

Vertti Huovila

Improving the Security of SQL
Server using SQL-Map Tool

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

3 February 2024

Abstract

Author: Vertti Huovila

Title: Improving the Security of SQL Server using SQL-Map

Tool

Number of Pages: 25 pages + 11 appendices

Date: 3 February 2024

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Specialisation option: IoT and Networks

Instructor(s): Janne Salonen, Principal Lecturer

This thesis is about the improvement of SQL server security using SQL-MAP, an

open-source penetration testing tool. The thesis discusses the importance of SQL

server security, explains the complexity of SQL databases, their structure, and the

concept of SQL injection. The use of TCP/IP, the NMAP tool and the SQL-MAP tool

are discussed in detail. The objective is to demonstrate how the SQL-MAP tool can

be used to improve SQL server security by detecting and mitigating SQL injection

vulnerabilities. The result is a comprehensive guide detailing the use of SQL-MAP to

improve SQL server security, supported by a practical demonstration of SQL-MAP

with the help of Damn Vulnerable Web Application (DVWA) this is done so anyone

that wants can follow the practical parts steps for themselves can try it out.

Keywords: SQL, SQL-MAP, SQL Injection

The originality of this thesis has been checked using Turnitin Originality Check
service.

Tiivistelmä

Tekijä: Vertti Huovila

Otsikko: SQL-Palvelimen suojauksen parantaminen SQL-Map

Työkalulla

Sivumäärä: 25 Sivua + 11 liitettä

Päivämäärä: 29.1.2024

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja Viestintätekniikka

Ammatillinen pääaine: IoT ja tietoverkot

Ohjaajat: Janne Salonen, Osaamisaluejohtaja

Tämä opinnäytetyö käsittelee SQL-palvelimen tietoturvan parantamista käyttämällä

SQL-Mappia, joka on avoimen lähdekoodin penetraatiotestityökalu. Opinnäytetyössä

käsitellään SQL-palvelimen tietoturvan tärkeyttä, selitetään SQL-tietokantojen

monimutkaisuutta, niiden rakennetta ja SQL-injektion käsitettä. TCP/IP:n, NMAP-

työkalun ja SQL-MAP työkalun käyttöä käsitellään yksityiskohtaisesti. Tavoitteena on

osoittaa, miten SQL-MAP työkalun avulla voidaan parantaa SQL-palvelimen

tietoturvaa havaitsemalla ja lieventämällä SQL-injektiohaavoittuvuuksia. Tuloksena

on kattava opas, jossa kerrotaan yksityiskohtaisesti SQL-Mapin käytöstä SQL-

palvelimen turvallisuuden parantamiseen, ja sen tukena on SQL-Mapin käytännön

esittely Damn Vulnerable Web Application (DVWA) -ohjelman avulla. Tämä tehdään,

jotta kaikki halukkaat voivat seurata käytännön vaiheita ja kokeilla niitä itse.

Avainsanat: SQL, SQL-MAP, SQL Injektio

The originality of this thesis has been checked using Turnitin Originality Check
service.

Table of Contents 4

List of Abbreviations 4

1 Introduction 5

2 SQL Database and SQL Injection 6

2.1 Structure, Function and History of SQL Databases 6

2.2 Evolution of SQL injections and its implications 9

2.3 Examples of SQL injection attacks 10

2.4 Techniques used in SQL Injection 13

3 TCP/IP, NMAP, and SQL-MAP 14

3.1 Overview of TCP/IP and its Role in SQL Server Security 14

3.2 Introducing NMAP in the context of SQL Server security 16

3.3 SQL-Map and its application to SQL Server security 17

4 Practical Part 19

4.1 Setup and Configuration 19

4.2 Setting Up DVWA on Kali Linux 19

4.3 Practical Demonstration using SQL-MAP Objective 21

4.4 Detecting the Vulnerable Host with NMAP 22

4.5: Exploiting Vulnerabilities Using SQL-Map 24

4.6 Protective Measures Against SQL Injection Attacks 25

4.7 Summary of Practical Demonstration 26

5 Summary 28

References 30

Appendices 32

Appendix 1: Setting Up the Virtual Environment 32

Appendix 2: Detailed Procedure for Setting Up DVWA on Kali Linux 34

Appendix 3: SQL-MAP Practical Demonstration Tutorial 36

Appendix 4: Procedure for Detecting Vulnerable Host with NMAP 37

Appendix 5: Exploiting SQL Injection Vulnerabilities Using SQL-Map 38

Appendix 6: Implementing Protective Measures 41

List of Abbreviations

SQL: Structured query language

TCP: Transmission Control Protocol

IP: Internet Protocol

TLS: Transport Layer Security

MAC: Media Access Control

DVWA: Damn Vulnerable Web Application

VM: Virtual Machine

SQLi: SQL Injection

OS: Operating System

SSH: Secure Shell

DBMS: Database Management System

GDPR: General Data Protection Regulation

CI/CD Pipeline: Continuous Integration/Continuous Deployment

Cron Job: Scheduled task in Unix and Unix-like operating systems

1 Introduction

In a world revolving around information, organisations are vital in effectively

managing and safeguarding information. As our reliance on databases grows,

ensuring their security becomes a pressing concern. This involves mitigating

numerous cyber threats, including the prevalent SQL injection vulnerability. In

the pages ahead, the aim is to assist IT professionals, and anyone interested in

cybersecurity with a comprehensive guide to enhancing SQL server security

and utilizing the powerful SQL-MAP tool. Securing SQL servers is a

multifaceted undertaking that demands careful consideration of various factors.

The thesis aims to fill existing knowledge gaps and give a deeper understanding

of how to identify and prevent SQL injection vulnerabilities. It will introduce

readers to the versatility and functionality of the SQL-MAP tool, as it is a key

tool in today's cybersecurity environment.

Through practical methods and demonstrations, it aims to provide readers with

concrete skills to strengthen SQL server security.

This comprehensive thesis provides a thorough examination of SQL databases,

delving into their structure and function. Furthermore, it highlights the

consequences of SQL injections and takes a deep dive into the technicalities of

TCP/IP, NMAP, and SQL-MAP tools. Along with this technical exploration, the

guide advocates for the implementation of more secure and adaptable data

management practices in organizations. In the current data-driven landscape, it

is crucial to foster a culture that prioritizes safeguarding data, which is

essentially the currency of the digital age.

2 SQL Database and SQL Injection

2.1 Structure, Function and History of SQL Databases

Data management, especially when speaking on relational databases, has

taken on a widespread form with the development of the Structured Query

Language (commonly known as SQL). For understanding the vast infrastructure

and nuanced complexity of today's databases, it is important to first go back to

their roots.

The origin of SQL: The origin of SQL dates to the early 1970s when IBM

researchers, working on System R, one of the first systems to implement Edgar

F. Codd's relational database model, developed a new language for data

management and retrieval. This language, named SQL, was groundbreaking for

its ability to efficiently query data in relational databases. Because of this it

quickly became a foundational element in the field of database management,

expanding its influence far beyond IBM, eventually being standardized and

widely adopted across the industry. (1)

SQL's rise: The adaptability of SQL became clear over the following decades.

As digital technology evolved, so did the demands for efficient data

management. SQL's capabilities answered to these needs, and it rose to the

vanguard of database languages. Today, SQL is the de facto standard for

relational database management, making its relevance known in the digital age.

The role of SQL databases in today's organisations: SQL databases today are

not just repositories, but dynamic systems fundamentally linked to the structure

of organisations. They store, manage, and facilitate access to critical

information, acting as both gatekeepers and gateways. Beyond being just

storage, these databases play a key role in decision making, analytics and

operational efficiency. SQL databases optimise data availability and ensure

seamless interaction, giving organisations chance to operate more efficiently.

Figure 1: SQL Server Architecture

Figure 1 presents a high-level view of the SQL Server architecture, offering an

overview without going into the granular details of each component. Here, we

can see the essential layers and components, such as the Client Application,

SQL Server, and Database Storage layers. Within the SQL Server layer, we can

observe the crucial Relational Engine and Storage Engine, each responsible for

critical functions in the database system. While this diagram may simplify

certain elements for clarity, it serves as a solid basis for comprehending the

fundamental components and interactions within SQL databases. (2)(3)

SQL database architecture: an inherent strength of SQL databases is their

relational structure. Tables, or relations, store data in rows and columns, and

each row is identified by unique keys. The relationships between the tables

allow the data to be standardized ensuring data integrity and efficiency. In

addition, SQL databases use a schema - a predefined plan that determines the

structure, types, and relationships between tables. This method of organisation

is the key for ensuring data consistency and making complex queries possible.

(3)(27)

Functionality: SQL provides a comprehensive set of scripts for various database

operations. SQL provides efficient way to work with relational databases, from

simple tasks such as retrieving data (SELECT statements) to more complex

operations such as joining multiple tables or modifying data (INSERT, UPDATE

and DELETE statements). In addition, it supports advanced functions such as

transactions and stored procedures, which increases the versatility of

databases.

2.2 Evolution of SQL injections and its implications

SQL injections pose a significant and enduring danger to cybersecurity, making

it a top priority for protection. Despite the constantly evolving landscape of cyber

threats, SQL injections remain a persistent and formidable adversary. This

serves as a reminder of the adaptive nature of cyber-attacks and further

emphasizes the continual need for fortifying database security. (5)(16)

The Origins of SQL Injection

In the late 1990s and early 2000s, as organizations began to migrate to web-

based applications, SQL injection attacks began to become more common. In

web-based applications, input data was often not properly validated, allowing

malicious SQL commands to be injected and leading to unauthorised access to

data or compromised systems. (5)(6)(15)

Evolution of attacks

From early simple attacks, SQL injections have become more complex.

Techniques such as Blind SQL Injection, Time-Based Blind SQL Injection and

Out-of-Band SQL Injection have increased the diversity of attack methods.

While these techniques are based on the basic principle of injecting malicious

SQL code, they offer different ways to exploit vulnerabilities and bypass basic

defences. (5)(15)(17)

Impacts and Consequences

The consequences of SQL injections are wide ranging. They can lead to

unauthorized access to data, exposing everything from user information to

company sensitive data. At worst, these attacks can give attackers full control

over the targeted systems, leading to data tampering and service disruption.

The financial consequences are also significant, including remediation costs,

regulatory penalties, and potential litigation. (5)(16)

Mitigation measures

The constant threat of SQL injections has led the cybersecurity community to

develop robust defence mechanisms. Key measures include input validation,

parameterised queries, and firewalls for web applications. Developer education

and awareness are also essential, as many vulnerabilities are caused by poor

coding practices. (5)(28)

2.3 Examples of SQL injection attacks

The consequences of SQL injection attacks have been significant and often

devastating. Below are examples of real cases that highlight the severity and

widespread impact of these vulnerabilities:

Heartland Payment Systems (2008)

In 2008, a devastating cyberattack known as the Heartland Payment Systems

breach shook the financial industry. Through a sophisticated SQL injection

technique, hackers were able to infiltrate the company's system, compromising

a staggering 134 million credit cards. The attack began in 2007, when the

perpetrators manipulated the web script code on a login page, granting them

access to Heartland's sensitive data. Despite their efforts remaining undetected

for months, the consequences were severe. The fraudsters took advantage of

the stolen information to create numerous fraudulent credit cards. As a result of

this breach, Heartland not only suffered significant financial losses, exceeding

$200 million, but also lost the trust of their customers and fell out of compliance

with the Payment Card Industry Data Security Standard (PCI DSS). This had a

major impact on the company's stock price as well. In 2009, Albert Gonzalez,

the mastermind behind the attack, was indicted for his involvement. In the wake

of this security.

This incident was a huge lesson for cybersecurity: the importance of

transparently disclosing breaches, implementing swift response tactics,

ensuring third-party system security, understanding the distinction between

compliance and true security, and recognizing the limitations of firewalls in

guarding against insider threats. It also serves as a stark reminder of the

dangers posed by SQL injection and stresses the critical need for all-

encompassing cybersecurity strategies. (4)(7)

Sony Pictures (2011)

In 2011, the world was surprised by a devastating cyberattack on Sony Pictures

carried out by the notorious hacker group LulzSec. Their exploitation of a simple

SQL injection left over 1 million people's data vulnerable, including personal

information such as passwords, email and home addresses, dates of birth, and

more. Not only did this breach affect Sony customers, but it also impacted Sony

BMG in Belgium and Netherlands, leading to a series of damaging attacks on

the company. This event served as a harsh reminder of the dire consequences

of neglecting basic security measures, such as encryption and protection

against common cyber threats like SQL injection. It also exposed the glaring

security flaws within Sony, resulting in significant financial and reputational

losses. (4)(8)(9)

Yahoo! Voices (2012)

In the 2012 Yahoo! Voices hack by D33ds Company, about 450,000 email

addresses and passwords were exposed. The hackers used SQL Injection to

access Yahoo! Voice servers. One key reason for this was due to the absence

of password encryption and HTTPS protocol, which greatly increased the risk of

a security breach. This breach affected several domains, such as Gmail, AOL,

and Yahoo. To address the issue, Yahoo! acted by fixing the vulnerability and

resetting passwords for those affected, while also notifying other potentially

impacted companies. This breach was significant because Yahoo! allowed

users to register for its Contributor Network using credentials from external

sites. It served as a reminder of the importance of implementing strong security

measures, including encryption and secure protocols. (4)(10)(11)(12)

TalkTalk (2015)

The 2015 TalkTalk data breach, a major cybersecurity event, involved the

British telecom provider TalkTalk. It was executed using an SQL injection,

exploiting vulnerabilities from webpages acquired in 2009 from Tiscali's UK

operations. Detected on October 21, 2015, due to network slowdowns, TalkTalk

swiftly identified and removed the compromised webpages. About 160,000

customers' personal and banking details were illegally accessed, including

names, addresses, dates of birth, contact information, and for some, financial

details. 15,656 customers had their bank account numbers and sort codes

exposed, and partial credit/debit card data of 28,000 customers was also stolen.

The breach cost TalkTalk approximately £77 million. The ICO fined them

£400,000 for inadequate security measures, marking it the largest fine by the

ICO at that time. Investigations revealed outdated database software and a lack

of proactive vulnerability monitoring by TalkTalk. Daniel Kelley, a hacker

involved, was sentenced to four years in jail in 2019.

The incident underscores the need for updated security, regular vulnerability

monitoring, prompt breach response, and transparent communication,

highlighting the significant financial and reputational risks of such breaches.

(4)(13)(14)

2.4 Techniques used in SQL Injection

The diversity of SQL injections and their implementation methods are key to

security. By understanding these different techniques, more effective defence

mechanisms against SQL injection can be developed.

Classical SQL injection

This is one of the most common forms of SQL injection. An attacker directly

injects malicious SQL code into the application's input field, causing the

database to execute unwanted commands.

This can lead to unauthorized data viewing, manipulation or even execution of

system commands. Blind SQL injection unlike classic SQL injection, in Blind

SQL injection the attacker does not receive direct feedback on the executed

query. Attackers ask the database questions, which can be true or false, and

infer the state of the database based on its reactions.

Time-blind SQL injection

In this technique, attackers exploit changes in the application's response time to

infer the state of the database. Attackers can intentionally cause delays with

SQL commands, allowing them to determine the truth value of their query based

on how long it takes to receive a response.

Out-of-band SQL injection

A special case of SQL injection where attackers use a different communication

channel to attack and retrieve data. This technique exploits features of

databases that allow external connections, allowing data to be transferred over

a different channel.

Understanding each technique will help develop targeted defence strategies

and improve the overall security of databases. (17)(25)

3 TCP/IP, NMAP, and SQL-MAP

3.1 Overview of TCP/IP and its Role in SQL Server Security

Foundation of TCP/IP

The Transmission Control Protocol/Internet Protocol (TCP/IP) was developed in

the 1970s and is the foundation of internet and network connectivity. Its role in

the functioning of SQL Server is foundational, making reliable data transfer in

varied complex environments possible.

TCP/IP architecture

Consisting of several protocol layers, TCP/IP guides the flow of network traffic

and these layers include

The Link Layer manages physical connections and network hardware protocols.

The Internet Protocol (IP) Layer is responsible for addressing packets and

routing them across networks.

The Transport Layer (TCP) ensures reliable, error-free transfer of data between

applications.

The Application Layer is where network applications use underlying layers for

communication. This is the layer we interact with the most.

TCP/IP in SQL Server

The TCP/IP is crucial for ensuring secure data transfers to and from SQL Server.

It plays a vital role in managing and safeguarding the server's ports, allowing for

the creation of isolated network environments that greatly enhance security.

TCP/IP and Security:

To effectively assess vulnerabilities, a thorough knowledge of TCP/IP is crucial

in detecting any unusual network behaviour and potential threats. For SQL Server

security, it is highly recommended to secure the commonly used listening port

(port 1433) or to consider using a non-standard port, as both measures are

significant in maintaining a secure environment.

TLS Integration:

Encrypting data over the network is an important function of SQL Server. In order

to achieve this, it utilizes Transport Layer Security (TLS), which exists between

the application protocol and TCP/IP layers. TLS employs powerful encryption

algorithms, digital certificates, and integrity checks for robust protection. While

the inclusion of this feature may add extra steps like network roundtrips and

packet encryption/decryption, it is crucial for maintaining secure communication.

Conclusion

A good grasp of TCP/IP and its integration with TLS is important for sturdy SQL

Server security. This understanding is important not just in data protection but

also in vulnerability assessment, helping in detecting anomalies and potential

security breaches.

3.2 Introducing NMAP in the context of SQL Server security

NMAP Overview

NMAP (Network Mapper), is an open-source tool for network discovery and

security auditing, was developed by Gordon Lyon (also known as Fyodor

Vaskovich) in September 1997. Originally conceived for network exploration

and security auditing, NMAP has undergone significant evolution. Today, it has

an impressive variety of scanning options (21), sophisticated detection

algorithms, and multi-platform support. Within the domain of SQL Server

security, the utility of NMAP is especially relevant. The vast amount of features

it offers are integral to assessing and pinpointing vulnerabilities SQL Server

environments. (18)(19)(20)(22)

NMAP key functions

Host Detection NMAP excels in identifying active devices within a network, a

fundamental step in mapping network topology for SQL Server environments.

Port scanning: It provides detailed list of open ports on target hosts. Given that

SQL Servers typically listen on specific ports (defaulting to 1433), this feature is

indispensable for security assessments.

Version detection: NMAP is adept at determining service and application

versions on detected ports, aiding in the identification of potential vulnerabilities

in SQL Server instances.

Scripted Interaction: The tool's scripting engine (NSE) allows for the creation

and execution of scripts, facilitating a range of network tasks, including

advanced security audits suitable to SQL Server.

The role of NMAP in SQL Server security

NMAP stands as a vital tool for professionals safeguarding SQL Server

environments. Its applications include:

Security Audit: Using NMAP to scan SQL Server ports and services helps in

pinpointing misconfigurations, unpatched services, and vulnerable endpoints.

Penetration testing: It is useful in simulating attacks on SQL Server, identifying

potential breaches in security.

Network inventory: NMAP helps in consistently monitoring all devices and

services within the SQL Server network environment.

Conclusions

NMAP plays a vital role in establishing a thorough and secure environment,

particularly in identifying potential SQL Server vulnerabilities. Although it does not

solely focus on SQL injections, its integration with tools like SQL Map provides a

powerful strategy to bolster SQL Server security.

3.3 SQL-Map and its application to SQL Server security

Introduction to SQL Map’s functionality

SQL-Map is a tool known for its abilities in detecting and exploiting SQL

injection vulnerabilities, making it an indispensable tool in securing SQL Server

databases. This chapter goes into the intricacies of SQL-Map's functionality and

goes through its application in protecting SQL Server environments.

(23)(24)(26)

Understanding SQL Map functionality

When it comes to identifying and exploiting SQL injection flaws - one of the

biggest threats to database security - SQL-Map is the go-to tool. Not only does

it automate the process, but it is also highly efficient at testing for various types

of vulnerabilities, such as classical, blind, and time-based injections. With its

impressive capabilities, SQL-Map can even uncover complex vulnerabilities in

SQL-Server databases.

SQL-Map is the ultimate tool for detecting and exploiting SQL injection

vulnerabilities, a major concern for database security. With its comprehensive

capabilities, it tackles classical, blind, and time-based injections, making it a

powerful asset in uncovering intricate flaws within SQL Server databases. Its

specialization in identifying weaknesses unique to SQL Server environments

streamlines the testing process and enhances its effectiveness. (23)

Configuring SQL Map for SQL Server

When effectively configured, SQL-Map becomes a powerful tool for pinpointing

security vulnerabilities within SQL Server. With the ability to target specific

instances, databases, or tables, this tool streamlines the process of conducting

focused security assessments. Additionally, its extensive customization options

make it adaptable to various SQL Server configurations, making it a valuable

asset for optimizing the detection process in different environments.

Analysis of SQL-Map results

Interpreting SQL-Map's findings is key to understanding the vulnerabilities of

SQL Server and their potential implications. The tool provides comprehensive

analysis that offers insights to be worked on, aiding in fortifying SQL Server

defences against SQL injection threats.

Best practices for using SQL-Map

Ethical use of SQL-Map is important. This includes having the necessary

permissions and handling any discovered data with care. Regular application of

SQL-Map is recommended as a part of an overarching security strategy,

ensuring continuing protection against emerging SQL injection vulnerabilities.

Conclusions

When it comes to identifying and addressing SQL injection vulnerabilities, SQL-

Map is an essential tool for SQL Server environments. In this section, we delved

into the importance of SQL-Map for database security, setting the groundwork

for a thorough investigation in the practical demonstration to follow. (26)

4 Practical Part

4.1 Setup and Configuration

Introduction:

For a controlled and secure environment for the practical part, we can utilize a

virtualized setup using VMware, hosting Kali Linux. This isolated environment

will ensure that our experiments do not harm real-world systems and provides a

realistic stage for the demonstration of SQL Map.

Procedure Overview:

1. VMware Workstation Player Setup: First we need to install and setup our

virtualization software for Kali Linux.

2. Kali Linux Installation: Kali Linux is a distribution tailored for cybersecurity; It

provides us a lot of useful tools for the demonstrations.

3. Post-Installation Configuration: After Kali Linux is setup we can run needed

updates, so everything is up to date.

For readers that are interested in the detailed setup process, please refer to

Appendix 1.

4.2 Setting Up DVWA on Kali Linux

Introduction:

For the simulation of real-world web application vulnerabilities, especially SQL

injection, we can utilize the Damn Vulnerable Web Application (DVWA) that

provides a controlled platform, intentionally designed with security flaws, making

it an ideal for our demonstration without risking real-world systems.

For a detailed walkthrough on setting up DVWA on Kali Linux, please refer to

Appendix 2.

Procedure Overview:

DVWA Installation: Downloading and configuring DVWA on the Apache server.

This involves accessing the web server’s root directory, cloning the DVWA

repository using Git, and changing the file permissions appropriately.

Server and Database Configuration:

For the next phase we need to ensure that the Apache server and MySQL

database are correctly configured. This is important for making sure DVWA will

run smoothly, as it relies on these services for its web interface and backend

data storage.

MySQL Root Password Configuration:

Next, we walk through securing the MySQL installation by setting or resetting

the root password. This step is essential for database security and successful

integration with DVWA

DVWA Database Configuration:

This Step involved navigating to DVWA’s configuration directory, renaming and

editing the configuration file. We need to do this to set the database connection

setting correctly to enable DVWA’s functionalities.

Security Level Configuration:

Now our DVWA should be up and running, we can now choose a security level

for our demonstration we can just choose low.

4.3 Practical Demonstration using SQL-MAP Objective

This section aims to demonstrate the practical application of SQL-MAP for

exploiting SQL injection vulnerabilities within a controlled environment. Using

the Damn Vulnerable Web Application (DVWA) hosted on a Kali Linux system,

we will go through the process of SQL injection attacks.

For a step-by-step tutorial on conducting SQL injection demonstrations using

SQL-MAP in the DVWA environment, see Appendix 3.

Methodology

1. Preparation and Setup:

We will now use the DVWA we setup in the last part.

2. Identification of Vulnerable Points:

The SQL injection vulnerability present in DVWA is a standard input field,

designed to query user details based on user ID, it will act as the injection point.

First, we do preliminary manual tests to the injection point to validate the

vulnerability, setting the stage for a more advanced exploitation using SQL-

MAP.

3. Utilization of SQL-MAP:

We will use SQL-MAP to automate the exploitation process. The tool is

configured to interface with DVWA, maintaining session consistency via

captured PHPSESSID.

A command is executed to probe the database structure of the web application,

revealing the extent to which SQL-MAP can extract database information.

Data Extraction and Analysis:

Next the SQL-MAP outputs are analysed, which should provide us insights into

the underlying database structure of DVWA.

The tool's ability to enumerate database names, tables, and even specific data

entries is highlighted, showing us the severity of SQL injection vulnerabilities.

4. Security Implications:

The demonstration shows the ease with which malicious entities can exploit

SQL injection vulnerabilities.

The practical application of SQL-MAP in this controlled setting confirms its

effectiveness in identifying and exploiting SQL injection vulnerabilities.

This demonstration provided us valuable insights into the mechanisms of SQL

injection attacks, reinforcing the importance of secure coding practices, input

validation, and the use of parameterized queries in web application

development.

We will continue using SQL-Map in part 4.5 with more advanced exploitation

techniques.

4.4 Detecting the Vulnerable Host with NMAP

We will examine the use of NMAP in this section, a powerful tool for network

discovery and security auditing, by identifying hosts vulnerable to SQL injection

within a network.

Overview of NMAP:

As introduced before NMAP is a versatile and efficient open-source tool for

network scanning and security auditing. It provides us tools like host discovery,

service, and operating system detection, which are essential in cybersecurity.

NMAP's Application in Vulnerability Detection:

Our demonstration involved deploying NMAP against a controlled environment

with a known vulnerable host running DVWA. The aim was to assess the

accessibility of the DVWA server and identify potential entry points for SQL

injection attacks.

For detailed instructions on preparing and conducting an NMAP scan to identify

vulnerable hosts, please consult Appendix 4.

Findings:

The Nmap scan revealed two open ports on the target host (localhost or

127.0.0.1):

Port 80: Running an Apache HTTP server (version 2.4.58), which is hosting the

web application (DVWA in this case).

Port 3306: Running a MySQL database (version 5.5.5-10.11.5-MariaDB-3),

which is the backend database for the web application.

Implications

Web Server Vulnerabilities:

The Apache server version (2.4.58) should be checked against known

vulnerabilities. Older versions might be susceptible to various attacks, including

remote code execution or denial of service.

The default Apache page ("It works") indicates that the server might not be fully

configured, potentially leaving it vulnerable to misconfiguration exploits.

Database Exposure:

The MySQL version (5.5.5-10.11.5-MariaDB-3) and its configuration details,

such as autocommit status, provide insights into potential vulnerabilities.

An open MySQL port (3306) with native password authentication

(mysql_native_password) can be a point of attack if not properly secured. This

could lead to unauthorized database access, data leakage, or database

manipulation.

4.5: Exploiting Vulnerabilities Using SQL-Map

Introduction:

In this part we will build upon what we learned in the part 4.3 basic

demonstration by going into more advanced exploitation techniques

Exploitation Techniques:

SQL-Map simplifies the detection and exploitation of SQL injection

vulnerabilities by automating the process. Its advanced capabilities allow for

complex attacks, such as uncovering key information about the database

structure, escalating user privileges, and extracting sensitive data like login

credentials and personal information. By inputting specific commands, we are

able to retrieve a plethora of details, including database names, table names,

and column names. This tool is essential for comprehensive database security.

Security Implications:

The ease with which SQL-Map can extract sensitive information from a

vulnerable system is almost disturbing. This serves as a crucial reminder of the

danger posed by potential data breaches, putting confidential information at risk

and compromising user privacy. It is imperative for web applications to have

rigorous security measures in place, which includes frequent vulnerability scans

and prompt remediation of any issues.

Conclusion:

The results of this exploitation using SQL-Map demonstrate the tool's

effectiveness in uncovering significant security vulnerabilities. This further

highlights the pressing need for organizations to prioritize strong web

application security measures, such as secure coding practices, frequent

security audits, and ongoing monitoring for emerging vulnerabilities.

For an in-depth guide to exploiting SQL injection vulnerabilities using SQL-Map,

including advanced techniques, refer to Appendix 5.

4.6 Protective Measures Against SQL Injection Attacks

Understanding SQL Injection:

SQL injection continues to pose a significant threat to the security of databases,

especially in SQL Server environments. Its impact can range from unauthorized

access to data, to full-scale system takeover. However, the recognition and

usage of tools like SQL Map not only helps detect vulnerabilities, but also

emphasizes the importance of implementing secure coding practices.

Defensive Strategies in SQL Server:

In order to effectively defend against SQL injection, it is crucial to implement

best practices in SQL Server management. This includes utilizing

parameterized queries and prepared statements, which are crucial in preventing

the execution of malicious code. Regular vulnerability scanning, such as with

SQL Map, is also essential in identifying and resolving any potential

weaknesses."

Security Audits and Continuous Monitoring:

To preserve the integrity of SQL Server databases, it is imperative to conduct

ongoing security audits and maintain vigilant monitoring. While conducting

regular assessments, such as leveraging SQL Map for vulnerability scanning, is

a critical step in detecting vulnerabilities, it should not be the only approach. A

robust security plan should encompass a range of tools and practices to ensure

comprehensive protection. (15)(16)

For detailed strategies and procedures on implementing protective measures

against SQL injection attacks, see Appendix 6.

4.7 Summary of Practical Demonstration

Overview of Demonstrations:

The practical demonstrations conducted in Section 4 aimed to expose the

vulnerabilities inherent in SQL Server and demonstrate the efficacy of SQL-Map

in identifying and exploiting these vulnerabilities. This process was crucial for

understanding the real-world implications of SQL injection attacks and the

necessity for robust defense mechanisms.

Key Findings from SQL-Map Demonstrations:

Vulnerability Identification: SQL-Map proved to be a powerful tool in uncovering

SQL injection vulnerabilities. Its ability to automate the detection process

highlighted the importance of employing such tools in regular security audits.

Data Extraction Capabilities: The tool's efficiency in extracting sensitive

information from the database was alarming. It underscored the potential risks

associated with unsecured SQL databases and the ease with which attackers

could access confidential data.

Exploitation of Vulnerabilities: The practical use of SQL-Map

demonstrated how quickly and effortlessly SQL injection vulnerabilities could

be exploited, leading to unauthorized data access and potentially severe

security breaches.

Protective Measures Against SQL Injection:

The demonstrations emphasized the critical role of input validation and

parameterized queries in safeguarding against SQL injection attacks. Regular

vulnerability scans, specifically utilizing tools such as SQL-Map, were deemed

crucial in promptly detecting and addressing potential threats. Furthermore, the

importance of raising awareness and providing training on secure coding

practices and database management was emphasized. This includes educating

developers and database administrators on common vulnerabilities and

effective prevention strategies.

Conclusion:

The practical demonstrations using SQL-Map served as a valuable learning

experience, portraying the risks that SQL injection attacks present and SQL-

Map tools effectiveness for identifying the vulnerabilities. As SQL Server

continues to evolve, it is imperative to stay vigilant and adopt a proactive

approach to security. This involves regularly updating systems, implementing

best security practices, and leveraging advanced tools such as SQL-Map for

ongoing surveillance. These interactive demonstrations should serve as a

wake-up call for organizations to strengthen their database security and protect

their critical data from potential cyberattacks.

5 Summary

Overview

My thesis, "Enhancing SQL Server Security with the Utilization of SQL-Map,"

offers a thorough investigation into the intricate elements of SQL Server

security. It stresses the vital importance of utilizing tools such as SQL-Map in

safeguarding databases. By delving into both theoretical concepts and practical

implementations, this research illuminates the underlying vulnerabilities of SQL

databases and highlights the effectiveness of SQL-Map in detecting and

minimizing these potential threats.

Key Takeaways

The vulnerability of SQL Servers leaves them exposed to a host of security

threats. Particularly worrisome is the risk of SQL injection, which can lead to

unauthorized access, data theft, and even a complete system takeover.

However, amidst these concerns, SQL-Map stands out as a valuable resource

for both penetration testers and database administrators. With its advanced

ability to recognize and exploit SQL injection vulnerabilities, it is an

indispensable asset for any robust security strategy.

Practical Demonstrations: The usage of SQL-Map in hands-on demonstrations

gave us a better understanding of the mechanics behind SQL injection attacks,

as well as effective prevention methods. Through these activities, we were able

to witness the tool's effectiveness in detecting vulnerabilities, retrieving

information, and taking advantage of weaknesses. Furthermore, my thesis has

emphasized the crucial role of stringent security measures in keeping SQL

Server databases safe from potential attacks. This includes implementing input

validation, utilizing parameterized queries, regularly conducting vulnerability

scans, and strictly following industry best practices. By implementing these

measures, we can effectively safeguard our databases from any potential

threats.

Future outlook: In today's rapidly-changing cybersecurity landscape, the

significance of tools such as SQL-Map for safeguarding SQL Server cannot be

overstated. It is essential to keep up with frequent updates, conduct routine

security evaluations, and stay informed about emerging threats and

advancements in order to maintain strong database security.

Concluding Thoughts

This thesis highlights the importance of taking a proactive and all-encompassing

approach to SQL Server security. Utilizing tools such as SQL-Map, in

conjunction with implementing strong security measures, is imperative in

keeping sensitive data safe and keeping the integrity of SQL Server databases.

The findings of this research provide valuable guidance to both organizations

and individuals in bolstering their database defenses against the constantly

evolving realm of cyber threats. It is important to note that ensuring the security

of SQL Server is an ongoing task that demands diligence, awareness, and the

proper tools for effectively managing and mitigating risks.

References

1. Early History of SQL. 2012. https://ieeexplore.ieee.org/document/6359709

Accessed 25.9.2024

2. Relational Engine. 2014. https://www.sqlservergeeks.com/sql-server-architecture-

part-2-the-relational-engine/ Accessed 25.9.2024

3. SQL Server Architecture. 2023. https://www.guru99.com/sql-server-
architecture.html. Accessed 5.12.2023

4. SQL Injection Examples. 2024. https://softwarelab.org/blog/sql-injection-examples/
Accessed 19.9.2023

5. SQL Injection Vulnerability History. 2013. https://www.invicti.com/blog/web-
security/sql-injection-vulnerability-history/ Accessed 19.9.2023

6. How was SQL Injection discovered. 2013.
https://www.esecurityplanet.com/networks/how-was-sql-injection-discovered/
Accessed 19.9.2023

7. Hearthland Data Breach. 2015. https://www.proofpoint.com/us/blog/insider-threat-
management/throwback-thursday-lessons-learned-2008-heartland-breach
Accessed 20.9.2023

8. Sony Pictures Hack. 2014.
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/the-hack-of-sony-
pictures-what-you-need-to-know Accessed 20.9.2023

9. Sony Pictures Hack. 2015.
https://www.forbes.com/sites/natalierobehmed/2015/04/16/the-entire-sony-hack-is-
now-available-on-wikileaks/ Accessed 20.9.2023

10. Yahoo Voices Data Breach. 2012. https://www.pcmag.com/archive/yahoo-voices-
breach-exposes-453000-passwords-300180 Accessed 15.10.2023

11. Yahoo Voices Data Breach. 2012. https://www.darknet.org.uk/2012/07/yahoo-
voices-hacked-with-sql-injection-passwords-in-plaintext/ Accessed 15.10.2023

12. Yahoo Voices Data Breach. 2012.
https://money.cnn.com/2012/07/12/technology/yahoo-hack/ Accessed 16.10.2023

13. TalkTalk Cyberattack. 2015. https://ico.org.uk/about-the-ico/media-centre/talktalk-
cyber-attack-how-the-ico-investigation-unfolded/ Accessed 16.10.2023

14. TalkTalk CyberAttack. 2015. https://tripwire.com/state-of-security/the-talktalk-
breach-timeline-of-a-hack Accessed 16.10.2023

15. SQL Injection. 2023. https://owasp.org/www-community/attacks/SQL_Injection

Accessed 8.11.2023

16. What is an SQL Injection. No Date. https://portswigger.net/web-security/sql-

injection Accessed 7.11.2023

17. SQL Injection CheatSheet. No Date. https://www.invicti.com/blog/web-security/sql-

injection-cheat-sheet/ Accessed 19.9.2023

18. Nmap. https://nmap.org/ Accessed 10.12.2023

19. Nmap Reference Guide. https://nmap.org/book/man.html Accessed 10.12.2023

20. Nmap Port Scanning Tutorial https://nmap.org/book/port-scanning-tutorial.html

Accessed 10.12.2023

https://ieeexplore.ieee.org/document/6359709
https://www.sqlservergeeks.com/sql-server-architecture-part-2-the-relational-engine/
https://www.sqlservergeeks.com/sql-server-architecture-part-2-the-relational-engine/
https://www.guru99.com/sql-server-architecture.html.
https://www.guru99.com/sql-server-architecture.html.
https://softwarelab.org/blog/sql-injection-examples/
https://www.invicti.com/blog/web-security/sql-injection-vulnerability-history/
https://www.invicti.com/blog/web-security/sql-injection-vulnerability-history/
https://www.esecurityplanet.com/networks/how-was-sql-injection-discovered/
https://www.proofpoint.com/us/blog/insider-threat-management/throwback-thursday-lessons-learned-2008-heartland-breach
https://www.proofpoint.com/us/blog/insider-threat-management/throwback-thursday-lessons-learned-2008-heartland-breach
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/the-hack-of-sony-pictures-what-you-need-to-know
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/the-hack-of-sony-pictures-what-you-need-to-know
https://www.forbes.com/sites/natalierobehmed/2015/04/16/the-entire-sony-hack-is-now-available-on-wikileaks/
https://www.forbes.com/sites/natalierobehmed/2015/04/16/the-entire-sony-hack-is-now-available-on-wikileaks/
https://www.pcmag.com/archive/yahoo-voices-breach-exposes-453000-passwords-300180
https://www.pcmag.com/archive/yahoo-voices-breach-exposes-453000-passwords-300180
https://www.darknet.org.uk/2012/07/yahoo-voices-hacked-with-sql-injection-passwords-in-plaintext/
https://www.darknet.org.uk/2012/07/yahoo-voices-hacked-with-sql-injection-passwords-in-plaintext/
https://money.cnn.com/2012/07/12/technology/yahoo-hack/
https://ico.org.uk/about-the-ico/media-centre/talktalk-cyber-attack-how-the-ico-investigation-unfolded/
https://ico.org.uk/about-the-ico/media-centre/talktalk-cyber-attack-how-the-ico-investigation-unfolded/
https://tripwire.com/state-of-security/the-talktalk-breach-timeline-of-a-hack
https://tripwire.com/state-of-security/the-talktalk-breach-timeline-of-a-hack
https://owasp.org/www-community/attacks/SQL_Injection
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/sql-injection
https://www.invicti.com/blog/web-security/sql-injection-cheat-sheet/
https://www.invicti.com/blog/web-security/sql-injection-cheat-sheet/
https://nmap.org/
https://nmap.org/book/man.html
https://nmap.org/book/port-scanning-tutorial.html

21. Nmap Options Summary. https://nmap.org/book/man-briefoptions.html Accessed

10.12.2023

22. About Nmap Creator. https://insecure.org/fyodor/ Accessed 10.12.2023

23. SqlMap https://github.com/sqlmapproject/sqlmap/wiki/Introduction Accessed

14.9.2023

24. SqlMap https://sqlmap.org/ Accessed 14.9.2023

25. SqlMap Techniques https://github.com/sqlmapproject/sqlmap/wiki/Techniques

Accessed 15.9.2023

26. SqlMap History https://github.com/sqlmapproject/sqlmap/wiki/History Accessed

15.9.2023

27. Sql Server Best Practices. 2023. https://learn.microsoft.com/en-us/sql/relational-

databases/security/sql-server-security-best-practices?view=sql-server-ver16

Accessed 5.1.2024

28. DVWA sql injection. 2023 https://medium.com/@hashsleuth.info/how-to-exploit-

dvwa-blind-sql-injection-sqli-with-sqlmap-and-burp-suite-e4b3f08a0dfc Accessed

15.12.2023

29. Damn Vulnerable Web Application https://github.com/digininja/DVWA Accessed

15.12.2023

https://nmap.org/book/man-briefoptions.html
https://insecure.org/fyodor/
https://github.com/sqlmapproject/sqlmap/wiki/Introduction
https://sqlmap.org/
https://github.com/sqlmapproject/sqlmap/wiki/Techniques
https://github.com/sqlmapproject/sqlmap/wiki/History
https://learn.microsoft.com/en-us/sql/relational-databases/security/sql-server-security-best-practices?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/sql-server-security-best-practices?view=sql-server-ver16
https://medium.com/@hashsleuth.info/how-to-exploit-dvwa-blind-sql-injection-sqli-with-sqlmap-and-burp-suite-e4b3f08a0dfc
https://medium.com/@hashsleuth.info/how-to-exploit-dvwa-blind-sql-injection-sqli-with-sqlmap-and-burp-suite-e4b3f08a0dfc
https://github.com/digininja/DVWA

32

Appendices

Appendix 1: Setting Up the Virtual Environment

Installing VMware Workstation Player:

Download and Install VMware:

Navigate to the VMware download page: VMware Workstation

Player

Download the version for your OS (Windows/Linux).

Run the installer and follow the prompts.

Launch VMware Workstation Player after installation.

Downloading Kali Linux ISO:

Obtain Kali Linux Image:

Visit the Kali Linux downloads page: Kali Downloads

Download the Kali Linux 64-bit or 32-bit ISO.

Creating a New Virtual Machine:

VM Setup in VMware:

Open VMware and choose "Create a New Virtual Machine."

Select "Installer disc image file (iso)" and locate the Kali ISO.

Set the guest OS as "Linux" and version as "Debian 10.x 64-bit" or

"32-bit."

Name the VM (e.g., "Kali Linux VM").

Allocate disk space (20 GB recommended) and store as a single

file.

Customize hardware: Allocate at least 2 GB RAM and 2 CPU

cores.

Complete the setup.

https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.kali.org/downloads/

33

Installing Kali Linux on the VM

Kali Installation Process:

Start the VM and select "Graphical Install."

Choose language, location, and keyboard layout.

Set a hostname (e.g., "kali") and root password.

Select time zone, partitioning method (guided), and write changes.

Reboot after installation and eject installation media if prompted.

Boot into Kali Linux desktop.

Post-Installation Configuration

Kali Linux Initial Setup:

Open terminal in Kali Linux.

Update and upgrade packages: sudo apt update && sudo apt

upgrade -y

Reboot system to apply updates.

34

Appendix 2: Detailed Procedure for Setting Up DVWA on Kali Linux

Server and Database Configuration:

Ensure the Apache and MySQL Services are Running:

Start Apache: sudo service apache2 start

Start MySQL: sudo service mysql start

DVWA Installation:

Navigate to the Web Server's Root Directory:

cd /var/www/html/

Download DVWA:

sudo git clone https://github.com/digininja/DVWA.git

Change Permissions for DVWA Directory:

sudo chown -R www-data:www-data DVWA/

MySQL Root Password Configuration:

Access MySQL as Root:

sudo mysql

Set or Reset the MySQL Root Password:

For newer versions: ALTER USER 'root'@'localhost' IDENTIFIED

BY 'your_new_password';

For older versions: SET PASSWORD FOR 'root'@'localhost' =

PASSWORD('your_new_password');

Flush Privileges and Exit MySQL:

FLUSH PRIVILEGES;

EXIT;

DVWA Database Configuration:

Navigate to DVWA's Config Directory:

cd /var/www/html/DVWA/config/

Rename the Configuration File:

35

sudo mv config.inc.php.dist config.inc.php

Edit the Configuration File:

Use a text editor like nano: sudo nano config.inc.php

Update the DB_PASSWORD line with your MySQL root

password.

Save and Exit the Editor.

Accessing DVWA:

Open a Web Browser and Navigate to DVWA:

"http://localhost/DVWA/"

Initialize the Database:

Click on "Create / Reset Database".

Log in with Default Credentials:

Username: admin

Password: password

Security Level Configuration:

Adjust DVWA Security Level:

Click on "DVWA Security" and set the level to "Low" for our

demonstrations.

36

Appendix 3: SQL-MAP Practical Demonstration Tutorial

In this appendix, you will find a comprehensive walkthrough for conducting an

initial test with SQL-MAP in the Damn Vulnerable Web Application (DVWA)

environment. It is assumed that DVWA is up and running on a Kali Linux

system.

Initial SQL-MAP Test

 Launch SQL-MAP:

Open a terminal in Kali Linux and prepare to launch SQL-MAP.

 Configure SQL-MAP for DVWA:

Ensure that you have the PHPSESSID from your DVWA session.

 Execute Initial Test Command:

Run the following SQL-MAP command:

sqlmap –u

"http://localhost/DVWA/vulnerabilities/sqli/?id=1&Submit=Submit#" --

cookie="security=low; PHPSESSID=your_session_id"

Objective: This command tests the SQL injection vulnerability in DVWA and

confirms that SQL-MAP is properly interacting with the web application.

Note: Replace "your_session_id" with the actual PHPSESSID value from your

DVWA session.

Review Output:

Examine the results generated by SQL-MAP to verify the existence of the

 SQL injection vulnerability. This crucial assessment lays the

groundwork for more

sophisticated methods of exploiting SQL injection, which will be explored

in greater depth later on.

37

Appendix 4: Procedure for Detecting Vulnerable Host with NMAP

Preparing the Environment:

Ensure DVWA is installed and running on the target host.

Confirm NMAP installation on your system or install it via sudo apt-get

install nmap.

Determine your network range.

Checking Your Network Range:

Open a terminal.

Type ip a or ifconfig to display network interfaces and IP addresses.

Identify your active network interface (e.g., eth0, wlan0) and note the IP

address.

Determine the network range based on your IP address and subnet

mask. For most home networks, the range is typically 192.168.x.x/24 or

10.0.x.x/24.

Conducting the NMAP Scan:

Run a basic NMAP scan to find active hosts: nmap -sn your-network-

range (replace your-network-range with your actual network range).

Execute a detailed scan on the DVWA host: nmap -sV -A DVWA-host-IP

(replace DVWA-host-IP with the actual IP of your DVWA host).Scan

Results:

Host: localhost (127.0.0.1)

Open Ports:

Port 80 (HTTP):

Service: Apache httpd 2.4.58 (Debian)

Notes: Default Apache page served.

Port 3306 (MySQL):

Service: MySQL 5.5.5-10.11.5-MariaDB-3

Features: Autocommit enabled, various capabilities flags indicating

transaction support, compression, multiple statement, and result support,

among others.

38

Authentication Plugin: mysql_native_password

Interpretation:

The open HTTP port suggests that the web application (DVWA) is hosted

on this server. The server's configuration and version should be

examined for potential vulnerabilities.

The MySQL service on port 3306 highlights a database that is integral to

the web application. The version and configuration settings indicate

areas that need to be secured to prevent SQL injection attacks or

unauthorized access.

Security Recommendations:

Regularly update the Apache server and MySQL database to the latest

versions to mitigate known vulnerabilities.

Configure the web server properly to avoid default settings that could be

exploited.

Secure the MySQL database by implementing strong password policies

and considering advanced authentication mechanisms.

Regularly conduct security assessments and penetration testing to

identify and mitigate potential vulnerabilities.

Appendix 5: Exploiting SQL Injection Vulnerabilities Using SQL-Map

Step-by-Step Guide for Advanced Exploitation with SQL-Map

39

Starting SQL-Map:

Open the terminal and ensure SQL-Map is ready for use.

Enumerating Databases:

Command: sqlmap -u

"http://localhost/DVWA/vulnerabilities/sqli/?id=1&Submit=Submit#" --

cookie="PHPSESSID=your_session_id; security=low" --dbs

Purpose: Lists all databases available in the web application. You should

see dvwa among others.

Listing Tables in the DVWA Database:

Command: sqlmap -u

"http://localhost/DVWA/vulnerabilities/sqli/?id=1&Submit=Submit#" --

cookie="PHPSESSID=your_session_id; security=low" -D dvwa --tables

Purpose: Lists all tables in the dvwa database.

Extracting Data from a Specific Table:

After identifying the tables in the dvwa database, choose a table to target

(e.g., users).

Command: sqlmap -u

"http://localhost/DVWA/vulnerabilities/sqli/?id=1&Submit=Submit#" --

cookie="PHPSESSID=your_session_id; security=low" -D dvwa -T users -

-columns

This command lists all columns in the users table.

Dumping Data from Specific Columns:

Choose columns to extract data from (e.g., user, password).

Command: sqlmap -u

"http://localhost/DVWA/vulnerabilities/sqli/?id=1&Submit=Submit#" --

cookie="PHPSESSID=your_session_id; security=low" -D dvwa -T users -

C user,password --dump

This command extracts data from the specified columns in the users

table.

Exploring Advanced SQL-Map Options:

40

Utilize SQL-Map's advanced features like --risk, --level, and specific

payloads for different types of SQL injections (e.g., --technique=B for

Boolean-based blind SQL injection).

Command Example: sqlmap -u

"http://localhost/DVWA/vulnerabilities/sqli/?id=1&Submit=Submit#" --

cookie="PHPSESSID=your_session_id; security=low" -D dvwa --risk=3 --

level=5 --technique=B

This command configures SQL-Map to use a higher risk and level setting

with a specific technique, providing a more aggressive and thorough

examination.

Interpreting the Output:

Review the data retrieved by SQL-Map, focusing on the sensitivity and

type of data exposed.

Analyse the output for potential vulnerabilities, such as weak password

hashes or the exposure of personal data.

Securing the Application

Immediate Actions:

Implement parameterized queries and prepared statements to mitigate

SQL injection risks.

Regularly update and patch the database management system and web

application frameworks.

Long-Term Strategies:

Conduct regular security audits and penetration tests to identify and fix

vulnerabilities.

41

Emphasizing the importance of secure coding practices. So, the future

projects will be safer than ever.

Reflecting on Findings:

Discuss how the demonstration with SQL-Map highlights the ease with

which a poorly secured database can be compromised.

Emphasize the importance of robust database security measures and the

ongoing need for vigilance against evolving threats.

Note: It is crucial to replace "your_session_id" with the actual PHPSESSID value

from your DVWA session. Also, adapt the commands based on the specific

requirements and configurations of your environment.

Appendix 6: Implementing Protective Measures

Using SQL Map for Regular Vulnerability Scanning:

 Schedule Regular Scans: Set up a routine (e.g., weekly, or monthly) to

run SQL Map scans against your SQL Server databases. This ensures

ongoing monitoring of potential vulnerabilities.

Command: sqlmap -u "target-URL" --batch --dbms="mssql"

42

Replace "target-URL" with the specific URL of the web application

connected to your SQL Server.

 Scan for Specific Vulnerabilities: Focus SQL Map scans on types of SQL

injection vulnerabilities relevant to SQL Server.

Example: sqlmap -u "target-URL" --risk=3 --level=5 --

dbms="mssql"

The --risk and --level flags increase the depth and breadth of the

scan.

 Identify Database Structure: Use SQL Map to understand the structure of

the database, which is crucial for comprehending potential attack

vectors.

Command: sqlmap -u "target-URL" --dbms="mssql" --dbs

This command lists all databases in the SQL Server.

 Test Specific Database Parameters: Conduct targeted tests on

parameters that are more likely to be vulnerable.

Command: sqlmap -u "target-URL" -p "parameter" --

dbms="mssql"

Replace "parameter" with the specific query parameter you want

to test.

 Automate and Integrate Scanning: Automate SQL Map scans using cron

jobs or integrate them into your CI/CD pipeline for continuous security

assessment.

Post-Scan Actions:

Once the SQL Map scan is completed, it is important to thoroughly

analyse the results for any signs of vulnerability or potential weaknesses

within your SQL Server. This crucial step enables the identification of

critical areas that require immediate attention to strengthen the overall

security of your system. Based on these findings, swift action must be

taken to fortify the security of your system, such as applying necessary

patches, updating software, and revising database access controls to

43

safeguard sensitive data. Additionally, keeping detailed records of the

scan results and remediation steps is vital for monitoring security

progress and planning future protective measures. In essence,

documenting and reporting these findings promotes a proactive and

secure approach towards protecting your system.

	List of Abbreviations
	1 Introduction
	2 SQL Database and SQL Injection
	2.1 Structure, Function and History of SQL Databases
	2.2 Evolution of SQL injections and its implications
	2.3 Examples of SQL injection attacks
	2.4 Techniques used in SQL Injection

	3 TCP/IP, NMAP, and SQL-MAP
	3.1 Overview of TCP/IP and its Role in SQL Server Security
	3.2 Introducing NMAP in the context of SQL Server security
	3.3 SQL-Map and its application to SQL Server security

	4 Practical Part
	4.1 Setup and Configuration
	4.2 Setting Up DVWA on Kali Linux
	4.3 Practical Demonstration using SQL-MAP Objective
	4.4 Detecting the Vulnerable Host with NMAP
	4.5: Exploiting Vulnerabilities Using SQL-Map
	4.6 Protective Measures Against SQL Injection Attacks
	4.7 Summary of Practical Demonstration

	5 Summary
	References
	Appendices
	Appendix 1: Setting Up the Virtual Environment
	Appendix 2: Detailed Procedure for Setting Up DVWA on Kali Linux
	Appendix 3: SQL-MAP Practical Demonstration Tutorial
	Appendix 4: Procedure for Detecting Vulnerable Host with NMAP
	Appendix 5: Exploiting SQL Injection Vulnerabilities Using SQL-Map
	Appendix 6: Implementing Protective Measures

