

Bachelor’s thesis

Information and Communications Technology

2023

Louis Lautz

Exploring Flexibility and

Extensibility through a Flashing

Tool Implementation

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2023 | 38 pages

Louis Lautz

Exploring Flexibility and Extensibility

through a Flashing Tool Implementation

In May of 2022, the German company Pareva GmbH commissioned the

development of a flash tool for their main product, that improves their current

flash process. A flash tool is used to install the software or firmware onto the

hardware of a device.

This thesis provides insight into the planning, design and implementation

process, as well as an in depth look into the concepts of flexibility and

extensibility and how they relate to the flash tool. Throughout the thesis, the

MoSCoW-method was used, to categorize features into 4 categories, based on

their priority. Different features were used as examples to show how to design

or implement a feature with flexibility and extensibility in mind.

As of May 2023, the project has been successfully completed and Pareva

GmbH is using it on a regular basis without issues so far.

Keywords:

Extensibility, Flexibility, Flash Tool, Coupling, Separation of Concerns,

Cohesion

Contents

Figures 4

Glossary 5

1 Introduction 6

2 Methods and Technologies 8

2.1 Tkinter and Customtkinter 8

2.2 Device Explanation 8

2.3 Flash adapters 10

2.3.1 Slave Controller Adapter 11

2.3.2 Master Controller Adapter 12

3 Requirements 13

3.1 Previous Flash process 13

3.2 Requirement Priorities 13

3.2.1 Must have 14

3.2.2 Should have 14

3.2.3 Could have 15

3.2.4 Won’t have 15

4 Architecture 17

4.1 Architecture of flash tool 17

5 Implementations 19

5.1 Implementation of flash tool structure 19

5.2 Flexibility 24

5.2.1 Flexibility seen as resistance to change 24

5.2.2 Coupling 25

5.2.3 Temporal Coupling 26

5.2.4 Pros and Cons of Flexibility 27

5.3 Extensibility 28

5.3.1 Separation of Concerns 29

5.3.2 Cohesion 29

6 Testing 30

6.1 Must have requirements 30

6.2 Should have requirements 30

6.3 Could have requirements 31

7 Conclusion 32

Appendices 36

Figures

Figure 1. Lock Controller. 10

Figure 2. ARM Cortex Cable. 11

Figure 3. Slave Controller Adapter. 12

Figure 4. Master Controller Adapter. 12

Figure 5. Flash Tool GUI. 18

Figure 6. Download Status Tags. 20

Figure 7. Flash Tool Architecture Diagram. 23

Glossary

API Application Programming Interfaces are defined by a

set of rules and protocols that allow different software

programs to communicate and interact with each other,

enabling the exchange of data and services. [1]

GUI Graphical User Interfaces are visual interfaces, that are

used to interact with applications or webpages. They

render different visual elements to display information

or let the user take actions. [2]

 6

Turku University of Applied Sciences Thesis | Louis Lautz

1 Introduction

Flash tools are applications, which are used to install software or firmware onto

hardware. This makes them crucial for the manufacturing process of embedded

system devices.

Pareva is a German company, that works closely together with the Finnish

company Punta. Together, they build smart lockers, that have integrated remote

opening methods.

The remarkable property about Pareva’s software solutions for their various

customers is, that the software for all systems is identical. Yet, every customer

can have a customized solution. This service can be achieved with an

extremely flexible and extensible software architecture. Flexibility and

extensibility play a major role in Pareva’s software design.

Having mentioned that, it was clear that a flash tool for them must reflect and

support these characteristics.

Pareva’s old flash tool had many issues, which motivated them to commission a

new and improved flash tool.

Flexibility and extensibility in general are well understood concepts and there is

a lot of literature about them. In this thesis, recent publications on these topics

are used. There are also less recent works, showing that these practices are

well explored. One example of an older book exploring flexibility and

extensibility is “Design Patterns Elements of Reusable Object-Oriented

Software” from 1994. [3]

The problem with many publications about these topics are, that they are too

general. The examples rarely involve more than a few functions or classes.

Usually that is sufficient to convey the theoretical practices, but it fails to portray

flexibility and extensibility on a larger scale.

In contrast to that, this thesis aims to highlight flexibility and extensibility at a

greater scale, by using a large project and giving insight into the design process

with flexibility and extensibility in mind.

 7

Turku University of Applied Sciences Thesis | Louis Lautz

The main focus in the thesis is to give an insight into the design of the flash tool.

Chapter 2 “Methods and Technologies”, discusses different technologies that

are used in thesis.

In Chapter 3 “Requirements” the MoSCoW-method [4] is established and all

features are categorized according to their priority.

Chapter 4, “Architecture”, discusses how different components are arranged

and interact with each other. It also contains a diagram to further visualize the

relationships between components.

Chapter 5, “Implementations”, deals with the concrete coding techniques used

to implement the components. In addition to that, it dives deeper into the topics

of flexibility and extensibility and uses implementations used in the flash tool to

explain the discussed techniques.

Lastly, Chapter 6, “Testing”, circles back to the MoSCoW categories

established in Chapter 3 and confirms that all features are implemented and

work as intended.

The author of this thesis created the flash tool single-handedly for Pareva

GmbH in a time frame of 1 year and is also responsible for the writing of the

thesis.

 8

Turku University of Applied Sciences Thesis | Louis Lautz

2 Methods and Technologies

2.1 Tkinter and Customtkinter

Tkinter is a Graphical User Interface (GUI) library in the python standard library.

It allows the developer to easily create cross-platform GUIs that can be

rendered on most Unix systems, such as macOS, but also on Windows and

Linux. [5]

Customtkinter is a wrapper for Tkinter, which is almost a drop-in replacement

for Tkinter. Unlike Tkinter though, it looks visually appealing out of the box and

is easier to design. Visual properties of elements can be customized more

easily. There is also a theme handler, with which the color profile can be

adjusted for the entire application. Most Tkinter elements also exist in

Customtkinter, which means that elements can quickly be switched out for

Tkinter or Customtkinter elements. [6]

2.2 Device Explanation

The devices that need to be flashed are lock controllers in lockers. This allows

the user to open locks via an Application Programming Interface (API). The

lockers are used for parcel lockers, personal locker and much more. Because

they interact with an API, there are many different user interfaces to interact

with the lock. Some locks have a card reader, others use keypads with access

codes and some even use their own applications to open the locks.

Each lock controller (Figure 1) has 12 output pins, meaning it can open 12 locks

per controller or control other things like lights or a built-in scale. The output

pins are the white vertical rectangles at the bottom of the picture.

 9

Turku University of Applied Sciences Thesis | Louis Lautz

Each controller has an ethernet port for the internet connection and a second

ethernet port for chaining multiple controllers together. These ports can be seen

in the middle of the top edge of the device.

A controller can take on two different roles. The master controller communicates

with the API and needs to be connected to the Internet. Additionally, it can also

send commands to other connected slave controllers. The slave controller has

to be connected to a master controller via ethernet cable and works as an

extension of the master controller. This way, one master controller can control

multiple sets of 12 locks.

Every controller has an Atmel Atmega microcontroller [7]. It connects to all 12

lock output pins and is responsible for opening the locks when the appropriate

signal is given.

In addition to the Atmega microcontroller, only master controllers have an

ESP32. ESP32 chips can connect to Bluetooth and Wi-Fi, which adds multiple

integration options to the master controllers [8]. This chip is connected to the

Ethernet adapter and manage communication with external parts, like an API or

external interface devices such as tablets or card readers.

Because the slave controller only works as an extension of the master

controller, it does not require an ESP32 chip and does not communicate with

any external devices. The slave controller only reacts to signals from the master

controller.

 10

Turku University of Applied Sciences Thesis | Louis Lautz

Figure 1. Lock Controller.

In the flash tool, the master and slave controllers have different name. The

master controller is called “Baseunit” because it builds the basis for a line of

lock controllers. The slave controllers are just called “Controllers” because their

only job is to control their designated locks.

Outside of the development environment, however, the controllers are referred

to as master and slave controllers, since it conveys their hierarchy better. For

the rest of this thesis, the master and slave nomenclature will be used.

2.3 Flash adapters

Each chip has a flash port for a 6 pin ARM Cortex cable, shown in Figure 2 [9].

The cables have 3 stabilizing rods, 4 claws to keep it in place and 6 pins that

transfer data. These cables connect to the controller board and to one of two

adapters.

 11

Turku University of Applied Sciences Thesis | Louis Lautz

The adapters are used as a middleman between the flash tool and the

controller. The flash tool only sends the firmware file to the adapter, but the

adapter handles the exact flashing of the device by writing the bits to correct

memory addresses.

Figure 2. ARM Cortex Cable.

2.3.1 Slave Controller Adapter

The adapter for the Slave Controller uses a program called AVRDUDE [10].

AVRDUDE is a program to write a memory image onto AVR chips. It was first

developed in 2003 but is still updated. The adapter can be seen in Figure 3.

 12

Turku University of Applied Sciences Thesis | Louis Lautz

Figure 3. Slave Controller Adapter.

2.3.2 Master Controller Adapter

The second adapter is for the Master Controller and uses the esptool [11]

command line tool for the flash process of espressif chips like the ESP32 in this

case. The master controller adapter is shown in Figure 4Error! Reference

source not found..

Figure 4. Master Controller Adapter.

 13

Turku University of Applied Sciences Thesis | Louis Lautz

3 Requirements

Requirements are a list of features that are devised by the contractor and

project manager or the team of developers. This list builds the foundation of a

project and is used to determine the progress and success or failure of the

project.

3.1 Previous Flash process

Before the flash tool, technicians at Pareva used very simple command line

scripts to flash the chips. These scripts had a number of issues. One of them

was that the desired firmware version still had to be typed in manually as a

parameter to the script, which is prone to errors and not user-friendly.

Another issue was that each chip had its own flash script. In the case of the lock

controller, 2 scripts.

The biggest issue, however, was that USB-ports, which the flash adapter were

connected to, were hard-coded into the script. This is a problem on Linux,

because it is not guaranteed that a device is assigned the same name after

unplugging and replugging.

Other smaller issues included that the error messages were hard to distinguish

from the other text generated by the flash commands. So, when anything went

wrong, it was hard to recognize.

3.2 Requirement Priorities

In order to make a new and improved flash tool, a set of requirements had to be

created. The following list of requirements is categorized according to the

MoSCoW method [4], which uses a system of four categories: Must have;

Should have; Could have; Won’t have.

 14

Turku University of Applied Sciences Thesis | Louis Lautz

3.2.1 Must have

All features in this category are crucial for the success of the project and have

the highest priority. If any of them are missing, the final product does not work.

Selectable Firmware

It was deemed important to be able to select the desired firmware more easily.

The different available firmware versions also have to be displayed to the user,

so he can choose the correct one.

Easy starting/stopping method

The new flash tool needs a better way to start a new flash process and pause it

if necessary.

Error message display

In order to make debugging easier, the error messages have to be intercepted,

interpreted and displayed in a more understandable way.

Baseunit flashing

Pareva’s main product is the lock controller. They have two variants, as outlined

in chapter “2.2 Device ”. Both of them need be flashed with the flash tool.

3.2.2 Should have

These features are not essential to the core behavior of the project, but greatly

increase its functionality.

Adapter recognition

When the flash adapters are plugged in, their name assignment is fairly

unpredictable. A better way of recognizing which adapter is plugged into which

port should be developed.

Flexible design

The functionality of the flashing process should be adjustable for varying future

requirements.

 15

Turku University of Applied Sciences Thesis | Louis Lautz

Extensible design

Functionality should be extensible and more flash devices should be easily

addable to the flash tool.

Works on Linux

The whole flash tool should be running on Linux.

Initially there were other Operating System options, which is why this point is

under “Should have” and not under “Must have”

3.2.3 Could have

This category describes features that increase the user experience, without

adding crucial functionality. The implementation of these features is optional.

Visual Progress indicators

The command line output that indicates progress could be intercepted and

displayed in a more visual way. Ideally, there will be no command line outputs

necessary for the operation of the flash tool.

Device connection check

When the flash adapters are connected to the board of the lock controller, there

could be a way to detect whether or not the adapters are connected properly.

3.2.4 Won’t have

Because the work on the flash tool was not limited to the professional work

placement it was not clear how much time there would be for additional

features. Hence, the “Won’t have” category was not decided at the start of the

project. Instead, this category showcases features that were discussed at some

point during the project but were not implemented after all.

Card reader flashing

During development, an additional feature was proposed. The lock controllers

 16

Turku University of Applied Sciences Thesis | Louis Lautz

can be coupled with a card reader, which was supposed to be added to the

flash tool. Unfortunately, due to time constraints and different priorities, this

feature was demoted to the “Won’t have” category.

 17

Turku University of Applied Sciences Thesis | Louis Lautz

4 Architecture

The architecture of a flash tool refers to its structural elements and how they

interact with each other. Whilst the exact implementation of these elements is

not the focus of this step, general design principles such as flexibility and

extensibility should be kept in mind already.

4.1 Architecture of flash tool

The flash tool is contained in a single window, which is created when the

application starts. This window contains every component of the tool with the

exception of the settings window and various smaller popup windows, which are

not crucial to the core operation of the tool.

The top of the window, which can be seen in Figure 5, holds the exchangeable

top section. Every flashable device can have its own top section, which is

rendered based on the selected device. The device can be selected in the top

section itself. In addition to that, the user can select the desired firmware from a

dropdown menu in the top section.

For the lock controller, the top section also features two checkboxes to select

whether the baseunit, the controller or both should be flashed. In addition to

that, there is a checkbox to automatically select the most recent firmware

version automatically.

In order to better understand what the tool does and what is expected of the

user, the middle section of the tool contains customizable panels. There is a

panel for each individual flash step and every device can have its own set of

flash steps. The panels light up when they are active, so the user knows what

the flash tool is doing.

Another helpful feature is the introduction of custom widgets that can be added

to a panel. They can display labels, progress bars, buttons or switches. Using

 18

Turku University of Applied Sciences Thesis | Louis Lautz

these widgets, the user can adjust the behavior of the flash process during run-

time or read useful information displayed by the tool.

To combat the issue of not knowing when the flash adapters connect to the lock

controllers, two separate steps were added. One before and one after the actual

flash step to make sure the adapters are connected and disconnected correctly.

Underneath the progress panels, the tool contains a collapsible console, which

streams the contents of the flash commands. This makes sure that no

information is lost and can be used to further troubleshoot if the progress panels

do not suffice.

Finally, at the very bottom of the main window, the user can find buttons to start,

pause and stop the flash process, along with a label that displays the completed

flash processes.

Figure 5. Flash Tool GUI.

 19

Turku University of Applied Sciences Thesis | Louis Lautz

5 Implementations

In the implementation phase of the project, the features are built into the code.

This step takes up the majority of the work time.

5.1 Implementation of flash tool structure

The main GUI is initialized with the tkinter, or in this case the Customtkinter

base class CTk(). This class simply instantiates an empty window, that can be

populated with different widgets at run time.

The main app contains two sections that can be exchanged to achieve more

flexibility. The top section and the flash panels. Both of them are contained in a

separate class, which makes it easier to add more or change existing

components.

In order to guarantee a reliable base behavior of the top section, each top

section inherits a set of functions from a top_section_base_class(). The base

class implements all functions that any top section needs for its basic operation.

These functions are also the only functions that will be called from the main

app. Additional functions are either “private” functions, that are used internally

by the class itself, or are called from flash functions inside the flash panels.

So far, the available top sections all feature a dropdown menu to select the

firmwares the user wants to flash. These firmwares come from an API, which

holds all available firmwares. A list of all available firmwares, individual

firmwares, as well as drivers can be downloaded via the API. When a firmware

is already saved on the host computer, a label with “(downloaded)” appears

behind the firmware version in the dropdown menu, as shown in Figure 6.

 20

Turku University of Applied Sciences Thesis | Louis Lautz

Figure 6. Download Status Tags.

Similar to the top sections, the flash panels need to be exchangeable. However,

there is one more layer between the panels and the main app. That is because

there are multiple panels, which need to be contained somewhere, whilst being

exchangeable as a unit. For this purpose, a “device_class()” was created. The

device_class() is specific to each flashable device. It holds general information

about subdevices (in case of the lock controller, which consists of multiple

chips), flash adapters, flash drivers and the top_section type. In addition to that,

the device_class() defines the flash functions and the flash panels.

The controller code is listed in Appendix 1

That means, that all information about a device is defined in one place, which

increases extensibility. This can be seen in Figure 7. In order to add a new

device to the flash tool, the user only has to create one file, the device specific

device_class(), and save it in a particular file path. The flash tool will scan that

folder at start up and make the devices available in the device selector

dropdown menu in the top section.

As mentioned before, the device_class() instantiates the flash panels. Unlike

the top section or device class, the flash panels do not inherit from a general

base class. That is due to their built-in flexibility.

The flash panels are supposed to display information about the current flash

step or allow for inputs at runtime. It achieves that through the use of widgets

and through a unique flash function. More on those two concepts later.

 21

Turku University of Applied Sciences Thesis | Louis Lautz

Interestingly, these two concepts provide so much flexibility in what a flash

panel can do, that the panels themselves have very little own functionality. Their

only tasks are to display which panel is currently active, run the flash function

and render their widgets. Those tasks are so general, that every panel can be

the same, but can still be customized with the injection of the flash function and

the widgets.

The widgets themselves are simple frames with one or two components inside.

They are rendered onto the flash panels and their states can be read by the

flash function to react to user inputs during run time.

Widgets have 5 important variables. “active”, “visible”, “always_active”,

“always_visible”, “always_hidden”.

The first two variables are changed in every flash cycle. Whenever a panel gets

activated, all of its widgets switch to active and visible. “Active” means, that the

widget can be interacted with. Buttons can be pressed and switches can be

switched. “Visible” simply renders the widget on the screen, making it visible.

The true potential of the widgets, however, comes from the other three

variables.

“always_active” overrides the “active” variable, meaning that a widget can

always be interacted with. Even when the panel is deactivated. This option

allows the user to interact with upcoming panels before they are activated.

“always_visible” and “always_hidden” override the “visible” variable, which, as

the names suggest, make the widget always visible or always hidden.

Any widget with “always_active” set to True, also should have “always_visible”

set to True, so the user can see the widget and interact with it.

“always_hidden” is used for error messages. The label for the error message is

kept hidden until an error occurs, at which point the error message is written

into the widget and the widget is displayed. For this purpose, the widgets have a

“reveal” method, which renders the widget even when they are set to

“always_hidden”.

The flash panel code is listed in Appendix 2

 22

Turku University of Applied Sciences Thesis | Louis Lautz

Underneath the flash panels, the collapsible console is located. The console is

a Customtkinter textbox, which has numerous functions to edit the display text,

as well as a built-in scrollbar. To decrease memory consumption of the tool, a

500-line limit is implemented into the console. This allows the user to inspect

past error messages, but also implements some memory efficiency.

At the bottom of the main window, the user can start, pause and end the flash

process. This functionality is implemented with simple buttons. When the flash

button is pressed, the flash tool checks a few criteria to determine whether the

flash process is ready to be started. All selected firmwares need to be

downloaded and the flash adapters need to be connected to the computer. If

either of these criteria are not met, the user is prompted to fix these issues.

Additionally, the buttons change the flash tools “app_state” variable. This

variable can have different values, reflecting what the flash tool is supposed to

do at the moment. Based on the app_state, certain parts of the GUI get

disabled or enabled, to prevent the user from making unintended inputs. For

example, during the flash process, the user cannot change the firmware. The

user is only able to change what firmware will be flashed, when the flash

process is stopped.

The function to start the flash cycle is listed in Appendix 3

Another important addition made to the flash tool is the ability to create UDEV

rules for the flash adapters in a device setup window. This solves the problem

of the flash adapters changing their names when they are unplugged and

plugged in. Whenever the flash cycle is started, the flash tool checks if there is

already a UDEV rule for the required flash adapters. If there is not, the user is

prompted to unplug and replug the flash adapter, so that it can be found. Then,

a new UDEV rule is created. This UDEV rule gives the flash adapter a unique

name that it will always be assigned when its connected. UDEV rules require

the sudo password, so the last step of the device setup window is to input the

password, which is verified before the UDEV rule is created. After that, the

setup will never have to be repeated until a new flash adapter is needed in the

future.

 23

Turku University of Applied Sciences Thesis | Louis Lautz

Figure 7. Flash Tool Architecture Diagram.

 24

Turku University of Applied Sciences Thesis | Louis Lautz

5.2 Flexibility

Flexibility is a property of code, which allows fast and easy adaptation to

incoming changes.

5.2.1 Flexibility seen as resistance to change

A core idea expressed by Christian Clausen is that flexibility is measured in its

resistance to change. In other words, making a change to existing code gets

easier if the code was designed with flexibility in mind. [12]

In the case of the flash tool, there are many examples of how changes can be

made without meeting a lot of resistance. On the other hand, some features are

more rigid, due to a lack of prioritization of that feature or because the behavior

of that feature is not planned to change in the near future.

One example of low resistance to change is the isolation of flash function inside

of the flash panels. The flash functions only requirement is that they need to

return True, when they finish successfully and return False, if something went

wrong. With this freedom, the developer can simply write a function in a

separate test bed, test it thoroughly and paste it into the flash function of a flash

panel. No other external component from the flash tool can interfere with the

flash functions.

Looking at the settings implementation however, it becomes obvious that not

every aspect of the flash tool is optimized at this point in time.

Each setting is rendered with its own hardcoded GUI components and is

updated with individual conditions that check which settings were updated by

the user. In addition to that, each setting has a custom property in two separate

JSON files. This approach works for the current set of settings, but it makes

future change very difficult. If a developer has to add a new setting, all of the

previously mentioned hardcoded lines of code have to be added for the

incoming new setting. The developer experiences more resistance from the

code.

 25

Turku University of Applied Sciences Thesis | Louis Lautz

Dane Hillard in his book “Practices of the Python Pro” calls this approach the

“shotgun surgery” approach, as many small changes need to be made in many

locations, to implement one larger change. [13]

5.2.2 Coupling

Another concept that is often talked about is coupling. Coupling occurs when

two features depend on each other’s implementation. When one implementation

changes, the other one breaks as well.

Decoupling functions from each other can be a useful tool to make an

application more robust, because one change will not require other changes.

In the flash tool, this concept can be observed in the panels. The panels have a

list of widgets that will be rendered inside of it. To add these widgets, the panel

has a function add_widgets() to add more widgets to it. Initially the function only

accepted a list, which meant that if only one widget was added, the developer

had to type-cast the parameter to a list with [] brackets. To avoid that, the

function now can take a single widget or a list of widgets. If only one widget is

supplied, the single widget will be added to an empty list and is processed like

any other list of widgets.

 def add_widgets(self, widgets):

 """Adds one or more widgets to the panel and displays them"""

 if type(widgets) is not list: # Checks if only one widget was added

 widgets = [widgets] # Turns the single widget into a list

 for widget in widgets:

 self.widgets.append(widget) # Adds all widgets to the panel

 self.render_widgets()

The same implementation was used to make the tool more reliable for flash

operations with multiple devices. For example, the device classes have a

property called sub_devices. The controller has two separate chips, so the

subdevices are “controller” and “baseunit” in a list. If a device only has one chip,

it is still saved in a list. This way, no functions rely on the number of subdevices

 26

Turku University of Applied Sciences Thesis | Louis Lautz

and are therefore not coupled to that number.

However, the functions are still coupled to some extent, because they only rely

on lists.

Coupling is not always completely avoidable, but it is important to keep in mind

how functions are dependent on each other and what future changes might

break them.

5.2.3 Temporal Coupling

During development a big issue came up, which broke the entire application for

a while. The problem was identified as temporal coupling.

Temporal coupling is a type of coupling, where functions in a system are

dependent on the order in which they are executed. Certain functions require

values that other functions provide or call functions that perform a task which is

required for the current function.

The problem during development was, that so many functions called other

functions, that it was very difficult to understand the order in which they are

called. Some functions were called multiple times or at inappropriate times.

The messy function flow was fixable, but the general problem of temporal

coupling is difficult.

Certain tasks simply have to be executed before others. Robert C. Martin in his

book “Clean Code: A Handbook of Agile Software Craftsmanship” writes: ”

Temporal coupling is often necessary, but you should not hide the coupling.

Structure the arguments of your functions such that the order in which they

should be called is obvious.” and proposes a solution in which each function call

produces a result, which the next function can use. This not only reveals the

coupling, but also strictly enforces it, since the functions now cannot work

without the previously computed arguments. However, he also admits that this

approach further complicates the function.

In this application, removing this temporal coupling may not be an optimization

that is worthwhile. The flash tool is already fairly complicated on account of the

 27

Turku University of Applied Sciences Thesis | Louis Lautz

various functions that call each other. Artificially inserting return statements and

function arguments into this complex structure could make the temporal

coupling more obvious but would also make the rest of the function flow less

obvious, which was not a tradeoff worth making.

This decision reveals an interesting dilemma many developers find themselves

in:

5.2.4 Pros and Cons of Flexibility

Is the additional flexibility really beneficial at this point in time?

Answering this question requires the developer to weigh up the pros and cons

of flexibility.

Pros:

Implementations to increase flexibility can makes future implementations or

changes to existing ones much easier.

Another advantage of flexibility is that bug fixes are faster. Flexible systems are

often more encapsulated and components work independently, which makes

identifying bugs easier. The developer can analyze smaller, compact sections of

the code base, without getting lost in the larger architecture. Moreover, the

independence of the components reduces coupling, which decreases the

chance of breaking working components when chances are made.

Cons:

Flexibility can be seen as a time investment. Developing a flexible system

usually takes more time to develop than a simpler system that works for only

one desired use case.

The developer, or their contractors always have to try to predict future changes

in order to build a flexible system, which can accommodate these changes.

 28

Turku University of Applied Sciences Thesis | Louis Lautz

That means, that the predictions can be wrong. In which case the initial time

investment did not pay off, but it can also lead to a system design that is less

suitable for the actual incoming changes.

If a system is prepared for a change that never comes, it is very possible that

the developers now have to work around an existing architecture, that does not

work well for the actual new change. In other words, flexibility is not universal.

There is no objective flexibility. Instead, flexibility has to be specific to the

requirements.

The flash tool for example, works under the assumption, that there are multiple

devices that all have a certain firmware version and have different steps to be

flashed. So, the measures to provide flexibility are built around that assumption.

They make it easier to add new devices and change the flash steps. If we

pretend this assumption was wrong for a moment, we could imagine that a new

device came out, that has to be flashed in multiple rounds and does not have a

particular firmware, but certain combinations of firmwares and drivers. All

measures to make the system more flexible would not be of any value for this

new hypothetical device, because they were designed around a different set of

core requirements.

So, making flexible systems can actually make future changes harder, if the

system is flexible in the wrong way.

5.3 Extensibility

In contrast to Flexibility, Extensibility aims to make the addition of new code or

behaviors as easy as possible. Ideally, a system is so extensible, that the

addition of a new feature strictly requires the writing of new code, without having

to change anything else.

 29

Turku University of Applied Sciences Thesis | Louis Lautz

5.3.1 Separation of Concerns

Separation of concerns is imperative for an extensible system design. It is

implemented by breaking the code into chunks, but in a specific and strategic

way.

Each chunk should solve a concrete and understandable task. It is also

important that these chunks can solve the task by themselves, without having to

reference external functions or data. This reduces coupling between chunks

and promotes flexibility and reusability. In addition to that, reduced coupling also

sets up separation of concerns, together with one other process: Increasing of

cohesion. [14]

5.3.2 Cohesion

Cohesion describes the concept of grouping together similar code and

separating different code. Looking at the chunks again, it is important that

chunks that are different, get their own function to solve their own individual

task.

In the same vein, chunks that are similar can be grouped together, to create a

collection of similar code. This could be implemented in a module or a class,

allowing them to be reused. [14]

Separation of concerns and cohesion can make a system more clear, reusable

and testable because it is divided into logical chunks that work independent

from each other. It can also speed up development between multiple

developers, since each developer can work on a separate part of the system, or

a separate concern.

 30

Turku University of Applied Sciences Thesis | Louis Lautz

6 Testing

To confirm that the implementation of features works as expected, tests should

be performed throughout the implementation process or at least afterwards. It

can be helpful to reference the feature list again, so no tests are left out.

6.1 Must have requirements

Selectable Firmware

The desired firmware can be easily selected for each sub device, using the

dropdown menu in the top section. Additionally, the firmware entries display

whether or not they are already downloaded to the device.

Error message display

Errors that occur during the flash process are filtered and custom display

messages are displayed in the flash panels. However, the original output of the

commands is still streamed to a console in the tool.

Baseunit flashing

The lock controller can be flashed and the technicians had no complains after

the final fixes.

6.2 Should have requirements

Adapter recognition

Custom UDEV rules are added for each device. This eliminates the problem of

inconsistent port names. The UDEV rule setup is handled through a separate

pop-up window that guides the user through the setup step by step.

Flexible design

Different strategies for the implementation of a flexible design were employed.

Such as decoupling components from another and isolating similar

functionalities.

 31

Turku University of Applied Sciences Thesis | Louis Lautz

Extensible design

The tool can be extended at various different points.

New devices can be added with the device classes. The device classes

implement other extensible systems, like the flash functions, flash panels and

widgets. Lastly, the top section is also encapsulated into a class, which makes

them extensible as well.

Works on Linux

After the first iteration of the tool, where mostly the layout and basic functions

were implemented, the tool was ported to Linux and since then developed in

Linux.

6.3 Could have requirements

Visual Progress indicators

The flash panels have progress bar for some of the flashing steps. In general,

the flash panels serve as a progress indicator since each panel indicates one

step in the flash process.

Device connection check

Now, a new step at the beginning and at the end of the flash process can be

added to detect whether the adapters are properly connected to the controllers.

 32

Turku University of Applied Sciences Thesis | Louis Lautz

7 Conclusion

The goal of this project was to replace Parevas old flash tool and improve the

productivity of the flashing process. All in all, this goal was achieved. The most

important metric for this conclusion should be the technician’s judgment of the

flash tool and they expressed their satisfaction with the finished product. The

flash tool runs smoothly and is now an integral part of their manufacturing

process.

The tool should be sufficiently future proofed, meaning that new devices should

be easy to implement.

The greatest struggles during development can be ascribed to poor planning

during the early stages of the project. For future projects, a more extensive

project plan should be devised.

Concretely, categorizing features with the MoSCoW method can be a useful

method to set priorities and should be implemented from the beginning.

Additionally, it would have been helpful to think more about extensibility and

especially flexibility from the start. Identifying exact features that need to be

flexible or extensible should be the strategy for future projects.

Moreover, discussing possible future changes with the contractor can help fine-

tune the direction of development in terms of flexibility and extensibility.

Another helpful improvement for the next project would be to learn more about

the used framework instead of “learning on the job”. This could save time

refactoring code to clear of bad habits. Furthermore, it can improve the codes

robustness and align it with common practices of the given framework.

Most projects are never truly finished. The flash tool is no exception. If there

was more time and resources to continue the development of the flash tool, the

settings menu could be made modular and extensible as well. This could allow

the developer to dynamically add settings that only affect a single device. At the

moment, the settings are hard coded and would require more effort to change

than if they were properly implemented with extensibility in mind.

 33

Turku University of Applied Sciences Thesis | Louis Lautz

Other features, such as the app states could be made into classes as well to,

again, add a new source of extensibility to the tool.

 34

Reference

[1] Wikipedia, "API," 2023. [Online]. Available:

https://en.wikipedia.org/wiki/API. [Accessed 2 November 2023].

[2] J. Juviler, "HubSpot Blog," 30 August 2023. [Online]. Available:

https://blog.hubspot.com/website/what-is-gui. [Accessed 2 November

2023].

[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, Boston: Addison-Wesley,

1994.

[4] Wikipedia, "MoSCoW Method," 2023. [Online]. Available:

https://en.wikipedia.org/wiki/MoSCoW_method. [Accessed 4 November

2023].

[5] Python Software Foundation, "Python Documentation," 2023. [Online].

Available: https://docs.python.org/3/library/tkinter.html. [Accessed 23

October 2023].

[6] T. Schimansky, "GitHub," 2023. [Online]. Available:

https://github.com/TomSchimansky/CustomTkinter. [Accessed 23 October

2023].

[7] Microchip, "ATmega324PB - Documentation," 2023. [Online]. Available:

https://www.microchip.com/en-us/product/atmega324pb. [Accessed 7

November 2023].

[8] Espressif, "ESP32 Product Overview," 2023. [Online]. Available:

https://www.espressif.com/en/products/socs/esp32. [Accessed 6

November 2023].

 35

[9] Tag-Connect, "Arm Cortex Cable - Documentation," 2023. [Online].

Available: https://www.tag-connect.com/product/tc2030-ctx-6-pin-cable-for-

arm-cortex. [Accessed 10 November 2023].

[10] AVR Dudes, "AVRDUDE Documentation," 2023. [Online]. Available:

https://github.com/avrdudes/avrdude. [Accessed 4 November 2023].

[11] Espressif, "esptool Documentation," 2023. [Online]. Available:

https://docs.espressif.com/projects/esptool/en/latest/esp32/. [Accessed 4

November 2023].

[12] C. Clausen, "Good and bad flexibility in code," 2021. [Online]. Available:

https://freecontent.manning.com/good-and-bad-flexibility-in-code/.

[Accessed 26 Sep 2023].

[13] D. Hillard, What Makes Code Extensible and Flexible?, Manning

Publications, 2019.

[14] A. Naumov, "Separation of Concerns in Software Design," 2020. [Online].

Available: https://nalexn.github.io/separation-of-concerns/. [Accessed 22

November 2023].

[15] R. C. Martin, Clean Code: A Handbook of Agile Software Craftmanship,

Philadelphia: Prentice Hall, 2008.

 36

Appendices

Appendix 1: Controller code

class controller(device_base_class):

 def __init__(self, app, master_widget):

 super().__init__()

 self.device_name = "controller"

 self.app = app # A reference to the main tkinter app

 self.master_widget = master_widget # The widget that the panels will be placed in

 self.top_section_type = "Double" # Type of top section. "Single" for one firmware

 # selector. "Double" for two

 self.sub_devices =[# Stores a list of device names that this device

 # used

 {

 "sub_device_name": "controller",

 "display_name": "Controller Flash Adapter",

 "udev_name": "FT_controller_flash_adapter",

 },

 {

 "sub_device_name": "baseunit",

 "display_name": "Baseunit Flash Adapter",

 "udev_name": "FT_baseunit_flash_adapter",

 }

]

 self.drivers = {"baseunit": ["bootloader_dio_40m", "boot_app0"]}

 self.panels = []

 # Custom variables

 self.baseunit_serial_number = ""

 self.print_bool = False

 self.skip_bool = False

 self.auto_print = customtkinter.BooleanVar(value=False)

 self.auto_skip = customtkinter.BooleanVar(value=False)

 self.render_USB_setup_bool = False

 self.timeout_count = 0

 self.error_timeout = False

 self.load_panels()

Appendix 2: Code for flash panels

 37

 38

Appendix 3: Flash cycle start function

def start_flash_cycle(self):

 download_order = self.get_download_order() # Gathers all resources to be downloaded

 if not download_order: # Checks if anything needs to be downloaded

 # Checks if all device ports are configured

 if check_udev_rules(self.obj_device.sub_devices):

 self.set_app_state("Active")

 # Checks if at least one subdevice was selected to be flashed

 if len(self.top_section.get_selected_FW()) > 0:

 # Runs the flash cycle in a separate thread so other functions can run at the same time

 self.flash_thread = StoppableThread(target=self.flash_cycle)

 self.flash_thread.start()

 for thread in threading.enumerate(): # Loops through all threads

 # Checks if current thread is not the flash thread or the main thread

 if thread != self.flash_thread and thread != threading.main_thread():

 thread.stop() # Stops thread, because it is no longer needed

 else: # Renders popup window that reminds user to select at least one subdevice

 render_no_FW_selected_popup(self)

 else: # Renders popup window that steps user through flash port setup

 render_USB_setup_window(self)

 else: # Checks if download popup should be rendered

 if get_setting("SETTINGS", "show_flash_download_popup"):

 # Renders popup window where user is asked if selected firmware should be downloaded

 render_FW_not_downloaded_popup(self)

 else:

 self.download_button_event(). # Runs download process

	Figures
	Glossary
	1 Introduction
	2 Methods and Technologies
	2.1 Tkinter and Customtkinter
	2.2 Device Explanation
	2.3 Flash adapters
	2.3.1 Slave Controller Adapter
	2.3.2 Master Controller Adapter

	3 Requirements
	3.1 Previous Flash process
	3.2 Requirement Priorities
	3.2.1 Must have
	3.2.2 Should have
	3.2.3 Could have
	3.2.4 Won’t have

	4 Architecture
	4.1 Architecture of flash tool

	5 Implementations
	5.1 Implementation of flash tool structure
	5.2 Flexibility
	5.2.1 Flexibility seen as resistance to change
	5.2.2 Coupling
	5.2.3 Temporal Coupling
	5.2.4 Pros and Cons of Flexibility

	5.3 Extensibility
	5.3.1 Separation of Concerns
	5.3.2 Cohesion

	6 Testing
	6.1 Must have requirements
	6.2 Should have requirements
	6.3 Could have requirements

	7 Conclusion
	Appendices

