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Abstract 

The assignment was provided on behalf of Wärtsilä Catalyst Systems. This thesis covers the 

development and implementation of an automatic dosing unit flow anomaly detection and 

reporting tool. There was a request from Factory Acceptance Testing to improve the dosing unit 

testing procedure. The improvement involves a transition from validating the dosing through the 

visual inspection of urea flow to an automatic stability assessment method. 

 

To automatically assess the urea flow stability, anomaly detection is used. The foundation, pros, 

and cons of different flow anomaly detection methods for industrial control loops are explained. 

Also, how to implement these detection methods in practice using mathematical formulas and 

Python code is presented. The result is a robust tool for automatic dosing unit performance 

assessment through the analysis of flow data. 

 

The anomaly detection methods that are used include analysing the desired flow compared with 

the real measured flow using mean absolute error, oscillation detection using real-valued fast 

Fourier transform, and outlier detection using interquartile range.  

 

This contributes to enhancing the reliability and efficiency of dosing unit testing procedures, 

providing a valuable resource for experts involved in Factory Acceptance Testing. The architecture 

of the implemented system is visualized using a component diagram in Unified Modeling Language. 
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Abstrakt 

Detta examensarbete utfördes på uppdrag av Wärtsilä Catalyst Systems. Examensarbetet 

behandlar utveckling och implementering av en automatisk anomalidetektering för 

doseringsenheter samt ett rapporteringsverktyg. Det fanns en begäran från Factory Acceptance 

Testing om att förbättra testproceduren för doseringsenheterna. Förbättringen består av en 

övergång från validering av doseringen genom visuell inspektion av ureaflödet till en automatisk 

stabilitetsbedömningsmetod. 

 

För att automatiskt bedöma flödesstabiliteten för urea används anomalidetektering. Grunden samt 

fördelar och nackdelar med olika metoder av anomalidetektering för industriella styrslingor 

förklaras. Dessutom presenteras implementering av dessa detekteringsmetoder i praktiken med 

hjälp av matematiska formler och Python-kod. Resultatet är ett robust verktyg för automatisk 

bedömning av doseringsenhetens prestanda genom analys av flödesdata. 

 

De metoder för anomalidetektering som används inkluderar analys av önskat flöde jämfört det 

verkliga uppmätta flödet genom genomsnittlig absolutavvikelse, oscillationsdetektering med hjälp 

av snabb Fouriertransform med verkligt värde och avvikelsedetektering med interkvartilområde. 

 

Detta bidrar till en förbättrad tillförlitlighet och effektivitet i testprocedurer för doseringsenheter, 

vilket ger en värdefull resurs för experter som är involverade i Factory Acceptance Testing. 

Arkitekturen för det implementerade systemet visualiseras med hjälp av ett komponentdiagram i 

Unified Modeling Language. 
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Tiivistelmä 

Tehtävä annettiin Wärtsilä Catalyst Systemsin toimeksiannosta. Opinnäytetyö käsittelee 

annosyksiköiden automaattisen poikkeamahavainnon kehittämistä ja toteuttamista sekä 

raportointityökalua. Factory Acceptance Testing pyysi parantamaan annostusyksiköiden 

testausmenettelyä. Parantaminen tarkoittaa siirtymistä annoksen validoinnista ureavirran 

silmämääräisen tarkastuksen avulla automaattiseen stabiilisuuden arviointimenetelmään. 

 

Urean virtauksen stabiliteetin automaattista arviointia varten käytetään anomalianhavaintoa. 

Selitetään teollisuuden ohjaussilmukoiden eri poikkeamien havaitsemismenetelmien perusteet 

sekä edut ja haitat. Lisäksi esitellään näiden havaitsemismenetelmien käytännön toteutus 

matemaattisten kaavojen ja Python-koodin avulla. Tuloksena on vankka työkalu annosteluyksikön 

suorituskyvyn automaattiseen arviointiin virtausdatan analyysin avulla. 

 

Käytetyt anomalianhavaitsemismenetelmät sisältävät halutun virtauksen analysoinnin verrattuna 

todelliseen mitattuun virtaukseen käyttäen keskipoikkeamaa, heilahtelun havaitsemisen käyttäen 

reaaliarvoista nopea Fourier-muunnosta ja poikkeaman havaitsemisen käyttäen kvartiiliväliä. 

 

Tämä edistää annosteluyksiköiden testausmenetelmien luotettavuutta ja tehokkuutta, tarjoten 

arvokkaan resurssin tehtaan hyväksymistestaukseen osallistuville asiantuntijoille. Toteutetun 

järjestelmän arkkitehtuuri visualisoidaan komponenttikaaviolla Unified Modeling Language -kieltä 

käyttäen. 
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SCR    Selective catalytic reduction  

NOx    Nitrogen oxides 
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UNIC   Wärtsilä Unified Controls 

PDU   Power distribution unit 

FAT   Factory Acceptance Testing 

HIL   Hardware-in-the-loop 

IAE   Integral of absolute error 
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1 Introduction 

This thesis covers the development and implementation of an automatic dosing unit flow 

anomaly detection and reporting tool. The assignment was provided on behalf of Wärtsilä 

Catalyst Systems. One of the main products Catalyst Systems is developing is the NOx 

reducer (NOR) system. 

 

The NOR system is an emission after-treatment system based on the selective catalytic 

reduction (SCR) technology for NOx reduction [1]. In the Catalyst Systems team are Factory 

Acceptance Testing (FAT) experts who will mainly benefit from this study. The focus will be 

testing the dosing units in FAT.  

1.1 Background 

The purpose of FAT is to make sure that the dosing unit, pump unit and power distribution 

unit (PDU) are properly inspected and tested. It is required to save the test results of the 

dosing unit before they are shipped to the customer. The dosing unit is currently validated 

by visually examining the urea flow from the flow sensor. 

 

From the flow trend, the deviation and stability of the flow can be examined as it tries to 

converge with the flow setpoint. It is hard to determine whether a dosing unit with unstable 

flow is good enough to maintain NOx targets in the field. 

1.2 Reducing agents 

SCR with ammonia is the most efficient way to reduce NOx emissions from exhaust gases. 

NOx emissions from combustion processes pose a major threat to human health and are 

difficult to avoid. To achieve high NOx reduction efficiencies, it is important to use the 

proper dosage of reducing agent, such as ammonia, in addition to selecting the appropriate 

type of SCR catalyst. [2]. 

 

Due to its toxic properties and safety concerns, ammonia is supplied in an aqueous urea 

solution. In most SCR applications, a 32.5wt.-% urea solution is used, which is commercially 

named AdBlue® in Europe and Diesel Exhaust Fluid in the USA. The precursor liquid is 

sprayed into the tailpipe in front of the SCR catalyst and decomposes into ammonia and 

carbon dioxide. [2]. 
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1.3 NOR System 

The main components of the NOR installation can be seen in Figure 1. The function of the 

pump unit is to provide constant pressure of urea to the dosing unit and the function of the 

dosing unit is to regulate the flow of urea. The distribution unit distributes power and 

communication. 

 

 

Figure 1: NOR technical diagram [1]. 

 

The dosing unit uses the Wärtsilä Unified Controls (UNIC) system which in this case consists 

of a communication module. The communication module in the dosing unit communicates 

with the pump unit, PDU and the engine.  

 

The description of the communication module by Wärtsilä is: “The communication module is the main 

gateway to the UNIC system from vessel systems, supporting multiple interfaces such as Modbus, OPC, 

hardwired I/O, etc. COM is a key module for UNIC system communication and responsible for several control 

functions, software and configuration update management.” [3, p. 3]. 

 

The module has a control loop implemented with PID controller for regulating the urea 

dosing. The PID controller manages the control valve which regulates the flow of urea. The 

flow feedback is measured with a flow sensor.  
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1.4 Dosing issues 

Oscillations in process data are a common problem in many industries. Oscillations 

significantly affect how control loops perform in industrial processes. Oscillations in the 

urea dosing process would result in poor NOx values and may even cause excessive 

ammonia slip which is not desirable [2]. That is why it is critical to ensure proper dosage of 

urea. [4]. 

 

The primary objective is to detect oscillations and noise within the system and assess its 

stability. Specifically, the study observes how the control loop, particularly the PID 

controller, responds to these disturbances in its efforts to stabilize urea flow. Rather than 

searching for specific faults, this thesis aims to comprehend how the system responds to 

these challenges. This is done to determine if there are any faults in the system. In a good 

dosing unit, the flow in the control loop is rapidly stabilized and kept stable as shown in 

Figure 2 where the black line represents the setpoint and the red line represents the urea 

flow. 

 

 

Figure 2: Stable control loop. 

 

Overshooting will be ignored since the test will start after a configured time. Also, 

overshooting in this application is normal. A transient time is used to wait for the system 

to stabilize. The test will start after a configured transient time whether the system is stable 

or not. More about the testing methods in Chapter 2.1. 
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1.5 Goal 

The goal is to create and implement a Python tool dedicated to evaluating the stability of 

urea flow in the dosing unit through the analysis of flow data. The primary focus is on 

formulating a robust mathematical assessment. Additionally, the tool should feature an 

interactive graphical user interface (GUI) with the capability to manage communication 

with the dosing unit. The tools should have the ability to both write setpoints and read urea 

flow values independently while also providing the result of the flow stability. 

 

The evaluation of the flow data using the tool will be conducted against predefined 

acceptance criteria. In this case, the acceptance criteria consist of value bounds that the 

urea flow must not exceed. For more information about the implementation and the 

acceptance criteria, read the implementation in Chapter 3. Concrete acceptance criteria 

are important since FAT experts currently lack clear guidelines. The tool will help to 

standardize the testing. 

 

The computer used by the FAT experts is connected to the communication module placed 

in the dosing unit. The tool will set urea setpoints in the communication module and 

automatically validate the urea flow based on the established acceptance criteria. The 

Python tool operates by looping through each urea flow setpoint in a configurable list. 

These step changes can be seen in Figure 2. 

 

After a new setpoint is set, the system waits for the urea flow to stabilize. This was briefly 

explained in the end of Chapter 1.4. The test starts after the transient time has passed and 

the Python tool then requests the flow values from the communication module. Flow 

values are measured by a flow sensor and then transmitted to the communication module. 

These flow values are used to determine whether the urea flow stability is accepted or not. 

The result will then be automatically exported to a test document by the Python tool. 

1.6 Delimitations 

The study is limited to dosing units pre-commissioning. This means only the dosing units 

that are tested in factory acceptance testing. Dosing units shall not be connected to any 

engine undergoing a test. Thus, resulting in less external noise for better test performance. 

The script will not automatically start and shut down the test system. The FAT expert needs 

to manually operate the test system. This is for safety reasons. This thesis will only contain 

the implementation of the mathematical assessment. This means that the GUI and the 

communication will be implemented but will not be explained as it is not of interest. 
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2 Anomaly detection 

Anomaly detection is a technique to find rare events in data streams, also called anomalous 

events. Anomaly detection is fundamental in many applications, most notably in real-time 

applications. Spotting anomalies is vital in health, critical infrastructures, and security 

applications, to name a few. Anomaly detection allows for the detection of unexpected 

occurrences, making it an essential tool in data analysis and processes. [5]. In this study, 

anomaly detection will be used to validate dosing units. Anomalies in the system can be 

control valve stictions, oscillations, high frequencies, noise, or outlying values. The impact 

of oscillations and other anomalous events was mentioned in Chapter 1.4.  

2.1 Simulation 

To find anomalous events, a hardware-in-the-loop-simulation (HIL-simulation) can be used. 

This kind of simulation is a widely used testing method in system development. The 

simulation communicates with real physical system components like pumps, valves, or 

sensors. This approach allows engineers to test how the control algorithm behaves in real-

time with real hardware, providing valuable insights into the stability and performance of 

the system. [6]. 

 

A HIL-simulation is especially useful when dealing with complex systems, ensuring that the 

control system responds accurately and efficiently to different scenarios, such as flow 

oscillations, in a controlled virtual environment. [6]. 

 

In this study, the HIL-simulation is the Python tool that requests hardware variable values 

such as the flow and writes variable values such as the setpoint. Physical system 

components are also simulated, such as the engine. One of the reasons the engine is 

simulated is described in Chapter 1.5. However, the engine simulator for this scenario 

already exists in the company. 

2.2 Control valve stiction 

It is common to find control valves in the industry. They are essential in various process 

control systems such as regulating fluid flow, pressure, and temperature. They ensure 

precise control and maintain product quality. However, a significant challenge in control 

valve operation is stiction. A problem where the valve stem gets stuck due to static friction. 

When friction is overcome, an abrupt jump known as the slip-jump may cause issues like 

oscillations in the control loop. [7]. 
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This disrupts the valve's performance and product quality. This may also accelerate the 

wear and ageing of the valve. There are countless methods of detecting valve stictions since 

this phenomenon is common in the industry. Detecting valve stiction has become a focal 

point in academic and engineering research. This focus is driven by its practical importance 

in enhancing system reliability, control performance, and product quality. [7].  

 

A dedicated stiction detection method will not be implemented, instead problems with the 

control valve can be found using oscillation detection and other techniques coming in the 

following chapters. 

2.3 Oscillation detection 

Oscillations can be described with Horch's definition as a periodic variation visible to the 

human eye and not entirely concealed by noise. Another definition, put forth by Choudhury 

and colleagues designate oscillation as a time series with clearly defined amplitude and 

frequency. [4]. 

 

Causes of oscillations can be mechanical faults such as valve stiction, fluctuating air 

regulator or air pockets in the urea feed line. This was also discussed with Westman in an 

oral discussion in autumn 2023. Identifying these causes is undoubtedly valuable. Even if 

the presence of oscillations is confirmed, it is not always a cause for immediate concern, as 

the impact of oscillations may vary. [4]. 

 

To differentiate between disapproved oscillatory loops and those that do not affect 

performance, the strength of the oscillation needs assessment. [4]. This must be 

mathematically implemented since the Python tool will be used. The approach to 

oscillation detection can be done in many ways. Integral of absolute error (IAE) evaluation 

is the base of many oscillation detection techniques [4]. Similar solutions can be found in 

PID controller tuning, such as IAE performance criteria [8].  

 

𝐼𝐴𝐸 =  ∫ |𝑒(𝑡)|
∞

0
𝑑𝑡       (1) 

 

The control error 𝑒 in formula 1 is the error between the setpoint and the urea flow. The 

result of IAE is the summed area of the error to the setpoint. [8]. This approach requires a 

continuous function 𝑒(𝑡). Since the flow data is discrete rather than continuous, other 

similar solutions are preferred.  
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2.3.1 MAE 

Mean absolute error (MAE) is often used as a metric for its practicality in matching the units 

of error values with the target values being predicted. The predicted value is in this case 

the setpoint. MAE maintains a consistent linear scale meaning errors are treated equally 

without any bias towards specific errors as scores increase proportionally with error 

increments. [5]. 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦1 − ŷ𝑖|𝑛

𝑖=1       (2) 

 

The MAE score is derived by averaging the absolute error values making MAE suitable for 

assessing errors regardless of their direction. This characteristic makes MAE a 

straightforward and effective tool instead of a similar solution to IAE. [5]. 

2.3.2 Frequency analysis 

One of the most straightforward methods for identifying oscillations is through frequency 

domain analysis, where oscillations manifest as distinct peaks in the spectrum. The 

frequency domain analysis distinguishes between different types of oscillations. If there 

are many peaks or a broad peak with a wide range, it indicates various or irregular 

oscillations in the system. [4]. 

 

Frequency analysis can be used to detect oscillations with high frequencies. Large amounts 

of noise and disturbances will generate peaks in the spectrum. Frequency analysis is a 

powerful tool for finding phenomena that may occur in the event of failure even if the score 

of MAE is approved. There are also other frequency-based solutions. however, most of the 

simple solutions are based on the period of oscillation or time interval between two zero-

crossings and thus not suitable for this study. [4]. 
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In the stable control loop as shown in Figure 3, frequency analysis with real-valued fast 

Fourier transform (RFFT) within the selected interval shows absent frequencies, as seen in 

the amplitude spectrum in Figure 4.  

 

 

 

Figure 3: RFFT interval analysis on a stable control loop. 

 
 

 

Figure 4: Amplitude spectrum on a stable control loop. 

 

Acceptance bound 

 

Analysed interval 
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In contrast, the volatile control loop in Figure 5 displays a considerably larger number of 

frequencies within the selected interval. This can also be seen in the amplitude spectrum 

shown in Figure 6. 

 

 
 

 

Figure 5: RFFT interval analysis on a volatile control loop. 

 

 

Figure 6: Amplitude spectrum on a volatile control loop. 

 

Analysed interval 

Acceptance bound 
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2.4 Outlier detection 

Noisy data and outliers may seem alike. However, outliers are different from noisy data in 

data analysis. While noise is usually removed as irrelevant, outliers provide important 

insights. Outliers can be defined as observations that significantly deviate from others, 

suggesting they come from a different source. [9]. 

 

In simple terms, outliers are data points that strongly differ from the usual patterns in a 

dataset or expected behaviours. Deciding whether to keep or remove outliers depends on 

the situation. Sometimes, removing them is necessary to avoid misleading analyses, but in 

other cases, keeping outliers can be beneficial. [9].  

 

An example of keeping outliers is instances where neither MAE nor frequency analysis will 

detect outliers such as a high peak in flow value for a brief moment as seen in Figure 7, thus 

not resulting in any unaccepted oscillatory error scores. Note that real data with outliers 

will differ from this demonstration since the peaks in Figure 7 and Figure 8 are only a 

simulation to illustrate the problem clearly.  

 

 

Figure 7: Outlying data points in the data set. 

 
To detect these outliers, an interquartile range (IQR) method, specifically the Gaussian-

based method can be used. Outlying values can be detected using an upper and lower 

bound [9]. The boundaries and outlying anomalous values can be seen in Figure 8.  



 11 

 

 

Figure 8: Implemented IQR outlier detection method. 

To establish the bounds, the IQR needs to be calculated. This involves determining the 

median of the whole data set, the median of the lower range and the median of the higher 

range. Let’s consider the dataset 3, 4, 5, 6, 7, 8, 6, 3, 2, 1, 2 as an example. To simplify 

visualization, sort the dataset in ascending order, as demonstrated in Figure 9. [9]. 

 

 

Figure 9: Quartiles of the data set. 

 
The two ranges are divided by the median. The median of the whole dataset 𝑄2 is equal to 

4. All values lower than the median are in the lower range. Values bigger than the median 

are in the higher range. By taking the median in both ranges, the 𝑄1 and 𝑄3 can be set. [9]. 

 

In this case the lower range median 𝑄1 equals 2. The median of the higher range 𝑄3 equals 

6. These values are also visualized in Figure 9. IQR, lower bound (𝐵𝐿), and higher bound 

(𝐵𝐻) can then be calculated using the formulas 3, 4, and 5. [9]. 

 
𝐼𝑄𝑅 =  𝑄3 − 𝑄1       (3) 

𝐵𝐿 = 𝑄1 − 1,5 ∙ 𝐼𝑄𝑅       (4) 

𝐵𝐻 = 𝑄3 + 1,5 ∙ 𝐼𝑄𝑅       (5) 

 

Median

1 2 2 3 3 4 5 6 6 7 8

Q1 Q2 Q3

Lower range Higher range
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This results in IQR equal to 4, 𝐵𝐿 to be equal to -4 and 𝐵𝐻 equal to 12. Values below 𝐵𝐿 and 

values above 𝐵𝐻 are classed as outlier values. The constant value 1,5 acts as a multiplier to 

adjust the outlier bounds. [9]. 

 

It is important to note that the IQR outlier detection method is suitable only for univariate 

data. Univariate data consists only of a single variable. This limitation is not problematic in 

this context since the assessment focuses solely on flow values, without considering the 

combination of flow and time. [9].  
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3 Implementation 

Methods for validating the urea flow stability and detecting anomalies are: 

— MAE, previously explained in Chapter 2.3.1.  

— Frequency analysis using RFFT, previously explained in Chapter 2.3.2. 

— Outlier detection using the IQR method, previously explained in Chapter 2.4. 

 

By combining these methods, the final anomaly detection tool is formed. The provided data 

in this work is based on simulated data used for developing this tool. The solution will be 

tuned for the product in question.  

3.1 Error calculation using MAE 

The implementation of MAE can be seen in code example 1. This is based on formula 2 

taken from Chapter 2.3.1. The accepted error or the bound is calculated from the setpoint. 

This is done by taking the configurable acceptance bound percentage variable multiplied 

by the setpoint and then adding a static configurable acceptance bound value.  

 

Code example 1. Establishing MAE boundary using Python. 

 
MAE = np.mean(np.abs(flow_samples - setpoint)) 
Accepted_value = setpoint * acceptance_bound_percentage / 100 + acceptanceBound_static 

 

This can be for example 2% + 0,5 L/h where 0,5 L/h provides a consistent increment. This is 

a useful technique for smaller flows that otherwise would have too strict acceptance bound 

when only using the percentage of the setpoint. This can be visualized in Figure 10, where 

the red line is the consistent added increment. The x-axis is the flow setpoint and the y-axis 

is the accepted error. The accepted error is 2% for the blue line and 2% + 0,5 L/h for the 

red line. 

 

 

Figure 10: Comparing methods to find optimal accepted error. 
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3.2 Frequency analysis using RFFT 

How to detect oscillating urea flows was previously explained in Chapter 2.3.2. To 

implement this detection method, RFFT in Numpy is used as seen in code example 2.  

 

Code example 2. RFFT frequency analysis using Python. 

 
# Signal around zero 
flow_samples = flow_samples - np.mean(flow_samples) 
 
# Amount of samples 
n = len(flow_samples) 
 
# Normalize with / n, compensate negative frequencies by doubling the amplitude with * 2 
rfft_values = np.fft.rfft(flow_samples) / n * 2 
 
# 100ms interval --> frequency content of up to 5 Hz 
frequency_values = np.fft.rfftfreq(n, d=1/10) 
 
amplitudes = np.abs(rfft_values) 
 

RFFT is different from discrete Fourier transform (DFT) and fast Fourier transform (FFT). 

DFT and FFT will compute negative frequencies that are mirrored versions of the positive 

ones. [10]. This can be seen in the amplitude spectrum in Figure 11.  

 

The upper part of Figure 11 shows the analysed signal. The lower part shows the amplitude 

spectrum of the analysed signal. In this case, the amplitude spectrum shows two 

frequencies that were combined into a signal. 

 



 15 

 

Figure 11: Negative frequencies using fast Fourier transform. 

 

RFFT does not compute the negative frequency terms [10]. This is useful since it is not 

necessary to have this kind of mirror effect as seen in Figure 11 when using real values. The 

result of using RFFT with the same data can be seen in Figure 12. 
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Figure 12: Only positive frequencies using RFFT. 

 

Since RFFT does not compute the negative frequency terms, the length of the transformed 

axis of the output is therefore n//2 + 1. A compensation for the discarded negative 

frequencies is necessary. The compensation is implemented by doubling the amplitude of 

the positive frequencies. [10]. This implementation can be seen in code example 2.  

 

From the amplitude spectrum in both Figure 11 and Figure 12, the dominant frequency can 

be seen. The dominant or main frequency is 0,5 Hz at the amplitude of 1. The other signal 

is an overtone at 3 Hz with a lower amplitude. By looking at both Figure 11 and 12, you can 

see that the maximum frequency that can be analysed is 5 Hz. This is related to the Nyquist 

frequency.  

 

The Nyquist frequency is half of the sampling frequency, and it represents the maximum 

frequency that can be accurately represented in a sampled signal without aliasing. The 

sampling interval is 100 ms, which corresponds to a sampling frequency of 10 Hz. The 

Nyquist frequency is therefore 5 Hz, as seen in the figures. [11]. 
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To analyse frequency components beyond 5 Hz, you will need to increase the sampling 

frequency by reducing the sampling interval [11]. Figure 11 and Figure 12 also show that 

the oscillations are around the zero line instead of the setpoint, even when the setpoint is 

at 15 L/h.  

 

The reason for this implementation can be visualized by observing the difference between 

Figure 13 and Figure 14, where the signal only consists of a single frequency. Both figures 

use the frequency 1 Hz with the amplitude of 1. The signal is set around the setpoint 15 

L/h. From the amplitude spectrum in Figure 13 can only the 1 Hz frequency be seen.  

 
 

 

Figure 13: Oscillations around the zero line. 

 
However, Figure 14 shows an additional peak in the amplitude spectrum, which is a 

consequence of the signal not being centred around zero.  
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Figure 14: Oscillations around the setpoint. 

 
This extra peak, with the amplitude of 30 at approximately 0 Hz, indicates the presence of 

an undesired offset in the signal. This was an important example of why it is important to 

zero-center the signal before analysing. The reason why the amplitude of the offset in 

Figure 14 is double the setpoint is simply because of the compensation of the negative 

frequency terms as previously said in this chapter. 
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3.3 Outlier detection using the IQR method 

The utilization of IQR for outlier detection revealed a limitation. The selection of IQR over 

other methods was its ability to adapt the acceptance criteria according to the whole data 

set. This becomes a drawback when the majority of the data is flat or stable as the 

acceptance boundaries become too strict. This results in detected outliers. Figure 15 

demonstrates a good control loop upon visual inspection. 

 

 

 

Figure 15: Analysed control loop. 

 

These strict acceptance boundaries can be represented visually. This visualization helps 

pinpoint values identified as anomalies within the data series. Figure 16 illustrates that the 

flow values at the start exceed the upper bound and later when trying to stabilize, also fall 

below the lower bound.  

 

 

Figure 16: Anomalous values on flat data series using IQR with multiplier value 2. 

 

Analysed interval 
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The first anomalous values detected in Figure 16 happen when the values exceed the upper 

bound. This is because the flow did not stabilize within the transient time. The reason for 

this could be a true positive anomalous event where the flow takes too long to stabilize or 

that the flow stabilization time is too short and should be increased.  

The second anomalous event when values fall below the lower bond is a clear false positive 

event since this type of correction by the control loop is seen as normal. A conceivable 

solution could be to increase the IQR multiplier to increase the acceptance bounds.  

However, the multiplier needs to be considerably increased to include values below the 

lower bound for this kind of flat data, thus making the IQR method inapplicable for other 

types of data if increased. To visualize this issue, the multiplier value is increased to 5 from 

the previous 2. The new boundaries can be seen in Figure 17 with the same data series as 

used in Figure 16. 

 

Figure 17: Anomalous values on flat data series using IQR with multiplier value 5. 

 

Increasing the IQR multiplier results in a clear improvement, but the boundaries are still 

too strict. The flow is still only allowed to deviate roughly ±0,3 𝐿/ℎ or ± 0,4 % from the 

mean. The multiplier can’t be increasing further since it will affect fluctuating data series. 

To visually illustrate this issue, fluctuating data can be seen in Figure 18. The result of IQR 

on fluctuating data series shows completely different acceptance boundaries. Note the y-

axis scale on both figures. 
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Figure 18: No anomalous values on fluctuating data series using IQR with multiplier value 5. 

 
In Figure 18 is the flow allowed to deviate approximately ±3,9 𝐿/ℎ or ± 8,2 % from the 

mean, representing a significant disparity compared with Figure 17. This results in lenient 

boundaries on fluctuating data when increasing the IQR multiplier. The conclusion is that 

the current IQR method is inapplicable when working with flat data. Thus, should only be 

used on fluctuating data.  

 

However, the IQR method can be improved by implementing configurable minimum IQR 

boundaries. This implies establishing boundaries which values must deviate by a specified 

percentage from the mean to be categorized as outliers. This means that outlying values 

must deviate beyond both IQR and a minimum percentage from the mean. Thus, enabling 

the IQR method to be used on flat data. 

 

By implementing minimum percentage, and initially setting the minimum percentage from 

the mean to 2%, it is possible to set the IQR multiplier to 2,5. The result of the combined 

methods can be seen in Figure 19 and Figure 20 where no false positive anomalies were 

found. The reason for no anomalous values in Figure 19 is due to all values are within 2% 

from the mean. 
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Figure 19: Improved IQR method on flat data series. 

  

The reason for no anomalous values in Figure 20 even when deviating over 2% from the 

mean is due to all values are within the IQR boundaries. 

 

 

Figure 20: Improved IQR method on fluctuating data series. 

  

The conclusion is that values classed as outliers must deviate beyond both IQR and a 

minimum percentage from the mean. This method using the boundaries furthest from the 

mean can be applied to a univariate data series represented by the variable Y using code 

example 3. 
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Code example 3. Establishing improved IQR boundaries using Python. 

 
multiplier = 2.5 
Outlier_min_acceptance_bound_percent = 2 
 

# Calculate the first and third quartiles 
Q1 = np.percentile(Y, 25) 
Q3 = np.percentile(Y, 75) 
 
# Calculate the IQR (Interquartile Range) 
IQR = Q3 - Q1 
 
# Set lower and upper bounds 
IQR_upper_bound = Q3 + multiplier * IQR 
IQR_lower_bound = Q1 - multiplier * IQR 
 
Percent_upper_bound = mean + mean * Outlier_min_acceptance_bound_percent / 100 
Percent_lower_bound = mean - mean * Outlier_min_acceptance_bound_percent / 100 
 
# Set lower and upper boundary furthest from the mean  
upper_bound = max(IQR_upper_bound, Percent_upper_bound) 
lower_bound = min(IQR_lower_bound, Percent_lower_bound) 

  



 24 

4 System architecture 

The system architecture for the implemented flow anomaly detection application can be 

visualized using a component diagram in Unified Modeling Language (UML). This type of 

diagram is widely used and useful when working with software projects. A component 

diagram in UML is a visual representation that illustrates interconnections among various 

components. [12]. 

 
Components within this context include entities such as humans, software, and hardware. 

Envision components as modular building blocks, each encapsulating its contents. The 

behaviour of a component is shaped by the interfaces it provides and those it depends on. 

A component is like a blueprint, where the components are interconnected through 

interfaces. [12]. Comments on UML diagrams are inserted as seen in Figure 21. 

 

 

Figure 21: Comment in UML. 

 

There are two types of interfaces as previously mentioned. Interfaces that are provided 

and interfaces that are required. Provided interfaces offer services or provide others. 

Required interfaces expect or depend on others. This means that the behaviour of the bank 

account example component in Figure 22 requires a person and a card to be able to provide 

bank and balance. [12].  

 

 

Figure 22: Internal structure of a component [12]. 

 
These two types of interfaces can be combined or used separately.  
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Figure 23 illustrates the component diagram designed for the flow anomaly detection 
software application. 
 

 

Figure 23: Component diagram of the flow anomaly detection application. 

 
The heart of the component diagram is the flow testing. The required interfaces for testing 

the flow are the analysis time, transient time, acceptance bounds, and setpoints. The 

analyse time is the time to analyse each setpoint and transient time is the time for the 

system to stabilize after setpoint change. Transient time was also explained in Chapter 1.5.  

The acceptance bound values are provided and later calculated by the flow testing. 

Setpoints are inserted as L/h. Also, test setup parameters and actions are a required 

interface for the flow testing component. This interface includes actions from the user such 
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as settings selected by the user in the GUI and the user pressing the start button. The flow 

testing component itself then provides a notification, a finished flow test, and tears down 

the testing system. These components listed previously are also dependent on other 

components. Setpoints are for example dependent on the nozzle size. Keep in mind that 

the nozzle size itself does not provide this information directly, instead the size is selected 

in the GUI.  

However, the setpoints are dependent on the size of the hardware. This is true for most 

hardware components where the user selects what hardware is used, like what dosing unit 

is connected, and what IP Address to the respective UNIC communication module should 

be used.  
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5 Discussion 

Many different methods of anomaly detection, oscillation detection, stiction detection, and 

control loop performance have been studied in the development of the flow anomaly 

detection application in this bachelor’s thesis. The chosen methods align with the demand 

that was set. 

 

This is a great tool for dosing unit performance validation that will be of use to FAT experts. 

There are always improvements that could be researched. This could be some kind of 

stiction modelling in addition to another research to decide if step-based setpoints are the 

preferred choice of test sequences. 

 

There are lots of features that are irrelevant and left unmentioned even when 

implemented in this software application. These are graphical user interface development, 

exported test protocol development, the end-user experience, exception handling, 

instruction manual for the end-users, input processing, and image compression, to name a 

few. The hardest part was to implement the UNIC module communication with the UNITool 

API server. 

 

There was also a request to use the same software to analyse pre-existing flow data. The 

software application can read data frames. Meaning it also can be used to analyse any CSV 

files. This was a simple implementation in the end. 

 

The SCR industry is constantly striving to improve the reduction of NOx emissions, meaning 

the SCR products change. The software will need to be complemented someday. However, 

the software application itself is supported for all commissioned NOR dosing units by just 

changing parameters in the software application. Also, the configuration can be tuned for 

upcoming dosing units. 
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