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1  |  INTRODUC TION

Management of wild animal populations relies on understanding 
population abundance. Population densities are often dependent 
on habitat quality as animals rarely use all available habitats equally 
(Bjørneraas et al., 2012; Fretwell, 1969; Maier et al., 2005). Instead, 
animals preferentially select some habitats and avoid others, often 

resulting in higher densities of individuals in favored areas. Thus, un-
derstanding the resource selection of animals is an important part 
of management and conservation of many species as the actions for 
managing or maintaining the population differs among landscapes 
(Allen & Singh, 2016).

The preference of animals for certain habitats, i.e. the habitat 
(or resource) selection can be viewed as a hierarchical process with 
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Abstract
In heterogeneous landscapes, resource selection constitutes a crucial link between 
landscape and population-level processes such as density. We conducted a non-
invasive genetic study of white-tailed deer in southern Finland in 2016 and 2017 using 
fecal DNA samples to understand factors influencing white-tailed deer density and 
space use in late summer prior to the hunting season. We estimated deer density as a 
function of landcover types using a spatial capture-recapture (SCR) model with indi-
vidual identities established using microsatellite markers. The study revealed second-
order habitat selection with highest deer densities in fields and mixed forest, and 
third-order habitat selection (detection probability) for transitional woodlands (clear-
cuts) and closeness to fields. Including landscape heterogeneity improved model fit 
and increased inferred total density compared with models assuming a homogenous 
landscape. Our findings underline the importance of including habitat covariates 
when estimating density and exemplifies that resource selection can be studied using 
non-invasive methods.
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multiple orders (Johnson, 1980). Within a population, of interest is 
how individuals are distributed in relation to environmental features 
i.e. the location of home ranges of individuals (second-order hab-
itat selection), as well as within home-range selection of habitats 
by individuals (third order). Commonly, habitat selection has been 
studied invasively using telemetry e.g. by attaching GPS or VHF 
collars on animals (e.g. Bose et al., 2018; Morris et al., 2016). Live 
capturing a large number of individuals, especially of large species, 
not only causes safety risks for animals and people but is also ex-
pensive. Therefore, even though information on space usage using 
telemetry can be detailed, it is often derived from information on 
only a limited number of individuals that may not be representative 
of the population. Thus, telemetry data often concerns individual-
level habitat selection rather than population-level habitat selec-
tion. Non-invasive genetic methods allow for the possibility to study 
animal resource use without physically marking and recapturing 
individuals, for instance by collecting feces (e.g. Granroth-Wilding 
et al., 2017; Hagemann et al., 2018) or hair (e.g. O'Meara et al., 2018; 
Sun et al., 2017; Waits & Paetkau, 2005). Individual identification is 
obtained by extracting DNA from the samples and genotyping it to 
a sufficient resolution to allow obtaining unique individual-specific 
genotypes. Spatial information of the individuals is then recorded 
from the sample (often termed capture) locations, which together 
provides spatially explicit records of individuals. The resulting gen-
otypes and spatial encounter data can provide valuable population-
level information about space use (Fuller et al., 2016; Karen-Giselle 
et al., 2022; Lindsø et al., 2022).

Spatially explicit records of individuals can be analyzed using 
spatial capture-recapture (SCR) models, a spatial extension of long-
established capture-recapture methods, in order to estimate popu-
lation density (Efford, 2004; Royle et al., 2014). Apart from inferring 
density, SCR can also be simultaneously used to examine spatial 
distribution of individuals in the populations e.g. habitat selection 
(Royle, Chandler, Sun, & Fuller,  2013) and landscape connectiv-
ity (Fuller et al., 2016; Royle, Chandler, Gazenski, & Graves, 2013; 
Sutherland et al.,  2015). SCR connects population-level informa-
tion to landscape structure by accounting for the location of the 
sampling sites and spatial variation in encounter probability due to 
habitat selection (Royle, Chandler, Sun, & Fuller, 2013). Because the 
SCR approach includes space explicitly, it allows inclusion of habitat 
covariates into the models of both density and detection probability. 
Second-order habitat selection, i.e., locations of individuals on the 
landscape and their relation to environmental features, is modeled 
by SCR using the activity centers of individuals (i.e., where the prob-
ability to detect an individual is highest, e.g. home range centers) 
as a function of habitat covariates. To study the habitat use of indi-
viduals within their home ranges, i.e. third order habitat selection, 
the habitat structure around the sampling locations or traps can be 
incorporated into SCR analyses to model how covariates affect en-
counter probabilities (Royle et al., 2018). SCR can estimate the effect 
of certain habitat types on density and encounter probability, even 
if individuals are not directly encountered in that habitat, by predict-
ing the locations of individual home range centers in the vicinity of 

the sample units. Non-invasive DNA sampling with SCR has been 
previously used to study the relationship of population density and 
habitat structure (e.g. Berl et al., 2018; Brazeal et al., 2017; Gogoi 
et al., 2020; Lamb et al., 2018; Proffitt et al., 2015).

White-tailed deer (Odocoileus virginianus) inhabit a large variety 
of terrestrial habitats from forest to savanna (Halls, 1984; Massé & 
Côté, 2009; Urbanek et al., 2012), and feed on various vegetation 
types from leaves and bark of trees to forbs, fruits and agricultural 
crops (Halls, 1984; Johnson et al., 1995; Weckerly & Nelson, 1990). 
In Finland, it has become one of the most important game species 
after its remarkable and continuing growth in abundance since 1934, 
when the species was introduced from North America (Kekkonen 
et al., 2012; Poutanen et al., 2022). The winter population size in 
2021–2022 is estimated to be around 109,000 individuals (Aikio 
& Pusenius, 2022). The species is managed by hunting about half 
of its population size annually. It is listed as a non-invasive alien 
species in Finland's National Strategy on Invasive Alien Species 
(Finnish Ministry of Agriculture and Forestry,  2012). One of the 
biggest impacts of white-tailed deer on humans are deer-vehicle 
collisions, but in the areas of the densest population the species 
can also cause damage to agriculture and forestry for instance by 
eating vegetable crops and tree seedlings. For the management 
of this species and defining hunting license quotas, it is import-
ant not only to estimate abundance but also to understand what 
habitat types the white-tailed deer prefers in Finland. However, 
the Finnish white-tailed deer population has not been thoroughly 
studied in terms of demography and habitat selection (Poutanen 
et al., 2022). To this end, we conducted a SCR based study using 
fecal DNA in southwestern Finland with the aim to understand how 
white-tailed deer use available habitat types in a short time pe-
riod (about 2–3 weeks) just prior to the start of the hunting seasons 
in 2016 and 2017. We expected white-tailed deer densities to be 
highest in planted crop areas and young woodlands as these areas 
contain the most resources.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and sampling

We sampled fecal pellets of white-tailed deer in 2016 and 2017. The 
study area was approximately 3 km2 in size and was located in south-
western Finland (central coordinate: 60° 51′ 56″ N, 22° 49′ 26″ E 
(WGS84)). The study area was covered by forest, and surrounded by 
agricultural fields, which is a typical landscape for the region. Forests 
in the study area had tree species composition typical to Finnish bo-
real forests, where the dominant tree species are Scots pine (Pinus 
sylvestris) and Norway spruce (Picea abies) while the most common 
deciduous trees were birches (Betula spp), European aspen (Populus 
tremula) and willows (Salix spp). Agricultural fields in the study area 
were used to grow seed crops (wheat, oat, rye). Climatically, this re-
gion is characterized by relatively mild winters (−7 to −1°C) and sum-
mers (10–23°C). Cervids apart from white-tailed deer that occur in 
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this area include European roe deer (Capreolus capreolus) and moose 
(Alces alces).

Sampling followed the protocol of Poutanen et al. (2019), but with 
small changes to the sampling design. We used a cluster design (Sun 
et al., 2014) with 23 clusters each including 4 sampling plots result-
ing in 92 sampled plots in total (Figure 1). Each plot was 20 m × 20 m 
in size and marked in the field with ribbons. The four plots forming 
a cluster were placed in a square with distances between the center 
coordinate of the four plots of approximately 60 m. The distances 
between the center of the clusters was approximately 300 m.

In order to sample a closed population without emigration, im-
migration, births or deaths, during a period when habitat such as 
planted fields are relatively stable, we conducted sampling in autumn 
before the white-tailed deer hunting season, when migration is also 
limited and fawns of the year remain mostly with their mothers. In 
2016, we sampled in September, but in 2017 sampling was initiated 
in August, due to the earlier timing of the hunting season. In 2016, 
we visited sampling plots weekly for three visits and in 2017 every 
4 days for a total of six visits. During the first visit, the plots were 
cleared of deer pellets, which were then discarded and not used 

F I G U R E  1 Landscape of the study area in Loimaa, Southwest Finland. Black dots indicate DNA sampling plots for white-tailed deer. A 
black solid line represents the outline of the state space, which is defined as 1000 m buffer around the traps.
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in the subsequent analysis. Because the first visit was this clearing 
visit, there were two sampling occasions in 2016 and five in 2017. 
In 2017, plots were visited more frequently than in 2016 because 
the results of the earlier study of the authors suggested that de-
creasing the sampling interval would allow collection of scats more 
frequently, reducing environmental exposure and DNA degradation, 
thus improving genotyping success rates (Poutanen et al.,  2019). 
During each sampling occasion several fecal pellets were collected 
from each pellet group using a resealable plastic bag. All remaining 
pellets were removed to ensure accumulation of fresh pellets before 
the next sampling occasion. Samples were stored frozen at −20°C 
until genetic analysis could be conducted.

2.2  |  Genetic analysis

DNA extraction and individual identification followed the protocol 
of Poutanen et al. (2019). DNA was extracted using a commercially 
available DNA extraction kit (QIAamp DNA Stool Mini Kit, Qiagen, 
Valencia, California, USA). One extraction was done for each sample. 
We genotyped samples using 14 microsatellite markers and used the 
multitubes approach by performing three PCR replicates for each 
sample to minimize genotyping errors (Taberlet et al.,  1996). We 
modified the microsatellite PCR protocol of Poutanen et al.  (2019) 
by decreasing the final concentration of primer Rt5 from 0.2 μmol/L 
to 0.1 μmol/L and BSA concentration from 0.1 to 0.01 μg/μl. Samples 
which were successfully amplified with at least 11 loci were used 
to establish individual identity. Consensus genotypes were con-
structed with a rule that alleles of homozygous loci were needed to 
amplify three times and of heterozygous loci two times in order to 
be accepted as the final genotype (Jansson et al., 2014; Stansbury 
et al., 2014). When matching genotypes, we allowed two mismatches 
in different loci between the samples in order to accept them as rep-
resenting the same individual. Thus, we required at least six match-
ing loci between the samples to assign them to the same individual. 
The probability of identity (PI) values based on the six most unin-
formative loci were in the range of recommendations (PI = 0.0003 
in 2016 and PI = 0.0001 in 2017, PIDsib = 0.02 in both years) (Waits 
et al.,  2001). This suggests that the minimum of six matching loci 
between the samples was sufficient for individual identification. 
Consensus genotypes were matched to individuals using the soft-
ware Cervus v. 3.0.7 (Kalinowski et al.,  2007) and Gimlet v. 1.3.3 
(Valière, 2002). At least one DNA sample of each identified individ-
ual were sexed with X- and Y- chromosome specific primer pair ZFX/
ZFY following the protocol of Poutanen et al. (2019).

We used the consensus genotype data to calculate devia-
tions from Hardy Weinberg Equilibrium using Genepop v. 4.2 
(Rousset, 2008) and number of alleles and expected and observed 
heterozygosities using Gimlet (Valière,  2002). Fecal samples of 
white-tailed deer can be confused with roe deer fecal pellets in the 
field. However, Poutanen et al. (2019) demonstrated that the panel 
of 12–14 microsatellite markers used in the PCR protocol allows dis-
criminating between the DNA of these two species by amplifying 

properly only white-tailed deer DNA. This microsatellite panel am-
plifies roe deer DNA only partly resulting in incomplete genotypes, 
which are discarded from subsequent analyses.

2.3  |  Spatial capture-recapture density estimation

We estimated density using spatial capture-recapture with the 
R package oSCR (Sutherland et al.,  2016) in RStudio (RStudio 
Team,  2018). We used multi-session SCR models with sampling 
year as a “session”. The main objective was to examine white-tailed 
deer space use and how habitat structure is linked to density (D) 
and detection probabilities (p). First, we chose the top homogene-
ous model, i.e. the top model without habitat covariates, by Akaike 
Information Criterion (AIC), and then added habitat covariates to 
that model in the second step of model fitting. This simplified the 
model selection procedure by reducing possible combinations of co-
variates (Brazeal et al., 2017; Efford & Fewster, 2013). We chose the 
top homogeneous model among 42 different homogeneous models 
where we let D, p and σ (sigma, the parameter describing space use, 
defining rate at which detection probability declines as a function of 
distance from the sampling location (Royle et al., 2014)) vary by year, 
sampling occasion, and sex (we also fitted their interactions). When 
fitting heterogeneous models, D and p were let to vary by different 
habitat covariates. Second order resource selection is modeled by 
fitting habitat covariates to D, and third order selection by fitting 
habitat covariates to p (Royle et al., 2018). All heterogeneous mod-
els are modifications of the most supported homogeneous model. 
We also compared the overall predicted density estimates of the top 
homogeneous model with the top heterogeneous SCR model includ-
ing habitat covariates. The state space was defined by a grid with 
resolution 120 m. A state space buffer of 1000 m around the traps 
was used, which is about 8 × σ based on the estimate of σ from this 
study (see Section 3) to ensure the buffer contain all home ranges of 
the sampled individuals.

Habitat covariates were defined using the open-source Corine 
Land Cover data (European Union, Copernicus Land Monitoring 
Service 2012, European Environment Agency (EEA)). For water 
bodies, we used the vector data of waterways provided by National 
Land Survey of Finland (2018). We considered three different hab-
itat covariates for density. First was a categorical habitat class vari-
able with four different levels: agricultural fields, coniferous forests, 
mixed forests and transitional woodland/shrub. Other covariates on 
density included distance to artificial areas (e.g. buildings, roads and 
other artificially surfaced areas) and distance to water. These covari-
ates were assigned to the state space by extracting them from the 
Corine Land Cover raster data with a function extr.rast() (oSCR pack-
age) using the habitat which was the most frequent when summa-
rizing the Corine Land Cover raster values (resolution 20 m × 20 m) 
around the central coordinates of the state space pixel on the same 
resolution as the state space is defined (here 120 m). Artificial areas 
would have covered only 2% of the state space and we therefore 
ignored this habitat class. However, artificial areas and water bodies 
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    |  5 of 14POUTANEN et al.

were included in the analysis by calculating the nearest distance 
from the state space pixel central coordinates to artificial area or 
water using R package rgeos (Bivand & Runde, 2021).

We included four different trap-level covariates to study how 
landcover type affects capture probability (p). Differences in land-
cover of the sample plot may influence capture probability in vari-
ous ways including the behavior of the animals. The first covariate 
was a categorical landcover class variable with three different levels: 
coniferous forest, mixed forests, transitional woodland/shrub (here-
after: transitional woodland). The other three covariates on capture 
probability were distance to agricultural areas, distance to artificial 
areas, and distance to water bodies. To define the landcover class 
for each trap location, the central coordinates of the sampling loca-
tions (“traps”) were buffered by 30 m (30 m buffer avoided overlap 
between buffers of adjacent traps when distance between the traps 
was 60 m) and the proportion of each landcover type was calculated 
for the buffered area. The landcover type with the largest propor-
tion in the buffered area was assigned as the landcover class for that 
sampling location. If two or more landcover types existed in exactly 
the same proportions, then the class was defined using field notes 
on the landcover type of the central coordinate of the sampling lo-
cation. Because deciduous forests were rare in the study area, this 
landcover class was ignored. To include agricultural areas, artificial 
areas and water bodies as covariates on capture probability, we 
calculated the nearest distance between the central coordinate of 
the sampling location and these landscape features using R package 
rgeos (Bivand & Runde, 2021).

For the SCR model, the state space of the study area was de-
fined by buffering the minimum area rectangle of the sample units 
by 1000 m, producing a state-space of 10.4 km2. Agricultural areas 
comprised 76% (548 of 725 pixels), coniferous forests 12% (88 pix-
els), mixed forests 6% (45 pixels) and transitional woodland 6% (44 
pixels; Figure  1). Of the 92 sample plots, 51.1% (47 sample plots) 
were characterized as coniferous forest, 30.4% (28 plots) as mixed 
forest and 18.5% (17 plots) as transitional woodland.

3  |  RESULTS

3.1  |  Genetic analysis

We collected 300 white-tailed deer fecal samples during two sam-
pling occasions in 2016 and 401 samples during five sampling occa-
sions in 2017 (Table 1). Samples were found on 72% (2016) and 79% 
(2017) of the 92 sample plots.

In total, 32% of the samples were successfully genotyped to the 
level permitting individual assignment (11 to 14 loci) in both years 
(Table 1). Genetic summary statistics of microsatellite loci are pre-
sented in Table A1. We identified 38 different white-tailed deer in-
dividuals (26 females and 12 males) in 2016 and 66 individuals (41 
females and 25 males) in 2017. In total 17 (14 females and 3 males) 
of the individuals captured in 2017 were also present in the 2016 
data set. In 2016, samples of identified individuals were found on 

43% of the plots and in 2017 in 51% of the plots. In 2016, we recap-
tured 50% of the individuals one to four times and in 2017, 44% of 
the individuals one to six times (Table 1). In 2016, only 17% of the 
genotyped males were recaptured, whereas 65% of the genotyped 
females were recaptured (Table 1). In 2017, 40% of the genotyped 
males and 46% of the females were recaptured.

3.2  |  White-tailed deer density and space use

Among the set of homogeneous models evaluated (i.e. models with-
out habitat covariates; Table  A2), the top model supported that 
density differed between years and baseline detection probability 
varied between sampling occasions, sexes and years. The space use 
parameter σ varied with the interaction of sex and year (Table A2).

We included habitat covariates for density and detection prob-
ability in the top homogeneous model (i.e. model 1 in Table A2) and 
evaluated 24 different heterogeneous candidate models. According 
to the most supported heterogeneous model, white-tailed deer den-
sity was dependent on landcover-type (agricultural areas, coniferous 
forests, mixed forests and transitional woodland). The probability of 
detecting a white-tailed deer varied with landcover-type (coniferous 
forest, mixed forests, transitional woodland) and with distance to 

TA B L E  1 Summary of the white-tailed deer non-invasive survey 
based on fecal samples collected on 92 sampling plots in 2016–
2017 within our study area in Southwest Finland. Provided are 
the number of fecal samples and the number of these for which at 
least 11 microsatellite loci could be genotyped (allowing individual 
identification). The resulting number of individuals (of each sex) 
that were identified and their sex ratio. The total number of 
detections (of each sex) is broken down into how many individuals 
were detected once vs. multiple times (i.e. recaptured). The 
recapture rate is the fraction of individuals that were recaptured 
(detected more than once).

Year 2016 2017

No of collected samples 300 401

Successfully genotyped (≥11 
loci)

94 (31%) 130 (32%)

No of individuals (♂/♀) 38 (12/26) 66 (25/41)

Sex ratio (♂/♀) 0.46 0.61

Total number of detections 
(♂/♀)

76 (16/60) 121 
(40/81)

No of individuals detected 
once (♂/♀)

19 (10/9) 37 (15/22)

No of recaptured individuals 
(♂/♀)

19 (2/17) 29 (10/19)

Recaptured once (♂/♀) 5 (0/5) 11 (5/6)

Recaptured twice (♂/♀) 11 (2/9) 13 (5/8)

Recaptured three times (♂/♀) 1 (0/1) 4 (0/4)

Recaptured four times (♂/♀) 2 (0/2) –

Recaptured six times (♂/♀) – 1 (0/1)

Recapture rate 50% 44%
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agricultural areas (Table 2; Table 3). Distance to water bodies and 
distance to artificial areas were not significant for either density or 
detection probability.

Although the SCR model showed density to differ across habi-
tat classes, the uncertainty around some of the estimates was large 
(Figure 2; Table 3). Point estimates of the model suggest that white-
tailed deer densities were particularly high in agricultural areas and 
mixed forest, but low in coniferous forests and transitional wood-
lands during both years (Figure 2). Density was clearly higher during 
the second year compared with the first year (Figure  2; Table  3). 
Detection probability was highest in transitional woodlands, second 
highest in mixed forests and lowest in coniferous forests. Detection 
probability decreased with distance to agricultural areas. During the 
first year, detection probability was higher than during the second 
year (Table 3).

The space use parameter σ differed between the sexes, sampling 
year and their interaction. Female σ was lower in the second sam-
pling year compared with the first; female σ was higher than that of 
males (Table  3). For males, distances moved between consecutive 
recaptures were on average 233 m (95% CI: 59–655), and for females 
295 m (0–1081). The sex ratio (ψ), based on SCR under the top model, 
was about equal (0.52).

Overall, white-tailed deer density was estimated to be higher 
when landscape covariates were included compared with assuming 
a homogeneous landscape. The homogeneous top model (model 1 
in Table A2) predicted that the overall density of white-tailed deer 
across the whole state space was 11.2 (11.0–11.4) white-tailed 

deer/km2 in 2016 and 25.5 (25.0–26.0) white-tailed deer/km2 in 
2017. The heterogeneous top model with habitat covariates (m1 
in Table 2) predicted that the overall density was 13.1 (12.6–13.6) 
white-tailed deer/km2 in 2016 and 31.7 (30.5–32.9) white-tailed 
deer/km2 in 2017.

4  |  DISCUSSION

We found that inclusion of habitat heterogeneity was impor-
tant when estimating density and detection of white-tailed deer: 
Including landscape heterogeneity significantly increased predic-
tion performance of the SCR models. While we found support that 
white-tailed deer density varied across habitat classes, indicating 
second-order habitat selection, the uncertainty around the point es-
timates for density in these habitat classes was large. Based on point 
estimates, however, our findings indicate that white-tailed deer den-
sities were particularly high in agricultural areas and mixed forests 
but low in coniferous forests and transitional woodlands. Including 
landscape heterogeneity furthermore increased the overall density 
estimate when compared with density estimated under the best 
supported homogeneous (constant density without habitat covari-
ates) SCR model. The higher density estimated by the heterogene-
ous model may be a result of the greatest proportion of the state 
space consisting of agricultural areas (76%), which is also the pre-
ferred habitat (together with mixed forests which are, however, rela-
tively uncommon). Our findings were intuitive as fields in the study 

TA B L E  2 Eight candidate spatial capture-recapture models (1–8) for estimating density of white-tailed deer by assuming a heterogeneous 
landscape compared with the null model assuming a homogeneous landscape (model 9). The null model includes session (year 2016, 2017) 
specific density (D), with capture probability (p) dependent on sampling occasion (t), sex (male, female) and session. The space use parameter 
sigma (sig) was both session and sex-specific. The heterogeneous models (1–8) additionally include habitat covariates (habitatclass; 
agricultural areas, coniferous forest, mixed forest, transitional woodland) for density (D) and further allow detection probability (p) at an 
fDNA sampling plot to be a function of habitat class, distance to water (DistanceWater), distance to artificial surface (DistanceArtificial), and 
distance to agricultural area (DistanceAgr). The coefficients of detection of the most parsimonious model (model 1) are detailed in Table 3.

Model logL K AIC dAIC Weight CumWt

1 D(session + habitatclass) 
p(t + sex + session + DistanceAgr + habitatclass) 
sig(session*sex)

799.3700 20 1638.740 0.000000 8.332334 e-01 0.8332334

2 D(session + habitatclass) p(t + sex + session + 
DistanceAgr) sig(session*sex)

803.2589 18 1642.518 3.777855 1.260132 e-01 0.9592465

3 D(session + habitatclass) p(t + sex + session + 
habitatclass) sig(session*sex)

803.8769 19 1645.754 7.013775 2.498876 e-02 0.9842353

4 D(session) p(t + sex + session + DistanceAgr) 
sig(session*sex)

808.6710 15 1647.342 8.602042 1.129424 e-02 0.9955295

5 D(session + habitatclass) p(t + sex + session) 
sig(session*sex)

808.0432 17 1650.086 11.346451 2.863625 e-03 0.9983932

6 D(session + habitatclass) p(t + sex + session + 
DistanceWater) sig(session*sex)

808.0297 18 1652.059 13.319384 1.067823 e-03 0.9994610

7 D(session + habitatclass) p(t + sex + session + 
DistanceArtificial) sig(session*sex)

808.7526 18 1653.505 14.765136 5.182725 e-04 0.9999793

8 D(session) p(t + sex + session + habitatclass) 
sig(session*sex)

814.3411 16 1660.682 21.942217 1.432435 e-05 0.9999936

9 D(session) p(t + sex + session) sig(session*sex) 817.8705 14 1663.741 25.000910 3.103759 e-06 0.9999967
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area were predominantly crop fields, and these present habitat with 
good food resources for the white-tailed deer during the autumn 
months this study was conducted.

One of the advantages of the SCR approach used here is that 
densities can be inferred for habitat where sampling is not possible; 
in our case sample plots could not be placed in agricultural fields due 
to legal restrictions on access. Nevertheless, uncertainty around 
estimates of habitat-specific density was large, especially for the 
habitat classes where density was inferred to be low. Thus, while 
the heterogeneous SCR model finds clear evidence for a density-
habitat relationship (i.e. habitat selection), it remains challenging 

to provide habitat-specific density estimates. Heterogeneous SCR 
models are data hungry, so sampling over a longer time period (e.g. 
6 weeks) while retaining short sampling intervals could provide 
more power for inferring densities. Longer time periods would re-
quire careful consideration of population closure and stability of 
habitat (especially the agricultural fields). Nevertheless, a strength 
of the SCR approach is that it estimates habitat-specific densities 
(second order habitat selection), while accounting for third order 
habitat selection through the effect of habitat on detection prob-
ability. Here we find that the detection probability of white-tailed 
deer was highest in transitional woodlands followed by mixed 

TA B L E  3 fDNA-SCR inferred detection probability (p), space use (σ), density (D) and sex ratio (ψ) for white-tailed deer individuals in 
a heterogenous landscape during different sessions (study years) 2016 and 2017 in Southwest Finland. Estimates are provided for the 
most parsimonious model (m1 in Table 2). In brackets after each parameter is the unit and the scale used for model inferences (logit or 
exponential). Model estimates and their standard error (SE) are given on the modeled scale together with a Z-test with associated p value for 
whether the estimate differs from zero. For each parameter, the intercept as well as contrasts to the intercept are given. Under “data scale” 
the back-transformed value is provided (based on intercept and contrast whenever relevant), where for density also the area of one pixel 
(0.0144 km2) was taken into account such that the data-scale estimates for density are in individuals/km2. Significance (p < .05) is indicated 
by bolding. Baseline detection probability (p0) refers to the probability to detect a white-tailed deer per sample occasion at its activity center 
and detection probability was assumed to decline with distance from the activity center following a half-normal function described by the 
space use parameter σ. Fecal samples were collected during each year during separate occasions (occ). Effect of habitat on detection was 
modeled as “distance to the nearest agricultural field” in units of meters (m) and whether the sample plot was in different habitat classes. The 
intercept for detection hence denotes the detection probability in session 1 (2016) for a female during the first occasion in coniferous forest 
at average nearest distance from an agricultural field. The intercept for sigma was for a female (f) in 2016 with contrast provided for 2017 
and for males (m). The intercept for density is the habitat agricultural field in session 1 (2016). The sex ratio is the probability of an individual 
in the study population being a female. The model estimates for density are plotted in Figure 2.

Parameter/covariate Estimate SE z p Data-scale

Detection p0 (probability to detect an individual at its activity center, logit)

Intercept (p0) −2.08 0.30 −6.99 0.11

Male vs. female −0.28 0.37 −0.75 .45 0.09

Session 2 (2017) −1.13 0.33 −3.39 .00 0.04

Occ. 2 0.35 0.20 1.72 .09 0.15

Occ. 3 −0.32 0.36 −0.91 .36 0.08

Occ. 4 0.84 0.27 3.16 .00 0.22

Occ. 5 0.68 0.27 2.48 .01 0.20

Distance to field −0.01 0.00 −2.97 .00

MixedForests 0.39 0.19 2.07 .04 0.15

Transitional wood 0.56 0.21 2.65 .01 0.18

Space use σ (meters, exponential)

Intercept (f) 5.80 0.12 328.65

f 2017 −0.34 0.15 −2.30 .02 234.86

m 2016 −0.54 0.19 −2.86 .00 191.33

m 2017 −0.58 0.20 −2.96 .00 184.38

Density (individuals/pixel, exponential)

Intercept −1.47 0.25 −5.93 16.03

Session 2 (2017) 0.88 0.27 3.26 .00 38.77

Coniferous forests −5.55 16.36 −0.34 .73 0.06

MixedForests −0.03 0.69 −0.04 .97 15.59

Transitional wood −4.38 5.71 −0.77 .44 0.20

Sex ratio ψ (probability to be female, logit)

Intercept 0.10 0.29 0.34 .73 0.52
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forest and was lowest in coniferous forest. Detection probability 
also was lower with increasing distance to agricultural fields. Thus, 
space was not used equally; white-tailed deer preferred to be close 
to fields and in transitional woodlands compared with coniferous 
forest. In our study area, transitional woodlands were typically 
clear-cuts and white-tailed deer may use those areas there due to 
food resources such as shrubs and young seedlings. Similarly, mixed 
forests, which include deciduous trees and typically have an under-
growth of small shrubs likely offer more nutritious food compared 
with coniferous forests.

Our study was conducted during 2–3 weeks in late summer. 
Clearly, habitat preferences later in the year likely differ from these 
late-summer estimates, especially during winter when there are no 
seed crops and snow covers the agricultural fields. In general, snow 
cover affects the availability of food and movement of individuals 
(Andersson & Koivisto, 1980). In winter, instead of fields and other 
open areas, white-tailed deer may favor moving more in mature 
forests including coniferous forests where snow depth is less al-
lowing easier movement and access to food. Also, in winter, white-
tailed deer typically eat more conifers as leaves of deciduous trees 
are not available (Kankaanpää,  1989; Martinka,  1968; Weckerly & 
Nelson,  1990). Thus, habitat-density relationships likely vary dra-
matically throughout the year. The white-tailed deer was introduced 
in Finland about 90 years ago and has increased dramatically in num-
bers in the last decade (Aikio & Pusenius, 2022). Improving inference 
of white-tailed deer density, e.g. by better understanding density-
habitat relationships, is therefore important in developing targeted 
management of this species in Finland.

Density estimates in this study were high compared with re-
gional pre-harvest estimates of the area, which were 3.9 and 4.2 
individuals per km2 in 2016 and 2017, respectively (Brommer 
et al., 2021). Our pre-harvest estimates were 11 and 31 individuals/
km2, respectively. Comparing our estimates to regional estimates is 
complicated by the fact that regional estimates are based on mul-
tiple sources of information including time-series of hunting sta-
tistics and describe the average density over a large area, whereas 
our estimates are based on a snap-shot (2–3 weeks sampling) 
conducted in a small (approximately 3  km2) area. It is neverthe-
less noteworthy that our findings underline that white-tailed deer 

density can locally be up to almost an order of magnitude higher 
than the regional average. Clearly, understanding why white-tailed 
deer aggregate in some localities (and presumably not in others) is 
a major future challenge.

We found an approximately three-fold increase in density be-
tween the two study years; a change that is already apparent in 
the fact that we recorded more individuals (and also recaptured 
more individuals) in 2017 compared with 2016. Importantly, how-
ever, the increase in white-tailed deer density that we recorded 
does not reflect population growth, because the spatial scale of 
our study area is limited. Our fecal DNA sample plots covered a 
relatively small forest patch which is surrounded by fields. White-
tailed deer likely aggregated in this forest patch offering cover 
while surrounded by good food resources from fields, potentially 
more so in 2017 compared with 2016. Furthermore, in 2017, the 
fecal collection was conducted 1 month earlier than in 2016 (due 
to a change in the starting date of hunting), which also may have 
affected the difference in density estimates between years, e.g. 
due to better availability of food including the crops on the field, 
as well as behavioral differences. In particular, white-tailed deer 
males form so-called bachelor groups of multiple deer from late 
winter through summer (Hawkings & Klimstra, 1970; Sorensen & 
Taylor, 1995). In August, males still move more in bachelor groups 
of multiple males than in September, which was noticed by wild-
life cameras that were simultaneously recording for another study 
(Brommer et al., 2021). To conclude, various factors may underlie 
changes in the density and sex ratios in the study area between the 
2 years studied. Further study, especially covering areas with dif-
ferent habitats and different periods of the year, and incorporating 
changes in habitat (e.g. harvest of crop) are needed to generalize 
our findings and improve our knowledge of factors affecting local 
white-tailed deer densities.

One powerful aspect of the SCR approach is that potentially a 
large fraction of a population can be identified and followed, thereby 
allowing population-level insights (Royle et al.,  2018). In our case, 
more than 100 individuals were identified and about 50% of them 
were recaptured using non-invasive fecal DNA. Nevertheless, only 
32% of fecal samples allowed establishing individuals identities. 
This is low compared with DNA-based individual identification of 

F I G U R E  2 Predicted densities of white-tailed deer per km2 in different landcover types in study area in southwestern Finland during 
2016 (dark gray) and 2017 (light gray). The proportion of the study area covered by each habitat class is provided in brackets. The 95% 
confidence intervals are drawn as lines, but upper confidence limit for coniferous forest and transitional woodlands much exceed the 
maximum value of the Y axis plotted (see Table 3).
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white-tailed deer in the U.S.A. (66%; Goode et al., 2014). One reason 
is that DNA in feces is degraded, hampering amplification, and in-
dividual identification requires successful amplification of more mi-
crosatellites (11) in Finland compared with United States (7; Goode 
et al.,  2014). This is because the introduction of the white-tailed 
deer in Finland was based on only few individuals and the popula-
tion therefore has a reduced allelic richness (Kekkonen et al., 2012). 
A methodological challenge in using fecal DNA-based SCR for deer 
and other animals that often live in groups is that activity centers may 
show some level of non-independence across individuals. Although 
density inference should not be biased (Bischof et al., 2020; Russell 
et al., 2012), a generally applicable way to accommodate dependen-
cies of home ranges would improve inferences (Bischof et al., 2020). 
Although the approaches may vary between studies, our findings 
add to the growing SCR-based evidence that it is important to con-
sider the spatial heterogeneity of an area and habitat selection of 
animals. By acknowledging that landscapes are heterogeneous and 
incorporating that into our analyses, we quantify habitat selection, 
which captures crucial ecology in terms of how the organism uses 
its environment both in terms of population density and in terms of 
individual space use.

In this study, we provide insight into habitat selection of white-
tailed deer in Finland, which thus far has not been examined in 
Finnish white-tailed deer populations. Our findings point to the 
importance of considering habitat structure in density estimation 
in wildlife management. Information on habitat preference can be 
used as a covariate when estimating densities over different land-
scapes for setting management goals. With this information, hunting 
licenses can be allocated in areas with more favorable habitats in 
order to reduce damage (i.e. to forestry or agriculture) caused by 
dense white-tailed deer populations. Better knowledge of where 
and when during the year white-tailed deer densities are high may 
also help to minimize deer-vehicle collisions. Finally, research, like 
this study, that provides information on habitat selection of white-
tailed deer in Finland offers new insights into little-studied basic 
ecological aspects of a species with a remarkable capacity to thrive 
in different environments.
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APPENDIX 1

Density-habitat relationships of white-tailed deer (Odocoileus virginianus) in Finland" by Poutanen et al.

TA B L E  A 1 Specifics of the 14 microsatellite loci used in this study on white-tailed deer in Finland in two study years 2016 and 2017. We 
report basic statistics on their allele richness, heterozygosity and deviation from Hardy-Weinberg equilibrium (HWE).

Locus No. of alleles Allele range (bp) Expected 
heterozygosity (He)

Observed 
heterozygosity (Ho)

HWE

2016

BM4107 5 139–166 0.56 0.55 0.4321

Cervid1 6 173–187 0.77 0.76 0.3855

Rt5 7 154–172 0.79 0.79 0.7377

OCAM 4 206–212 0.70 0.58 0.4959

INRA011 4 193–206 0.55 0.61 0.9591

BM203 8 210–233 0.70 0.61 0.2280

ETH152 7 176–197 0.76 0.68 0.1061

OarFCB193 6 97–123 0.74 0.71 0.9232

BL25 4 177–182 0.60 0.61 0.8488

K 2 198–202 0.49 0.55 0.4953

O 6 188–218 0.58 0.61 0.8233

BM6506 4 195–204 0.64 0.53 0.1485

D 6 159–187 0.76 0.87 0.2654

p 5 214–242 .75 .63 .5486

Mean 5.3 – 0.67 0.65 –

2017

BM4107 6 139–166 0.62 0.62 0.5647

Cervid1 6 173–187 0.76 0.76 0.7272

Rt5 7 154–172 0.78 0.73 0.6841

OCAM 5 206–216 0.75 0.58 0.4139

INRA011 4 193–206 0.66 0.64 0.7602

BM203 9 210–233 0.70 0.56 0.0089a

ETH152 9 174–197 0.78 0.79 0.2722

OarFCB193 6 97–123 0.76 0.68 0.5004

BL25 5 177–192 0.57 0.52 0.7886

K 3 198–206 0.51 0.62 0.0332a

O 6 188–218 0.46 0.44 0.9949

BM6506 5 195–204 0.69 0.70 0.9386

D 6 159–187 0.76 0.79 0.1473

p 7 214–242 .74 .56 .1745

Mean 6 – 0.62 0.62 –

aDeviations from Hardy-Weinberg equilibrium.
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TA B L E  A 2 SCR models assuming a homogeneous landscape when estimating white-tailed deer population in southwestern Finland 
during 2016–2017. The SCR models density (D), detection probability p0 and space use sigma (σ) as a function of covariates, which here are 
session (year), occasion (t), and sex (sex). For each parameter (D, p and sig), the covariates included are included between brackets either as 
additive terms (+) or interacting (*). For each model, the log-likelihood (LogL), number of parameters (K), Akaike Information Criterion (AIC) 
are provided. Models are ranked in terms of AIC, and the difference in AIC between each model and the most parsimonious model, model 1 
(ΔAIC) is provided as well as the AIC weight of the model and cumulative (summed) weight of each model together with the models ranked 
above it.

Model logL K AIC ΔAIC AIC weight
Cumulative 
weight

1 D(session) p(t + sex + session) 
sig(session*sex)

817.8683 14 1663.737 0 0.372351 0.372351

2 D(session) p(t + sex + session) 
sig(session)

820.1075 12 1664.215 0.478442 0.29313 0.665481

3 D(session) p(t*session + sex) 
sig(session)

820.1075 12 1664.215 0.478442 0.29313 0.958611

4 D(session) p(t + sex) sig(session) 824.4422 11 1670.884 7.147799 0.010443 0.969054

5 D(session) p(t + session) 
sig(session)

824.6474 11 1671.295 7.558151 0.008506 0.97756

6 D(session) p(t*session) sig(session) 824.6474 11 1671.295 7.558151 0.008506 0.986066

7 D(.) p(t + session) sig(sex + session) 825.3815 11 1672.763 9.026306 0.004082 0.990148

8 D(.) p(t + sex + session) sig(session 
+ sex)

824.8797 12 1673.759 10.0228 0.00248 0.992629

9 D(.) p(t + sex + session) sig(.) 827.0322 10 1674.064 10.32785 0.00213 0.994758

10 D(session) p(session*sex) 
sig(session)

828.0616 9 1674.123 10.38656 0.002068 0.996826

11 D(.) p(t + sex + session) sig(session) 826.3990 11 1674.798 11.06136 0.001476 0.998302

12 D(session) p(session + sex) 
sig(session + sex)

829.0787 9 1676.157 12.42084 0.000748 0.99905

13 D(.) p(t + sex) sig(sex + session) 828.4259 11 1678.852 15.11525 0.000194 0.999244

14 D(.) p(t) sig(session + sex) 829.5957 10 1679.191 15.45483 0.000164 0.999408

15 D(.) p(t) sig(session + sex) 829.5957 10 1679.191 15.45483 0.000164 0.999572

16 D(session) p(t) sig(session) 829.6167 10 1679.233 15.49675 0.000161 0.999733

17 D(session) p(session + sex) sig(.) 833.2317 7 1680.463 16.72681 8.69E-05 0.99982

18 D(.) p(session + t) sig(.) 831.5100 9 1681.02 17.28345 6.58E-05 0.999886

19 D(.) p(session + t) sig(session) 831.0918 10 1682.184 18.44693 3.67E-05 0.999922

20 D(session) p(.) sig(session + sex) 834.2520 7 1682.504 18.76727 3.13E-05 0.999954

21 D(session) p(session) sig(session) 834.8514 7 1683.703 19.96611 1.72E-05 0.999971

22 D(.) p(session + sex) sig(sex) 835.3587 7 1684.717 20.9808 1.04E-05 0.999981

23 D(.) p(session + sex) sig(.) 837.2110 6 1686.422 22.68537 4.41E-06 0.999986

24 D(session) p(session) sig(.) 837.4305 6 1686.861 23.12446 3.54E-06 0.999989

25 D(.) p(t) sig(session) 834.6859 9 1687.372 23.63512 2.75E-06 0.999992

26 D(.) p(t) sig(sex) 834.9153 9 1687.831 24.09398 2.18E-06 0.999994

27 D(.) p(t) sig(sex) 834.9153 9 1687.831 24.09398 2.18E-06 0.999996

28 D(.) p(t + sex) sig(sex) 834.1021 10 1688.204 24.46766 1.81E-06 0.999998

29 D(.) p(t + sex) sig(.) 835.6012 9 1689.202 25.46573 1.10E-06 0.999999

30 D(session) p(t + sex) sig(.) 835.4936 10 1690.987 27.25052 4.50E-07 1

31 D(.) p(session) sig(.) 841.6896 5 1693.379 29.6425 1.36E-07 1

32 D(.) p(session) sig(session) 841.2827 6 1694.565 30.82882 7.53E-08 1

33 D(.) p(t) sig(.) 840.7396 8 1697.479 33.7426 1.75E-08 1

34 D(.) p(.) sig(session) 843.8428 5 1697.686 33.94895 1.58E-08 1

35 D(.) p(.) sig(sex) 843.9382 5 1697.876 34.13981 1.44E-08 1

(Continues)
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Model logL K AIC ΔAIC AIC weight
Cumulative 
weight

36 D(.) p(sex) sig(sex) 843.0880 6 1698.176 34.43938 1.24E-08 1

37 D(.) p(sex) sig(.) 844.5648 5 1699.13 35.39294 7.68E-09 1

38 D(session) p(t) sig(.) 840.5904 9 1699.181 35.44424 7.49E-09 1

39 D(session) p(.) sig(sex) 843.8684 6 1699.737 36.00017 5.67E-09 1

40 D(session) p(sex) sig(.) 844.5049 6 1701.01 37.27324 3.00E-09 1

41 D(.) p(.) sig(.) 849.7511 4 1707.502 43.76559 1.17E-10 1

42 D(session) p(.) sig(.) 849.6673 5 1709.335 45.59795 4.67E-11 1

TA B L E  A 2 (Continued)
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