second-line-support/#:~:text=First%20line%20support%20is%20for,day%20as%20soon%20as%20possible
https://www.whoson.com/customer-service/the-difference-between-first-and-second-line-support/#:~:text=First%20line%20support%20is%20for,day%20as%20soon%20as%20possible
https://www.whoson.com/customer-service/the-difference-between-first-and-second-line-support/#:~:text=First%20line%20support%20is%20for,day%20as%20soon%20as%20possible
https://www.whoson.com/customer-service/the-difference-between-first-and-second-line-support/#:~:text=First%20line%20support%20is%20for,day%20as%20soon%20as%20possible
https://blog.hubspot.com/service/ticketing-system
https://www.citizenm.com/company/about-citizenm
https://www.topdesk.com/en/blog/esm/service-culture/10-things-you-dont-know-about-topdesk/
https://www.topdesk.com/en/blog/esm/service-culture/10-things-you-dont-know-about-topdesk/

45

/9/ Norman, Don. MIT Press, 1988. Cambridge, Mass. The Design of Everyday

Things.

/10/ Okta Help Center. What is Okta and What Does Okta Do?. Accessed

04.01.2024. https://support.okta.com/help/s/article/what-is-

okta?language=en_US

/11/ Roberts, Jonathan. 2020. Make a quick sketch before you code. Accessed

03/03/2024.https://csee.bangor.ac.uk/project-rainbow/using-the-critical-

thinking-

sheet/#:~:text=A%20vision%20of%20what%20your,to%20check%20the%20rema

ining%20tasks.

/12/ DeClute, Darcy. 2022. Is HTML a Programming Language?. Accessed

10.03.2024. https://www.theserverside.com/feature/Is-HTML-a-programming-

language#:~:text=a%20markup%20language-

,HTML%20is%20not%20a%20programming%20language.,technology%27s%20na

me%3A%20HyperText%20Markup%20Language

/13/ Logic Sphere. 2023. What is HTML, and What Is Its Role in Web

Development. Accessed 13.02.2024. https://www.linkedin.com/pulse/what-

html-its-role-web-development-logicssphere/

/14/ Tech Target Contributor. 2021. What is a Script?. Accessed 04.03.2024.

https://www.techtarget.com/whatis/definition/script#:~:text=1)%20In%20comp

uter%20programming%2C%20a,as%20a%20compiled%20program%20is).

/15/ W3 Schools. Introduction to SQL. Accessed 12.02.2024.

https://www.w3schools.com/sql/sql_intro.asp

/16/ Uspenski, Anastasija. 2023. Why VS Code remains a developer favorite, year

after year. Accessed 04.01.2024. https://shiftmag.dev/vs-code-171/

https://support.okta.com/help/s/article/what-is-okta?language=en_US
https://support.okta.com/help/s/article/what-is-okta?language=en_US
https://csee.bangor.ac.uk/project-rainbow/using-the-critical-thinking-sheet/#:~:text=A%20vision%20of%20what%20your,to%20check%20the%20remaining%20tasks
https://csee.bangor.ac.uk/project-rainbow/using-the-critical-thinking-sheet/#:~:text=A%20vision%20of%20what%20your,to%20check%20the%20remaining%20tasks
https://csee.bangor.ac.uk/project-rainbow/using-the-critical-thinking-sheet/#:~:text=A%20vision%20of%20what%20your,to%20check%20the%20remaining%20tasks
https://csee.bangor.ac.uk/project-rainbow/using-the-critical-thinking-sheet/#:~:text=A%20vision%20of%20what%20your,to%20check%20the%20remaining%20tasks
https://www.theserverside.com/feature/Is-HTML-a-programming-language#:~:text=a%20markup%20language-,HTML%20is%20not%20a%20programming%20language.,technology%27s%20name%3A%20HyperText%20Markup%20Language
https://www.theserverside.com/feature/Is-HTML-a-programming-language#:~:text=a%20markup%20language-,HTML%20is%20not%20a%20programming%20language.,technology%27s%20name%3A%20HyperText%20Markup%20Language
https://www.theserverside.com/feature/Is-HTML-a-programming-language#:~:text=a%20markup%20language-,HTML%20is%20not%20a%20programming%20language.,technology%27s%20name%3A%20HyperText%20Markup%20Language
https://www.theserverside.com/feature/Is-HTML-a-programming-language#:~:text=a%20markup%20language-,HTML%20is%20not%20a%20programming%20language.,technology%27s%20name%3A%20HyperText%20Markup%20Language
https://www.linkedin.com/pulse/what-html-its-role-web-development-logicssphere/
https://www.linkedin.com/pulse/what-html-its-role-web-development-logicssphere/
https://www.techtarget.com/whatis/definition/script#:~:text=1)%20In%20computer%20programming%2C%20a,as%20a%20compiled%20program%20is
https://www.techtarget.com/whatis/definition/script#:~:text=1)%20In%20computer%20programming%2C%20a,as%20a%20compiled%20program%20is
https://www.w3schools.com/sql/sql_intro.asp
https://shiftmag.dev/author/anastasija/
https://shiftmag.dev/vs-code-171/

46

/17/ Semah, Benjamin. 2022. What Exactly is Node.js? Explained For Beginners.

Accessed 10.03.2024. https://www.freecodecamp.org/news/what-is-node-

js/#:~:text=front%2Dend%20applications.-

,Node.,you%20may%20be%20familiar%20with.

/18/ Sqlite. What is SQLite? Accessed 12.02.2024.

https://www.sqlite.org/index.html

/19/ Java T Point. Postman Tutorial. Accessed 12.02.2024.

https://www.javatpoint.com/postman

/20/ Frye, Ma-Keba. What is an API? Accessed 19.03.2024.

https://elfsight.com/blog/how-to-work-with-developer-

console/#:~:text=The%20Console%20tab%20in%20Chrome,commands%20to%2

0perform%20the%20scripts

https://www.freecodecamp.org/news/what-is-node-js/#:~:text=front%2Dend%20applications.-,Node.,you%20may%20be%20familiar%20with
https://www.freecodecamp.org/news/what-is-node-js/#:~:text=front%2Dend%20applications.-,Node.,you%20may%20be%20familiar%20with
https://www.freecodecamp.org/news/what-is-node-js/#:~:text=front%2Dend%20applications.-,Node.,you%20may%20be%20familiar%20with
https://www.google.com/url?q=https://www.sqlite.org/index.html&sa=D&source=docs&ust=1710870657150873&usg=AOvVaw1-iSWWwbLh3Iux16vLoV98
https://www.google.com/url?q=https://www.javatpoint.com/postman&sa=D&source=docs&ust=1710870657152523&usg=AOvVaw3Va1vI7u8iTHZSYqqV97U0
https://elfsight.com/blog/how-to-work-with-developer-console/#:~:text=The%20Console%20tab%20in%20Chrome,commands%20to%20perform%20the%20scripts
https://elfsight.com/blog/how-to-work-with-developer-console/#:~:text=The%20Console%20tab%20in%20Chrome,commands%20to%20perform%20the%20scripts
https://elfsight.com/blog/how-to-work-with-developer-console/#:~:text=The%20Console%20tab%20in%20Chrome,commands%20to%20perform%20the%20scripts

