

Sergey Ushakov

Incorporating Maps into Flutter: A
Study of Mapping SDKs and Their
Integration into a Cross-Platform
Navigation Application

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

14 February 2024

Abstract

Author: Sergey Ushakov
Title: Incorporating Maps into Flutter: A Study of Mapping SDKs

and Their Integration into a Cross-Platform Navigation
Application

Number of Pages: 37 pages
Date: 14 February 2024

Degree: Bachelor of Engineering
Degree Programme: Information Technology
Professional Major: Mobile Solutions
Supervisors: Ilkka Kylmäniemi, Senior Lecturer

The thesis evaluates various mapping SDKs for integration into a Flutter-based
navigation application, Vedu - Tallinn Transport. The study aims to identify the most
suitable map SDK by comparing Google Maps, Mapbox, and flutter_map SDKs in
terms of performance, feature set, cost, and developer experience. The study is
critical for the application's success, given its reliance on mapping functionality. The
thesis provides insights into the optimal choice of map SDK for cross-platform
development in Flutter.

The SDKs were evaluated based on compatibility with the aforementioned
requirements. Each SDK was studied, benchmarked, and compared on a set of
quantitative and subjective key metrics. Quantitative benchmarks consisted of
measurements of performance, resource consumption and pricing. SDKs were
subjectively ranked from best to worst on account of documentation quality and
overall developer experience.

flutter_map SDK was found to be the most suitable candidate for future application
development, based on its low cost, high customizability, and Flutter-native design.
Moreover, limitations were found in SDKs that augment platform-native code, such
as Mapbox or Google Maps SDKs, by looking into Flutter’s architecture. The main
limitation was found to be Hybrid Composition, mostly affecting performance.
Secondary limitations were API design and a complex mechanism to control a
marker’s presentation, among others.

In conclusion, this study not only identifies the optimal SDK for Flutter-based
applications but also contributes to a broader understanding of integrating mapping
technologies in cross-platform mobile development, underscoring the importance of
tailored solutions in the evolving landscape of mobile application development.

Keywords: Flutter, maps, Google Maps, Mapbox, iOS, Android

Table of Contents

1 Introduction 1

2 Introduction to Flutter 3

2.1 Widgets 3
2.2 Rendering 4

3 Requirements 6

3.1 Feature set and customizability 6
3.2 Performance 7
3.3 Cost 9
3.4 Developer Experience (DX) 9

4 Candidates 11

4.1 Google Maps SDK 11
4.1.1 Feature set and customizability 11
4.1.2 Cost 11
4.1.3 Developer Experience 12

4.2 flutter_map SDK 15
4.2.1 Feature set and customizability 15
4.2.2 Cost 15
4.2.3 Developer Experience 16

4.3 Mapbox SDK 17
4.3.1 Feature set and customizability 17
4.3.2 Cost 18
4.3.3 Developer Experience 18

5 Benchmarking and Comparison 21

5.1 Performance 21
5.1.1 FPS when moving around the UI 22
5.1.2 FPS when panning around with markers 22
5.1.3 FPS when resizing the bottom sheet 23

5.2 App statistics 25
5.2.1 Bundle size 25
5.2.2 Startup time 26
5.2.3 Memory usage 29

5.3 Pricing 30
5.4 Subjective metrics 31

5.4.1 Documentation quality 31
5.4.2 Developer Experience (DX) 32

6 Conclusion 34

References 38

List of Abbreviations

SDK: Software Development Kit. A set of programs and tools used to

develop a piece of software, usually provided by the platform vendor.

API: Application Programming Interface. A set of protocols and tools that

facilitates communication between two pieces of software.

DX: Developer Experience. A term used to describe, for example, the

experience of a developer using a product, its APIs, documentation,

and functionality.

FPS: Frames Per Second. A metric used to measure performance of the

application. Indicates how many frames per second the device can

render, processing the user’s input.

UI: User Interface.

UX: User Experience.

CDN: Content Delivery Network. A system of distributed servers that

deliver web content to a user based on their geographic location, the

origin of the webpage, and the content delivery server, ensuring fast,

reliable, and secure delivery of internet content.

MAU: Monthly Active Users. This is a key performance indicator (KPI)

commonly used in the digital and technology industries, particularly

by websites, applications, and online platforms, to measure the

number of unique users who engage with their product or service

within a 30-day period.

 1

1 Introduction

Most individuals in developed nations possess a smartphone. According to a

survey conducted by Nepa in 2022, 97% of Finnish respondents confirmed their

ownership of a smartphone. (DNA, 2022). The smartphone is one of the biggest

software platforms in the world; therefore, it is in companies’ interest to be

present on this platform.

The two major software platforms on the market are iOS made by Apple and

Android made by Google. In total, they capture more than 99% of the market in

Europe. Android’s market share is leading at 65%, while iOS's market share is

at 34% (Statcounter, 2023). Since the market is divided between two platforms,

a company wishing to capture the market must make its offering available on

both platforms.

Two distinct approaches can be adopted when developing an application for the

iOS and Android platforms. The initial approach involves creating two separate

applications using platform-specific tools provided by the respective vendors.

The advantage of this approach lies in the ability to tailor the application to each

platform, ensuring a superior user experience that aligns with the platform's

conventions. However, this approach necessitates the employment of two

separate development teams, resulting in increased costs. Consequently, many

companies are opting for the second approach: developing a cross-platform

application.

Flutter is an open-source framework developed by Google for creating cross-

platform applications using a unified codebase (Google, 2023). With Flutter,

developers can build applications for various platforms such as mobile, desktop,

web, and embedded systems. The applications in Flutter are written in Dart, a

null and type-safe language that can be compiled to run on multiple platforms.

This thesis aims to investigate various map SDKs that can be integrated into a

Flutter application. The findings of this study serve as the foundation for

selecting the most suitable map SDK for a navigation application developed

 2

using Flutter. The specific application under consideration is called Vedu -

Tallinn Transport, designed to assist the residents of Estonia in navigating

public transportation routes. A significant portion of the application’s

functionality is built around a map; hence, choosing the best map SDK is crucial

for the success of the application and its development process.

The study involves a comparison of three major map SDKs available on the

Flutter package repository: google_maps_flutter,

mapbox_maps_flutter and flutter_map. google_maps_flutter and

mapbox_maps_flutter are Flutter packages that encapsulate native SDKs

into Flutter widgets, while flutter_map is a package written in Flutter from

ground up. The comparison is based on the SDKs’ performance, feature set

and subjective developer experience. The best SDK will be used for the further

development of the application.

 3

2 Introduction to Flutter

A cross-platform application is an application that shares most of the code

between both platforms. This is made possible by SDKs that facilitate sharing of

the code. One such SDK available publicly is Flutter, developed by Google.

Flutter applications are written in Dart and can be deployed not only on iOS and

Android, but also on Web, Windows, Mac, and Linux (Google, 2023). This

thesis will be focusing on Flutter for iOS and Android, since the application

described in this thesis is made available on those platforms exclusively.

One of the key advantages of Flutter is its extensive ecosystem of packages.

Flutter provides a wide range of packages developed by the Flutter team, while

the community also contributes numerous packages. This ecosystem enables

the utilization and comparison of multiple map SDK solutions, as many existing

platform-native solutions have been adapted to be compatible with Flutter.

2.1 Widgets

Flutter draws significant design inspiration from React, a popular library for

constructing user interfaces on both web and mobile platforms (Google, 2023).

In Flutter, the user interface is defined using widgets, which declaratively

describe the UI based on the current state of the application. When the state

changes, the widgets are rebuilt to reflect the updated state. This reactive

approach allows for efficient updates and ensures that the user interface

remains synchronized with the underlying data and application’s state.

A widget in Flutter represents the smallest unit of a user interface. It has its own

state and can accept inputs and have side-effects. A widget generates a

specific portion of the user interface as its output. Widgets encapsulate various

components, such as buttons, text fields, images, or more complex UI

elements, and can be composed together to build the complete user interface of

an application.

 4

2.2 Rendering

To gain a comprehensive understanding of the rendering process in Flutter, it is

beneficial to compare how Flutter applications and conventional iOS/Android

applications render UI. The comparison is further enhanced by examining React

Native, a cross-platform framework that shares similarities with Flutter.

Conventional native Android and iOS applications use native UI rendering

engines specific to their respective platforms. Currently, in the case of Android

applications, views are created using the Android framework, which utilizes the

Skia graphics engine to render the user interface onto a canvas (Google, 2023).

Similarly, iOS applications generate Views through the usage of UIKit and

SwiftUI high-level frameworks, which rely on the Core Graphics framework for

rendering the UI elements on the screen (Apple, 2012).

React Native, a cross-platform application development framework built upon

React, operates by utilizing JavaScript as its primary runtime language. React

Native applications generate React component trees, which are subsequently

transmitted to the React Native platform renderer. Then, the React Native

platform renderer interacts with UIKit and the Android framework to generate

native views specific to each platform (Meta, 2023). Unlike React Native, Flutter

does not perform direct calls to the platform's native rendering engine. Instead,

Flutter uses Skia to render views onto a canvas on all platforms, including but

not being limited to iOS, Android, Windows, and macOS.

This approach has various advantages and disadvantages. A significant benefit

lies in the fact that a Flutter application, exclusively rendering Flutter widgets,

has consistent appearance and behavior across both platforms. In contrast,

React Native does not provide the same level of assurance due to differences in

platform views used by React Native. However, the downside of Flutter's

approach is the increased complexity of integrating platform-native views, as

Flutter bypasses the native platform's rendering systems. Instead, Flutter

attempts to combine native views with a Flutter view through a process known

as Hybrid Composition, which carries major performance implications. This

 5

consideration holds significance when selecting a suitable Map SDK, because

two out of three SDKs use Hybrid Composition.

 6

3 Requirements

This section describes the requirements to the Map SDK candidate. The

requirements can be categorized into the following groups:

• Feature set and customizability

• Performance

• Cost
• Developer Experience (DX)

3.1 Feature set and customizability

The map in the target application is used to display elements that convey

information to the user, as well as to display interactive elements. Considering

the application's purpose of facilitating navigation with public transport, the

feature set will primarily revolve around displaying markers and drawing lines on

the map. The comprehensive list of elements to be displayed on the map

includes:

• Markers showing locations of transport vehicles, with heading arrows

• Tappable markers representing stops

• Polylines for representing the path of the trip

• Marker showing user location and heading

The selected SDK should offer comprehensive control over the presentation of

markers, allowing to utilize either a Flutter widget or an image for customization.

This level of control allows the application to convey information to the user, for

example, showing the position of a bus with a color-coded circle marker with the

line number inside. Example use cases can be seen in Figure 1.

 7

Figure 1. Markers signifying a bus and a stop positioned on a map.

As shown in Figure 1, markers with custom presentation have two purposes: to

inform and to function. The green marker labeled '41' shows the position of bus

number 41, and the arrow shows which way the bus is heading. The marker in

the top right corner of the image represents a bus stop, and the colors show

what kinds of transportation use that stop. Users can click on it to get more

information about the stop.

Another important feature the SDK should provide is changing the map camera

position with animations. Animations provide a natural way to guide the user

around the map. When switching focus from the route overview to the user’s

location, the animation allows the user to understand where they are located on

the route. Similar to how animations aid users in maintaining their orientation

within the user interface (Daliot, 2015), they can be leveraged to assist users in

retaining their spatial orientation within the map.

3.2 Performance

The map is an important interactive element of the user interface. The

information about the planned route or the public transport network can be

accessed via the map. Certain features can only be accessed through

interactions with the map, such as tapping on stop markers to retrieve additional

information about the stops.

 8

It is important to recognize that maps are resource-intensive elements within the

user interface. A poorly performing map not only hampers the overall user

experience but also impacts the performance of other elements within the

interface, causing slower operation. If the map feels sluggish or unresponsive

during interactions, it can significantly diminish the user's perception of the

product and act as a deterrent to achieving "Behavioral Delight."

Theresa Fessenden describes "Behavioral Delight" as one of the three pillars of

user experience. It emphasizes that if tasks, such as finding a stop and

obtaining bus line information, are exceptionally easy and enjoyable, users are

more likely to recommend the product or return to it in the future (Fessenden,

2022). Therefore, ensuring high performance of the map is critical for both

expanding and retaining the user base.

To evaluate and compare the performance of each map, the metric of Frames

Per Second (FPS) was utilized. A higher FPS indicates that the device can

render more frames in a second, resulting in smoother and more responsive

visuals. Studies demonstrate that users prefer higher framerates when

interacting with software (K. Debattista, 2018), with a preference for 60 FPS

over 30 FPS. Thus, the target minimum rate for performance evaluation will be

60 FPS, as most smartphone screens have a maximum refresh rate of 60Hz,

with many newer smartphones having a higher refresh rate of 90 or even

120Hz.

It is crucial to pay particular attention to the memory usage of the app,

especially considering the complexity of Map SDKs. The intricate processes

involved in rendering map tiles and performing complex calculations have the

potential to consume substantial amounts of device memory. On iOS, specific

memory usage limits are set for applications. These limits are designed to

conserve the resources of the device and enhance the overall user experience.

Exceeding those can lead to the application being terminated by the system

when running in the background. (Apple, 2023). Implications of this on user

experience are great; a user might lose their progress in the app or get lost

along their itinerary. While exact numbers for memory limits imposed by iOS on

 9

apps are a subject of discussion, especially with introduction of devices with

higher memory capacity. Such considerations are vital for maintaining optimal

app performance and ensuring a smooth user experience.

3.3 Cost

There are multiple companies that have built their business on providing Map

SDKs and supplementary resources. Since providing a Map SDK and tiles for

that SDK is a resource intensive process, requiring a lot of monetary and

computer power investment, rarely a Map SDK is entirely free. Free alternatives

are present on the market, but they usually lack customization and quality.

The expense sheet will vary based on the chosen SDK. Certain SDKs are self-

contained, necessitating no additional resources for their functionality.

Conversely, other SDKs may require developers to provide their own source of

map tiles. Although such SDKs are typically available for free, the cost lies in

acquiring the map tiles themselves. In summary, if the application demands a

specific level of map customization and aims for a premium quality user

experience, it is important to recognize that associated costs will likely be

incurred. Free options are unlikely to offer the desired level of customization or

premium quality.

3.4 Developer Experience (DX)

Developer Experience (DX) refers to the overall quality of interactions, tools,

and support provided to software developers throughout the software

development lifecycle. It aims to enhance productivity, satisfaction, and

collaboration by minimizing barriers and optimizing workflows.

Quantitatively describing the level of developer experience proves challenging

since it encompasses various factors. Several aspects collectively contribute to

the perceived DX, including the development speed with the SDK, the

availability of comprehensive documentation, support from the community, and

the overall ease of implementing the required feature set. Although DX cannot

 10

be precisely quantified, it will be evaluated based on developer feedback and

subjective assessments.

 11

4 Candidates

The SDKs range from plug-and-play commercial products to community-built

projects that require additional resources to work. The list of considered SDKs

is as follows:

• Google Maps SDK

• flutter_map SDK

• Mapbox Maps SDK

4.1 Google Maps SDK

The Google Maps SDK, provided via the google_maps_flutter Flutter

package, is a plug-and-play SDK requiring no supplementary resources for

operation. This SDK, collaboratively developed by Google and the Flutter

community, is not a Flutter-native package; rather, it serves as an intermediary

layer bridging the Flutter API with native platform SDKs for iOS and Android.

This integration uses Hybrid Composition, which facilitates the simultaneous

rendering of platform-native views in conjunction with Flutter views.

4.1.1 Feature set and customizability

Google Maps SDK fulfils all feature criteria listed in Section 3.1. It provides a

declarative way to create map features, like markers, polylines, and other map

features. Moreover, it provides a way to imperatively control the map’s camera

with animations, fulfilling that criterion as well.

4.1.2 Cost

This SDK requires an API key to function, requiring the developer to create a

developer account on Google Cloud. The SDK is not free to use; hence, the

developer must also provide their payment details to Google. As of July 2023,

Google provides 200 USD free credit every month, allowing the developer to

 12

implement and launch an app with the SDK for free initially, but the SDK will

start generating costs the more users the app has.

Google presents the pricing of their SDK in USD per 1000 requests. The pricing

is non-linear, getting cheaper the more requests are made. However, the

definition of a request is not clear. Google offers a way to use the SDK for free

on Android, provided that the map is not customized in any way.

Experiments with the SDK were performed on a subset of users. The usage

resulted from the experiments were not considered free by Google,

complicating the comprehension of their pricing strategy further.

4.1.3 Developer Experience

Given that this package leverages platform-native components, particularly the

Google Maps SDK for iOS and Android, setup requires modifications to the

platform-native code by the developer. Thankfully, the package comes with

straightforward and easy-to-follow setup documentation, making this stage

relatively simple.

Part of the application functionality is to show public transport vehicles on the

map; hence, one of the requirements is the ability to render custom markers on

the map. The google_maps_flutter package does provide this ability, but

with a caveat. The package does not provide a way to use Flutter widgets to

render markers’ presentation.

The markers’ presentation can be provided from a BitmapDescriptor, which

is an image. It can either be loaded from assets or rendered real-time. Hence,

to dynamically define a marker’s visuals for use as transport markers, the

developer must write code that renders the visuals using a Flutter Canvas, then

export them as an image, and then convert it to a BitmapDescriptor.

This procedure is highly demanding in terms of resources, necessitating the

developer to implement caching strategies to mitigate performance degradation.

 13

Initial challenges include the complex nature of the code used for rendering,

exporting, and caching marker images. Further complication is that it became

impractical to render every vehicle marker with a direction arrow, a process that

would require almost every vehicle marker image to be rendered individually.

Eliminating the direction arrow allowed for a higher cache hit rate, consequently

reducing the impact on performance.

The SDK provides an interface to imperatively control the map,

GoogleMapController. It facilitates moving the map camera with animations,

allowing not only to focus on a point, but also on a collection of points, which is

useful when focusing on an itinerary, as seen in Listing 1 below:

final bounds = CameraUpdate.newLatLngBounds(boundsFromItinerary(locations),
10);
controller.animateCamera(bounds);

Listing 1. A routine to focus the map's camera on the itinerary with an
animation.

Also, the controller allows setting the map style from a JSON, which can be

generated in the Google Maps Platform control panel, as Listing 2 illustrates:

final style = rootBundle.loadString("assets/map_style.json");
controller.setMapStyle(style);

Listing 2. Loading the style file and using the GoogleMapController to set the
style.

To summarize, the highlighted parts of the API interface fulfil the requirements

completely, without necessitating any workarounds.

Adhering to platform conventions is integral for a package to be considered a

good citizen within its ecosystem. As mentioned in Section 2, Flutter's widgets

have a declarative API that specifies the widgets to be instantiated, rather than

performing the procedural steps for their creation. The package

google_maps_flutter aligns with this convention, which is shown in Listing

3.

 14

Set<Polyline> getPolylines() {
 final state = mainMapStateController.currentState;

 return state.itinerary.legs.mapIndexed(
 (index, leg) {
 return Polyline(
 polylineId: PolylineId(index.toString()),
 points: getLegPolylinePoints(leg),
 color: leg.getDisplayColor(),
 endCap: index == state.itinerary.legs.length - 1
 ? Cap.roundCap
 : Cap.buttCap,
 startCap: index == 0 ? Cap.roundCap : Cap.buttCap,
 jointType: JointType.round,
 geodesic: true,
 patterns: leg.mode == TransportMode.walk
 ? [PatternItem.dash(10), PatternItem.gap(10)]
 : [],
 width: 4,
);
 },
).toSet();
}

GoogleMap(
 initialCameraPosition: center,
 padding: mapPadding,
 myLocationButtonEnabled: false,
 zoomControlsEnabled: false,
 mapToolbarEnabled: false,
 rotateGesturesEnabled: false,
 myLocationEnabled: userLocation.locationAccessEnabled,
 onCameraMoveStarted: _handleMapCameraMoveStarted,
 onCameraMove: _handleMapCameraMove,
 onMapCreated: _handleMapCreated,
 polylines: getPolylines(),
 markers: [
 ...stopMarkers,
 ...transportMarkers,
 ...getStartStopMarkers(startStopIcons),
],
)

Listing 3. Google Map widget with polylines and markers.

The code presented in Listing 3 demonstrates that markers and polylines are

represented as widgets and are subsequently provided to the GoogleMap

widget as parameters. The package’s function is to communicate with the native

SDK and perform the required steps to render these elements on the screen.

Notably, the code is not performing explicit invocations to the GoogleMap

widget's methods to generate markers or polylines; it declares that the

GoogleMap widget should display polylines returned from the getPolylines

function.

 15

4.2 flutter_map SDK

flutter_map SDK stands as the only fully Flutter-native candidate. It is open-

source, it does not rely on an underlying platform-native SDK. Instead, it is

implemented fully using Flutter. Leaflet.js, an open-source JavaScript

library for implementing maps on Web, served as an inspiration for this SDK

(flutter_map Authors & Maintainers, 2023). Like Leaflet, flutter_map

provides only map rendering and control interfaces, necessitating the developer

to find a source of map tiles to be displayed on the map. Without the tiles the

SDK does not function.

In the context of a Map SDK, a map tile refers to a small, square piece of a map

that can be combined with other tiles to create a full map. These tiles are pre-

rendered and typically measure 256x256 or 512x512 pixels. Both Google Maps

SDK and Mapbox SDK come with a set of tiles predefined. flutter_map, on

the other hand, does not. An array of services, both free and paid, offer raster

and vector tiles, including but not limited to OpenStreetMap, Stadia Maps,

MapTiler, Google, and Mapbox. Furthermore, a suite of open-source tools is

available that enables the generation and serving of the tiles using the hardware

of the developer's preference.

4.2.1 Feature set and customizability

flutter_map fulfils the criteria listed in Section 3.2 fully. Given that the SDK

necessitates the developer to supply a source of tiles, and its Flutter-native

nature and a system of plugins, it emerges as the most customizable and

controllable SDK among its competitors.

4.2.2 Cost

flutter_map SDK is entirely free to use, given that it is open-source and does

not provide any tiles. The tiles, however, can generate a significant cost. If the

tile presentation quality and customizability is of no importance, a free tile set

like OpenStreetMap can be used. Otherwise, as previously mentioned, paid

 16

sources of tiles can be used. For example, Mapbox provides a Static Tiles API

that can be used with flutter_map.

The present configuration of the application, accommodating 1000 monthly

active users, initiates approximately 7 million map tile requests, as determined

by app analytics. As of November 2023, fulfilling these requests through

Mapbox would result in expenses amounting to 2200 USD per month (Mapbox,

2023). There are more cost-efficient sources of tiles like Stadia Maps, providing

a subscription service that allows 7.5 million monthly requests for 80 USD per

month (Stadia Maps, 2023).

Nevertheless, at the current scale of application, self-hosting the tiles was found

to be the most customizable and cost-efficient solution. Deploying a web server

using open-source software to deliver the tiles together with a CloudFront

Content Delivery Network (CDN) suffices to meet the current demand.

Moreover, it provides capacity for scaling the userbase multiple times, at a

minimal expenditure of approximately 40 USD per month.

4.2.3 Developer Experience

The flutter_map SDK, being Flutter-native, provides the most optimal DX in

comparison to its counterparts. A substantial advantage is its ability to utilize

Flutter widgets for the rendering of map markers without necessitating any

intermediary steps. This facilitates the rendering of all transport markers with

arrows without a significant performance degradation. The code required to

render the markers is less complex and can be interpreted and modified by a

Flutter developer regardless of their experience level.

While the SDK does not provide a built-in way to move the map camera with

animations, a community-maintained plugin flutter_map_animations

provides that functionality.

 17

final bounds = getLatLngBoundsFromItinerary(itinerary);

controller.animatedFitBounds(bounds,
 options: FitBoundsOptions(
 padding:
 EdgeInsets.symmetric(vertical: 20, horizontal: 54)
 .copyWith(top: topPadding + 20),
)));

Listing 4. A routine to focus flutter_map on the selected itinerary with
animations.

The code in Listing 4 shows a call made to a method provided by the

flutter_map_animations package, which results in the map fitting the

viewport to the bounds with an animation.

4.3 Mapbox SDK

Mapbox is a company offering a diverse range of mapping software as a

service. Among their suite of products is the Mobile Maps SDK for both iOS and

Android. Recently, Mapbox has unveiled an official Flutter package,

mapbox_maps_flutter. This package operates similarly to the

google_maps_flutter package, acting as an adapter layer interfacing

Flutter with the native platform SDK - in this instance, the Mobile Maps SDK

from Mapbox. Therefore, this plugin also employs Hybrid Composition,

integrating native views concurrently with Flutter views, a process that can

cause performance issues.

4.3.1 Feature set and customizability

mapbox_maps_flutter also covers all feature and customizability

requirements. Map styling is a strength of Mapbox ecosystem, with Mapbox

having created an opensource map styling standard. In fact, subjectively,

Mapbox SDK is the easiest to customize, with flutter_map SDK being a

close second. SDK supports implementing smooth camera animations. Basic

features like custom markers and polylines are supported as well.

 18

4.3.2 Cost

Commercial usage of Mapbox Mobile Maps SDK is not available free of charge.

While a generous free plan is provided, the specifics of this plan lack full

transparency. Mapbox implements a pricing strategy where costs are based on

the number of monthly active users engaging with Mapbox services within an

application. The price depends on the number of unique users interacting with

the application during the month. It claims to offer service to 25,000 monthly

active users at no cost (Mapbox, 2023). It should cover the application’s current

userbase.

4.3.3 Developer Experience

Mapbox SDK does not require developers to incorporate some platform-native

code, unlike Google Maps SDK. The primary concern for developers with

Mapbox is the safeguarding of the Mapbox token, ensuring it remains

confidential to the machine and is not committed to the repository. The Flutter

SDK offers support for environment variables, a feature that can be leveraged

to use the token during development and in production.

resourceOptions: ResourceOptions(
 accessToken:
 const String.fromEnvironment("PUBLIC_ACCESS_TOKEN"),
)

Listing 5. Accessing the token value from an environment variable.

$ flutter build ipa --dart-define PUBLIC_ACCESS_TOKEN=<redacted>

Listing 6. Passing the token to Flutter SDK when building the application for
production.

Listings 5 and 6 demonstrate how a token could be provided to the Mapbox

SDK as an environment variable, which helps to avoid having the token

captured in code.

Like the Google Maps SDK, the Mapbox SDK necessitates developers to

construct procedures for marker image generation. These images are supplied

to the SDK as arrays using the Uint8List, consisting of unsigned 8-bit values.

 19

The image rendering process involves a Canvas to generate an Image object.

Subsequently, these Image objects are transformed into PNG byte data and

converted to Uint8Lists.

final images = await Future.wait(positions.map((e) =>
 getTransportMarkerImage(e, const Size(48, 48))
 .then((value) => value.toByteData(format: ImageByteFormat.png))
 .then((value) => value!.buffer.asUint8List())));

Listing 7. Processing marker images into a format accepted by the Mapbox
SDK.

An example of an implementation is shown in Listing 7. The images are

generated by the getTransportMarkerImage, then converted to ByteData

which can be converted to a Uint8List.

The disadvantages of this method align with those of the Google Maps SDK,

specifically regarding performance and code clarity. While the Mapbox SDK

shows better performance than the Google Maps SDK, the image rendering

impact remains evident. In terms of code structure, it follows Flutter’s

declarative UI building principles the least, requiring imperative calls to create

markers and polylines.

The most recent version of the Mapbox SDK for Flutter, as of this writing, is

version 0.4.5. This version displays a significant bug on iOS: when a marker

undergoes an update, its image disappears (Jakubowski, 2023). This problem

surfaced during the application development. The only known solution involves

altering the library's native code to manage marker updates in an alternative

manner. The existence of this bug and lack of a reaction from the package’s

developers to it may reflect the Mapbox developers' approach towards their

user base, suggesting potential lack of future support.

In summary, while the Mapbox Mobile Maps SDK for Flutter does cover all

requirements, it presents a subpar developer experience. Analogous to the

Google Maps Flutter SDK, it neglects Flutter's widget-based declarative UI

paradigm, choosing instead to replicate the imperative API of the native Mapbox

SDK for iOS and Android which it encompasses. The documentation is lacking;

 20

a developer must examine the examples folder to determine the API

specifications.

 21

5 Benchmarking and Comparison

For a quantitative evaluation of the three SDKs, a selection of metrics will be

employed. While most of these metrics offer quantitative insights, a few are

inherently subjective. The metrics will be as follows:

• Performance
(a) FPS when moving around the UI
(b) FPS when panning around with markers
(c) FPS moving the bottom sheet, which results in map resizing

• App statistics
(a) Bundle size
(b) Startup time
(c) Memory usage

• Pricing

• Subjective metrics
(a) Community support
(b) Developer Experience (DX)

The measurements will be performed using the following tools:

• Flutter SDK v3.13.7

• Android SDK v31.0.0

• Xcode v15.0

• Android Studio 2021.3

• iPhone 14 Pro (iOS 17.0.3)

• OnePlus 8 Pro (Android 13)

5.1 Performance

Performance is measured with tools provided by the Flutter SDK. When

measuring performance, a real device should be used and the app should be

run in profiling mode (Google, Flutter community, 2023). For all three scenarios,

average FPS will be measured using the Performance page of Flutter

Developer Tools.

 22

5.1.1 FPS when moving around the UI

This metric should show how a particular map SDK will affect the performance

of the whole application. All performance recordings will follow the same path

through the user interface. The path involves searching and selecting trip start

and end points, browsing trip results and inspecting the stops on the map.

Figure 2. Average FPS of the app measured during use

Figure 2 clearly illustrates that flutter_map SDK outperforms in this specific

metric, showing the smallest impact on the overall application performance. On

iOS, the application operates nearly at the screen's maximum refresh rate,

nearly reaching 120 frames per second (FPS). Conversely, on Android, it

records a performance of 59 FPS, just marginally below the target performance

level of 60 FPS, as discussed in Section 3.2.

5.1.2 FPS when panning around with markers

This measurement will be done while panning around the map with markers

visible on the map. This metric will show how well a particular SDK can handle

large amounts of markers displayed on the map. To minimize variables in the

measurement, the application will be configured to set a specific zoom level on

0

20

40

60

80

100

120

140

iOS Android

Average FPS during use

Mapbox SDK flutter_map SDK Google Maps SDK

 23

the map and center on a specific coordinate on the map. The panning will be

performed around the center coordinate for 10 seconds.

Figure 3. Average FPS measured during map interaction.

Evidenced by the comparison in Figure 3, flutter_map SDK shows the best

performance on iOS and is equal to others on Android. All SDKs performed at

maximum FPS on Android. Mapbox SDK does not reach above 60 FPS on iOS.

5.1.3 FPS when resizing the bottom sheet

A map displayed together with a resizable bottom sheet. Resizing the sheet will

cause the map to resize, which might be a resource intensive process depending

on the SDK.

60 60

98

60

83

60

0

20

40

60

80

100

120

iOS Android

Mapbox SDK flutter_map SDK Google Maps SDK

 24

Figure 4. Bottom sheet resized to show the map

Figure 4 demonstrates that the bottom sheet can be resized to allow the map to

occupy more space on the screen. It is important to note that the

implementation of the resizing behavior differs depending on the SDK.

flutter_map and Mapbox SDKs handle resizing of their root widget well, while

Google Maps SDK causes the whole application to lag, making it unusable. A

workaround is to have the root widget of Google Maps occupy the whole

screen, while using the map padding API to resize the focus area of the map

view. This achieves the same functional behavior as resizing the widget on

other SDKs.

 25

Figure 5. Average FPS when resizing the bottom sheet

Figure 5 demonstrates that Mapbox SDK on iOS is a clear outlier in terms of

app performance when resizing the bottom sheet, showing worse performance

on iOS compared to others. The other SDKs have demonstrated relatively equal

performance.

5.2 App statistics

This section will present a comparison of quantitative metrics focused on the

application parameters. The parameters selected for comparison are bundle

size, startup time and memory usage.

5.2.1 Bundle size

Bundle size is measured by building an application into a container used to

distribute the application on the specific platform. For iOS, the measured

container will be the .xcarchive bundle. For Android, the compared container

will be the .apk file.

60 58

106

60

106

55

0

20

40

60

80

100

120

iOS Android

Mapbox SDK flutter-map SDK GoogleMaps SDK

 26

Figure 6. Bundle size comparison of the target app with the compared SDKs.

As shown by the graphs in Figure 6, the application utilizing the Mapbox SDK

generates the largest binary sizes. In a comparison of Android builds, the binary

using the Google Maps SDK is smaller relative to the binaries of the app built

with the other two SDKs. This size difference may be attributed to the absence

of Google Maps SDK code within the application bundle, with a reliance instead

on the Google Maps services present in the Android OS. For iOS builds, the

Mapbox SDK yields a bundle size that is approximately 350% larger than that of

its nearest competitor, the Google Maps SDK. The underlying reasons for this

size discrepancy are unknown.

5.2.2 Startup time

Startup time is measured by running the app in profile mode. The command

used to run the application is as follows:

flutter run --trace-startup –profile

Running the command while having the target device selected will produce a

JSON file containing four measurements (Google and individual collaborators,

2023):

245,9

87,5
61,3 55,6

68,7

23

0

50

100

150

200

250

300

iOS Android

Bundle size (MB)

Mapbox SDK flutter_map SDK Google Maps SDK

 27

• engineEnterTimestampMicros
Time to enter the Flutter engine code.

• timeToFirstFrameMicros
Time to render the first frame of the app.

• timeToFrameworkInitMicros
Time to initialize the Flutter framework.

• timeAfterFrameworkInitMicros
Time to complete the Flutter framework initialization.

The metrics are denoted in units of microseconds, as indicated by their names.

The values will be converted to milliseconds before the comparison. The first

metric, engineEnterTimestampMicros, poses several challenges. Its

value's magnitude significantly exceeds other values, with 12 digit values

recorded for iOS and 9 for Android. Additionally, the interpretation of this metric

lacks clear explanations on the Flutter documentation and within community

discourse. Notably, the metric's title suggests it signifies a timestamp, marking

the precise moment an event occurred. This characteristic makes it inherently

non-comparable with figures from other SDKs. Consequently, this metric will be

excluded from the comparative analysis. Measurements of the other metrics are

shown on the graphs in Figure 7 and Figure 8.

Figure 7. Comparison of three application startup metrics captured on iOS

800

2674

1849

662

2930

2302

667

5164

2999

0

1000

2000

3000

4000

5000

6000

timeToFrameworkInit (ms) timeToFirstFrame (ms) timeAfterFramework (ms)

Application Startup Metrics (iOS)

Mapbox SDK flutter_map SDK Google Maps SDK

 28

The results measured on iOS, depicted in Figure 7, reflect the subjective

experience of using the application with the SDKs. While the application with

Mapbox SDK is the slowest to enter the Flutter framework, it is the fastest to

render the first frame and to invoke the framework callback. The application

built with Google Maps SDK is significantly slower to launch compared to

others. Using flutter_map SDK results in launch times close to those of Mapbox

SDK.

Figure 8. Comparison of three application startup metrics captured on Android

As seen in Figure 8, flutter_map SDK is the slowest to launch, while Google

Maps and Mapbox SDKs are almost equal. It is important to note that the

margin between the slowest and the fastest launch time is not perceptible to a

human; hence, the launch times can be considered equal.

To summarize, Mapbox SDK shows the lowest startup times, flutter_map SDK

coming second and Google Maps SDK coming third, due to the poor

performance on iOS.

39

254

215

37

282

245

38

257

220

0

50

100

150

200

250

300

timeToFrameworkInit (ms) timeToFirstFrame (ms) timeAfterFramework (ms)

Application Startup Metrics (Android)

Mapbox SDK flutter_map SDK Google Maps SDK

 29

5.2.3 Memory usage

The importance of optimizing for low memory usage is discussed in Section 3.2.

Memory usage can be measured using the tools provided by the platform

developers, namely Xcode for iOS by Apple and Android Studio for Android by

Google and Jetbrains. To simulate the worst-case scenario, memory usage

levels were measured while going through the same path through the UI as

when measuring FPS, described in Section 5.1.1.

On iOS, memory usage was measured using the Allocations section of the

Instruments application, which is part of the Xcode package. The category

named “All Heap and Anonymous VM” will be used. On Android, the application

will be built for profiling with low overhead, and an average of the timeline of

measurements will be taken. The results of the measurement can be seen in

Figure 9.

Figure 9. Memory usage of the app for both Android and iOS

The results of the measurement are mixed, not showing an obvious leader

among the compared. Figure 9 shows that the app built with Mapbox SDK will

have drastically different memory consumption depending on the platform, while

440

720

480

590
550

644

0

100

200

300

400

500

600

700

800

iOS Android

Memory usage (MB)

Mapbox SDK flutter_map SDK Google Maps SDK

 30

other SDKs behave comparably. flutter_map SDK is shown to be second on

iOS and the first on Android, making it the best choice when it comes to

minimizing memory consumption.

5.3 Pricing

Comparing SDK pricing is made complicated by Google’s vague pricing

structure for Google Maps SDK, described in Section 4.1.2. To perform the

comparison, a common ground in pricing had to be found. According to the

application’s internal analytics, the amount of monthly active users of the

current application is approximately 3000. These users generate an

approximate amount of 7 million tile requests. These requests are served by a

single machine costing 40 USD per month. Cloudfront CDN is serving as a

cache for free at the current rate of usage. These values can be used to

approximate the monthly cost of the usage of the SDKs.

Figure 10. Approximate monthly cost of the SDK at 3000 monthly active users

A very rough approximation of the projected costs of every framework can be

seen in Figure 10. As noted before, these figures are highly speculative.

$ 0,00 $ 40,00

$40 000,00

$ 0,00

$5 000,00

$10 000,00

$15 000,00

$20 000,00

$25 000,00

$30 000,00

$35 000,00

$40 000,00

$45 000,00

USD/month

Monthly cost of an SDK

Mapbox SDK flutter_map SDK Google Maps SDK

 31

Moreover, Google Maps SDK can be free to use on Android, provided that the

requirements for that are followed. Nevertheless, the graph reflects the general

situation: Google Maps SDK can be too expensive for a small enterprise to

afford, while flutter_map SDK and Mapbox SDKs are affordable at the current

usage rate.

Projecting the costs further, an assumption can be made that the flutter_map

SDK will be cheaper to use if the user count grows exponentially. With the

tested setup, due to the caching setup with Cloudfront, increasing user count

drastically should not result in comparable increase in load and therefore cost.

Most of the requests will be handled by Cloudfront CDN, reducing the impact of

increase in usage.

5.4 Subjective metrics

This section will include metrics that are derived not from empirical

measurements, but from subjective assessments. The SDKs will be ranked in a

hierarchical order of first, second, or third place based on these evaluations.

5.4.1 Documentation quality

Quantifying documentation quality is nearly impossible. The SDKs are ranked

from best to wo rst, 1 being the best and 3 being the worst. The ranking

is based on the subjective experience of solving integration issues with the help

of the documentation. The SDKs ranked on documentation quality:

1. flutter_map SDK
2. Mapbox SDK
3. Google Maps SDK

flutter_map SDK was found to have the best documentation of the three. The

documentation consists of a website, as well as some code examples that are

stored alongside with the source code in Github. The website delves deep into

the available API, as well as available plugins for the SDK. Moreover, the

website recommends solutions to the tiling issue described in Section 4.2.

 32

Overall, it was found that the website and the examples were enough to find

solutions to most of the issues, not necessitating the developer to seek for

answers online.

The Mapbox SDK documentation is not as exemplary as the documentation of

flutter_map SDK. It provides documentation in form of a README.md file, as

well as code examples, stored alongside the source code. These sources

explain the API of the package. It proved to be enough to get the integration

started, but it also proved of little use when integration issues arose. Therefore,

it is placed second in the comparison.

Google Map SDK for Flutter is poorly documented. The documentation consists

of a set up guide, a step-by-step lesson on how to set the SDK up in Google’s

Codelabs, and finally some code examples. The examples are very sparse,

consisting of only two files. This resulted in the developer using community-

powered resources like StackOverflow, as well as guessing the API. The

condition of the documentation is surprising, considering that Google Maps SDK

for Flutter is an official Google package, and Flutter is an app development

platform developed by Google. These factors result in the third place in the

comparison.

5.4.2 Developer Experience (DX)

Developer experience cannot be measured but is useful in the comparison. The

judgement is made from the experience of integrating the SDK into the

application. It consists of multiple aspects mentioned in Section 3.4 on the topic.

The ranking is as follows:

1. flutter_map SDK
2. Google Maps SDK
3. Mapbox SDK

flutter_map provides the best development experience of the listed SDKs. The

specifics of the developer experience were listed in Section 4.2.3. The biggest

contributor to the level of DX is ability to define marker visuals with Flutter

 33

widgets, avoiding the image conversion complexity. The availability of

documentation and package popularity contribute to the positive ranking. The

package gets consistent updates that alleviate issues and add new features. All

the listed factors result in the SDK ranking first.

 34

6 Conclusion

The aim of this study was to pick out the best map SDK for a navigation

application, where most of the functionality is centered around a map. The

application in question is a Flutter application, released on two major mobile

platforms: iOS and Android. Three SDKs were selected for the comparison,

namely Google Maps SDK, Mapbox SDK and flutter_map.

The SDKs were compared based on their performance, resource usage, feature

set and DX. Google Maps SDK, released as google_maps_flutter package

on the Flutter platform fulfils all of the feature set criteria. Upon closer

inspection, key issues were found in the SDK, namely poor performance and

exorbitant pricing. Mapbox SDK, packaged into the mapbox_maps_flutter

package, also fulfils the criteria, but it proved to have poor DX and lacking

documentation. Moreover, it had critical bugs, making the package unusable

without having to resort to making modifications of the source code of the

package. flutter_maps SDK, the only package that is built with Flutter

exclusively, fulfils the criteria, but does not offer built-in tiles and does not offer

first-party support for vector tiles. None of the choices presented are an obvious

pick.

Two notable patterns emerge from the analysis. Firstly, the application

developed using the Mapbox SDK on iOS did not surpass 60 FPS. Although not

explicitly documented in developer resources, this behavior appears to be an

artificial limitation imposed by the SDK. Secondly, the performance

measurements for all SDKs on Android did not exceed 60 FPS. This limitation is

particularly observed in the OnePlus testing device. The underlying cause is

attributed to the Flutter SDK’s lack of signaling to the operating system that it

can operate in a higher performance mode (Zoeyfan, 2020).

Shown by Figure 2, Figure 3 and Figure 6, flutter_map SDK exhibits superior

performance across all platforms, which aligns with the subjective user

experience during application usage. During testing phases, native SDKs

exhibited noticeable stuttering. While this stuttering does not significantly impact

 35

the average frame rate, it profoundly affects the user experience. It should be

noted, however, that quantitatively measuring such experienced stuttering is a

complex task and falls outside the scope of this study.

Along with superior performance, flutter_map SDK provided the best experience

of using the SDK. It proved to be a good citizen of the platform, following

Flutter’s approach to declarative UI building. It supports Flutter widgets without

image conversion. Finally, it offers good interfaces to control the SDK. It is

being actively developed; a few major and multiple minor versions were

released during the development of the application. The documentation and

code examples are superior to the other SDKs, and community support is on

par with Google Maps SDK, which makes it a great candidate to be picked for

further development.

There are multiple benefits that come from flutter_map SDK being an open-

source package, developed by a community of developers. Firstly, this allows

developers of the applications to fix any bugs they encounter via the

contribution process of pull requests. Secondly, it provides transparency and

the opportunity for contributors to influence the direction of the SDK's

development. Thirdly, the community-driven approach fosters an ecosystem of

plugins and extensions, ensuring that the SDK evolves in response to real-world

use cases and developer needs. All these factors are of great importance when

choosing a fundamental dependency in an application, where most of the

functionality is centered around it. Since other SDKs function as a compatibility

layer that bridge Flutter with proprietary, closed-source native SDKs, they are

unable to offer comparable advantages.

flutter_map SDK includes first-party support for plugins and extensions. The

SDK's documentation provides several examples, accompanied by guidelines

on how to augment the SDK's capabilities. A number of these plugins are under

active development, with one notable example being vector_map_tiles.

This plugin is poised to introduce the advantages of vector tiles to the

flutter_map SDK. Other plugins implement a user location icon / user location

icons, or offer improved performance for markers, among others.

 36

As mentioned in Section 4.2, flutter_map SDK requires developers to provide a

map tile source, which stands as a significant drawback compared to other

SDKs that offer built-in tile rendering capabilities. The choice of tile source,

whether it is a paid service or another method, often represents the primary cost

factor associated with the use of this SDK. While Google Maps SDK’s projected

costs make it not relevant for comparison, Mapbox SDK remains free until

25,000 monthly active users (MAU) are exceeded, after which the expenses

escalate substantially. Nevertheless, opting for self-hosted tiles presents the

most transparent and effective means of managing costs.

The biggest functional drawback of flutter_map SDK is that it does not support

vector map tile rendering out of the box. As previously mentioned, a plugin

exists offering this functionality, but it does so at a major cost to performance,

reducing it by around half, when measured in FPS. Vector tiles offer many

advantages, which are listed below:

1. Scalability: Vector tiles maintain high quality at any scale or zoom level,

avoiding the pixelation issues common with raster tiles.

2. Smaller File Size: Vector tiles are typically more compact and have

smaller file sizes, leading to faster loading times and less bandwidth

usage.

3. Dynamic Label Placement: With vector tiles, map labels can be

dynamically placed and oriented, ensuring they are always readable and

correctly aligned, regardless of the map's rotation or zoom level.

Mapbox and Google Maps SDKs both render vector tiles; hence, they display all

the listed benefits.

Based on the study described in this thesis, the flutter_map SDK was selected

for continued application development. This decision was influenced by its

transparent cost structure, Flutter-native design, and robust community support,

positioning it as an optimal choice. In comparison, the Google Maps SDK

 37

showed to be prohibitively expensive while showing most inferior performance.

The Mapbox SDK, on the other hand, was characterized by a less favorable DX

and an ambiguous pricing model. The flutter_map SDK, demonstrating reliability

and a promising future of community-driven improvements, was thus chosen as

the preferred map SDK for the application.

 38

References

Apple, 2012. iOS Drawing Concepts. [Online]

Available at:

https://developer.apple.com/library/archive/documentation/2DDrawing/Conceptu

al/DrawingPrintingiOS/GraphicsDrawingOverview/GraphicsDrawingOverview.ht

ml

[Accessed 18 June 2023].

Apple, 2023. Reducing Your App's Memory Use. [Online]

Available at:

https://developer.apple.com/documentation/metrickit/improving_your_app_s_pe

rformance/reducing_your_app_s_memory_use#

[Accessed 6 December 2023].

Daliot, A., 2015. Functional Animation In UX Design. [Online]

Available at: https://www.smashingmagazine.com/2015/05/functional-ux-design-

animations/#orientation

[Accessed 4 June 2023].

DNA, 2022. Do You Use a Smartphone?. [Online]

Available at: https://www.statista.com/statistics/564643/share-of-smartphone-

users-in-finland-by-age-group/

[Accessed 3 June 2023].

Fessenden, T., 2022. Three Pillars of User Delight. [Online]

Available at: https://www.nngroup.com/articles/pillars-user-delight/

[Accessed 7 June 2023].

flutter_map Authors & Maintainers, 2023. flutter_map Docs. [Online]

Available at: https://docs.fleaflet.dev

[Accessed 19 July 2023].

Google and individual collaborators, 2023. Debugging Flutter Apps. [Online]

Available at: https://docs.flutter.dev/testing/debugging#measuring-app-startup-

 39

time

[Accessed 17 10 2023].

Google, 2023. Flutter - Build Apps For Any Screen. [Online]

Available at: https://flutter.dev

[Accessed 18 June 2023].

Google, 2023. Flutter Architectural Overwiew. [Online]

Available at: https://docs.flutter.dev/resources/architectural-overview

[Accessed 18 June 2023].

Google, 2023. Introduction to Widgets. [Online]

Available at: https://docs.flutter.dev/ui/widgets-intro

[Accessed 18 June 2023].

Google, 2023. Multi-Platform. [Online]

Available at: https://flutter.dev/multi-platform

[Accessed 3 June 2023].

Google, Flutter community, 2023. Flutter Performance Profiling. [Online]

Available at: https://docs.flutter.dev/perf/ui-performance

[Accessed 28 November 2023].

Jakubowski, P., 2023. iOS - Image Disappears When Updating Point

Annotation · Issue #241 · mapbox/mapbox-maps-flutter · GitHub. [Online]

Available at: https://github.com/mapbox/mapbox-maps-flutter/issues/241

[Accessed 10 October 2023].

K. Debattista, K. B. S. S. T. B.-R. V. H., 2018. Frame Rate vs Resolution: A

Subjective Evaluation of Spatiotemporal Perceived Quality Under Varying

Computational Budgets. Computer Graphics Forum, 37(1), pp. 363-374.

Mapbox, 2023. Mapbox Pricing. [Online]

Available at: https://www.mapbox.com/pricing

[Accessed 19 July 2023].

 40

Meta, 2023. Render, Commit and Mount. [Online]

Available at: https://reactnative.dev/architecture/render-pipeline

[Accessed 18 June 2023].

Stadia Maps, 2023. Pricing & Tiers. [Online]

Available at: https://stadiamaps.com/pricing/

[Accessed 19 July 2023].

Statcounter, 2023. Mobile Operating System Market Share Europe. [Online]

Available at: https://gs.statcounter.com/os-market-share/mobile/europe/#yearly-

2022-2023-bar

[Accessed 3 June 2023].

zoeyfan, 2020. Frame Rate is Locked to 60FPS On Devices With Frame Rate

Optimization · Issue #35162 · flutter/flutter. [Online]

Available at: https://github.com/flutter/flutter/issues/35162

[Accessed 3 December 2023].

