
 

Karelia University of Applied Sciences  

BBA, Information Technology 

The Effects of Testing in 
Software Development 

Juha Airaksinen 

 

Thesis, December 2023 



 

 

 
OPINNÄYTETYÖ 
Joulukuu 2023 
Tietojenkäsittelyn koulutus 
 
Tikkarinne 9 
80200 JOENSUU 
+358 13 260 600 

Tekijä 
Juha Airaksinen 

Nimeke 
Testauksen vaikutukset ohjelmistokehityksessä 
 

Tiivistelmä 
 
Opinnäytteen tarkoituksena oli selvittää, vaikuttaako testaus kehitysprosessiin ja ohjel-
mistovirheiden määrään, miten tiimit voivat parantaa testaamisprosessia ja miten sovel-
luksia voidaan luoda testivetoisella kehityksellä. 
 
Opinnäytetyössä analysoitiin lähdekirjallisuutta ja etsittiin vastauksia seuraaviin kysymyk-
siin: onko olemassa esimerkkejä testauksen vaikutuksesta tuotekehitykseen, mitä mene-
telmiä kehittäjät käyttävät testien suunnittelussa ja miten kehittäjät voivat määrittää tes-
tien tehokkuuden. Testivetoista menetelmää hyödynnettiin opinnäytteessä sovelluksen 
kehittämisessä ja menetelmän tehokkuutta arvioitiin projektista tehtyjen havaintojen 
avulla. 
 
Testauksella oli myönteinen vaikutus ohjelmiston laatuun ja se vähensi virheitä, vaikka-
kin se hidasti kehitystä alussa. Pitkällä aikavälillä testauksella voi olla suotuisa vaikutus 
kehitysnopeuteen. Ohjelmistoprojektista saadut tulokset osoittivat, että testivetoisella ke-
hityksellä oli myönteinen vaikutus kehitysprosessiin. Projekti ei ollut riittävän pitkäkestoi-
nen, jotta testauksen pitkäaikaisista vaikutuksista olisi voinut tehdä havaintoja. 

Kieli 
englanti 

Sivuja 34 
Liitteet 
Liitesivumäärä 

Asiasanat 
ohjelmiston testaus, ohjelmiston kehitys, testivetoinen kehitys  

 
  



 

 

 
THESIS  
December 2023 
Degree Programme in Business Information 
Technology 
 
Tikkarinne 9 
80200 JOENSUU 
FINLAND 
+ 358 13 260 600 

Author 
Juha Airaksinen 

Title 
The Effects of Testing in Software Development 

Abstract 
 
The purpose of this thesis was to examine the effects of testing on software develop-
ment. What effects does testing have on the process of development and defect rates? 
How can teams improve the process of testing, and how they can utilise test driven de-
velopment in application development? 
 
The thesis analysed existing literature to answer a few questions - namely, have there 
been any examples of the impact that testing has had on product development, what 
methods do developers use to design tests, and how can they determine their effective-
ness? A personal finance application was built using test-driven development (TDD). 
Test driven methodology was evaluated in terms of its efficacy, based on observations 
from the project. 
 
Testing had a positive effect on software quality and reduced defects, albeit at a small 
cost to the initial development time. Over long-term testing may have a beneficial impact 
on development speed. Findings from the software project were that TDD had a positive 
impact on the development process. However, the project was not long lived enough to 
draw conclusive statements on the effects of testing over the long term. However, testing 
showed some promise by preventing a few regressions from occurring during the project. 

Language 
English 

Pages 34 
Appendices 
Pages of Appendices 

Keywords 
software testing, software development, test driven development 



 

CONTENTS 
 

 

1 Introduction .................................................................................................... 5 
2 Testing ........................................................................................................... 5 

2.1 Reducing defects ................................................................................. 6 
2.2 Effects on productivity .......................................................................... 6 
2.3 Testing approaches ............................................................................. 7 

2.4 Non-functional testing .......................................................................... 8 
3 Effective Testing ............................................................................................ 9 

3.1 Test metrics ......................................................................................... 9 
3.2 Software design ................................................................................. 10 
3.3 Test automation ................................................................................. 14 

4 Application development .............................................................................. 16 
4.1 Prototyping......................................................................................... 16 

4.1.1 Technology selection ......................................................................... 16 
4.1.2 Implementation .................................................................................. 17 
4.2 Development tooling .......................................................................... 18 
4.3 Test driven development ................................................................... 20 

4.4 Preventing regressions ...................................................................... 26 
4.5 Testing frontend components ............................................................ 28 

5 Conclusions ................................................................................................. 30 
5.1 Results ............................................................................................... 30 

5.2 Limitations.......................................................................................... 31 
5.3 Personal development of the author .................................................. 31 

5.4 Future research ................................................................................. 32 
References........................................................................................................ 33 



5 

1 Introduction 

 

 

The aim of this thesis is to examine the subject of software testing. Why is test-

ing important in software development? What problems does testing help to 

solve and how does it affect the process of building and maintaining software. 

 

The thesis is also a way for the author to advance their knowledge in the sub-

ject of software testing. This information could be useful for the author’s profes-

sional development, as the ability to test and create tests is commonly required 

in the industry. 

 

The paper will establish information on how testing or the lack of testing can af-

fect organizations, and users. Where does testing have positive or negative im-

pacts and how to test software most effectively? 

 

Having established how testing affects software development the next focus will 

be on how to maximize any benefits while minimizing the downsides? What 

measures can be used to track the quality of tests and how to design systems 

for easy testing? Why testing should be automated and how automation can be 

achieved? 

 

As a conclusion to this paper, the gathered literature will be used to build an ap-

plication. The application is a simple personal finance tracker with basic func-

tionality to evaluate the effectiveness of testing in application development.  

 

 

2 Testing 

 

 

When deciding upon whether to do testing or not it is important to evaluate if 

testing is value positive to an organization. What problems does testing solve, 

and does testing provide any other benefits aside from simple validation of re-

quirements? 



6 

2.1 Reducing defects 

 

Software defects can be financially expensive to organizations. Nissan recalled 

nearly a million vehicles in 2014 due to a software defect affecting the passen-

ger side airbag which might have not deployed in the case of a collision (Cha-

rette 2014). A few software defects affected a radiation therapy machine 

Therac-25, which caused the loss of life of 6 individuals, the incidents were par-

tially caused by lack of proper software testing (Apgar & Prentice 2022). 

 

Organizations have limited resources to effectively allocate resources for test-

ing. Organizations need to evaluate where testing has the highest value poten-

tial. Using risk assessment based on the potential impact and the likelihood of 

an event happening resources can be allocated appropriately. (Felderer, Hais-

jackl, Pekar & Breu 2014.) 

 

Test driven development (TDD) has been shown to significantly decrease the 

defect density of products between 40-90% when compared to similar projects 

that did not practice TDD. Defect density measures how many defects are 

found compared to lines of code. While defect density saw a significant de-

crease in the teams using TDD they also saw a slight increase in development 

time of 15-35%. (Nagappan, Maximilien, Bhat & Williams 2008.) Test driven de-

velopment is also connected with increased code quality (Causevic, Sundmark 

& Punnekkat 2011, 337-346). 

 

 

2.2 Effects on productivity 

 

Martin Fowler (2018b) advocates for regular refactoring to maintain the internal 

quality of a project. Poor internal quality can slow the development process as it 

makes it harder to understand and modify existing code. Refactoring should be 

done with the support of testing to prevent accidental regressions. (Fowler 

2018b, 4, 46.) 

 



7 

Continuous Integration (CI) can reduce the amount of time spent on merging 

changes to a shared mainline branch. CI can also help developers find issues in 

their code quicker as it enforces testing often. This can have a positive impact 

on software quality as it encourages behaviours that can reduce the number of 

bugs. (AWS 2023.) 

 

A systemic review on the industrial adoption of TDD investigated 48 studies 

concerning test driven development. From the review findings increased devel-

opment time was one of the largest factors in stopping adoption. Out of the 

studies nine had a negative experience with TDD, but adversely five reported a 

positive experience. (Causevic etc. 2011, 337-346.) 

 

 

2.3 Testing approaches 

 

Testing can be used to validate business requirements; these types of tests can 

be categorized as functional. Tests can also be used to verify that software 

meets some non-functional requirements like stability, performance, and secu-

rity. Unit and integration tests can be categorized as functional, while stress and 

security tests can be categorized as non-functional. (Tricentis 2023b.) 

 

Unit testing should form the foundation of an organizations testing strategy. 

When compared to end to end or integration tests, unit tests better isolate fail-

ures which means less code to search for the underlying issue. (Wacker 2015.)  

 

The definition of unit is not explicitly defined and causes occasional discussion 

on semantics. Martin Fowler (2014) distinguishes unit tests into sociable and 

solitary tests. A solitary test only tests one unit that does not depend on other 

units, while a sociable test can rely on other units. In sociable tests the relied 

upon units are assumed to work correctly and only the selected unit is tested. 

(Fowler 2014.) 

 

Unit tests are good at ensuring small parts of a codebase function well in isola-

tion, but usually make no assurances that they work together. To test the 



8 

interoperation of units we can use integration tests. Integration tests refer to 

tests that use multiple code modules, but they can also use mocks in place of 

real modules. (Fowler 2018a.) Integration tests should form the second most 

substantial portion of testing (Wacker 2015). 

 

End-to-end testing emulates user actions. This type of testing is good at giving 

information on what failures will look like for the end user. End-to-end tests are 

appropriate for some use cases, but should not be singularly relied upon, as 

they provide inaccurate information. These tests should be used in combination 

with other testing methodologies. (Wacker 2015) 

 

 

2.4 Non-functional testing 

 

Testing can be used to optimize an application for wanted user behaviour. A/B 

testing is used to compare two alternative versions of an application or a part of 

an application to measure whether a change improves key metrics. These met-

rics could be screentime, likelihood do some action on the application like 

pressing a button. (Gallo 2017.) A/B testing can also be used to optimize the 

content shown to the user, for instance for video thumbnails (Porter 2023; Ur-

ban, Sreenivasan & Kannan 2016). 

 

Testing can be used to ensure that software works even in conditions where it is 

under heavier load. Performance tests are important to make sure that the soft-

ware experience does not degrade in cases where load is higher than or at ex-

pected levels. Performance tests can also help developers find bottlenecks or 

other un-optimal areas in software. (Tricentis 2023a.) 

 

  



9 

3 Effective Testing 

 

 

3.1 Test metrics 

 

According to DORA Google’s Research and Assessment team the five main 

metrics for development team performance are deployment frequency, lead 

time for changes, time to restore service, reliability and change failure rate. 

Change failure rate is a measurement of how often a change causes a degrada-

tion of a service which requires action from the team in the form of rollbacks, 

fixes, or patches. Lead time is a measure of how long before newly committed 

code in a production environment can be used. Deployment frequency is a 

measurement how often changes are released and time to restore service 

measures time taken to react to a failure in production. (Portman 2020.) 

 

Testing can reduce the number of bugs that reach production. Although testing 

is not a guarantee that bugs will not happen. It is still a valuable tool in reducing 

the failure rate of an application. (Nassri 2019.) 

 

During development developers should be able to get feedback quickly in less 

than five seconds. When unit testing is done right, it can allow for quick feed-

back loops. Short feedback loops allow for experimentation and iteration. 

(Shore 2021, 337.) Shore advocates for being able to run at least 100 tests per 

second (Shore 2021, 373). 

 

Code coverage is a metric that is sometimes misused. Achieving full coverage 

is not difficult, because the coverage metric does not evaluate on how areas of 

code were tested only that they were tested. This can allow for substandard 

quality tests that increase coverage while not testing the code. Coverage re-

ports can be helpful in discovering untested areas of code, but they should not 

be used as a tool for quality measurement. (Fowler 2012.) 

  



10 

3.2 Software design 

 

Requiring testing pressures code bases to become decoupled to allow for eas-

ier testing. (Reese 2022). Decoupling improves overall code quality as it re-

duces the work required to make changes to existing systems, instead of need-

ing to change multiple places a single or few changes are sufficient (Shore 

2021). 

 

Dependency inversion is important in decoupling software components. This im-

proves testability of the application. Inversion allows dependencies to be more 

easily changed during testing. Dependency injection is a common application of 

dependency inversion principle. (Smith 2023, 21.) 

 

For demonstration a frequent problem dependency injection can solve is data-

base connection management. During testing full resources might not be availa-

ble and the state should be reset between tests and runs. This makes tests 

more resilient to mistakes where a previous test affects the next. It allows for 

tests to be run in isolation. 

 
The example is created using SQLite in Rust, but this could be any database or 

other external dependency. If using databases like PostgreSQL or MySQL a li-

brary like Testcontainers can be used to create a temporary database. Instead 

rusqlite allows databases to be run in memory which makes it well suited for this 

demonstration. A connection will create an SQLite file in the given directory, and 

a struct can also be created to represent a row from the database (picture 1). 

 
 

 
 
Picture 1. Rust code containing shared functionality between implementations. 



11 

The ‘init_connection’ function only constructs a database connection for a given 

filename in the current runtime directory. For demonstration purposes error han-

dling is ignored for now. (picture 1.) 

 

An example of a naïve solution for database connection management is to cre-

ate a connection within each function. Creating connections this way means 

that they are tightly couple to the filesystem and a specific filename. When the 

application is run, or tested the same database is being used which might pol-

lute either with unexpected data. (picture 2.) 

 
 

 
 
Picture 2. Naïve solution where connections are created inside the function. 

 
A better approach for this solution would be to construct a single or multiple 

connections that can be reused in each function. In this case just reusing a sin-

gle connection already allows for more testable code, although might not be ef-

fective use in real world applications that have to deal with concurrent requests. 

The solution is like the naïve solution. Only difference is that the connection is 



12 

passed through the function parameters instead of constructed by the function. 

(picture 3.) 

 
 

 
 
Picture 3. Dependency injection solution where connection is passed through 

the parameters 

 

Both solutions are easy to use and there is no significant difference between 

them from the developer perspective. Although, as demonstrated earlier data-

base connection creation inside each function leads to code duplication, and if 

the database needs to be change to something else developers would need to 

remember to change each location. The replication increases the cost of 

changes and is an avenue for bugs. 

  



13 

The application can be run with ‘cargo run’. After each run the number of entries 

in each database increases by three. On the initial run the expected number of 

entries should be three and on a second run six and so on. (picture 4 & 5) 

 
 

 
 
Picture 4. Using implementations in the main file 

 
 
Picture 5. Results of ‘cargo run’ on the first execution. 

 



14 

When testing both the injection solution and naïve solution, both produce cor-

rect results on the first test run of the application. After the first test run the test 

will fail for the naïve solution as it uses the existing file on the system. The bro-

ken test could be fixed with added logic to the test. Counting the number of 

rows in the database initially and the subtracting the new count after insertions. 

Although this might work, over time it would create more and more entries to the 

database. Dependency injection solves this problem with less complexity. (pic-

ture 6.) 

 
 

 
 
Picture 6. Simple test for both solutions 

 

 

3.3 Test automation 

 

Testing is an important part of continuous integration. Continuous integration 

ensures that the code in the mainline branch of the repository is ready to be 

built and delivered if needed. Changes should be made incrementally, and each 



15 

change is analysed and tested before it is integrated to the mainline. Automat-

ing the integration process helps to free up time of developers increasing 

productivity. (GitLab 2023.) 

 

Developers can create automated steps that can be run before they commit 

changes with pre-commit hooks. Pre-commit hooks will execute before a com-

mit and can do any kind of validation necessary. Common validation steps are 

running tests, ensuring code style is consistent with linters and validating that 

documentation is up to date. (Chacon & Straub 2014, chapter 8.3.) 

 

Although git pre-commit hooks can run all the necessary validation steps, a con-

tinuous integration pipeline should still exist. Pre-commit hooks are easy to skip 

if needed. Also, pre-commit hooks need to be installed to the contributors’ local 

copy of the repository. Pre-commit hooks are an effective way to prevent devel-

opers from creating accidental bad commits but are not a reliable in ensuring 

the mainline branch remains build ready. 

 

A useful strategy in software development is to automatically test or run the ap-

plication after each file change, in some cases the application can be reloaded 

in place retaining the previous state (Shore 2021). Being able to test applica-

tions after each file changes allows for a fast feedback cycle which is good for 

test driven development. 

 

In test driven development tests are created before implementation, the tests 

help to drive the design. Initially this test should fail as the implementation is 

missing. New code is written to satisfy the created test condition until the test is 

no longer failing. After the test is working new tests can be added to drive the 

requirements forward or the existing code refactored to improve the implemen-

tation. (Codecademy 2023.) 

 

  



16 

4 Application development 

 

 

To experiment and evaluate software testing concepts a personal finance 

tracker was developed. The application was meant to store data only locally 

with no external service connections. Also, the application should offer a graph-

ical user interface and should be a standalone application that does not run in 

the browser. 

 

For features the application needed to be able to list and search added transac-

tions. It needed a way to create categories based on user input. The created 

categories could be used to tag a transaction with and later be used for filtering. 

A transaction could be categorized under no category, or any number of catego-

ries. The data could be also used to create simple aggregations like transac-

tions in a month and transactions grouped by categories. 

 

Outside of these functional and non-functional requirements it was important to 

also be able to demonstrate testing within the application development. Security 

and future expandability were not considered during the project but should be 

considerations in real world applications. 

 

The final application can be found in GitHub in the following URL 

https://github.com/Zerkath/finance-app. 

 

 

4.1 Prototyping 

 

 

4.1.1 Technology selection 

 

To avoid committing to poorly suited tools for the application different frame-

works and languages were tried and experimented with. During experimentation 

test driven development was not used instead development speed was priori-

tized. Quality was a non-issue for the prototype as the application would be 

https://github.com/Zerkath/finance-app


17 

thrown away after the prototyping phase. The prototype application can be 

found in GitHub in the following URL https://github.com/Zerkath/finance-app-

prototype. 

 

The approach used during the prototyping phase was like the spike solution 

methodology described by Shore (2021). Spike solution can be used when 

thinking ahead can be too difficult. The spike is used to figure out approaches to 

the problem. A spike should be short taking less than a day. During a spike 

TDD is not used and the built solution is discarded. Later it is rebuilt using TDD. 

(Shore 2021 355, 384.) 

 

Initially Fyne a native application toolkit in Go was tried to develop the applica-

tion but was dropped due to unfamiliarity with the ecosystem. Other options 

were investigated namely Electron and Tauri. Both Electron and Tauri allow the 

use of web technologies to develop standalone desktop applications. Tauri was 

chosen as Tauri can build smaller and more efficient applications when com-

pared to Electron. (Tauri 2023). Tauri uses the Rust language for the backend, 

a performance-oriented programming language. 

 

For local data storage SQLite was chosen because the data for the application 

was going to be highly structured. SQLite is highly suited for the requirements of 

the application as SQLite is an embedded SQL database engine. SQLite reads 

and writes data directly to the disc without requiring a separate process. 

 

 

4.1.2 Implementation 

 

Prototyping was important to verify that everything could be implemented with 

the selected technologies. Initial worries of the technologies were the capability 

of testing and limitations of SQLite. SQLite does not have as many advanced 

features as Postgres or MySQL and could potentially limit the design. 

 

https://github.com/Zerkath/finance-app-prototype
https://github.com/Zerkath/finance-app-prototype


18 

At the beginning the database design schema was implemented as storing and 

querying data was a core requirement. Once the database was verified to be 

capable of meeting the design goals other problem areas could be examined. 

Testing backend functionality was simple as the SQLite adaptor rusqlite in Rust 

allowed databases to be created in-memory. These in-memory databases 

would allow for easy experimentation of queries within tests. Creating coverage 

reports could be achieved with a dependency to tarpaulin a code coverage re-

port tool. 

 

The frontend portion of the application required more changes to configuration 

and additional dependencies when compared to the backend. The required de-

pendencies were Vitest a testing framework and testing-library a tool to test web 

pages. Both dependencies were easy to install with the help of their documenta-

tion. 

 

The prototype showed that everything could be achieved with the chosen tech-

nologies. Prototyping also helped to clarify the design, for instance the initial 

plan would have not been able to track income alongside expenses. 

 

 

4.2 Development tooling 

 

For the project setting up good tooling was important in enabling effective devel-

opment. The tooling would need to do a few basic actions like re-testing the 

code after each file change and updating the graphical user interface on 

changes if running the application in development mode. Continuous integration 

pipeline was not setup for the project. Due to the lack of a CI, a pre-commit 

hook was an important addition to the project.  

 

Tauri already had support for reloading the UI after file changes. Tauri achieved 

this with the use of Vite and something else for backend code. After changes 

are made to the backend code, the project is rebuilt, and the application is re-

started which takes longer than changes on the frontend. 

 



19 

To minimize the friction when developing the backend, it was also important to 

be able to only test and run the backend portion of the application. With the ad-

dition of cargo-watch to the Rust dependencies, any Cargo command could be 

rerun on file changes. Cargo is the package manager for Rust, it is also the 

build tool and test runner. 

 

To allow for the development of the application without starting the application 

fully. A way to run both cargo and npm commands in parallel was needed. The 

npm package ‘concurrently’ allowed for parallel execution of cargo and npm if 

the processes were started from npm. Any cargo command could be run from 

npm with the simple addition of ‘”cargo”: “cd src-tauri; cargo”’. With the com-

mand added cargo could be run with just ‘npm run cargo’. The scripts in the 

npm package.json could be combined together to achieve the wanted result. 

(picture 7.) 

 
 

 
 
Picture 7. Custom npm scripts for running tests 

  



20 

 

Finally to run tests and compilation before each commit a simple git pre-commit 

hook could be created and included in ‘.git/hooks’ folder. Pre-commit hooks are 

run before each commit, and the commit will fail if the script returns a non-zero 

status code. Checking formatting is faster than running tests and should be per-

formed before to avoid wasting time. 

 
 

 
 
Picture 8. Pre-commit hook written in bash running npm commands 

 

These tools were enough to start the development of the application. Shore 

(2021) recommends against relying on an integrated development environment 

as it is not as flexible and migration to a script is inevitable (Shore 2021, 337). 

 

 

4.3 Test driven development 

 

The backend of the application was developed with test driven development. In 

the following section TDD will be demonstrated step by step the process of im-

plementing categories for the application.  

 

When developing the previously setup command ‘npm run cargo 

test:backend:watch’ could be run and it would run all tests after each change. 

  



21 

At the beginning no tests were implemented for the application. To start out with 

a test was created to verify that tests could fail, and everything was setup cor-

rectly. The test would be run and throw and error. (picture 9.) 

 
 

 
 
Picture 9. First test for backend 

 
Once the test was failing as expected, real tests could be made. Although first 

some setting up was still required to be able to test database queries. In the 

previous section the topic of dependency injection was already covered, and it 

could be utilized in a comparable way for the application. For now, also updat-

ing the test to use a newly created function that should handle the action of in-

serting a row to the database in the future. The created function can be set to 

throw for until the next step. (picture 10.) 

 
 

 
 
Picture 10. Database creation in memory and insertion test 
  



22 

As a final setup step a database table is needed before inserting can be tested. 

The table will receive some constraints and rules. For example, the id and label 

are unique. The database is responsible for id creation. (picture 11.) 

 
 

 
 
Picture 11. Table creation statement 
 

The previously created insertion method could be updated to insert a value into 

the database. After the change tests are passing, but the implementation is 

missing some validation and restrictions. The validation requirements can be 

added to the test later, but there are not enough methods to create assertions 

yet. (picture 12.) 

 
 

 
 
Picture 12. Inserting a label into categories table 

  



23 

As part of the requirements for the applications API a method to query all labels 

was needed. The method would also be helpful in testing the implementations 

for categories. Allowing for simple assertions after insertions for instance. (pic-

ture 13.) 

 
 

 
 
Picture 13. Reading categories and testing empty and single category listing 

 

The category insertions should be idempotent, as duplicate entries are not de-

sired. Idempotency for insertions in this instance makes the method also resili-

ent to concurrent requests. Although the application won’t be handling concur-

rency and won’t benefit from the resiliency. The application does benefit from 

preventing potential confusion when using the application. Duplicate entries 

might cause accidental actions on incorrect categories. For example, user re-

moving a duplicate category, but it turned out to be the original. (picture 14.) 

  



24 

The idempotency test should fail as the insertion method does not normalize the 

input. Capitalization in the label string is not supported as it could lead to incon-

sistent views on the frontend. The string should be formatted by the frontend if 

needed. (picture 14.) 

 
 

 
 
Picture 14. Idempotency test 

 

The lower case idempotency test passed, but the varying casing test did not. 

Both tests should return the same result as casing should not be stored in the 

database for uniformity. The insertion statement can be updated to convert the 

given string value to lowercase. This means that the database will be only stor-

ing lowercase values and the idempotency issue will be resolved. After convert-

ing the value to lowercase the tests are passing. (picture 15.)  

 
 

 
 
Picture 15. Updating insert method to normalize it before storage 



25 

Another normalization that should be done is the removal of unnecessary 

whitespace. In this case surrounding whitespace characters are not desired as 

they can have the same effect as a simple duplicate string. The UI might not be 

capable of displaying the difference between a string with whitespace and could 

lead to similar confusion as regular duplicate entries. Also, the normalization 

should not affect whitespace between words. (picture 16.) 

 
 

 
 
Picture 16. Testing varying surrounding whitespace cases 

 

To remove surrounding whitespace the operation trim could be used. It only af-

fects surrounding whitespace and does not remove the whitespace within the 

string. (picture 16.) 

 
 

 
 
Picture 16. Updating the insertion method to trim whitespace surrounding the in-

put 

 

This concludes the step-by-step example of TDD. The methodology was used 

when constructing the rest of the backend functionality. This established a code 

base where each method was tested, and breaking changes were fast to dis-

cover. In some instances, creating tests felt unnecessary, but it is not 



26 

immediately apparent if the test helps to prevent some bad changes in the fu-

ture. Most things should be tested for this reason. As estimating if a test is nec-

essary or not is feasible to do reliably and it is better to go on the side of cau-

tion. 

 

 

4.4 Preventing regressions 

 

During application development the listing view only had support for basic pagi-

nation with no filtering capability. The functionality to search and filter by cate-

gory was added later. Previously created tests helped to prevent a few regres-

sions from happening. 

 

At the beginning the function signature only the following parameters 

‘page_size’ and ‘current_page’. The function also needed the addition of the fol-

lowing parameters ‘search’ and ‘selected_categories’. The search was a string, 

and the category was a list of category ids. When both were left empty, the be-

haviour should not change. Tests required the new function parameters to be 

added manually as empty. 

 

Adding the parameters to the function did not break existing functionality. Add-

ing search was simple. Search needed to find either name or description in a 

row to return it. This could be done with the SQL keyword LIKE. The named pa-

rameter search was trimmed of surrounding whitespace and wrapped in % to 

match within a string value. So given a search of ‘t’ if the database contains a 

row where name or description contains ‘t’ anywhere the value would be re-

turned. For example, ‘rent’, ‘therapy’ and ‘taxi’ are valid returns. In SQLite the 

LIKE operator is case-insensitive and will return correctly regardless of if the 

value stored is in upper- or lowercase. (picture 17.) 

 
 

 
 
Picture 17. Selection statement for searches 



27 

The selection statement for the category was more complex. Testing helped to 

prevent a regression in this instance. As previously stated, the category list 

should return everything when left empty. The initial SQLite query selection 

would use an id IN statement in a subquery to select the correct elements. The 

subquery would select from ‘transaction_category’ table, to get all transaction 

ids where category_id was within the named parameter ids. (picture 18.) 

 
 

 
 
Picture 18. Initial selection statement 

 
This selection statement worked correctly in cases where a list of ids was given, 

but in cases where the list was empty a regression happened. The selection 

would not return entries. Due to the extensive testing in the area with empty ar-

rays for ids parameter, the issue was easy identify and resolve with an adjusted 

selection statement. If the length of the given list was empty the subquery would 

be skipped. (picture 19.) 

 
 

 
 
Picture 19. Improved selection with no regressions 

  



28 

4.5 Testing frontend components 

 

In the application frontend components did not have a lot of logic to test. Also, 

instead of using TDD when developing the frontend, the development server 

was used. The development server provided a fast feedback loop when making 

changes. 

 

The most complex component got tested with Vitest and testing-library. The 

component was responsible for allowing the editing and removal of a category. 

Initial state of the component would display two buttons and a disabled text 

field. One of the buttons would enable editing, the other would delete the entry. 

(picture 20.) 

 
 

 
 
Picture 20. Asserting initial state of the component 

  



29 

If editing was chosen the text field would become editable, edit button would be-

come cancel and delete would become save. When editing an entry in the text 

field on cancel should revert to the initial value. Saving would store the current 

value and change the state back to non-editing. (picture 21.) 

 
 

 
 
Picture 21. Asserting behaviour of edit and cancel 

 

Testing components in the previously described way is heavily coupled to im-

plementation details. The tests are fragile and could break with minor changes 

to the components, even though the functionality would remain the same. For 

this reason, end-to-end tests would potentially be a better fit for frontend testing. 

Also, components could be tested for accessibility as assertions for those are 

more resilient to changes. 

  



30 

5 Conclusions 

 

 

5.1 Results 

 

The goal of this thesis was to evaluate the effectiveness of testing in software 

development. What are some of the main benefits of testing, how can testing be 

done more effectively, and how to apply testing in a software project? 

 

According to the literature reviewed, software testing has an overall positive im-

pact in software development. It is useful in preventing defects, although testing 

is not a guarantee that errors will not happen. Application development is ini-

tially slowed by testing, but testing might have a stabilizing effect on develop-

ment speed over the long term. Reducing the time, it takes to make changes to 

software later in a project. 

 

Before adopting testing into a project, teams should evaluate whether their pri-

orities overlap with testing benefits. If a team is working on a software solution 

that might not have a market, the priority on developing the application quickly 

might be more important than its maintainability and quality. If a product fails, it 

doesn’t need to be maintained. For proven products testing is more important. 

 

Testing solutions where cost of failure is high is important. Software that must 

work with high-risk industries like medical, financial and robotics industries could 

benefit from testing more as a risk mitigation strategy. 

 

Test driven development is widely advocated for its benefits. Based on the re-

viewed literature, TDD can have a substantial impact on software development 

in a positive way. TDD was used in this thesis to build a standalone application 

and many positive benefits could already be observed. TDD helped to prevent 

regressions during the project, and it also made it easier to develop features, but 

it did increase the workload due the addition of needing to write tests.  

  



31 

5.2 Limitations 

 

The software project was not long lived enough to make conclusive statements 

on the effectiveness of TDD over the long-term. A longer software project would 

be required to evaluate the effectiveness of testing more thoroughly. Although 

regression prevention and ease the of refactoring with tests showed that long 

term benefits are likely. 

 

The project also had less focus on testing the frontend portion of the application. 

Strategies for effective UI testing were not covered enough, and the paper might 

have limited usefulness to frontend developers. 

 

 

5.3 Personal development of the author 

 

The paper advanced the knowledge of the author in many ways. It helped to in-

troduce the author to topics outside of their current work role. The author did not 

have previous experience in using test driven development to develop applica-

tions, mostly creating tests after implementation was in place. 

 

The application development project also exposed the author to technologies 

they had not used previously but could be helpful in their career. Namely the Rust 

language which could potentially be helpful in their current role. Also, during pro-

ject, the author got to work with more fundamental concepts like planning and 

creating SQL queries without the help of object relational mappings. 

 

The author has already started to adapt their behaviour in developing software. 

Creating a suit of tests when implementing new features to applications. Also 

using testing to benchmark solutions to verify a change improves application 

speed instead of working off assumptions. 

  



32 

5.4 Future research 

 

In this paper some topics were covered only in brief detail. Some of the topics 

could be covered in further detail, namely test-driven development effects in 

longer projects and frontend testing. 

 

Accessibility testing is an important topic that was not covered by this paper and 

could be researched in the future. The topic of accessibility is broad and could 

be helpful in both web development and game development. Accessibility al-

lows more people to engage with built software solutions.  

 

Benchmarking is an important topic as more efficient software can help to can 

reduce the amount of energy needed to provide services, but more importantly 

efficient software could allow older devices to remain relevant longer, in turn 

helping to reduce e-waste. 

  



33 

References 

 

 

Apgar, C. Prentice, R. 2022. Therac-25. https://ethicsun-
wrapped.utexas.edu/wp-content/uploads/2022/10/Therac-25-1.pdf. 
8.12.2023  

AWS. 2023. What is Continuous Integration?. https://aws.ama-
zon.com/devops/continuous-integration/. 21.11.2023 

Causevic, A. Sundmark, D. Punnekkat, S. 2011. Factors Limiting Industrial 
Adoption of Test Driven Development: A Systematic Review. Ger-
many. Fourth IEEE International Conference on Software Testing, 
Verification and Validation. 

Codecademy. 2023. Red, Green, Refactor. https://www.codecademy.com/arti-
cle/tdd-red-green-refactor. 22.11.2023  

Chacon, S & Straub, B. 2014. Pro Git 2nd edition. https://git-
scm.com/book/en/v2. 22.11.2023 

Charette, R. 2014. Nissan Recalls Nearly 1 million Cars for Air Bag Software 
Fix. https://spectrum.ieee.org/nissan-recalls-nearly-1-million-cars-for-
airbag-software-fix. 22.11.2023 

Felderer, M. Haisjackl, C. Pekar, V & Breu, R. 2014. A Risk Assessment Frame-
work for Software Testing. https://www.researchgate.net/publica-
tion/282182753_A_Risk_Assessment_Framework_for_Soft-
ware_Testing. 23.11.2023  

Fowler, M. 2018a. IntegrationTest. https://martinfowler.com/bliki/Integration-
Test.html. 15.11.2023 

Fowler, M. 2018b. Refactoring: Improving the Design of Existing Code (2nd Edi-
tion). USA. Addison-Wesley. 8.5.2023. 

Fowler, M. 2012. TestCoverage. https://martinfowler.com/bliki/TestCover-
age.html. 15.11.2023 

Fowler, M. 2014. UnitTest. https://martinfowler.com/bliki/UnitTest.html. 
15.11.2023 

Gallo, A. 2017. A Refresher on A/B testing. https://hbr.org/2017/06/a-refresher-
on-ab-testing. 15.11.2023 

GitLab. 2023. What is CI/CD?. https://about.gitlab.com/topics/ci-cd/. 22.11.2023  
Nagappan, N. Bhat, T. Maximilien, M. Williams, L. 2008. Realizing the quality of 

improvement through test driven development: results and experi-
ences of four industrial teams. https://urly.fi/3jXb. 14.11.2023 

Nassri, A. 2019. Release with confidence: How testing and CI/CD can keep 
bugs out of production. https://cloud.google.com/blog/products/appli-
cation-development/release-with-confidence-how-testing-and-cicd-
can-keep-bugs-out-of-production. 15.11.2023 

Porter, J. 2023. Youtube is making it easier for creators to choose that perfect 
thumbnail. https://www.theverge.com/2023/6/23/23771045/youtube-
test-and-compare-a-b-testing-thumbnails-feature. 15.11.2023 

Portman, D. 2020. Are you an Elite DevOps performer? Find out with the Four 
Keys Project. https://cloud.google.com/blog/products/devops-
sre/using-the-four-keys-to-measure-your-devops-performance. 
15.11.2023 

https://ethicsunwrapped.utexas.edu/wp-content/uploads/2022/10/Therac-25-1.pdf
https://ethicsunwrapped.utexas.edu/wp-content/uploads/2022/10/Therac-25-1.pdf
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-integration/
https://www.codecademy.com/article/tdd-red-green-refactor
https://www.codecademy.com/article/tdd-red-green-refactor
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://spectrum.ieee.org/nissan-recalls-nearly-1-million-cars-for-airbag-software-fix.%2022.11.2023
https://spectrum.ieee.org/nissan-recalls-nearly-1-million-cars-for-airbag-software-fix.%2022.11.2023
https://www.researchgate.net/publication/282182753_A_Risk_Assessment_Framework_for_Software_Testing
https://www.researchgate.net/publication/282182753_A_Risk_Assessment_Framework_for_Software_Testing
https://www.researchgate.net/publication/282182753_A_Risk_Assessment_Framework_for_Software_Testing
https://martinfowler.com/bliki/IntegrationTest.html
https://martinfowler.com/bliki/IntegrationTest.html
https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/bliki/UnitTest.html
https://about.gitlab.com/topics/ci-cd/
https://urly.fi/3jXb
https://cloud.google.com/blog/products/application-development/release-with-confidence-how-testing-and-cicd-can-keep-bugs-out-of-production
https://cloud.google.com/blog/products/application-development/release-with-confidence-how-testing-and-cicd-can-keep-bugs-out-of-production
https://cloud.google.com/blog/products/application-development/release-with-confidence-how-testing-and-cicd-can-keep-bugs-out-of-production
https://www.theverge.com/2023/6/23/23771045/youtube-test-and-compare-a-b-testing-thumbnails-feature
https://www.theverge.com/2023/6/23/23771045/youtube-test-and-compare-a-b-testing-thumbnails-feature
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance


34 

Reese, J. 2022. Unit testing best practices with .NET Core and .NET Standard. 
https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-
best-practices. 16.11.2023 

Shore, J. 2021. The Art of Agile Development Second Edition. USA. O’Reilly 
Media 

Smith, A. 2023. Architecting Modern Web Applications with ASP.NET Core and 
Microsoft Azure. https://urly.fi/3jKV. 16.11.2023 

Tauri. 2023. Benchmarks. https://tauri.app/v1/references/benchmarks. 
26.11.2023  

Tricentis. 2023a. Performance testing, best practices, metrics & more. 
https://www.tricentis.com/learn/performance-testing. 14.11.2023 

Tricentis. 2023b. Software testing. https://www.tricentis.com/learn/software-test-
ing. 15.11.2023  

Urban, S. Sreenivasan, R. Kannan, V. 2016. It’s All A/Bout Testing: The Netflix 
Experimentation Platform. https://netflixtechblog.com/its-all-a-bout-
testing-the-netflix-experimentation-platform-4e1ca458c15. 
15.11.2023 

Wacker, M. 2015. Just Say no More End-to-End Tests. https://testing.googleb-
log.com/2015/04/just-say-no-to-more-end-to-end-tests.html. 
15.11.2023 

https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices
https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices
https://urly.fi/3jKV.%2016.11.2023
https://tauri.app/v1/references/benchmarks
https://www.tricentis.com/learn/performance-testing
https://netflixtechblog.com/its-all-a-bout-testing-the-netflix-experimentation-platform-4e1ca458c15
https://netflixtechblog.com/its-all-a-bout-testing-the-netflix-experimentation-platform-4e1ca458c15
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

	1 Introduction
	2 Testing
	2.1 Reducing defects
	2.2 Effects on productivity
	2.3 Testing approaches
	2.4 Non-functional testing

	3 Effective Testing
	3.1 Test metrics
	3.2 Software design
	3.3 Test automation

	4 Application development
	4.1 Prototyping
	4.1.1 Technology selection
	4.1.2 Implementation

	4.2 Development tooling
	4.3 Test driven development
	4.4 Preventing regressions
	4.5 Testing frontend components

	5 Conclusions
	5.1 Results
	5.2 Limitations
	5.3 Personal development of the author
	5.4 Future research

	References

