

Implementation of a Data Acquisition Tool

for Sensor Measurements

Christoffer Nylund

Degree Thesis for Master of Engineering

Degree Programme in Automation Technology

Vaasa, 2023

DEGREE THESIS

Author: Christoffer Nylund

Degree Programme and place of study: Automation Technology, Vaasa

Specialization: Intelligent systems

Supervisor: Jan Berglund

Title: Implementation of a Data Acquisition Tool for Sensor Measurements

Date: 26.11.2023 Number of pages: 95 Appendices: IX

Abstract

It has become more common with the use of sensors to collect different types of data from the

environment and motion in connection with product development and research. This thesis work

was done for the process control lab at Novia UAS, which wanted a microcontroller that collects

data and sends it wirelessly to a graphical user interface that the students could use for visualizing

gauges and graphs and use that data for later processing.

The work has been divided into different programming languages for different parts of the data

transmission. Programming languages JavaScript, CSS, and HTML are used for developing a

graphical user interface. The microcontroller board is programmed in the programming language C

/ C++. A single-board computer acts as an intermediate communication between the

microcontroller and the graphical user interface, where a programming tool based on JavaScript

named Node-Red is used. The wireless communication is based on Bluetooth Low Energy and the

internet communication uses a standard-based messaging protocol named MQTT. The work also

includes planning and 3D construction of a protective box for the microcontroller with the use of a

software named Rhinoceros.

The result of this thesis has made it possible for the students at Novia to easily inspect and collect

data from environment sensors and motion sensors and then decide to download it for later

processing.

Language: English

Key Words: Arduino, Raspberry Pi, Node-Red, Internet of Things, 3D Drawing

EXAMENSARBETE

Författare: Christoffer Nylund

Utbildning och ort: Automationsteknik, Vasa

Inriktning: Intelligenta system

Handledare: Jan Berglund

Titel: Implementering av datainsamlingsverktyg för sensormätningar

Datum 26.11.2023 Sidantal 95 Bilagor IX

Abstrakt

Det har blivit allt vanligare att med sensorer samla in olika typer av data om omgivningen och

rörelse i samband med bland annat produktutveckling och forskning. Det här examensarbetet är

gjort för yrkeshögskolan Novias processkontrollslaboratorium. Högskolan behövde en

mikrokontroll som samlar upp data och skickar det trådlöst till ett användargränssnitt där

studerande kan se data i mätare och grafer. Datat kan också sparas för att senare användas i olika

typer av analyser.

Inom examensarbetet används det i olika skeden av dataöverföringen olika programspråk.

Programmeringsspråken som används för det grafiska användargränssnittet är JavaScript, CSS och

HTML. I mikrokontrollerkortet används C / C++ programspråk. En enkelkortsdator används som en

mellanliggande kommunikatör mellan mikrokontrollen och användargränssnittet.

Enkelkortsdatorn använder sig av ett programmeringsverktyg kallat Node-Red som baserar sig på

JavaScript. Den trådlösa kommunikationen sköts med hjälp av Bluetooth på låg energi. Sedan

skickas data över från ett standardiserat meddelandeprotokoll som heter MQTT. Utöver

programmeringen består slutarbetet också av en skyddande låda för mikrokontrollen. Den

skyddande lådan har skapats som en 3d-konstruktion i ett program som heter Rhinoceros.

Det här slutarbetet har gjort det möjligt för studerande vid yrkeshögskolan Novia att ta del av,

ladda ner och senare processa data från olika typer av omgivnings- och rörelsesensorer.

Språk: Engelska

Nyckelord: Arduino, Raspberry Pi, Node-Red, Sakernas Internet, 3D ritning

OPINNÄYTETYÖ

Tekijä: Christoffer Nylund

Koulutus ja paikkakunta: Automaatiotekniikka, Vaasa

Suuntautumisvaihtoehto: Systeemiälylliset järjestelmät

Ohjaaja: Jan Berglund

Nimike: Datankeruutyökalun hyödyntäminen sensorimittauksissa

Päivämäärä 26.11.2023 Sivumäärä 95 Liitteet IX

Tiivistelmä

Tuotekehityksessä ja tutkimuksessa erilaisten sensoreiden hyödyntäminen ympäristön ja liikkeen

datankeruussa on yleistynyt. Tämä opinnäytetyö on tehty Novian prosessikehityslaboratoriolle.

Korkeakoulu tarvitsi opiskelijoita varten mikrokontrollerin, joka kerää dataa ja lähettää tämän

langattomasti käyttöliittymään. Tämän käyttöliittymän avulla opiskelijat voivat nähdä kerätyn

datan erilaisissa mittareissa ja kaavioissa. Data voidaan tätä kautta myös tallentaa myöhempää

käyttöä varten.

Opinnäytetyön tiedonsiirron eri vaiheissa hyödynnetään eri koodikieliä. Graafisessa

käyttöliittymässä hyödynnetään JavaScriptiä, CSS:ää ja HTML:ää. Mikrokontrollerin kortissa taas

hyödynnetään C / C++ ohjelmakieltä. Yksilevyinen tietokone hoitaa tiedonvälityksen

mikrokontrollerin ja käyttöliittymän välillä. Tiedonvälityksessä hyödynnetään Node-Red

ohjelmointityökalua, joka perustuu JavaScriptiin ja tiedonvälitys toimii pienellä energialla toimivan

Bluetoohtin sekä MQTT-nimisen viestintäprotokollan avulla.

Ohjelmointiosuuden lisäksi myös 3d-tulostettu laatikko on osa opinnäytetyötä. Laatikko on osana

opinnäytetyötä suunniteltu suojamaan mikrokontrolleria. Laatikko on suunniteltu Rhinoceros-

nimisessä ohjelmassa.

Tämä opinnäytetyö on mahdollistanut ammattikorkeakoulu Novian opiskelijoille ympäristö- ja

liikesensoreista tulevan datan lataamisen ja tallentamisen myöhempää käsittelyä varten.

Kieli: Englanti

Avainsanat: Arduino, Raspberry Pi, Node-Red, Esineiden internet, 3D piirustus

LIST OF ABBREVIATIONS
AR Augment Reality

AI Artificial Intelligence

API Application Programming Interface

BSEC Bosch Software Environmental Cluster

BR Basic Rate

BLE Bluetooth Low Energy

bVOC Biogenic Volatile Organic Compounds

CAD Computer-Aided Design

DLE Data Length Extension

EDR Enhanced Data Rate

GNSS Global Navigation Satellite System

IDE Integrated development environment

IMU Inertial Measurement Unit

IoT Internet of Things

LWT Last Will and Testament

MR Mixed Reality

MQTT Message Queuing Telemetry Transport

NaN Not a number

npm Node Package Manager

NURBS Non-Uniform Rational B-Splines

ODR Output Data Rate

OS Operation System

OSI Open Systems Interconnection

RPI Raspberry Pi

SBC Single Board Computer

UAS University of Applied Sciences

VDI Virtual Desktop Infrastructure

VOCs Volatile Organic Compounds

VR Virtual Reality

VSCs Volatile Sulfur Compounds

QoS Quality of Service

Table of Content
1 Introduction ... 1

1.1 Novia University of Applied Sciences ... 2

1.1.1 Technobothnia .. 3

1.2 Internet of Things ... 4

2 Hardware ... 5

2.1 Arduino ... 5

2.1.1 Nicla Sense ME .. 6

2.2 Raspberry Pi .. 14

3 Software .. 16

3.1 Arduino IDE ... 16

3.2 Raspberry Pi OS ... 18

3.3 Rhinoceros ... 19

3.4 UltiMaker Cura ... 23

4 Communication protocols .. 25

4.1 Bluetooth .. 26

4.2 Message Queuing Telemetry Transport ... 32

5 Programming & markup languages/tool ... 34

5.1 C / C++ ... 34

5.2 JavaScript .. 37

5.3 HyperText Markup Language ... 38

5.4 Cascading Style Sheets .. 39

5.5 Node-Red .. 39

5.5.1 Node-Red editor .. 40

5.5.2 Nodes ... 41

6 Implementation ... 43

6.1 Implementation of Nicla Sense ME ... 43

6.2 Implementation of Raspberry Pi ... 49

6.2.1 Installation of Raspberry Pi OS ... 49

6.2.2 Monitor Raspberry Pi from VNC Viewer ... 50

6.2.3 Installing MQTT broker on RPI ... 51

6.2.4 Install and configure BlueZ ... 55

6.2.5 Installing and implementation of Node-Red on RPI 57

6.3 Implementation of a graphical user interface .. 68

6.3.1 HTML (Hyper Text Markup Language) .. 69

6.3.2 CSS (Cascading Style Sheet) .. 71

6.3.3 JS (JavaScript)... 73

6.4 Construction of Nicla Sense protection box .. 78

6.4.1 3D drawing of protection box .. 78

6.4.2 3D printing of protection box .. 81

7 Discussion and results ... 83

7.1 Further research .. 88

7.2 Acknowledgments ... 89

8 References .. 90

1

1 Introduction

This thesis work is made for Novia University of Applied Sciences, more accurately the

process control lab in Technobothnia. The developed tool is a measuring equipment, where

a microcontroller named Nicla Sense ME collects data and communicates wirelessly with a

Raspberry Pi, which in turn communicates with a graphical user interface.

Figure 1. View of sensor data acquisition tool communication.

The thesis is delimited to the following tasks:

 Construct a 3D-printed protection box for a Nicla Sense ME board including a

battery.

 Create and develop a graphical user interface that will read and visualize real-time

sensor data from the Nicla Sense microcontroller:

- Sensor data included: Accelerometer, Gyroscope, Temperature, Humidity,

Pressure, Gas and Co2.

2

- Possibility to select sensors that should be logged and set the sampling time

for the environment sensors and motion sensors.

- Possibility to save the logged sensor data measurements to CSV file to the

local computer.

 Set up a Bluetooth and internet communication bridge module between the

microcontroller and the graphical user interface with the use of a single-board

computer.

 Use an MQTT broker

 Nicla Sense led indicator (connected or disconnected).

 Manual with instructions for usage.

After the thesis work is completed, the students in the process control lab will have a device

that can be connected to and from a webpage. The webpage includes a graphical user

interface to visualize and inspect real-time sensor data with graphs and gauges from

different experiments. It is also possible to collect and save the data from the graphical user

interface to a local computer for further processing. The students will also be able to

control the Nicla Sense from the graphical user interface.

The tool makes it possible for students to read and process the data outside the lab, for

example at home or in school.

1.1 Novia University of Applied Sciences

Novia University of Applied Sciences is Finland’s largest Swedish-speaking UAS where the

area of operations can be found along the Finnish West Coast. The University of Applied

Sciences has five campuses: Vaasa Campus, Turku Campus, Aboa Mare (Turku), Raasepori

Campus, and Campus Allegro (Pietarsaari) (A High-Class and Dynamic University of Applied

Sciences, u.d.).

To mention Subic Bay in the Philippines, Novia UAS owns stock in Giga Mare Inc., a

Philippine company that provides education for the maritime industry. The ownership is

seen as a tactical way to advance globalization and strengthen its position in Asia (A High-

Class and Dynamic University of Applied Sciences, u.d.).

3

At Novia University of Applied Sciences, there are about 4800 students and the workforce

consists of approximately 320 people. There are five departments in Novia: Technology and

Shipping, Health and Welfare, Business Administration, Art and Culture, and Bioeconomy

(A High-Class and Dynamic University of Applied Sciences, u.d.).

Novia offers exclusive education in the mentioned subjects above where it is possible to

choose a bachelor’s degree or master’s degree program, continuing education studies,

open UAS studies, or open path studies (A High-Class and Dynamic University of Applied

Sciences, u.d.).

Figure 2. Novia UAS logo (Product logos, u.d.).

1.1.1 Technobothnia

Technobothnia is a laboratory in Palosaari Campus in Vaasa that was founded in the year

1996 and is co-owned by three universities: Novia University of Applied Sciences, VAMK

University of Applied Sciences, and The University of Vaasa (Technical education with a

royal lineage, u.d.).

At Technobothnia students have the opportunity to get practical experiences in

engineering and to improve collaboration between the institutions and serve as a

platform for improved collaboration between the Vaasa region's technical sector and

technical education (Technical education with a royal lineage, u.d.).

Technobothnia strives to form a basis for technology-related research and education of

the highest class, play an intermediary role for collaboration between businesses,

organizations, and other research institutes and technology institutes, and provide

teaching, measuring, testing, research, product development, and other services to the

public/private sectors (Technical education with a royal lineage, u.d.).

4

Figure 3. Technobothnia co-owned schools, VAMK, Vaasan yliopisto & Novia (Technobothnia, u.d.).

1.2 Internet of Things

The Internet of Things also known as IoT could be described as a system of devices that are

related to each other and connected to a network to transfer data information without

necessarily involving human-to-machine interaction. From other aspects, it is a set of tech

devices that can interact with one another. It could be used for example smart homes and

smart factories (Science & Technology , 2019).

The devices of IoT are usually called smart devices due to the use of sensors and complex

analysis programs. The IoT devices use sensors to gather data, analyze the data, and

provide services to the user depending on user-defined criteria (Science & Technology ,

2019).

IoT devices can be connected to the internet directly from the device or be connected

through another device. Information sharing and user interaction take place across the

network. By adding software applications, the IoT establishes links and connections

between actual physical objects. With the use of IoT devices, users can get information or

manage devices from any location (Science & Technology , 2019).

Figure 4. Overview of the Internet of Things.

5

2 Hardware

This chapter includes information about the hardware that is used in the thesis work.

Chapter 2.1 introduces the Arduino board Nicla Sense ME and the different sensors.

Chapter 2.2 basic information about the Raspberry Pi and the hardware of version 4.

2.1 Arduino

An open-source electronics platform called Arduino is built on simple hardware and

software. The Arduino involves both a programmable microcontroller circuit board and

software that runs on a PC to write and upload code to the physical board. Sending a set

of commands to the Arduino board's microcontroller will instruct the board on what to do

depending on the code instructions uploaded to the board (About Arduino, n.d.).

There are already a bunch of Arduino boards developed but these differ from each other

in hardware components and functionalities. For example what kind of sensors are

included and if there are built-in Bluetooth or Wi-Fi. (About Arduino, n.d.).

Arduino is used by a worldwide community of developers such as students, hobbyists,

programmers, and experts where thousands of different projects have been created and

the experience between each other could be shared in the community (About Arduino,

n.d.).

The main idea with Arduino was from the beginning to have a device for fast prototyping

for students without a background in programming and electronics but after this was

found by a wider community the concept had changed to suit other needs and challenges

as it could offer simple 8-bit boards to products for IoT applications, wearables,

embedded environments, and more on (About Arduino, n.d.).

Figure 5. Arduino company logo (About Arduino, n.d.).

6

2.1.1 Nicla Sense ME

Nicla Sense ME is a small microcontroller developed by Arduino in September 2021, which

includes four different integrated sensors manufactured by Bosch Sensortec where

BHI260AP is a motion sensor with integrated AI, BME688 is a 4-in-1 gas sensor with AI and

integrated high linearity and high accuracy pressure, humidity, and temperature, BMP390

is a high-pressure sensor and BMM150 is a magnetometer sensor (Sensing and intelligence

at the edge become accessible to all, with Nicla Sense ME by Arduino Pro and Bosch

Sensortec, u.d.). Figure 6 demonstrates all the mentioned sensors and where they are

placed on the Nicla Sense microcontroller chip. ME in the name of Nicla Sense stands for

Motion and Environment (Nicla Sense ME, u.d.).

Figure 6. Arduino Nicla Sense ME with four Bosch Sensortec sensors (Arduino Nicla Sense ME, n.d.).

The Nicla Sense is a development board that requires ultra-low power consumption and

with its compact form and Bluetooth Low Energy communication, it can be used in many

cases for IoT (Nicla Sense ME, u.d.).

Features of the Nicla Sense Bluetooth specification can be seen in Table 1 and operating

conditions in Table 2.

7

Table 1. Features of Nicla Sense ME BLE.

Features Description

Bluetooth Module ANNA-B112

nRF52832 System-on-chip
64 MHz ARM Cortex-M4F microcontroller, 64 KB SRAM, 512 KB
Flash, RAM mapped FIFOs using EasyDMA, 2 x SPI, 2 x I2C, 12-
bit/200 ksps ADC, 2.400 – 2.4835 GHz Bluetooth (5.0 via cordio
stack, 4.2 via Arduino BLE)

Internal antenna

Internal 32 MHz oscillator

1.8 V Operating Voltage

(Nicla Sense ME, 2023).

Table 2. Recommended operating condition for Nicla Sense.

Symbol Description Min Type Max Unit

VIN Input voltage from VIN pad 3.5 5.0 5.5 V

VUSB Input voltage from USB connector 4.8 5.0 5.5 V

TOP Operating Temperature -40 25 85 °C

(Nicla Sense ME, 2023).

ANNA-B112 Bluetooth module works with BLE version 5.0 and it includes an internal

antenna that provides a communication range of up to 160 meters (ANNA-B112-00BU-

BLOX, 2021).

Arduino has performed a test by measuring the power consumption in standby mode, a

blink sketch, and when advertising with sensors polling. The sensors that were activated

during the test were the temperature sensor, accelerometer, and gyroscope which have

been configured at 1 Hz, 1 ms latency (Nicla Sense ME, 2023).

8

Table 3. Power consumption test performed by Arduino.

Description Typ Unit

Power consumption on standby 460 uA

Power consumption with blink sketch 960 uA

Power consumption advertising with sensor polling at 1 Hz 2.5 mA

(Nicla Sense ME, 2023).

Battery

Nicla Sense ME can be powered up by using a single-cell 3.7V Li-Po or Li-Ion battery and

there are two different ways to connect. The first option uses the header pins that can be

seen in Figure 7, the example illustrates Nicla Vision but the pin placements are identical

for Nicla Sense. “VBAT” is where the plus wire should be connected and “GND” is where

the minus wire should be connected. For some models of batteries, there can be a third

wire called NTC which is used to prevent batteries from being charged at temperatures

that are too high or too low (Connect a battery to Nicla Sense ME or Nicla Vision, 2022).

Figure 7. Connect the battery to header pins (Connect a battery to Nicla Sense ME or Nicla Vision, 2022).

The second option to connect a battery is by a connector, which can be found at the

bottom of the microchip. The connector is a shrouded header from JST of model “BM03B-

ACHSS-GAN-TF”, which is compatible with the ACHR-03V-S connector housing. The

positive terminal is connected to the header pin nearest to the USB connector and GND is

9

connected to the header pin farthest from the USB connector. If there is a NTC wire

available for the battery it should be connected to the middle header pin that can be seen

in Figure 8 (Connect a battery to Nicla Sense ME or Nicla Vision, 2022).

Figure 8. Connect the battery to the connector (Connect a battery to Nicla Sense ME or Nicla Vision,

2022).

BHI260AP (IMU smart sensor)

BHI260AP is an ultra-low power smart sensor developed by Bosch Sensortec. It has a

programmable 32-bit microcontroller that contains a 6-axis IMU that will give

accelerometer and gyroscope readings (16-bit 3-axis accelerometer + 16-bit 3-axis

gyroscope). The sensor also includes self-learning features and an event-driven software

framework designed for signal data processing and contains pre-installed sensor fusion

which hosts a programmable recognition system and other sensor data processing

software (BHI260AP - Ultra-low power, high performance, self-learning AI smart sensor

with integrated accelerometer and gyroscope, 2021).

This sensor also handles communication with other sensors on the Arduino Nicla Sense

ME board, the interface types are I2C, SPI, and a 2 MB Flash are available used to store

and execute in-place code and data storage like the Bosch sensor fusion algorithm (BSX)

calibration data. The BHI260AP can collect data that could be trained on a PC (Arduino®

Nicla Sense ME, 2023).

The BHI260AP smart sensor is used for fitness tracking, navigation, machine learning

analytics, and orientation estimation. This sensor is a useful solution when it comes to

always-on sensor processing at extremely low power consumption. Some target

applications for this sensor are:

10

 Wrist wearables for example smartwatches or fitness bands.

 Head-mounted devices such as headsets, smart sunglasses, or wireless in-ear

devices.

 Mobile communication devices like smartphones.

 AR/VR/MR headset and controller devices (BHI260AP - Ultra-low power, high

performance, self-learning AI smart sensor with integrated accelerometer and

gyroscope, 2021).

BHI260AP can be used without additional programming due to its pre-set solution. It

consists of over 22 built-in virtual sensors (algorithms). These are independently

configurable sensor data processing algorithms that provide software-programmed

functionality. For example device orientation in various formations, gesture recognition

algorithms, dynamic offset calibration, activity recognition, and step counting (BHI260AP -

Ultra-low power, high performance, self-learning AI smart sensor with integrated

accelerometer and gyroscope, 2021).

In addition to the libraries available for the previous sensor variant BHI260AB, the

BHI260AP can run and use a new set of libraries which includes complex algorithms for a

variety of use cases, especially useful software is the pedestrian dead reckoning and the

swim analysis library. This sensor can also be used for self-learning AI software for fitness

tracking and relative and absolute orientation (BHI260AP - Ultra-low power, high

performance, self-learning AI smart sensor with integrated accelerometer and gyroscope,

2021).

The frequency at which the BHI260AP supplies the data from the virtual sensor is defined

by the sample rate also known as the Output Data Rate (ODR). The data rates of the

accelerometer support up to 1600 Hz and the gyroscope 6400 Hz (BHI260AP - Ultra-low

power, high performance, self-learning AI smart sensor with integrated accelerometer

and gyroscope, 2021). In Table 4, the features and power consumption according to the

technical data of the BHI260AP sensor can be seen.

11

Table 4. Features and power consumption of sensor BHI260AP.

Features Description

Package 3.6 mm x 4.1 mm x 0.83 mm

Supply Voltage Min: 1.71V | Typ: 1.8V | Max: 3.6V

Operating temperature -40 … +85 °C

Parameter Technical data

Game Rotation Vector
(Accelerometer & Gyroscope)

ODR Long Run Turbo

25 Hz 1.068 mA 1.085 mA

400 Hz 1.301 mA 1.372 mA

800 Hz - 1.779 mA

Self-learning AI function (25 Hz) 249 uA

(BHI260AP - Ultra-low power, high performance, self-learning AI smart sensor with

integrated accelerometer and gyroscope, 2021).

BME688 (Gas sensor)

The sensor BME688 is the first gas sensor integrated with AI and high-linearity / -accuracy

pressure, humidity, and temperature sensors. Size and low power consumption are some

advantages. The gas sensor has a part per billion (ppb) detection range for VOCs, VSCs,

and other gases like carbon monoxide and hydrogen (Gas Sensor BME688, 2022).

Useful applications of this sensor could be air quality measurement indoors and outdoors,

detection of unusual gases and smells example leakage or fire, and bacteria growth

detection (Gas Sensor BME688, 2022).

The BSEC generates a range of useful outputs based on complex algorithms, such as the

Index for Air Quality (IAQ) between 0 (clean air) and 500 (extremely polluted air), bVOC-

& Co2- equivalents (ppm), and Gas scan results (%) (Gas Sensor BME688, 2022).

In Table 5, the key features of the gas sensor are shown including the size, operating

range, gas sensor output, and some test measurements of current consumption. In Table

6 choice of BSEC outputs can be seen with descriptions (Gas Sensor BME688, 2022).

12

Table 5. Features of BME688 sensor.

Features Description

Package 3.0 mm x 3.0 mm 0.93 mm metal lid LGA

Current consumption 2.1 uA at 1 Hz humidity and temperature
3.1 uA at 1 Hz pressure and temperature
3.7 uA at 1 Hz humidity, pressure, and temperature
0.15 uA in sleep mode

Operating range -40 - + 85 °C, 0-100% r.H., 300-1100 hPa

Gas sensor output data processing IAQ, bVOC- & Co2-equivalents (ppm), Gas scan result (%) &
Intensity level

(Gas Sensor BME688, 2022).

Table 6. Description of one part of BSEC outputs.

Output Description

Sensor-compensated temperature (°C) Temperature which is compensated for internal cross-
influences caused by the BME sensor.

Sensor-compensated relative humidity (%) The relative humidity is compensated for internal cross-
influences caused by the BME sensor.

Sensor-compensated gas resistance (Ω) Raw gas resistance is compensated by temperature and
humidity influences.

CO2 equivalents (ppm) Estimation of the CO2 level in ppm. The sensor does not
directly measure CO2 but derives this from the average
correlation between VOCs and CO2 in human exhaled
breath.

(Gas Sensor BME688, 2022).

BMP390 (Digital pressure sensor)

The BMP390 is a digital sensor that measures temperature and pressure using proven

sensing methods. The housing for the sensor module is incredibly small and its compact

size and extremely low power consumption allow for integration into battery-operated

devices like watches and mobile phones (Pressure sensor BMP390, 2021).

In Table 7, features of the BMP390 sensor can be seen: package size, current

consumption, and operating range.

13

Table 7. Features of sensor BMP390.

Features Description

Package 2.0 mm x 2.0 mm x 0.75 mm metal lid LGA

Current consumption 3.2 uA at 1 Hz pressure and temperature, 1.4 uA in sleep mode.

Operating range -40 … +85 °C, 300 – 1250 hPa

(Pressure sensor BMP390, 2021).

The sensor has greater accuracy than its predecessor BMP380, and it can monitor

pressures between 300 and 1250 hPa. The BMP390 can operate in three different modes:

sleep mode where no measurements are taken, normal mode which contains an active

measurement period and an inactive standby period, and forced mode where one

measurement is made and switches back to sleep mode after the measurement is

complete. (Pressure sensor BMP390, 2021).

BMM150 (Magnetometer sensor)

The BMM150 is a geomagnetic sensor for everyday uses. It enables magnetic field

measurements in three perpendicular axes. The functionality and features of the

BMM150 have been carefully developed to meet the high standards of all 3-axis mobile

applications, including for example navigation and electronic compasses (Magnetometer

BMM150, 2020).

The output of the geomagnetic sensor is converted by an evaluation circuit (ASIC) into

digital results that can be read out using SPI or I2C digital interfaces. In Table 8 features of

the sensor BMM150 are shown which include the size, power consumption, magnetic

field range typical, and temperature range (Magnetometer BMM150, 2020).

14

Table 8. Key features of sensor BMM150.

Key features Description

Package Footprint 1.56 x 1.56 mm2, height 0.6 mm

Power consumption 170 uA at 10 Hz in low power preset.

Magnetic field range typical ±1300uT (x,y-axis) ±2500uT (z-axis)

Magnetic field resolution of -0.3uT

Temperature range -40 … +85 °C

(Magnetometer BMM150, 2020).

2.2 Raspberry Pi

The first model of Raspberry Pi Model B, generation 1 was released in February 2012. The

low cost of this hardware results in total success. The Raspberry can be used as a working

computer just by connecting a keyboard, mouse, and monitor. An SD card is needed also

to install example the operating system Raspbian. Rasbian is a Debian-based Linux

operating system, and it boots up just by connecting power to it. The Raspberry is usually

referred to single-board computer (SBC), which means it runs a full operating system and

has enough memory, CPU, and power regulation to run without extra hardware (The

Raspberry Pi: A Technology Disrupter, and the Enabler of Dreams, 2017).

Other SBCs that could be found before Raspberry Pi were mostly mentioned for industrial

platforms meanwhile the Raspberry Pi developed a board that almost anyone could use

(The Raspberry Pi: A Technology Disrupter, and the Enabler of Dreams, 2017).

Raspberry Pi 4

In the year 2019 a new model of the Raspberry Pi computer series was developed named

Raspberry Pi 4 Model B. Compared to the previous generation, it provides advancements

in CPU speed, multimedia performance, memory, and connectivity (Ltd., Raspberry Pi

Trading, 2019).

15

The format size for RPI4 is the same as the previous model RPI3 but the new model has

upgraded and better performance. In Figure 9 a picture of the hardware can be seen, and

in Table 9 the specifications of the RPI4.

Figure 9. Raspberry Pi 4 hardware. (Raspberry Pi 4 Tech Specs, u.d.).

Table 9. Specifications of RPI4.

Specifications

Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-
bit SoC 1.8 GHz 1 – 8 GB LPDDR4-3200 SDRAM

2.4 GHz and 5.0 GHz IEEE 802.11 ac wireless, Bluetooth
5.0, BLE Gigabit Ethernet

2 USB 3.0 ports; 2 USB 2.0 ports

2 x micro-HDMI ports (4kp60 supported)

Micro-SD card slot for loading OS and data storage

5V DC via USB-C connector (minimum 3 A)

Operating temperature 0 – 50 degrees

(Raspberry Pi 4 Tech Specs, u.d.).

16

3 Software

This chapter explains the different software programs that have been used. Insight into the

Arduino software program Arduino IDE, after that the Raspberry Pi’s operating system, and

then explaining the 3D programming software Rhinoceros and the printing program

UltiMaker Cura.

3.1 Arduino IDE

The Arduino Integrated Development Environment is a software tool that is used to

program the Arduino board. It includes a text editor for writing code, a message area, a

text console, a toolbar with buttons for common functions, and several menus (Getting

Started with Arduino IDE 2.0, 2022).

The Arduino IDE software establishes a connection with the Arduino board and

communicates to upload programs. Programs that are written in Arduino IDE are with other

words called sketches and these are created and saved with the file extension .ino. The text

editor has quite similar features as other editors, for example cutting/pasting and

searching/replacing text. When saving and uploading to the board, the message area

provides feedback and shows errors if there are any. The configured board and serial port

are visible in the bottom right corner. The toolbar buttons enable to create, open, save

sketches, validate, and upload programs and open the serial monitor to follow what is going

on the Arduino board (Getting Started with Arduino IDE 2.0, 2022).

Figure 10 shows an overview of the Arduino IDE software. The numbers are shown with

their descriptions below.

17

Figure 10. Explanation of Arduino IDE functions.

1. Sketchbook: On this tab, it is possible to find all the sketches that are locally stored on

the computer where the code file is kept. It is even possible to sync with the Arduino

Cloud to receive the sketches from the internet environment. Arduino sketches are saved

as .ino files and must be kept in a folder with the same name. For instance, in a folder

called Arduino_test, the sketch must be saved as Arduino_test.ino and should not be

changed.

2. Boards Manager: Used to browse through Arduino and third-party packages that could

be installed to the software. For example, when using the Nicla Sense ME it is required to

install the Nicla boards package intended for the board otherwise it will not be possible to

compile and upload the code for the specific board.

3. Library Manager: There are thousands of Arduino libraries here to browse between,

developed by Arduino and from its community. Libraries are extensions of the Arduino

API that make it simpler to do things like the use of the MQTT module and read sensors.

4. Debug: Used to test and debug programs, it can be applied to controllably go through a

program’s execution.

5. Search: If it is difficult to find something that has been written in the code, then a

search command could be used.

6. Verify: Verify button compile and check for errors.

7. Upload: Upload button assembles the program code before uploading it to the chosen

board.

18

8. Select Board and Port: From here it finds the Arduino boards that are available along

with the port number.

9. Serial Plotter: Serial Plotter opens a new tab in the console that checks outgoing values

from Serial.print() command to inspect for example temperature values. The tool is open

in a separate window but integrated with the editor.

10. Serial Monitor: The Serial Monitor tool enables data streaming from the board with

for example Serial.print() command. This tool was previously located in a separate

window, but it is now a part of the editor. This makes it simple to run numerous instances

concurrently.

11. Number column: When errors occur, it will describe the problem and refer to a

number to find the fault faster (Getting Started with Arduino IDE 2.0, 2022).

3.2 Raspberry Pi OS

The recommended operating system for normal use on an RPI device is the Raspberry Pi

OS which is a free operating system built on Debian OS. This operating system includes

more than 35000 packages of pre-compiled programs for quick installations on the

Raspberry Pi. With a focus on improving the reliability and performance of as many Debian

packages as possible, the Raspberry Pi OS is actively being developed (Raspberry Pi OS,

u.d.).

It is essential to update the Raspberry Pi OS gradually. Security is the first and primary

factor. There are millions of lines that keep up Raspberry Pi OS on an RPI device and this

code will eventually get common vulnerabilities that are simple to exploit because it is

documented in databases that are open to the public and the only way to avoid these

attacks is to keep the software updated, another reason to regularly update the software

is that there could be bugs that not need to be security risks but necessary to run the

software properly. To upgrade the software, it is possible to open a terminal window and

use the advanced packaging tool (apt tool) by commands sudo apt update and sudo apt

full-upgrade. (Raspberry Pi OS, u.d.).

19

3.3 Rhinoceros

Rhinoceros mostly known as Rhino is a professional 3D drawing software program / CAD

application software that was founded by Robert McNeel & Associates year 1980 (About

McNeel, u.d.).

Rhinoceros is designed from NURBS which is a mathematical representation of geometry.

From basic shapes as 2D line, circle, arc, or curve to the most complicated 3D organic free-

form surface or solid can be properly described by NURBS. NURBS geometry in Rhinoceros

is utilized in the fields of architecture, industrial design, product design, multimedia, and

graphic design. It is also used for rapid prototyping, 3D printing, and reverse engineering

(What are NURBS?, u.d.).

The operating systems that could be used for Rhinoceros are Microsoft Windows and

macOS. For Windows with the latest version of Rhino 7, the hardware recommendation is

a 64-bit Intel or AMD processor, RAM 8 GB or more, 600 MB disk space, OpenGL 4.1 video

card, 4GB Video RAM, or more. For the Windows Operating Systems alternative versions

11, 10, 8.1, or Windows VDI. Not supported for Rhino 7 is Windows 8 or older version,

Windows Server direct login, Virtualization systems like VMWare, and Remote Desktop also

should note Linux is not supported operating system. ARM processors include the

Microsoft SQ® 1 and 2, Chromebooks (System Requirements, u.d.).

Rhino 7 with the use of Mac, the hardware recommendations are Intel Mac or Apple Silicon

Mac, RAM of 8 GB or more, AMD graphics processor is recommended on Intel Macs, and 8

GB free disk space. MacOS operating systems supported are macOS 13 (Ventura), macOS

12.4 (Monterey), macOS 11.6 (Big Sur), macOS 10.15.7 (Catalina), and macOS 10.14.6

(Mojave). Operating systems not supported are macOS 10.13.6 (High Sierra) or older,

Digitizers (Faro, Microscribe), and iPad / iPad Pro (System Requirements, u.d.).

20

Figure 11. Logo of Rhinoceros software (Rhinoceros, u.d.).

Rhino 7

Rhinoceros version Rhino 7 was released in November year 2020 (The History of Rhino,

2020).

An overview of the work field of the Rhino 7 program can be seen in Figure 12 with a lot of

options. On the top, “File” could be found where the basic things like creating new files,

open, save, printing, and more commonly things. From “Dimension” it is possible to

measure lines and objects in different directions. Below these options, there is a shortcut

command where it is possible to directly mention a command to use, here also the

parameters should be adjusted for the command that has been set.

There are four different workspaces available to make it easier to process the object that

working with (top, perspective, front, and right).

At the bottom of the program, the user can decide where the mouse should focus on a line

or object, for example, End, Near, Point, Mid, Cen, and Int. Below these options, the scale

of the drawing is shown.

21

Figure 12. Overview of the program Rhino 7.

Below the command area are many different worktabs, when one tab is selected the tools

become available and pre-defined options to the left side will appear.

At tab Standard, it is possible to use the pre-defined tools on the left side like text objects,

and draw different lines, circles, rectangles, etc.

The display tab has many kinds of options for how to display an object.

Solid Tools is important when constructing 3D models, it is used when 3D blocks/figures

are processed. Some options commonly used in this project are described below and the

symbols are seen in Figure 13.

BooleanUnion is used when having two or more objects to combine. Click on the tool

symbol and then select the objects and then press enter (BooleanUnion, u.d.).

BooleanDifference is used to subtract the volume of the object. Click on the tool symbol

and then select the first object that will be modified and then click on the part that will be

subtracted and then press enter (BooleanDifference, u.d.).

FilletEdge is used when the edges of the object need to be softer. Click on the tool symbol

and then select the edges that should be modified and decide the radius (FilletEdge, u.d.).

22

MergeAllCoplanarFaces is used when the object has been modified and wants to combine

all the planar region’s faces into a single face on a mesh, polysurface, or SubD

(MergeAllCoplanarFaces, u.d.).

Figure 13. Important 3D model options in Solid Tools.

In the pre-defined column on the left side when selecting the Solid Tools tab, there can be

found many different blocks for 3D drawing for example a box or cylinder. It is easy to use

by entering the decided values for example millimeters or centimeters depending on what

the scale is on.

Figure 14. Blocks for 3D drawing.

File formats

The file format for Rhinoceros is (.3dm) which is essential for the exchange of NURBS

geometry. Rhinoceros supports several CAD file types for importing and exporting,

making it compatible with other programs. In Rhino when opening a CAD file format that

is not .3dm format the program will convert the geometry to its natural format

(Rhinoceros 3D, 2023).

23

Table 10. Common supported file formats for Rhino 7.

Program File extension

Rhino 3D Model .3dm

ACIS .sat (Save/Export)

Adobe Illustrator .ai

Adobe Cult3D .cd (Save/Export)

AutoCAD Drawing .dwg

DirectX .x

Google Earth .kmz (Save/Export)

PDF .pdf

STEP .stp, .step

STL (Stereolithography) .stl

(Supported File Formats, u.d.).

3.4 UltiMaker Cura

UltiMaker Cura is a 3D printing software tool, which is free to use and constructed as

simple for fine-tuning the 3D model with 400+ parameters for best printing and slicing

results. The software works on PC machines with operating systems Mac OS 64-bit,

Windows 64-bit, Linux 64-bit, and Linux-Modern 64-bit (UltiMaker Cura, u.d.).

This software is a lightweight program that works on low-end systems. The size of the 3D

models that are loaded has an important effect on the amount of RAM, CPU, and GPU

that are required. The system minimum requirements are OpenGL 2 compatible graphics

card, OpenGL 4.1 for 3D layer view, Display resolution 1024 x 768, Intel Core 2 or AMD

Athlon 64, 550 MB available hard disk space, and 4GB RAM (What are the system

requirements for Ultimaker Cura?, u.d.).

24

Figure 15. UltiMaker Cura software.

There are a lot of settings that can be adjusted in UltiMaker Cura software, in Figure 15

can be seen at the top from left to right: open new project, choose/add printer, 1st

extruder, 2nd extruder, and print settings. When clicking on the extruders it is possible to

enable both extruders or disable one, this of course depends on the 3D printer.

Behind the print settings, a 3D model of a boat can be seen. The model is placed on the

middle point of the plate in this case the UltiMaker S3 printer bed. The plate size changes

according to the printer that has been chosen.

From the settings, it is possible to use different configurations for both extruders. Settings

could include Quality adjustments which could affect the resolution and the printing

time. Walls and Top/Bottom adjustments for example the thickness. Infill means what

will be filled in the walls for example the pattern of triangles, grids, or other

constructions, and the density in percent. Material settings are the printing temperature

and build plate temperature, Speed settings are possible to adjust the print speed and

travel speed. Travel is how the nozzle will move when retracted. When enabling Cooling

25

it is possible to adjust the fan speed. Support is important for ensuring to prevent part

deformation. Build Plate Adhesion can be used when needed to support the model at the

build plate. Dual Extrusion can be used when both extrusions are enabled, this prints a

tower next to the 3D model which serves to prime the material after each nozzle switch.

The toolbar can be found on the left side, when selecting the 3D model and using this

toolbar it is possible to move, rotate, mirror, scale, and change mesh type. From there it

is also possible to choose a support blocker which is good to use when it is not required

to have support material in specific places on the model.

When satisfied with the settings, press the slice button which will then calculate the

printing time and how much of the filaments in grams will be used. Then it is possible to

preview the model to see how the program has set the support material to the 3D model.

If everything is okay, then click save to removable… and choose the USB that will be

inserted into the 3D printer.

4 Communication protocols

This chapter will describe about communication protocols used in this project. The OSI

model (Open Systems Interconnection) consists of seven layers which describe a

standardization of the functionalities in a communication system via abstract layers.

Figure 16. OSI Model layers and examples of protocols.

Layer 1 (Physical Layer) is responsible for the physical cable or wireless connection between

network nodes. This layer is liable for the transmission of the raw data bits which is a series

of 0s and 1s. Bluetooth is included in layer 1 which will be described first (OSI Model, u.d.).

26

Layer 7 (Application Layer) is used by the end-users for example web browser clients. This

provides protocols that accept software to send and receive information and show relevant

data to the user. MQTT is included in layer 7 which will be described after the Bluetooth

part (OSI Model, u.d.).

4.1 Bluetooth

This chapter will explain the history of Bluetooth and describe the common and differences

between the Bluetooth Classic and Bluetooth Low Energy and later go more into the

Bluetooth Low Energy part which the Arduino Nicla Sense ME and Raspberry Pi will use to

communicate with each other.

Bluetooth Classic

Bluetooth technology has been available since about the year 2000 when its purpose was

to let two devices exchange data wirelessly without any need for networking equipment

and it found a great position in products for example: wireless keyboards, mice, and hands-

free devices (Woolley, 2022).

There are two different versions of Bluetooth Classic. One version is the Bluetooth BR which

was the start of Bluetooth technology and used in the first Bluetooth products that

provided a raw data rate of one million bits per second (1 mb/s) (Woolley, 2022).

Bluetooth BR/EDR was later developed as a faster version of Bluetooth technology. With

Bluetooth BR/EDR it was possible to get a raw data rate of two million bits per second (2

mb/s), but it was just to communicate and exchange data with only two devices directly

between them (Woolley, 2022).

A summary of the Bluetooth version history is shown in Table 11.

Table 11. History of Bluetooth versions.

Bluetooth
version

1.0 2.0 2.1 3.0 4.0 4.1 4.2 5.0 5.1

Year
released

1999 2004 2007 2009 2010 2013 2014 2016 2019

(Bagur, 2023).

27

Bluetooth Low Energy

Bluetooth Low Energy was introduced in the year 2010 at version 4.0 of the Bluetooth Core

Specification and the BLE specifications will also be available in the later versions. Version

4.0 was developed as another alternative to its predecessor Bluetooth BR/EDR. BLE has

new capabilities and qualities that are great for the new generation of products that could

fulfill complicated and new technical and functional requirements for example where

power consumption is necessary to hold down and also to communicate with small

data/information from example sensors and control systems (Woolley, 2022).

In addition to point-to-point communication between two devices, the BLE offers

additional structures with a broadcast mode that enables one device to send data to an

endless number of recipients at once (Woolley, 2022).

The main goal of this new Bluetooth technology BLE was as the name says to reduce the

power consumption of wireless communication. The advantages of this are that the battery

can be chosen with less ampere and smaller size within the same time frame as when using

Bluetooth Classic with a battery of more ampere and bigger size depending on how long

time the device should operate before the need of charging (Woolley, 2022).

The Bluetooth Low Energy is backward-compatible, which means if someone using the

latest BLE version it is possible to interact with other BLE devices that use older BLE versions

(Afeneh, 2020).

Bluetooth Core Specification is one important thing that defines the architecture,

procedures, and protocols of the BLE. Profiles and Services are special types of collections

and specifications where the products use Bluetooth to describe that they are compatible

(Woolley, 2022).

28

Figure 17. Bluetooth LE specifications (Woolley, 2022).

Bluetooth Core Specification:

The primary specification for both Bluetooth Classic and Bluetooth Low Energy is the

Bluetooth Core Specification which defines the architecture of the technology and its

layers. It defines and describes the key features of the important operations and protocols

that the devices can communicate at a given layer of the stack (Woolley, 2022).

The Attribute Protocol (ATT)

The attribute protocol specifies the structure and methods of two devices, which a server

makes its data available to a client. The server can be for example a sensor showing a set

of compounded data items also known as attributes. The server arranges attributes in an

indexed list known as the attribute table (Woolley, 2022).

Every attribute includes a handle, a Universally Unique Identifier most known as UUID, a

value, and a set-up of permissions. An ATT Client can identify a specific object in the

database using the handle with its unique index value. The type of the attribute is identified

by the UUID. The permissions field is a collection of flags that specify the types of access

that are allowed that could be read, written, or both forms of access (Woolley, 2022).

29

Generic Attribute Profile (GATT)

Generic Attribute Profile is meaningful once a connection between the devices has been

established and explains the concepts of services and their characteristics, which are used

to describe how two BLE devices exchange data back and forth (Woolley, 2022).

Figure 18. Example of Profile, Services, and Characteristics (Afaneh, Bluetooth GATT: How to Design

Custom Services & Characteristics, u.d.).

Profile Specifications:

The client/server relationship has been established when two devices communicate over a

Bluetooth Low Energy connection. With a server, it means a sensor with some kind of

information data, and the client uses that data in some way. An example could be a key fob

that communicates with a smartphone where the key fob acting as a server and the

smartphone act as the client. When pressing the button of the application on the

smartphone, the key fob’s state should be changed and can send out a sound so it will be

easier to find the keys (Woolley, 2022).

30

Profile specifications define the roles of related devices (such as the key fob and

smartphone) and assume and define the behavior of the client and the data from the

connected server as communicating (Woolley, 2022).

Service

A service is a collection of one or more characteristics, and it brings together relevant

properties that perform a specific server functionality. For instance, if there is a battery it

could have one battery service that contains one characteristic named Battery Level. The

Device information service, Environment sensing service, and Motion sensing service are

other examples of services. The data included in a service may also contain additional

features that help to structure the data such as service declarations, and characteristics

declarations (Afaneh, Bluetooth GATT: How to Design Custom Services & Characteristics,

u.d.)

Characteristic

A characteristic is a part of any service and represents some information or data that the

server wants to be visible to the client. For instance, the battery level characteristic shows

the amount of battery power left in a BLE device which a client wants to know. The

characteristic includes other attributes that help to define the value it holds: Properties can

be defined by how the characteristic values can be used for example read, write, notify,

write without response, and indicate. The other attribute descriptors are utilized to include

important details about the characteristic value type for example, extended properties,

user description, the field used for subscribing to notifications and indications, and a field

that specifies how the values are presented (Afaneh, Bluetooth GATT: How to Design

Custom Services & Characteristics, u.d.).

Universally Unique Identifier (UUID)

The official Bluetooth specification services can be 16-bit or 32-bit long which are

predefined UUIDS and listed by the Bluetooth SIG while non-official Bluetooth services are

128-bit long that users can create UUIDs customly (Bagur, 2023). Shortened (pre-

configured) UUIDs are available from Bluetooth SIG for different types of services and

31

characteristics. If the list of predefined UUIDs doesn´t meet the demands, it is possible to

generate custom UUIDs (Townsend, Cufi, Akiba, & Davidson, 2014).

Operating range and data throughput

Bluetooth Low Energy is primarily focused on short-range communication. The actual range

of BLE wireless devices depends on a wide range of parameters, such as operating

environment, antenna design, enclosure, device orientation, etc. The range of the

frequency spectrum is between 2.400 – 2.4835 GHz (Townsend, Cufi, Akiba, & Davidson,

2014).

The data throughput for the BLE version 4.2 is limited to 1 Mbps while version 5.0 extends

up to 2 Mbps when using the high-speed feature, but noted the rate could drop to 500 or

125 Kbps when the long-range capability is used (Afaneh, Intro to Bluetooth Low Energy,

2018).

A connection event is any instance of communication that takes place between two devices

and these devices exchange packets during a connection interval. Multiple packets can be

transmitted within a connection interval, this process could proceed until a package fails to

get delivered, the maximum connection event duration is reached or neither has more data

to send (Derhgawen, 2020).

A connection’s throughput increases with the number of packets it can deliver. The

maximum number of packets that can be sent in an interval is usually restricted to the

maximum connection event duration (Derhgawen, 2020).

Figure 19. Connection event over BLE (Derhgawen, 2020).

32

4.2 Message Queuing Telemetry Transport

Message Queuing Telemetry Transport (MQTT) is constructed and used as a messaging

protocol that uses publish and subscribe functions with clients between an MQTT server

normally called a broker. The broker is the central role that hosts any topics which usually

is formed as a folder structure for example “Arduino/Nicla/Temperature”, but any utf-8

string name with at least one character can be used as a topic (Gustafsson & Jarefors, 2022).

For a topic to exist it needs a subscriber or publisher to connect to the broker and the topics

are just visible for a short time when sending the message and not stored forever. The client

can both subscribe and/or publish topics on the broker server. When a client publishes a

message on a topic, all subscribers (clients) who are connected to the specific topic can

receive the information from that message (Gustafsson & Jarefors, 2022).

There are “wildcard” characters that can be used for a client to subscribe to any number

of topics:

- Multi-level subscriptions are used with the symbol “#”, for example topic

Arduino/Nicla/# means that it subscribes to Arduino/Nicla/ and all the subtopics like

Arduino/Nicla/Temperature and Arduino/Nicla/Humidity and so on.

- Single-level subscriptions are used with the symbol “+”, for example topic

Arduino/+/Temperature will subscribe to the temperature of the Arduino boards

connected with this topic like there could be Arduino/Nicla/Temperature and

Arduino/Nano33/Temperature (Gustafsson & Jarefors, 2022).

Figure 20. Illustration of publisher and subscriber arrangement.

33

Figure 20 presents an overview of what the MQTT system could look like; the publisher

client (temperature sensor) sends out information of value 20 Celsius to the broker with

the topic Arduino/Nicla/Temperature. The two subscribers (smartphones) subscribe to the

broker with the same topic Arduino/Nicla/Temperature to get the data information from

the publisher.

Quality of Service

QoS is an agreement between a communication’s sender and receiver that defines the

delivery promise for a particular message known as the Quality-of-Service level, also

abbreviated QoS. There are three different options for QoS levels numbered (0, 1, 2)

(Gustafsson & Jarefors, 2022).

- QoS 0: This is the lowest and most basic level. At this level, the sender just sends

the message without considering if it was properly received and does not attempt

to save it or resend it (Gustafsson & Jarefors, 2022).

- QoS 1: This level means that a message will be delivered to the sender at least once.

Until the recipient sends a “PUBACK” packet confirming delivery of the message,

the sender keeps onto the message. With this QoS level, it may be possible that a

message could be sent or delivered several times (Gustafsson & Jarefors, 2022).

- - QoS 2: This is the highest level of QoS to ensure that the message will only be

delivered once. This is accomplished by sending and receiving messages back and

forth (Gustafsson & Jarefors, 2022).

PUBREC packet from the recipient indicates that the message has been received,

the sender can then safely discard the first message. Otherwise, the sender will

keep the message after publishing it with QoS 2 and resend it regularly with a

duplicate flag until it receives a PUBREC packet. After that, the sender sends a

PUBREL packet to the receiver, which clarifies that the PUBREC packet has been

received and then the receiver can discard its local stored states of the original

publish and send a PUBCOMP packet back to the original sender. This pattern

concludes both the sender and the receiver are certain that the message has only

been received once (Gustafsson & Jarefors, 2022).

34

Figure 21. Quality of Service levels.

Last Will and Testament

Clients can keep track of other clients' connection status by using Last Will and Testament

(LWT). In case a client disconnects unexpectedly, the LWT system allows clients to

automatically provide a message to the broker they are connected to. The LWT message

has a similar format as other messages, a topic to be sent to, a QoS level, and so on.

(Gustafsson & Jarefors, 2022).

5 Programming & markup languages/tool

In this chapter programming/markup languages and tools used in this project will be

explained. The C / C++ programming language has been used for programming the Arduino

microcontroller. The JavaScript, HTML, and CSS that have been used to program the

webpage will be described, and lastly, the programming tool Node-Red will be explained.

5.1 C / C++

The computer executes with the use of binary numbers (1 and 0) the instructions that

define electronic signals that take place inside the computer. Between the years 1940 –

1950, the program was written by using binary digits, the programmers had to learn how

the machine processed various combinations of 1 and 0 digits. Making programmers work

35

with the concepts of the computer’s 1 and 0 proved increasingly impractical as the

applications programs grew larger. Instead, scientists developed programming languages

that enable people to translate computer instructions into human-friendly language

(Jamsa, Ph., & Klander, 1998).

Dennis M. Ritchie, who was working at Bell Labs (AT&T) at the time developed in the early

1970s C program which is the predecessor to C++ (The C++ programming language in

cheminformatics and computational chemistry, 2020).

Programming languages such as C and C++ are constructed to handle collections of

instructions that the computer follows to complete a task. When writing a program, the

instructions are saved in an ASCII file that typically ends with an extension .C for C program

and .CPP for C++ programs (Jamsa, Ph., & Klander, 1998).

Programmers place their instructions in a file referred to the source file, which is then

compiled in a second program into a programming language with 1 and 0 binary digits

known as machine code that the computer can understand (Jamsa, Ph., & Klander, 1998).

A sketch of the described can be seen in Figure 22.

Figure 22. The instructions of the source code are compiled into machine code.

There are differences between C and C++, to get a better overview it is listed some of

these differences are in Table 12.

36

Table 12. Differences between C and C++.

C C++

Procedural programming language
follows methods that put procedure
before data.

Object-oriented programming
language, data is given priority.

Supports only pre-defined data types. In addition to the pre-defined data
types, it supports user-defined data
types.

Does not support classes and objects. Classes and objects are supported.

Does not support Inheritance,
polymorphism, data encapsulation, or
abstraction.

Supports object-oriented features
such as inheritance, data
encapsulation, polymorphism, and
abstraction.

Supports only pointers, no concept of
reference variables.

Has both pointers and reference
variables.

32 keywords. 63 keywords.

Does not support function and
operator overloading.

Supports function and operator
overloading.

(Ravikiran , 2022).

Advantages of using C++

Compared to interpreted languages like Python, C++ is a high-performance language that

can be compiled into native code. Due to its minimal memory footprint and ability to

enable low-level programming, it can be a great option for applications like system

programming.

 C++ includes features like classes, objects, inheritance, polymorphism, encapsulation,

and abstraction. This allows the creation of modular code structures that are simpler to

update as well as the writing of complex applications and code reuse.

It is possible to compile C++ code with Windows, Mac OS, and Linux among other

platforms. There is a large development community and a large of information available

for example from online forums, libraries, and platforms.

C++ and C are backward compatible, C++ programs can use existing C code and vice versa

which can be helpful if needed to reuse legacy code (SSDN Technologies, 2023).

37

5.2 JavaScript

In the year 1996, JavaScript was released by Netscape. LiveScript was the original name,

but changed in part because one of its initial goals was to provide users with some control

over Java Applets within the browser (Connolly & Hoar, 2018).

JavaScript is one of the most widely used programming languages nowadays which allows

the widespread possibility of different functionalities. JavaScript is often utilized to adjust

HTML and CSS to update a user interface. The fundamental programming constructs in the

client-side JavaScript language perform things like storing useful values inside variables and

executing code in reaction to specific events on a website (What is JavaScript?, 2023).

In web development, client-side scripting becomes an important concept. Instead of relying

on the server to run code and return the output, it refers to the client computer executing

code locally (Connolly & Hoar, 2018).

Variables in JavaScript can easily be changed from one data type to another since it uses

dynamic typing. In JavaScript, a variable’s data type is set at runtime and can change at any

time (Connolly & Hoar, 2018).

Node.js

A cross-platform, open-source JavaScript runtime system and library named Node.js is used

to run web applications outside the client’s browser. It was developed in the year 2009 by

Ryan Dahl. Since Node.js is an asynchronous, event-driven framework, developers can use

it to create server-side web apps that are ideal for processing large amounts of data

(Sufiyan, 2023).

Node.js is an excellent solution for many common web development challenges and was

created to optimize throughput and scalability in web applications for example real-time

web apps (Express/Node introduction, 2023).

Node package manager (NPM) is a manager for Node.js packages/modules which hosts

thousands of free packages that can be downloaded and used. When installing Node.js on

the computer, the NPM program will be included. All the files required for a module in

Node.js are contained in a package and the modules are JavaScript libraries that are

possible to include in a project (Node.js NPM, u.d.).

38

Node.js Express is a web application framework for Node.js that offers a wide range of

functionalities for developing web applications. It is a layer that assists in controlling servers

and routes and is built on top of Node.js (Sufiyan, 2023).

5.3 HyperText Markup Language

The most significant element of the webpage is HyperText Markup Language also known

as HTML. It describes the purpose and organization of web content and the markup

language code is used to structure a web page and its content. The appearance (CSS) and

functionality (JS) of a webpage are typically described using technologies other than HTML

(HTML: HyperText Markup Language, 2023).

The explanation of HyperText Markup Language could be described as follows:

Hyper: means that a text is non-linear. Hyper refers to the fact that the text is linked to

other texts, which allows the connection between different texts (Faraon & Holmberg,

2022).

Text: Characters, symbols, and numbers that are combined to form words and sentences

(Faraon & Holmberg, 2022).

Markup: Content can be structured with HTML elements, for instance, specific words

become clickable as links (Faraon & Holmberg, 2022).

Language: Relates that HTML is a computer language. Syntax and semantics differ from

each other in both natural languages and computer languages, syntax refers to writing rules

while semantics refers to meaning. Computer languages can be identified by the fact that

usually have a very strict syntax which means if forgot for example a slash the program will

not run. The semantics that is, the meaning or the message to be conveyed or the program

is to do is defined by the person who creates a program or a web page (Faraon & Holmberg,

2022).

39

5.4 Cascading Style Sheets

Cascading Style Sheets (CSS) explain how HTML elements should be displayed. A lot of work

is saved by using CSS in an external .css file, it can manage the design of several web pages

simultaneously and possibly change the look of the whole website. The web page’s design,

layout, and differences in display for different devices and screen sizes are some reasons

why using CSS (CSS Introduction, u.d.).

Some benefits of using CSS are less work and easier updating, faster downloading due to

less code needed, and platform independence which means CSS works in every web

browser (Faraon & Holmberg, 2022).

Many different configuration options could be used to design an HTML webpage with the

use of CSS, some options could be to define font sizes or the color of text, change the

background color, or general structure the content from the CSS file. By using tags on the

HTML file for example id or class with a specific name could have a specific configuration

to its tag (CSS Introduction, u.d.).

5.5 Node-Red

Node-Red is a flow-based programming software that was released in year 2013 by Nick

O’Leary and Dave Conway-Jones. Node-Red was originally developed by IBM’s Emerging

Technology Services team but is now a part of the OpenJS Foundation.

Flow-based programming is a method of representing an application’s behavior as a

network of nodes. Each node serves a specific job, it receives data, processes it, and then

transmits the results to other nodes. Data transmission between nodes is handled by the

network.

This sort of model allows better visualization of the workflow and gives more accessibility

to a broader group of users. One advantage is that it is not needed to interpret each line

of code, someone who can break an issue down into discrete steps can study a flow and

get a sense of what it is doing (About, u.d.).

40

5.5.1 Node-Red editor

To access the flow editor, connect a web browser to the Node.js-based runtime that

represents Node-Red. Design application in the browser by dragging nodes from the

palette into a workspace and then starting to connect them.

Installing new nodes made by the community makes it simple to expand the palette of

nodes, and it is possible to share the flows created with others.

Figure 23. Node-Red editor.

The Node-Red workflow can be seen in Figure 23. On the left the palette with different

nodes are listed, it is possible to access more kind of nodes than the primary by

downloading from the menu “Manage palette”. In the middle of the website the flow is

created, to use different nodes on the workflow it is just to drag the decided node from

the palette to the middle. It is possible to have many flows and it is also possible to hide

workflows. The deploy button can be seen to the right on the website where to execute

the application and next to it a list with options such as import, export, and many more

settings. Below the deploy button and the list, the debug option can be found to inspect

nodes if a debug node is inserted into the workflow, there are also help, information, and

configuration options.

41

5.5.2 Nodes

The main component of a flow in Node-Red is called a node. Nodes are activated by an

external event such as an HTTP request, or a timer, or by receiving a message from a

preceding node in a flow. The node responds to that message or event and then might

communicate with the following nodes in the flow. A node can only have one input port

and several output ports (Node-RED Concepts, u.d.).

To make nodes accessible to the community, they can be uploaded to the Node-Red Flow

Library and published as npm modules to the public npm repository (Creating Nodes, u.d.).

Figure 24. Node-Red nodes used in the project.

In Figure 24 different nodes can be seen that were used in Node-Red for this project. A

description of these different nodes can be found below.

 Inject: By selecting the Inject node’s button inside the editor, a flow can be

manually triggered. Additionally, it can be used to automatically start flows at a

predetermined time interval. The payload and topic properties of the message

sent by the Inject node can be configured by double-clicking on the node.

Several types of payloads can be selected in an Inject node for example a value for

a flow or global context property, a string, number, boolean, buffer or object, and

timestamp in milliseconds. The maximum interval that can be chosen is 596 hours

(The Core Nodes, u.d.).

 Status: The status node is used by selecting other nodes that want to read the

status. When the desired node updates its status it sends that to the status node.

42

 Join: Join nodes are used when need to merge multiple messages that are coming

from different sources into one message by giving each payload a unique

msg.topic value (Create a single message from separate streams of messages,

u.d.).

 Debug: Messages can be shown in the editor’s Debug sidebar by wiring a debug

node to other nodes where the process flows. With the debug node it is much

easier to follow up on what is going on from the flow. From the debug sidebar it is

possible to reach details about each message, such as the time it was sent and

what values are included in the message. The output of the node could be enabled

or disabled using the button on the node (The Core Nodes, u.d.).

 Change: A change node can be used to change a message’s properties and set

context properties. Many operations can be configured for each node and can be

set in order. “Set” a property, the value may come from an existing message or

context attribute or be of a variety of various types. “Change”, look for and swap

out specific message property elements. “Move”, “rename” or “delete” a property

(The Core Nodes, u.d.).

 Function: The messages that are passed through the function node let their own

written JavaScript code be operated (The Core Nodes, u.d.).

 Buffer – parser: Buffer – parser node is used to convert values from buffer. Some

functionalities are examples of setting up a specification and converting multiple

parts of a buffer to example int or float (node-red-contrib-buffer-parser, u.d.).

 Generic BLE in/out: The Generic BLE node gives users access to BLE peripheral

GATT features, BLE in node is used to give commands by using UUID and receive

some information from the server example a sensor, and with BLE out it is

possible to send configuration commands to change some settings on the sensor.

Supported operations are start, stop, and restart BLE scanning. Connect to and

disconnect from a peripheral device. It can also read, write, write without

response, and notify between a peripheral. This node can also give some different

43

statuses such as connecting, connected, disconnecting, disconnected, missing, and

error (node-red-contrib-generic-ble, u.d.).

 MQTT in/out: The MQTT out node is used when publishing messages to other

clients on a specific MQTT topic. To be able to publish a message to a topic it is

needed to enter the MQTT broker server address with its port and password if

there are any. Below the server, the topic to which the message be sent should be

filled in and optional QoS could be configured (Publish messages to a topic, u.d.).

The MQTT in node is used when subscribing to the broker for messages on an

MQTT topic. (Subscribe to a topic, u.d.).

6 Implementation

This chapter goes through the different steps to have a completed data acquisition tool for

data collection. It describes how to install and set up the Nicla Sense ME in Arduino IDE

software and after that go through Raspberry Pi installation and set up the Raspberry Pi

OS, get acquainted with configuring a local MQTT broker, and install and set up Node-Red

on the Raspberry Pi. There will also be a description of a graphical user interface that

receives data from and send commands to the Nicla Sense. Lastly how to construct a 3D-

printed box for the Nicla microcontroller

6.1 Implementation of Nicla Sense ME

To be able to create and run code to the Nicla Sense ME microcontroller, the first step is to

download the software Arduino IDE from https://www.arduino.cc/en/software and choose

the operating system on the PC.

When the software is up and running, the required driver for the Nicla Sense

microcontroller needs to be downloaded. In the menu bar navigate to Tools  Board 

Boards Manager. Search for Nicla Sense and the drivers for the microcontroller will be

visible Arduino Mbed OS Nicla Boards by Arduino, install, and wait until the installation is

completed.

44

Figure 25. Install driver at Board Manager for Nicla Sense.

When the Nicla Sense driver is installed, the board can be selected at Tools  Board 

Arduino Mbed OS Nicla Boards  Arduino Nicla Sense ME (version 4.0.2 was used in this

project).

Before transferring the code to the board, different libraries are needed to be installed:

Arduino_BHY2 and ArduinoBLE. To find these libraries navigate to Sketch  Include Library

 Manage Libraries. In Figure 26 it can be seen how to navigate to the mentioned libraries

and after installation is finished it should be shown “INSTALLED” at the specific library.

Figure 26. Install libraries at Manage Libraries for Nicla Sense.

45

When the Nicla Sense driver and libraries are installed, connect the board with the USB

cable to the computer and navigate to Tools  Port and select the COM port for the Nicla

Sense.

On the first run of the Nicla Sense Board, it may have outdated firmware. Bosh Sensortech

has updated a compensated temperature and humidity for this board in April 2022, it is

possible to download the firmware from the link: https://github.com/bstbud/nicla-sense-

me-fw/tree/fea_temp_compensation/Arduino_BHY2/examples/BHYFirmwareUpdate.

The files need to be stored at:

…Document\Arduino\libraries\Arduino_BHY2\examples\BHYFirmwareUpdate. For safety

reasons, it is good to create a backup folder with the existing files before overriding it.

Open the replaced BHYFirmwareUpdate.ino file and the Arduino IDE opens with some

firmware code. Nicla Sense Board needs to be connected to the computer and the COM

port selected, click on the upload button to run the code. During the compiling and

uploading the serial monitor could be opened to see when the code has been completed,

if the upload of the code was successful something like the below could be seen in the serial

monitor:

10:31:56.943 -> The computed CRC is 0x7A
10:31:56.943 -> Writing BHY FW binary into SPIFlash...
10:32:08.701 -> BHY FW Upload Done!

The firmware is finished and now move on to the program code. The Arduino code for this

project can be found in Appendix I with some explanations above or beside the code lines.

The project imports library code by using #Include (Nicla_System.h, Arduino_BHY2.h,

ArduinoBLE.h) these are the header files which is necessary because of the use of

commands that are executed for the project.

The installed library Arduino_BHY2.h is necessary to be able to read data from sensors on

the Nicla Sense. To use the sensors needed it is necessary to know the Sensor IDs and their

class which can be found at https://docs.arduino.cc/tutorials/nicla-sense-me/cheat-sheet.

For example, the class “Sensor” belongs to temperature, humidity, gas, and pressure. Class

“SensorXYZ” belongs to the accelerometer and gyroscope. Class “SensorBSEC” belongs to

the Bosch Sensortec Environmental Cluster which includes Co2, compensated

46

temperature, and compensated humidity. The sensor ID always starts with “SENSOR_ID_”

for example, gas: SENSOR_ID_GAS.

The library Nicla_System.h is required because of the internal components such as the RGB

LED and battery settings. The command nicla:: is used to call the Nicla Sense for example,

to start the Nicla Sense when powered on “nicla::begin();” and to activate the RGD led:

“nicla::leds.begin();” and then set the color to red: “nicla::leds.setColor(red);”. The Nicla

Sense charge current is limited to 100 mA by using the command

“nicla::enableCharge(100);”.

The library ArduinoBLE.h which is BLE 4.2 version compatible, enables Bluetooth Low

Energy connectivity on the Arduino Nicla Sense. A lot of functionalities for this library can

be found at https://www.arduino.cc/reference/en/libraries/arduinoble/.

The code is structured by BLE GATT transactions with the profile, services, and

characteristics, in Figure 27 an overview of this can be seen. The services are divided into

three different categories, the first service is pre-defined as “Environment Sensing” and

consists of five different characteristics: temperature, humidity, pressure, gas, and Co2. All

these characteristics have been assigned with the properties of read.

The next service is called “Motion Sensing” with a custom-used UUID and this service has

two characteristics including accelerometer and gyroscope which have been assigned with

the properties of read and notify. The last service is pre-assigned as “Battery” with just one

characteristic called battery level.

The short 16-bit identifiers are pre-assigned UUIDs officially adopted by Bluetooth SIG

which is a part of a 128-bit UUID. For example, the temperature has a pre-assigned UUID

2a6e where the client can easily find the name of that characteristic. To find these pre-

assigned services and characteristics, a document called Assigned Numbers can be found

at https://bluetooth.com/specifications/assigned-numbers/.

The custom-designed 128-bit UUIDs are customized and created by the user. These UUIDs

are produced by using a “UUID generator”, several tools/utilities are available on the

internet. A custom-designed UUID is used to ensure that no one else is using that specific

ID.

47

Figure 27. GATT transactions (Profile / Services / Characteristics).

When the Nicla Sense is powered on, the LED indicator color is red and from the ArduinoBLE

library setEventHandler was used for both connected and disconnected states. When the

device is connected to the client, the LED changes to green, and when disconnected the

LED changes to red.

The name of the device that should be discovered when scanning has been set to Nicla.

To get readings of the battery status “nicla::getBatteryStatus();” was used which should

update its status according to the numbers below:

BATTERY_FULL 5
BATTERY_ALMOST_FULL 4
BATTERY_HALF 3
BATTERY_ALMOST_EMPTY 2
BATTERY_EMPTY 1

New battery configuration/settings have been developed by Arduino with the newest

Mbed OS Nicla Sense upgrade during this work, for some reason the status will not more

update with the correct battery status for the older version either. The battery service will

still be left in the code for further research.

To write and send sensor data through BLE, the specific characteristics of UUID need to be

requested from the client. For example, if one data packet of temperature is needed, a

request of characteristic UUID 2a6e should be received which means one request sends

one data package.

48

The BLE version 4.0 and 4.1 has a data channel payload limited to 27 bytes. By including

Data Length Extension (DLE) from Bluetooth version 4.2 and further, the Data Channel

Protocol Data Unit (PDU) payload field can be expanded from the default 27 bytes up to

251 bytes which can be seen in Figure 28. The Data channel payload includes the L2CAP

header which reserves 4 bytes and the ATT header reserves 3 bytes, that means by default

20 bytes will be left for the payload, and with the use of DLE a maximum of 244 bytes

(Michel, 2019).

Figure 28. Link Layer Packet Structure (Michel, 2019).

For this project, the default settings are used and one request to get one measurement

will be enough for the environment sensors. On the other hand, the motion sensors

become limited to transfer with higher sampling frequencies since needed to store more

data. For now, the accelerometer and gyroscope start when the device is connected to

the BLE but send just one X, Y, and Z measurement per request as the environment

sensors.

The compensated temperature and humidity are adjusted values that take into account

the impact when the microcontroller is on and heated up a bit. The values have been

updated through SENSORBSEC, and the sensor data have been followed up on the serial

monitor for both the raw and compensated data of temperature and humidity. The

compensated temperature value was accurate and did not need to be adjusted, the raw

data was 5.2 Celius above the compensated value which means the compensated temp

49

value was used. For the humidity sensor, the compensated humidity data was accurate

and did not need to be adjusted either. The humidity raw data was approximately 10

percent lower (error marginal) than the compensated value.

6.2 Implementation of Raspberry Pi

First, a short explanation of installing the operating system for the Raspberry Pi, and after

that show how to display the Raspberry Pi to a PC by using VNC Viewer. Then investigate

how to install and start up an MQTT Mosquitto broker on the Raspberry Pi, but it should be

noted that Novia’s own MQTT broker will be used in this project. Then after that

explanation of how to create Bluetooth Low Energy to MQTT bridge and how to install and

set the project flow in Node-Red.

6.2.1 Installation of Raspberry Pi OS

To start with the installation of Raspberry Pi OS (previously called Raspbian OS) a Micro

SD card is needed, the recommendation is to use 8 GB or higher capacity. It is also

recommended to have a higher number of classes on the Micro SD card for faster loading.

In this project, it is used Kingston 32 GB of Class 10.

To install the Raspberry Pi OS, it is recommended by the manufacturer to download the

Raspberry Pi Imager, in this case, the Imager was downloaded from the website

https://www.raspberrypi.com/software/ and the OS Windows 11 was used. A file named

imager_1.7.5.exe (version could change later) was downloaded and installed, in Figure 29

the Imager program is shown.

Figure 29. Raspberry Pi Imager

50

The Operation System should be selected from Choose OS and the alternative Raspberry Pi

OS (32-bit) is used. The Micro SD card needs to be inserted into the PC where the Raspberry

Pi Imager program is installed, note that the Raspberry Pi uses a Micro SD card so then an

adapter is needed.

Before writing the OS to the Micro SD Card, select advanced options by pushing Ctrl-Shift-

X, this is useful for configuring Raspberry Pi. From here it is possible to set the hostname,

enable SSH, set username and password, connect to a Wireless LAN, and set locale settings.

There are boxes to check to play sound, eject media, and enable telemetry after

completion. The hostname was set, SSH enabled, username and password were set, the

wireless LAN configured, and locale settings were changed (note if the advanced options

will be used then the configuration wizard will be skipped on the first boot).

When the OS has been written completely to the SD Card, be sure to eject it safely from

the PC and switch it to the Raspberry Pi computer. A keyboard, mouse with USB connector,

and a monitor display with HDMI is needed. For the power supply, it is recommended 5.1

VDC and 3 Ampere output and when connecting the power source, the Raspberry Pi will

start up directly and be ready.

6.2.2 Monitor Raspberry Pi from VNC Viewer

If there is no access to any monitor display, there are possibilities to connect and control

the Raspberry Pi directly from the laptop with a program called PuTTY for just terminal

window access or VNC Viewer for graphical user view.

The requirements are a PC or laptop and an ethernet cable for direct connection, it is also

possible to connect wirelessly, but it is recommended to connect with an ethernet cable

for a faster connection.

The programs PuTTY and VNC Viewer need to be downloaded and installed on the local

computer, PuTTY can be found at the website:

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html, and VNC Viewer could

be found at: https://www.realvnc.com/en/connect/download/viewer/.

51

When PuTTY has been installed it is just to open the program, the default settings should

just be kept as they are. When SSH is selected, type raspberrypi.local previously set when

installing the OS, and port number 22 is standardly used, then click Open.

A terminal window field will arise with login where the username should be set and the

password required. When the username and password have been entered, the

connection status to the Raspberry Pi appears. When the Raspberry Pi is running for the

first time it is a good idea to update all the packages to the latest version, with the

command (note that this needs an internet connection):

sudo apt-get update && sudo apt-get upgrade -y

When all the updates are installed, open the Raspberry Pi Software Configuration Tool,

this can be done with the command:

sudo raspi-config

 Then navigate with the keyboard’s arrows to Interface Options and select VNC. Here it

should ask “Would you like the VNC Server to be enabled?” then select Yes.

Go to System Options  Boot / Auto Login choose Desktop Autologin and press Enter to

apply. After that navigate to Finnish by pressing Tab and then pressing Enter.

When everything has been finished and configured with the use of PuTTY, the next step is

to open the VNC Viewer program that has been installed. Set a new connection from File

or push CTRL-N. From here in the property’s menu, set the VNC Server hostname

raspberry.local and then press OK. A field shows up where the VNC Server credentials

need to be set, which means the Raspberry Pi´s username and password.

After pressing OK the Raspberry Pi´s screens should be visible from the local computer in

the VNC Viewer program. From here it is possible to do the same things that could be

done directly from the Raspberry Pi.

6.2.3 Installing MQTT broker on RPI

To be able to send commands and receive data through the internet a message protocol

is needed. Novia has its own MQTT broker which will be used in this project, but now it

will be explained how to install an MQTT broker on Raspberry Pi with the use of the

MQTT protocol Mosquitto.

52

The first step is to upgrade and update the system by opening a new terminal window:

sudo apt update && sudo apt upgrade

Type Y and press Enter. This will take some time depending on how old the system is and

how many new updates are coming.

To be able to install the Mosquitto broker type command:

 sudo apt install -y mosquitto mosquitto-clients

When it has been loaded and the installation is done, then allow the mosquitto broker to

automatically run in the background when the Raspberry Pi starts up.

sudo systemctl enable mosquitto.service

To check that everything works and find the mosquitto version running on the Raspberry

Pi by command:

mosquitto -v

There is also a message that says “Starting in local mode. Connections will only be possible

from clients running on this machine. Create a configuration file that defines a listener to

allow remote access.” That means it is not possible to communicate with this Mosquitto

broker from other devices than the configured Raspberry Pi computer. This applies from

Mosquitto version 2.0 which could be cited “In Mosquitto 2.0 and up, you must choose

your authentication options explicitly before clients can connect. In earlier versions, the

default is to allow clients to connect without authentication.“ from

https://randomnerdtutorials.com/how-to-install-mosquitto-broker-on-raspberry-pi/.

Two options could be chosen to be able to have remote access to communicate with

other IoT devices. The first option is with no authentication and the second option is

authentication with user and password.

The first step is to configure the mosquitto.conf file, this will be done in the terminal

window by using the command:

sudo nano /etc/mosquitto/mosquitto.conf

53

 Use the arrow keys to navigate to the end of the file and type “listener 1883” where the

port number 1883 is used, after that it is needed to have one row below also

“allow_anonymous true” which allows users to interact without user and password. To

save the file press CTRL-X and after that type, Y and press Enter.

When everything is configured, restart the Mosquitto broker by typing:

 sudo systemctl restart mosquitto

It is needed to find out the Raspberry Pi’s IP address to be able to use the Mosquitto

broker, to do that type in the terminal window hostname -I, copy the IP address, and save

it to a text file which will be used later.

Testing Mosquitto broker:

There are alternatives to test the Mosquitto broker after the installation and

configuration by installing an MQTT client. To do that run the command:

sudo apt install -y mosquitto mosquitto-clients

After that run the mosquitto broker in the background by typing:

mosquitto -d

Open terminal window #1 and type the following command to subscribe to an MQTT

topic “Test”:

mosquitto_sub -d -t Test

To publish a message to the topic “Test” a second terminal window #2 needs to be

opened and then type:

mosquitto_pub -d -t Test -m “Hellow World!

When checking the first terminal window that subscribes to the message it can be seen

“Hello World!” from the publisher. There could be several subscribers and publishers on

this same topic, so if opening a third terminal window and type mosquitto_sub -d -t Test

and after that again type in the terminal window #2 mosquitto_pub -d -t Test “Hello

World!, it could be seen this message in both terminal window #1 and #3 since they both

clients are subscribed to the topic Test.

54

Assign Static IP Address to RPI:

It is recommended to have a static IP address assigned to the Raspberry Pi because the IP

address that has been provided to not automatically change later when using the MQTT

broker. If the IP address changes later the clients which already are configured will not

find the broker anymore.

To start setting up, it needs to get some information about the current network, this

could be done by typing:

 ip r | grep default

Something like in Figure 30 should be shown. From here memorize the first IP address, in

this example, 192.168.1.1 which is the current router address.

Figure 30. “ip r | grep default” command

The next step is to get the current DNS server address from the line “nameserver <IP

address>” by typing:

 sudo nano /etc/resolv.conf

The next step is to modify “dhcpcd.conf” configuration file to modify how the Raspberry

Pi handles the network, this could be done by typing:

sudo nano /etc/dhcpcd.conf

At the bottom of this configuration file the following rows should be applied, see Figure

31. First, choose whether to configure a static IP for Wi-Fi connection “wlan0” or Ethernet

connector “eth0”. In this case, use wlan0 instead of <Network>. Next, replace <StaticIP>

with the IP address that want to have as static IP for the Raspberry Pi, and this should

ensure that this IP cannot simply be attached to another device on the network. After

that <RouterIP> should be replaced with the router IP address that has been noted. At

last, replace <DNSIP> with example the DNS IP address that had been found earlier or

55

with Google's “8.8.8.8”. Now when everything has been configured, save the file by

pushing CRTL-X and then type Y and Enter.

Figure 31. Commands in "dhcpcd.conf" file.

When the Raspberry Pi´s DHCP file has been configured, the RPI needs to be restarted so

the new changes can be loaded. During the reboot, the RPI will try to connect to the

router using the static IP address. To restart through the terminal window, type:

 sudo reboot

To check that the static IP address has been assigned, open a terminal window and type:

hostname -I

6.2.4 Install and configure BlueZ

To be able to communicate with Nicla Sense through Bluetooth Low Energy it is needed

to install and set up BlueZ on the Raspberry Pi.

To download the file, check the latest version from http://www.bluez.org/download,

open a new terminal window, and enter the command:

wget http://www.kernel.org/pub/linux/bluetooth/bluez-5.66.tar.xz

after that write:

tar xvf bluez-5.66.tar.xz (at the moment version 5.66 is the latest).

Move to the folder by writing:

cd bluez-5.66

To install dependencies that the BlueZ library uses is done by typing:

sudo apt-get update

sudo apt-get install -y libusb-dev libdbus-1-dev libglib2.0-dev libudev-dev libicaldev

libreadline-dev

56

To run the configure script type within the BlueZ source directory:

./configure --enable-library

Once the configure scripts have been done, next is to compile the BlueZ code by typing:

make

When BlueZ code finishes compiling, it can be installed by the command:

sudo make install

After the installation, the next is to set up the BlueZ service, first to check the status type:

systemctl status Bluetooth

To start the BlueZ service manually, type:

sudo systemctl start Bluetooth

If checking again the status it should say active. To stop the service manually type:

sudo systemctl stop Bluetooth

It is good to set the BlueZ service so it starts directly when the Raspberry Pi boots up, this

could be done by typing:

sudo systemctl enable Bluetooth

For information, to disable the autoboot use the command:

sudo systemctl disable Bluetooth

To enable BlueZ features like BLE, it could be modified in the BlueZ service configuration

by typing:

sudo nano /lib/systemd/system/bluetooth.service

By adding –experimental last in the ExecStart line the experimental features are enabled

and press “Ctrl-O”  “Enter”  “Ctrl-X”. To reload the system configuration and restart

the BlueZ service type following commands:

sudo systemctl daemon-reload

sudo systemctl restart Bluetooth

When BlueZ is installed and configured, some more steps should be done. Open a new

terminal window and type:

sudo apt update && sudo apt upgrade

57

Install the BlueZ Blueman Bluetooth Manager tool with the command:

sudo apt install bluetooth pi-bluetooth bluez blueman

Reboot the Raspberry Pi, and then it is ready to use.

6.2.5 Installing and implementation of Node-Red on RPI

On Raspberry Pi, it is possible to use a script that will install Node.js, npm (Node Package

Manager), and Node-Red. When a new version is available, the script can also be used to

upgrade an existing installation. To run the script to ensure npm can fetch and build any

binary modules, open the terminal window and run the command:

sudo apt install build-essential git curl

To install all the needed parts for Node-Red, run the command:

bash <(curl -sL https://raw.githubusercontent.com/node-red/linux-

installers/master/deb/update-nodejs-and-nodered) (Running on Raspberry Pi, u.d.).

Terminal window commands for Node-Red: node-red-start / node-red-stop / node-red-

restart / node-red-log.

Once Node-Red is running, to access the editor on the web browser type

http://localhost:1880, since port 1880 is standard and has not changed.

To start Node-Red directly when the Raspberry Pi starts up could be done by opening a

terminal window and entering the command:

sudo systemctl enable nodered.service

The next time the RPI starts up Node-Red will automatically run in the background.

The Node-Red editor is not secured by default, anyone with access to its IP address can

use it to deploy adjustments. To create a username/password before having access to the

editor, the adminAuth property needs to be uncommented in the settings.js file that can

be found in the Node-Red user directory ~/.node-red. To enter a new password type in

the terminal window:

node-red admin hash-pw.

58

Node-Red code

Node-Red is up and running on the Raspberry Pi with automatic startup on boot. To

navigate to the Node-Red Flow editor open a web browser and type the IP address of the

Raspberry Pi Node-Red host and then the port number 1880 (for standard).

In Figure 32, the whole flow for this project can be seen and it will be more details

explained below.

Figure 32. Overview of the Node-Red flow of the project.

There are several mqtt in nodes in the sketch with different topics. These mqtt in nodes

communicate with the user interface and collect the commands. In Figure 33 the

properties of the mqtt in node could be seen. First picture the topic will be noted, second

picture the server address to the mqtt server and its port should be set. The third picture

should be filled in with login details for the mqtt broker if there are any. The fourth

picture should be filled in with a message and topic if there is a connection,

disconnection, or unexpected disconnection. Novia’s own MQTT Broker was used here.

59

Figure 33. Settings of MQTT in node.

The change node was used. This node will collect the topic from the mqtt in node and

then change the topic. For example, in Figure 34 the Nicla/Connect topic comes from the

mqtt in node and then the change node will just send this topic as “connect”. This needs

to be done because the Bluetooth node would be able to read the commands.

Figure 34. Settings of Change node.

The Generic BLE in node is the Bluetooth communication core. This node collects the

command from the user interface and receives the sensor readings from the Nicla Sense.

At the properties, it is possible to scan for new BLE devices and find their MAC address,

60

when connected to the device and then press apply, all the BLE GATT Characteristics can

be seen configured at the microcontroller.

To access the BlueZ D-Bus API, the host of the Node-Red process must be a member of

the Bluetooth group, otherwise the Bluetooth node will not work at all due to the

bluetooth permission issue. In the terminal window at the Raspberry Pi run the command

and after that, the OS needs to be rebooted:

sudo usermod -G bluetooth -a username

sudo reboot

Figure 35. Settings of Generic BLE in node.

The Bluetooth node splits up into three different function nodes one for motion sensors,

the second for environment sensors, and last the battery level status. These nodes check

when incoming messages arrive if their UUID can be found and then let it pass through

the function node otherwise it rejects the output.

Code examples 1 - 3 show three different function node codes, all these three function

nodes have in common one input and an output channel for timestamp. Motion Check

function has three outputs: timestamp, accelerometer, and gyroscope. Environment

Check has six outputs: timestamp, temperature, humidity, pressure, CO2, and gas. Battery

lvl Check has two outputs: timestamp and battery level.

61

Code example 1. Function node (Motion Check).

const date = new Date();
var time = date.toLocaleTimeString();

Object.keys(msg.payload.characteristics).forEach(key => {

 // Timestamp
 if (key == ('03505d7c10014997ad89cd1456dc7490') || ('03505d7c10024997ad89cd1456dc7490')) {
 var msg1 = { payload: { "Time": time } };
 };

 // Accelerometer
 if (key == '03505d7c10014997ad89cd1456dc7490') {
 var msg2 = msg;
 };

 // Gyroscope
 if (key == '03505d7c10024997ad89cd1456dc7490') {
 var msg3 = msg;
 };

 node.send([[msg1], [msg2], [msg3]]);
})

Code example 2. Function node (Environment Check).

const date = new Date();
var time = date.toLocaleTimeString();

Object.keys(msg.payload.characteristics).forEach(key => {

// Timestamp
 if (key == ('2a6e') || ('2a6f') || ('2a6d') || ('a7f5a4f310014941bc756d7f5d27f436') ||
('a7f5a4f310024941bc756d7f5d27f436')) {
var msg1 = { payload: { "Time": time } };
};

// Temperature
if (key == '2a6e') {
var msg2 = msg;
};

// Humidity
if (key == '2a6f') {
var msg3 = msg;
};

// Pressure
if (key == '2a6d') {

62

var msg4 = msg;
};

// Co2
if (key == 'a7f5a4f310024941bc756d7f5d27f436') {
var msg5 = msg;
};

// Gas
if (key == 'a7f5a4f310014941bc756d7f5d27f436') {
var msg6 = msg;
};

node.send([[msg1], [msg2], [msg3], [msg4], [msg5], [msg6]]);
})

Code example 3. Function node (Battery lvl Check).

const date = new Date();
var time = date.toLocaleTimeString();

Object.keys(msg.payload.characteristics).forEach(key => {
 // Battery Level
 if (key == '2a19') {
 var msg1 = msg;
 };
 // Timestample
 if (key == '2a19') {
 var msg2 = { payload: time };
 };

 node.send([[msg1], [msg2]]);
})

When data is read from the Bluetooth device it reads byte by byte to a data buffer. Data

is temporarily stored and sent using the data buffers (Cope, 2023).

The buffer-parser node converts incoming messages from the buffer to float/int/uint

values. The node searches for its UUID and if it matches the incoming message, it will

convert it and let it pass to the next node. An example of the settings for the

accelerometer can be seen in Figure 36.

63

Figure 36. Settings of buffer - parser for the accelerometer.

The join node combines the incoming messages to just one merged object for the sensors

and to one string for the battery level. After a message has passed the node, it waits 0.1

seconds for all incoming messages and after that sends it forward to a change node that

will add the correct topic for the user interface.

Figure 37. Settings of join node.

The mqtt out node is configured exactly as the mqtt in node but the difference is that it

will send out the message.

The JSON node converts incoming object messages to strings.

64

Figure 38. Settings for JSON node.

When the battery level message has passed the join node and combined the time and

battery level status, it will pass a change node that will change a number between one

and five. These numbers indicate the status of the battery which will change to a

description in the change node which can be seen in Figure 39.

Figure 39. Change node for battery status.

65

The status node BLE status reports the status from the Bluetooth connection and the BLE

MQTT status node reports the mqtt out connection status. If any of the two nodes change

status from example disconnected to connected it will send a message to the status node

with the change. At the properties for the BLE status node the “Generic BLE in” should be

checked to get the status from that node, see Figure 40.

Figure 40. Settings of BLE Status node.

After the BLE Status and BLE MQTT Status node, a short function node for each should be

added, this function stores or sets the status object global for the next function with the

use of global.set.

Code example 4. Function of BLE Connection Status.

var ble_status=msg.status;
global.set('ble_status',ble_status);
return msg;

Code example 5. Function of BLE MQTT Status.

var bleMQTT_status=msg.status;
global.set('bleMQTT_status',bleMQTT_status);
return msg;

66

The next function nodes “BLE Status send” and “BLE MQTT Status send” check for any of

the connection statuses which then send the correct message forward. With the use of

global.get, the status object will be saved to a variable and then search for the correct

status from status.text, when the correct status is found a msg.payload will send a text

with example “Connected” or “Connecting” depending on the status.

Code example 6. The function of BLE Status Send.

var status=global.get('ble_status');
node.log("status is =" +status.text);
if (status.text =="generic-ble.status.connected")
{
 msg.payload="Connected";
 return msg;
}
if (status.text == "generic-ble.status.connecting") {
 msg.payload = "Connecting";
 return msg;
}
if (status.text == "generic-ble.status.disconnected") {
 msg.payload = "Disconnected";
 return msg;
}
if (status.text == "generic-ble.status.disconnecting") {
 msg.payload = "Disconnecting";
 return msg;
}
if (status.text == "generic-ble.status.missing") {
 msg.payload = "Missing";
 return msg;
}
if (status.text == "generic-ble.status.error") {
 msg.payload = "Error";
 return msg;
}
return null;

67

Code example 7. The function of BLE MQTT Status Send.

var status=global.get('bleMQTT_status');
node.log("status is =" +status.text);
if (status.text =="node-red:common.status.connected")
{
 msg.payload="Connected";
 return msg;
}
if (status.text == "node-red:common.status.connecting") {
 msg.payload = "Connecting";
 return msg;
}
if (status.text == "node-red:common.status.disconnected") {
 msg.payload = "Disconnected";
 return msg;
}
return null;

An inject node pushes every 30 seconds an update about the status for both the BLE and

BLE MQTT status, therefore a filter node has been inserted for both which will block the

message if not the status has been changed since the last incoming message. This is a

good way to not burden the mqtt broker unnecessarily.

A delay node has been connected in parallel, with a delay of 30 seconds. This node is

needed because if something has been stuck, an update should be updated every half

minute.

Figure 41. Settings for filter and delay node.

68

6.3 Implementation of a graphical user interface

In this chapter, a graphical user interface will be developed with the use of JavaScript,

HTML, and CSS styling. First The HTML part will be described after that the CSS style and at

last the JavaScript functionality. This graphical user interface is inspired and based from a

dashboard project at https://github.com/donskytech/mqtt-custom-dashboard-node-js

and then further developed with own needs of all the included files below in this chapter

(Appendix II – VIII).

Figure 42. Overview of files used for graphical user interface.

Appendix II: dashboard.ejs Appendix III: style.css

Appendix IV: index.js Appendix V: mqttService.js

Appendix VI: app.js Appendix VII: dashboard.js

Appendix VIII: .env

Figure 42 shows an overview of the files for creating a webpage, the env. file consists of

configuration information that the app.js and dashboard.js receive. The app.js includes

the Express web server application and the dashboard.js is the router that handles the

web URL. The mqttService.js handles the code to the MQTT Broker and the index.js calls

the mqttService.js to communicate with the MQTT broker and also handles all the other

functions of the webpage. The style.css file is used to style the HTML template and the

69

dashboard.ejs contains the web application and collaborates with the functions and styles

from the other files.

Several Node.js modules are stored in a folder node_modules at the project's root

directory, some examples are express, ejs, and dotenv. A file package.json is also stored in

the project’s root directory which contains the Node.JS configurations and dependencies

required by the application.

6.3.1 HTML (Hyper Text Markup Language)

Links that join web pages together, either within a single website or between several

websites are referred to HTML. In this project, a file named “dashboard.ejs” was used (see

Appendix II), .ejs stands for Embedded Javascript Templating which is a templating engine

used by Node.js. A template engine can help to create an HTML template with less code. In

addition, it can generate the HTML by introducing data into an HTML template on the client

side. (Use EJS as Template Engine in Node.js, u.d.). The dashboard.ejs imports parts of CSS

and JavaScript from other files to make a complete web page.

Located between the <html> and <body> tag a <head> element is used as a container for

metadata. Data about the HTML document is called HTML metadata, there is however no

display for this information. Character sets, styles, scripts, document titles, and other meta

information are usually defined via metadata (HTML - The Head Element, u.d.).

The <body> tag defines the document’s body, and the <body> element includes all the

contents of the HTML document for example all the headings, images, graphs, and more.

It can only exist one <body> tag in an HTML document (HTML <body> Tag, u.d.).

Class and ID selectors are used to identify different elements of HTML while writing CSS

and JavaScript. The ability to present an HTML element differently based on its class or ID

is the primary advantage of setting a class or ID. The ID is a unique identifier of the HTML

element that has to be utilized when one HTML element on the page has a particular style

or function. An example to add the ID to the HTML could be: <div id= “id”> and to identify

in CSS or JavaScript the symbol “#” is used before the identifier (Kaur, 2020).

Class is not unique and is used when several HTML elements on the same page need to

have for example the same style applied. An example of adding a class to the HTML element

70

could be: <div class=“class”>, to identify the class in JavaScirpt or CSS the symbol “.” is used

before the identifier (Kaur, 2020).

For marking up text, images, and other content for display in a web browser, HTML uses

“markup” that has unique elements such as: , <table>, <p>, <div>, , and more

on. One thing to note with all types of tags is that when ending a tag it should be used </>

for example <div> “content” </div> or <button> id=”Type_of_ID”</button> (HTML:

HyperText Markup Language, 2023).

Tags that consist of the element name contained by “<” and “>” are used to separate HTML

elements from other content on a page. The letters are not essential when naming an

element inside a tag, which means it can be written in uppercase or lowercase as <title> or

<TITLE> but tags are recommended to be written in lowercase which is usual and advised

(HTML: HyperText Markup Language, 2023).

The <div> tag is frequently used in HTML which defines a section/division. The HTML

elements are contained within the <div> tag and can be modified using CSS and JavaScript

with the use of class or id attributes (HTML <div> Tag, u.d.). To mention some of the <div>

tags in this code there are example classes of temperature, pressure, CO2, gas,

accelerometer, and gyroscope. Other classes are history charts, gauges, and buttons.

The <input type =”..”> tag provides input information by the user. Different input types

could be used in this case, type of checkbox has been used for sending out specific

commands depending on the sensor for example “<input id="envCheck1" type="checkbox"

value="2a6e"/><label>Temperature</label>” which means when checkbox temperature

has been checked the value 2a6e (Bluetooth command) will be sent for every event

dependent on the sampling time. Another input type used is “button” which is assigned to

an ID and gives input on click, there are seven different buttons on the user interface:

connect, disconnect, battery status, start, stop, download, and clear. One more kind of

input type used is “text” and this input reads and sends the sampling time that the user

writes in the text box (requires the sampling time, letters will not be recognized).

There are two different tables in this project one for environment sensors and the other

for motion sensors. This is done by use of the tag <table> and includes all the elements that

should be included before the </table> tag.

71

The tag is an inline container for marking up a section of a text or document. The

class or id attribute of the tag makes it simple to customize using CSS or control

with JavaScript (HTML Tag, u.d.). Inside the <head> tag a link is entered “<link

href=https://fonts.googleapis.com/icon?family=Material+Symbols+Sharp

rel="stylesheet"/>” and makes it possible to import symbols from this link, by clicking on

the desired symbol from the link and copy from “inserting the icon” for example the

temperature gauge: device_thermostat .

Two different images are stored in an images folder at the project, one picture represents

the Novia logo, and the second picture a microcontroller Nicla Sense. These pictures are

imported by searching the source file by and <img

src="images/NiclaSense.png" alt="" />.

6.3.2 CSS (Cascading Style Sheet)

A CSS file named style.css (see Appendix III) is imported by the HTML file (dashboard.ejs)

for styling most of the graphical user interface. With the use of tags, classes, and IDs it is

possible to set parameters for each group which then will be exported to the dashboard

layout.

At the beginning of the file style.css, many different backgrounds are assigned for example

dark/light mode and background colors for different purposes with the use of color hex

code or RGB code, these color codes can be chosen at www.htmlcolorcodes.com. A hex

color / RGB color is assigned to a name which will then be used later for the tags below in

this file. The hex code starts with “#” with a specific code for example (#FE1B04) that

represents the red color and the RGB color has three different numbers which represent

“Red” “Green” and “Blue” for example (99, 209, 35) which combines into green color.

The style is divided into different categories for example tags of headings h1, h2, and h3

which have their specific setting in this case different font sizes. The insights are identified

by class which represents in this case the sensor gauges, each of these gauges has one

picture/symbol that represents its purpose. Each of these symbols has a specific color

assigned, in code example 8 green color is added to the “—color-insight-1” and specifies

the insight of temperature.

72

Code example 8. The background color of the symbol for temperature.

/* Color of measurement pictures*/
 --color-insight-1: rgb(99, 209, 35);

/* Insights different colors*/
aside .insights > div.temperature span {
 background: var(--color-insight-1);
}

@media only screen and (max-width: px) is used to apply when the user uses either a

PC/laptop or mobile phone for example. This setting could change the style view depending

on what device connects to the HTML side which means this tool is even user-friendly with

the use of smartphones.

In CSS it is possible to use various units of measure to express the lengths or sizes of

elements, alternatives can be for example px, rem, vh, vw, and %. Even though pixels (px)

are related to the viewing device’s DPI and resolution, it is still considered absolute units.

The px unit on the device is fixed and independent of any other element and is a good

option if there are elements that should not be scaled. The units rem, vh, vw, and % are

relative units where rem is relative to the root element, vh is relative to the viewport’s

height and vw is relative to the viewport’s width. Since relative units scale up or down

based on the size of another element, it performs better across a range of devices. The

standard font size in the majority of browsers is 16 px and from this basis, the relative units

determine the size (Units of measurement, 2023).

Some basic configurations in CSS are for example “right”, “left”, “top”, “height”, “width”

and “text-align” and the value to decide where to place text, picture, or something else on

the webpage. Other options to use could be “font-weight” to decide how the text should

look, “font-size” to decide the size of the text, “color” to change the color of the text, or

“background-color” to use another color than white as background of the specific place or

whole webpage (CSS Introduction, u.d.).

73

6.3.3 JS (JavaScript)

There are many ways JavaScript could be linked to an HTML page. JavaScript code must

first be downloaded to the browser before it can be used to run the scripts. When a web

page has a lot of scripts included it can run slowly. The method of placing JavaScript code

inside an <script> element is referred to “Internal Javascript” for example <script

type=”text/javascript”> alert (“Hello World!”); </script> (Connolly & Hoar, 2018).

“External JavaScript” is often useful and recommended to have JavaScript code in an

external file that could communicate with the HTML file, the extension of the JavaScript file

is defined by .js and by use of for example <script type=”module” src=./filename.js>

</script> (Connolly & Hoar, 2018). For this project, the external JavaScript method is used

to import the index.js file to the HTML dashboard.

By adding ID or Class identifiers from example buttons or text fields in the HTML file it is

possible to link triggers and values from the web page to the JavaScript file by adding the

identifiers to the specific JavaScript function.

HTML items of buttons, checkboxes, theme toggles, etc. are assigned with variables in the

index.js file by use of querySelector and getElementById. The querySelector() is used to

extract elements from the document. The first element that matches the given selector

(Class, ID, or tag name) is returned. The getElementByID() is used to get an element from

the document by the ID attribute. GetElementByID() will always return one element or null

if there is not a matching element because IDs have to be unique. GetElementByID() needs

only to search for one element and is faster than the querySelector() (Colelevy, 2023).

The EventTarget interface addEventListener() functionality configures a function to be

called each time the designated event is sent to the target (MDN contributors, 2023). For

example, themeTogger.addEventListener change between day and night background

dependent on what mode the button is set to. window.addEventListern is another event

listener that activates when the page is loaded, in this case, it activates the line chart

configurations, MQTT connection, and the mediaQuery (format of the device connected).

The plotly line charts will show historical data from the sensors during collection. The

environment sensors draw lines with marker dots while the motion sensors just draw

74

straight lines on the charts. The layout of the graphs is adjusted in this file with settings like

sizes, colors, auto-size options, etc.

The line chart max lines/points have been adjusted, the environmental sensors reject the

latest point when 50 points have been collected to the line chart, and for the motion

sensors, the max points are 100.

The function updateMotionSensorReadings is used by a callback function that will retrieve

sensor readings and redraw the chart with the latest readings. When a message is received

by the callback function OnMessageMotion, it checks if any of the motion checkboxes are

checked and if any of these are true it will add the values to Plotly.newPlot configuration.

This function also checks if the “Clear” button has been pressed and needs to start from

the beginning.

The function updateMotionBoxes add the latest received X, Y, and Z value for the

accelerometer and gyroscope gauges while the updateMotionCharts function collects data

and checks the sample length to the maximum graph point at the chart and then push the

values of X, Y, and Z to the next sample point on the graph. The function updateEnvBoxes

and updateEnvCharts work in the same way but these functions are focused on the

environmental sensors. The function updateXArray is used to increase by one on the X array

for every event on this function.

Windows.matchMedia compares the size of the user screen and if the max width is smaller

than 600px addEventListener changes with the use of the handleDeviceChange function

new settings of the variable updateHistory.

To access the MQTT connections from the server it is essential to use the

fetchMQTTConnection() function and below this different function connections are used

that handle its own MQTT topic.

In code example 9 an if state is used to check if any of the checkboxes for environmental

or motion sensors are checked and also notes the sampling time. Then binds together all

the Bluetooth commands from the checkboxes and after that sends the commands within

the desired time interval until the stop button is pressed which clears the time interval.

75

Code example 9. Function of environmental sensor checkboxes.

// Reference the Environment Table.
 if (envCheck1.checked == true || envCheck2.checked == true || envCheck3.checked == true ||
envCheck4.checked == true || envCheck5.checked == true) {
 var timeInterval = document.querySelector('#Time_Interval_Env').value;
 var chks = tblSensors.getElementsByTagName("INPUT");
 }

// Reference the Motion Table.
 if (motionCheck1.checked == true || motionCheck2.checked == true) {
 var chks = motion_tblSensors.getElementsByTagName("INPUT");
 var timeInterval = document.querySelector('#Time_Interval_Motion').value;
 }
 var mqttService = new MQTTService(mqttServer);
 mqttService.connect();

// Loop and push the checked CheckBox value in Array.
 for (var i = 0; i < chks.length; i++) {
 if (chks[i].checked) {
 selected.push(chks[i].value);
 }
 }

// Display the selected CheckBox values.
 if (selected.length > 0) {
 var commands = ("" + selected.join(","));
 let timerId = setInterval(function() {
 mqttService.publish(mqttSensorCommandsTopic, commands);
 }, timeInterval);

 // Stopping the timer:
 stop.addEventListener('click', function() {
 console.log("stop")
 clearInterval(timerId);
 });
 }
 });
}

To store the data from the sensor records, the sessionStorage is used, which means it stores

the data for just one session on the client-side web storage, and the data is deleted when

the browser is closed, refreshed, or in this case by pressing the “Clear” button. Data that

are saved to the sessionStorage uses key-value pairs and these both are strings. The

getItem(key) retrieves the value for the given key, setItem(key, value) sets the value for the

given key, and clear() removes all key-value pairs. The sessionStorage is limited to 5 Mb

storage (Zakas, 2009). An investigation has been executed to check how many samples are

possible to collect during one session if all the sensors are used (environment or motion)

50 samples correspond to approximately 2 Kb memory. 5000 Kb / 2 Kb  2500 * 50 

125 000 samples with the 5 Mb limitation, so if the sampling time is set to one second it

would be possible to collect data for approximately 34.5 hours.

76

Code example 10. sessionStorage setItem or clear.

function sensorValues(temperature, humidity, co2, gas, pressure, time) {
 if (restoreKey > 0) {
 sessionStorage.clear();
 console.log("clear records");
 restoreKey = 0;
 sessionRow = 0;
 } else {
 sessionRow;
 }

 sessionRow++;

 var sensorData = [sessionRow, time, temperature, humidity, pressure, co2, gas];
 var sensorDataString = JSON.stringify(sensorData);

 sessionStorage.setItem(sessionRow, sensorDataString);
}

In code example 11, when the download button is pressed, the sessionStorage.getItem is

used to collect the data from sessionStorage.setItem. The if states are used to define the

first column for headings on the CSV file. Environment sensors will always have the same

headings if any of the sensors are used cause the NaN values will be included for the sensors

not measured. The motion sensors have three different options when using both sensors,

or either sensor. sessionforEach function adding a new line for each new sample.

Code example 11. sessionStorage gets data and download function.

// Create a user-defined function to download CSV file
downloadCSVbtn.addEventListener('click', function(){

// Iterate sessionStorage
 for (var i = 0; i < sessionStorage.length; i++) {

 // Set iteration key name
 var key = sessionStorage.key(i);

 // Use key name to retrieve the corresponding value
 var value = sessionStorage.getItem(key);
 sessionData.push(JSON.parse(value));
 console.log(sessionData);
 }

 // Define the heading for each row of the data
 if (envCheck1.checked == true || envCheck2.checked == true || envCheck3.checked == true ||
envCheck4.checked == true || envCheck5.checked == true) {
 var csv = 'Sample,Timestamp,Temperature,Humidity,Pressure,Co2,Gas\n';
 }

 if (motionCheck1.checked == true && motionCheck2.checked == true) {
 var csv = 'Sample,Timestamp,accX,accY,accZ,gyrX,gyrY,gyrZ\n';
 }

77

 else {

 if (motionCheck1.checked == true) {
 var csv = 'Sample,Timestamp,accX,accY,accZ\n';
 }

 if (motionCheck2.checked == true) {
 var csv = 'Sample,Timestamp,gyrX,gyrY,gyrZ\n';
 }
 }

 // Merge the data with CSV
 sessionData.forEach(function(row) {
 csv += row.join(',');
 csv += "\n";
 });

 var hiddenElement = document.createElement('a');
 hiddenElement.href = 'data:text/csv;charset=utf-8,' + encodeURI(csv);
 hiddenElement.target = '_blank';

 // Provide the name for the CSV file to be downloaded
 hiddenElement.download = 'SensorData.csv';
 hiddenElement.click();

 sessionData = [];
});

The .env file includes the title Nicla Sense Dashboard, and also the title Novia UAS on the

webpage. The dashboard.js renders the view and sends the titles from the .env file to the

dashboard. The env. file also includes the different MQTT topics and the MQTT broker

address which will be forwarded to app.js. The app.js starts the webpage server on port:

4000, and also gets and processes the mqtt topics. The mqttService.js file connects to the

MQTT broker, includes publish and subscribe, and uses callback functions when messages

arrive from different topics. Index.js as previously stated contains most functions and

processes from the mqtt topics and takes in data from the sensors which are included in

functions that are then transferred to the web page.

78

6.4 Construction of Nicla Sense protection box

In this chapter, the steps of how to produce a protection box for the Nicla Sense will be

explained. First, the steps of the 3D drawing in Rhino 7 will be explained, and after that the

steps of how to get the 3D model printed with the use of UltiMaker Cura software.

6.4.1 3D drawing of protection box

Before starting to draw, it is necessary to decide what battery should be included in the

box to estimate the size. In this project, a battery marked LIPO-603048 was used which has

a size of 48x30x6 millimeters (L x W x H).

The next thing is to decide the thickness of the walls, in the calculation both side walls are

included. The length of the box has been calculated with 48 mm (battery) + 6 mm (walls) +

4 mm (airspace at sides of the battery) = 58 millimeters. The width has been calculated

quite similarly, 30 mm (battery) + 6 mm (walls) + 4 mm (airspace for the battery). The height

was a bit more difficult to determine but estimated to be 6 mm (battery) + upper wall

thickness 2 mm + 2 mm recess for the upper hatch and the bottom wall to 3 mm. Then 13

millimeters were reserved for airflow between the battery and the Nicla Sense and

reclining support for the battery and mounting brackets for the Nicla Sense, the sum for

the height was then set to 26 millimeters.

When all the sides are determined a solid box could be drawn with these sizes and the tool

could be found at “Solid Tools”  “Box: Corner to Corner, Height”. After that, one more

box should be drawn with a size of 55 x 34 x 23 mm, this box should be inside the first box

that was created, then go to “Solid Tools”  “Boolean difference” and then do according

to the command. Figure 43 shows the before and after view of the box.

Figure 43. Before and after the use of the Boolean difference tool.

79

The next step is to make a 1.5 x 2 mm recess inside the box along where the hatches will

be able to slide in. Two millimeters were reserved from the outer edges. This will be done

with the same steps as previously.

Figure 44. Before and after recess for hatches.

After that, an opening for the Nicla Sense was made. The dimensions for this were

considered by where the sensors are on the microchip so they have an open surface for

readings. Also, the attachment point was considered so the Nicla Sense could not slip

through the box and the USB port was also noticed that the USB cable could fit into the

port.

Then after that the shelf for the battery was constructed and then the mounting rail for

the Nicla Sense. To merge the shelf with the Nicla Sense Box, design the shelf then place it

in the desired field along the Nicla Sense box. To merge the shelf with the Nicla Sense box

go to “Solid Tools”  “Boolean Union” select the objects to merge and then press enter.

For the Nicla Sense, there was also an LED indicator light and reset button which should

be able to reach so at the same time when creating the mounting rail the holes for this

were considered.

A switch was added to be able to turn off the Nicla Sense when not in use. A small switch

marked with 1K2-S (1 x ON – ON 0,5 A) was used, this switch was mounted above the

Nicla Sense.

Six air gaps were made at suitable distances on each side of the battery and three gaps

were made at each side to be able to insert cable ties to hold the box steady for the

project's different purposes. Text with “Nicla Sense” was also engraved along the longest

sides, this could be done with the use of “Text object” and note that the solids box is

80

ticked to create 3D text. The text was placed into the box sides and then used “Solid

Tools”  “Boolean difference”.

When the box and all the details are completed, all the adjustments and edits could be

compounded by first marking the box and then typing in the command field

“MergeAllCoplanarFaces” and then pressing enter. The last step that should be done is to

create softer edges of the box, this could be done by going to “Solid Tools”  “Fillet

edges” and then clicking on all the outer lines of the box which should be rounded then

press enter and decide the radius and then enter again, note that this could be done after

the hatches have been created. In Figure 45 a clearer view of the result is shown.

Figure 45. Nicla Sense box details.

When the box has been completed, the hatches should be created. The hatches have

been done in quite a similar way as the box, the one above the battery has some ducts for

the airflow. The other hatch has been engraved with the text Novia. In Figure 46 the

completed parts of the Nicla Sense box can be seen with the outer dimensions.

81

Figure 46. The final version of the Nicla Sense box with dimensions.

6.4.2 3D printing of protection box

Before saving the STL file, the three parts (the box, upper hatch, and side hatch) should

be considered in how to place the different parts to avoid the 3D printer requiring a lot of

support material. That means, not having a lot of air below something that should be 3D

printed, Figure 46 shows a good way to place these parts.

The file is saved to an STL (Stereolithography) file. STL Mesh Export Options Tolerance

was set to 0.01 millimeters and in ASCII format. Next, the UltiMaker Cura program was

opened, and the 3D printer used was selected from the list then a layout of the 3D printer

will appear where the max size of printer volume could be seen.

The STL file should be imported into the program, In Figure 47 the Nicla Sense protection

box is imported to the UltiMaker Cura program, and to the right side, the necessary

settings are listed on the extruder 1. When all the settings are set, the slice button should

be pressed and then the estimated time will be shown, in this case, 2 hours and 27

minutes. It is also possible to click on the preview button to check all the supports that

will be inserted into the 3D object. When everything is good click “save to disk” and save

it to a USB flash drive which then will be inserted into the 3D printer.

82

Figure 47. UltiMaker Cura with settings of the print.

PLA filament will be used, so first verify that the correct filament is in the 3D printer. Then

after that insert the USB flash drive and choose the correct file, this file is saved as UFP

(UltiMaker Format Package). Then it should just be to start the printing. It will take some

time during the heat up of the nozzle and bed, and the auto-level bedding before the

printer starts to print the model.

When the 3D-printed model is finished it is good to wait a while to get it cooled down

because it is easier to remove the object from the printing bed. The support material on

the model is quite easy to remove with the use of example long nose plier and a small-

sized screwdriver. Sandpaper was used to make the surface smooth, firstly use size 240 to

get the rougher surface sharpened, and last with size 800 to get the “polished” surface. In

Figure 48, the picture to the left shows directly after the model was printed, and the

picture to the right when the protection box is finished.

83

Figure 48. Right: 3D printed box with supports. Left: complete protection box.

7 Discussion and results

This thesis was intended to have wireless measuring equipment that could collect

environment and motion sensor data. A small microcontroller was used that had all the

necessary sensor readings included in the controller. Other requirements were that the

controller would send the data wirelessly and this microcontroller included Bluetooth

Low Energy features. The equipment needed for communicating parts was a Raspberry Pi

to communicate through Bluetooth to collect data readings from the microcontroller and

transmit the data through internet MQTT protocol to the user interface and the other

way to send commands from the user interface to the Raspberry Pi and then to the

microcontroller.

The thesis work consisted of different results. A thoroughly planned Nicla Sense box was

constructed and the sensors were in mind to get airflow directly outside the box. Around

the box, air gaps have been created so the air can be changed due to both the battery and

the microcontroller getting heated up. At the bottom of the box, holes exist for the built-

in reset button and the LED indicator which shows the connection status. A switch can be

found above the microcontroller which breaks the power to the controller when not in

use and if there are connection issues it is good to shut it off just for a few seconds and

power it on again. A small connector designed for the Nicla Sense has been used so it

would be easier to disconnect the microcontroller from the battery if necessary. Three

84

openings on both sides have also been constructed with considering holding the Nicla

Sense in place with the use of cable ties. Nicla Sense has also been engraved on both

sides of the box to easier see what microcontroller it is inside, and the hatch has been

engraved with Novia to indicate who the controller belongs to.

The Nicla Sense microcontroller is pre-configured for the user interface, which means for

now it is not possible to change to another Nicla Sense except if not going into the

Raspberry Pi’s Node-Red configuration and configuring to another one.

The dashboard is constructed so the screen view is adaptable with both computer and

smartphone screens.

On the user interface a connect and disconnect button for the connection of the Nicla

Sense and the battery status can be found next to it.

At the stage when the battery status part was added to the project it worked as it should,

but at a later stage it was noticed that the battery status was only kept between “Battery

empty” when the USB cable was used and “Battery Full” when the Nicla Sense was in

battery operation. It is difficult to predict what causes this problem but one thought may

be the updates that have been made during the work. It was decided to keep the function

for further research with the newest Nicla Sense Mbed OS version.

The user interface consists of one part of environment sensors and the second part of

motion sensors. It is only possible to choose one of these categories when starting to

collect data, but it is possible to choose several sensors from the selected category at one

record. When selecting the sensor boxes a sampling time is needed to be chosen in

milliseconds, the fastest sampling time that should be used is 250 ms which means 4

samples per second. If selected faster than that some records could be lost or the

communication could be lost due to too much traffic.

Below the three buttons, there are four different statuses, one for the dashboard MQTT

connection status, and the next is the sensor MQTT connection which means the

Raspberry Pi MQTT bridge is up and running. The Bluetooth connection shows the status

of the microcontroller connected through Bluetooth to the Raspberry Pi. The last is the

battery status. There is also a button up to the right corner which changes the user

interface between day and night mode.

85

During the data collection, the latest received data is shown on the gauges, and graphs

that draw the history of the received data. When collecting environment sensor data

when some of the boxes are not checked, the value “NaN “will be shown (not a number).

If needed to start over and enter new data records, it is possible to press the button

“Clear” which will delete all previous data received and proceed with new data from the

Nicla Sense. There is also a “Stop” button that is used when a break is needed during the

collection and when pressing start it continues to collect data. When satisfied with the

data collected, the “Download” button should be pressed which will download the

collected data to the local computer for future processing in a CSV file.

An overview of the user interface can be seen in Appendix IX, which is a user manual in

Swedish on how to use this data acquisition tool.

Wi-Fi has a much longer connection distance to be connected to the internet than

Bluetooth can be connected between devices, therefore the Raspberry Pi needs to be

placed near enough to the Nicla Sense. If needed to collect data outside the school, the

Raspberry Pi needs to be taken with and if there is another internet connection outside,

the Raspberry Pi needs probably to be connected to that connection. Worth noting is that

the Raspberry Pi starts up automatically when receiving power from the 230V outlet and

if it finds an accessible internet connection, the device can be used immediately.

For now, a specific dashboard server is not possible due to security risks, which means

that the webpage should be developed with security functions, for example, username

and password logins.

If a computer runs the dashboard application through the internet at school, the student

at home cannot use that host IP address and port to access the Nicla Sense dashboard but

if the student has access to the files to run the dashboard on the local computer it is

possible to control and receive data from the Nicla Sense at school through the MQTT.

What should be noted is that when the dashboard server is running on a computer at

school and connected to the school’s network. The student could connect to the same

network and use the host's internet address and port number 4000 and then have access

to the Nicla Sense dashboard.

86

A discovery made was the difference in temperature and humidity measurements when

using the battery or USB cable. A longer period of tests has been done with both options

of power supplied. In the Arduino code for the Nicla Sense, the temperature and humidity

have been adjusted to the battery option, when connected USB cable the temperature

measurement rose three Celsius more, and the humidity measurements fell by three

percent. The temperature was hard to get a completely correct measurement value due

to the heating of the microcontroller in operation. Lastly, it was noted that Co2

measurement was stuck to 500 ppm for the first approximately four to five minutes when

the Nicla Sense was switched on, and after that started measuring.

A part of different projects with other hardware in communication to user interface could

be found, but usually only one point communication, which means it has only Wi-Fi

inbuild and is directly connected to an MQTT broker, or if the microcontroller has built-in

Bluetooth it communicates with just Bluetooth. Since the Nicla Sense microcontroller was

released late in the year 2021 there has been limited previous project done but noticed

that there are new projects made with this microcontroller gradually.

Using the tool Node-Red has its pros and cons, the positive thing is that it is easy to follow

up and get an overview of sketches to see how the data is processed. It is easy to use pre-

programmed nodes that can easily be set by their configurations. The downside is there

may be no updated nodes that do not work correctly. Another thing is that a prebuilt

node is determined by how it works and may not suit the user's needs.

An experiment has also been carried out indoors to check the Bluetooth connection range

between the Raspberry Pi and the Nicla Sense. In Figure 49 an overview of the test could

be seen. The wireless Bluetooth transmission has a great impact on the material of the

walls and this test was performed with plasterboards. The brown mark represents a cabinet

which also has the impact of the connection.

In the two nearest rooms to the Raspberry Pi, no problem with the connection was noticed,

in the farthest room it worked okay but could sometimes drop the connection.

87

Figure 49. BLE connection range test.

Considering Bluetooth Low Energy, it has exceeded my expectations of connection range

when thinking about the wall interference. But as was said before, the wall material has a

big impact and does not have to work as well on a concrete wall for example.

A test has been performed by measuring the sensors inside and outside the protection box

until the values have stabilized. The result shows that the temperature sensor is a little bit

affected by the box, when taking the microcontroller out of the box, the degrees drop by

1.2 Celsius. Worth noting is that the sensor readings have been taken into account in the

protection box and not outside.

One thing discovered was that several updates for the Mbed OS Nicla Board were

released during the thesis work. When updating to the latest version it will complain

about different errors since the Arduino community has changed some code to the Nicla

Sense library. The latest version that could be compiled for this project was the version

Arduino Mbed OS Nicla Board version 4.0.2.

88

7.1 Further research

This thesis investigated only one Nicla Sense microcontroller, one suggestion could be the

subject of connecting several Nicla Sense microcontrollers into the same user interface so

several measurement projects could be handled at the same time.

The accelerometer and gyroscope readings were included in the scope and for now, these

sensors could handle four samples per second to the user interface but should be able to

transfer much faster. The suggestion could be to do further research on how to do this in

other ways to send more samples in one second. Some thought was giving just one

command to the Nicla Sense from the user interface, and then the Nicla Sense should bunch

all the accelerometer or gyroscope sensor readings for example during 30 seconds, and

send it to the user interface. But there should also be a noticeable amount of the Bluetooth

Low Energy data limitation.

Another further research suggestion is to see if there is the possibility to use the connect

button on the user interface to change to other Nicla Sense microcontrollers because now

the specific Nicla Sense controller is pre-programmed and cannot be changed directly from

the user interface.

In a later stage, it was noted that the battery status level did not work as it should, and at

least it was found that new commands had been added to the Nicla Sense library for the

battery which may be the cause. The older Nicla Sense OS version has been uploaded but

the lack of time in the end has not made it possible to check this further. The button is left

on the application and all the other functions, and a further development may be to update

to the latest Nicla Sense OS version and use the new commands to get a working battery

status information.

And last suggestion is to check if any other sensors could be included in the user interface

(there are also smart functionalities for this sensor).

89

7.2 Acknowledgments

I have very little coding experience from my background, so this thesis has allowed me to

be more familiar with not just one, but three different ways of coding. I am sure that this

experience will be needed many times in the future.

Last but not least, I want to thank Hans Lindén, Jan Berglund, and Ray Pörn for the support

I have received during this thesis work.

90

8 References

A High-Class and Dynamic University of Applied Sciences. (n.d.). Retrieved from Novia:
https://www.novia.fi/en/about-us/

About. (n.d.). Retrieved from Node-Red: https://nodered.org/about/

About Arduino. (n.d.). Retrieved February 05, 2018, from Arduino:
https://www.arduino.cc/en/Guide/Introduction

About McNeel. (n.d.). Retrieved from Rhinoceros:
https://www.rhino3d.com/mcneel/about/

Afaneh, M. (2018). Intro to Bluetooth Low Energy. Novel Bits, LLC.

Afaneh, M. (n.d.). Bluetooth GATT: How to Design Custom Services & Characteristics.
Retrieved from NovelBits: Bluetooth GATT: How to Design Custom Services &
Characteristics [MIDI device use case]

Afeneh, M. (2020, April 28). How Bluetooth Low Energy Works: 21 Interesting Facts.
Retrieved from NovelBits: https://novelbits.io/how-bluetooth-low-energy-
works-21-interesting-facts/

American phychology association. (n.d.). Style and Grammar. Retrieved January 21,
2022, from APA Style: https://apastyle.apa.org/style-grammar-guidelines

ANNA-B112-00BU-BLOX. (2021, August 10). Retrieved from TME.eu:
https://www.tme.eu/Document/728cd946bd63e740e669ed0616162faf/ANN
A-B112_DataSheet.pdf

Arduino. (2022, December 01). Arduino. Retrieved from Nicla Sense ME:
https://store.arduino.cc/products/nicla-sense-me

Arduino Nicla Sense ME. (n.d.). Retrieved 2022, from Bosch Sensortec:
https://www.bosch-sensortec.com/software-tools/tools/arduino-nicla-sense-
me/

Arduino® Nicla Sense ME. (2023, October 17). Retrieved from Arduino:
https://docs.arduino.cc/resources/datasheets/ABX00050-datasheet.pdf

Bagur, J. (2023, May 16). Connecting Nano 33 BLE Devices over Bluetooth®. Retrieved
from Arduino: https://docs.arduino.cc/tutorials/nano-33-ble-sense/ble-
device-to-device

BHI260AP - Ultra-low power, high performance, self-learning AI smart sensor with
integrated accelerometer and gyroscope. (2021, April 15). Retrieved from
Bosch Sensortec: https://www.bosch-
sensortec.com/media/boschsensortec/downloads/datasheets/bst-bhi260ap-
ds000.pdf

BooleanDifference. (n.d.). Retrieved from Robert McNeel & Associates:
https://docs.mcneel.com/rhino/7/help/en-
us/commands/booleanunion.htm#BooleanDifference

91

BooleanUnion. (n.d.). Retrieved from Robert McNeel & Associates:
https://docs.mcneel.com/rhino/7/help/en-us/commands/booleanunion.htm

Colelevy. (2023, April 6). querySelector() vs. getElementById(). Retrieved from Dev
Community: https://dev.to/colelevy/queryselector-vs-getelementbyid-166n

Connect a battery to Nicla Sense ME or Nicla Vision. (2022, December 13). Retrieved
from Arduino: https://support.arduino.cc/hc/en-
us/articles/4408893476498-Connect-a-battery-to-Nicla-Sense-
ME?queryID=undefined

Connect to an MQTT Broker. (n.d.). Retrieved from Node-Red:
https://cookbook.nodered.org/mqtt/connect-to-broker

Connolly, R., & Hoar, R. (2018). FUNDAMENTALS OF Web Development. 221 River
Street, Hoboken, NJ 07030: Pearson Education.

Cope, S. (2023, October 23). Understanding and Using Buffers In Node-Red. Retrieved
from Steve’s Node-Red Guide:
https://stevesnoderedguide.com/understanding-buffers-node-red

Create a single message from separate streams of messages. (n.d.). Retrieved from
Node-Red: https://cookbook.nodered.org/basic/join-streams

Creating Nodes. (n.d.). Retrieved from Node-Red: https://nodered.org/docs/creating-
nodes/

CSS Introduction. (n.d.). Retrieved from Learn to Code:
https://www.w3schools.com/css/css_intro.asp

Derhgawen, A. (2020, November 16). Maximizing BLE Throughput Part 4: Everything
You Need to Know. Retrieved from PunchThrough:
https://punchthrough.com/ble-throughput-part-4/

Express/Node introduction. (2023, September 27). Retrieved from Resources for
Developers: https://developer.mozilla.org/en-US/docs/Learn/Server-
side/Express_Nodejs/Introduction

Faraon, M., & Holmberg, L. (2022). Introduktion till HTML och CSS. Lund :
Studentlitteratur AB.

FilletEdge. (n.d.). Retrieved from Robert McNeel & Associates:
https://docs.mcneel.com/rhino/7/help/en-us/commands/filletedge.htm

Gas Sensor BME688. (2022, July). Retrieved from Bosch Sensortec:
https://www.bosch-sensortec.com/products/environmental-sensors/gas-
sensors/bme688/#documents

Getting Started with Arduino IDE 2.0. (2022, 12 7). Retrieved from Arduino:
https://docs.arduino.cc/software/ide-v2/tutorials/getting-started-ide-v2

Gustafsson, E., & Jarefors, R. (2022). Data collection in IoT: A comparison of MQTT
implementations.

92

HTML - The Head Element. (n.d.). Retrieved from W3 Schools - Learn to Code:
https://www.w3schools.com/html/html_head.asp

HTML <body> Tag. (n.d.). Retrieved from W3 Schools:
https://www.w3schools.com/tags/tag_body.asp

HTML <div> Tag. (n.d.). Retrieved from W3 School - Learn to Code:
https://www.w3schools.com/tags/tag_div.ASP

HTML Tag. (n.d.). Retrieved from W3 Schools - Learn to Code:
https://www.w3schools.com/tags/tag_span.asp

HTML: HyperText Markup Language. (2023, March 13). Retrieved from Resources for
Developers by Developers: https://developer.mozilla.org/en-
US/docs/Web/HTML

Jamsa, K., Ph., D., & Klander, L. (1998). C/C++ PROGRAMMER'S BIBLE, The Ultimate
Guide to C/C++ Programming. 2975 S. Rainbow Blvd., Las Vegas, NV 89102:
Jamsa Press.

Kaur, M. (2020, May 8). The Difference Between ID and Class. Retrieved from Medium:
https://medium.com/@mandeepkaur1/the-difference-between-id-and-class-
be2a8322b82c

Ltd., Raspberry Pi Trading. (2019, June). Raspberry Pi 4 Computer Model B.

Magnetometer BMM150. (2020, April). Retrieved from Bosch Sensortec:
https://www.bosch-sensortec.com/products/motion-
sensors/magnetometers-bmm150/#documents

MDN contributors. (2023, September 24). EventTarget: addEventListener() method.
Retrieved from Resources for Developers, by Developers:
https://developer.mozilla.org/en-
US/docs/Web/API/EventTarget/addEventListener

MergeAllCoplanarFaces. (n.d.). Retrieved from Robert McNeel & Associates:
https://docs.mcneel.com/rhino/7/help/en-
us/commands/mergecoplanarface.htm#MergeAllCoplanarFaces

Michel, Z. (2019, April 26). Maximizing BLE Throughput Part 3: Data Length Extension
(DLE). Retrieved from PunchThrough:
https://punchthrough.com/maximizing-ble-throughput-part-3-data-length-
extension-dle-2/

Nicla Sense ME. (n.d.). Retrieved from Arduino:
https://docs.arduino.cc/hardware/nicla-sense-me

Nicla Sense ME. (2023, May 16). Retrieved from Arduino:
https://docs.arduino.cc/hardware/nicla-sense-me

Node.js NPM. (n.d.). Retrieved from W3 schools:
https://www.w3schools.com/nodejs/nodejs_npm.asp

Node-RED Concepts. (n.d.). Retrieved from Node-Red:
https://nodered.org/docs/user-

93

guide/concepts#:~:text=A%20Node%20is%20the%20basic,timer%20or%20
GPIO%20hardware%20change.

node-red-contrib-buffer-parser. (n.d.). Retrieved from Node-Red:
https://flows.nodered.org/node/node-red-contrib-buffer-parser

node-red-contrib-generic-ble. (n.d.). Retrieved from Node-Red:
https://flows.nodered.org/node/node-red-contrib-generic-ble

OSI Model. (n.d.). Retrieved from Imperva:
https://www.imperva.com/learn/application-security/osi-model/

Pressure sensor BMP390. (2021, March). Retrieved from Bosch Sensortec:
https://www.bosch-sensortec.com/products/environmental-
sensors/pressure-sensors/bmp390/#documents

Product logos. (n.d.). Retrieved from Novia: https://www.novia.fi/en/about-
us/graphic-profile/logo-and-seal/product-logos

Publish messages to a topic. (n.d.). Retrieved from Node-Red:
https://cookbook.nodered.org/mqtt/publish-to-topic

Raspberry Pi 4 Tech Specs. (n.d.). Retrieved from Raspberry Pi:
https://www.raspberrypi.com/products/raspberry-pi-4-model-
b/specifications/

Raspberry Pi OS. (n.d.). Retrieved from Raspberry Pi:
https://www.raspberrypi.com/documentation/computers/os.html

Ravikiran , A. (2022, December 12). The Difference Between C and C++. Retrieved from
simplilearn: https://www.simplilearn.com/tutorials/cpp-tutorial/difference-
between-c-and-cpp#difference_between_c_and_c

Rhinoceros. (n.d.). Retrieved from Rhinoceros: https://www.rhino3d.com/

Rhinoceros 3D. (2023, April 13). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Rhinoceros_3D

Romero, S. (n.d.). Arduino Nicla Sense ME Cheat Sheet. Retrieved from Arduino:
https://docs.arduino.cc/tutorials/nicla-sense-me/cheat-sheet

Running on Raspberry Pi. (n.d.). Retrieved from Node-Red:
https://nodered.org/docs/getting-started/raspberrypi#installing-and-
upgrading-node-red

Science & Technology . (2019, June 4). Retrieved from Congressional Research Service:
https://crsreports.congress.gov

Sensing and intelligence at the edge become accessible to all, with Nicla Sense ME by
Arduino Pro and Bosch Sensortec. (n.d.). Retrieved from Bosch Sensortec:
https://www.bosch-sensortec.com/news/sensing-and-intelligence-at-the-
edge-become-accessible-to-all-with-nicla-sense-me-by-arduino-pro-and-
bosch-sensortec.html

94

SSDN Technologies. (2023, May 11). Advantage & Disadvantages of C++ Programming.
Retrieved from Medium: https://ssdntechnologies.medium.com/advantage-
disadvantages-of-c-programming-dc1eb9af2d72

Subscribe to a topic. (n.d.). Retrieved from Node-Red:
https://cookbook.nodered.org/mqtt/subscribe-to-topic

Sufiyan, T. (2023, May 16). What is Node.js: A Comprehensive Guide. Retrieved from
Simplilearn: https://www.simplilearn.com/tutorials/nodejs-tutorial/what-is-
nodejs#what_is_nodejs

Supported File Formats. (n.d.). Retrieved from Rhinoceros:
https://www.rhino3d.com/features/file-formats/

System Requirements. (n.d.). Retrieved from Rhinoceros:
https://www.rhino3d.com/7/system-requirements/

Technical education with a royal lineage. (n.d.). Retrieved from Technobothnia:
https://www.technobothnia.fi/technical-collaboration/about-technobothnia/

Technobothnia. (n.d.). Retrieved from Technobothnia: https://www.technobothnia.fi/

The C++ programming language in cheminformatics and computational chemistry.
(2020). Journal of Cheminformatics, 1.

The Core Nodes. (n.d.). Retrieved from Node-Red: https://nodered.org/docs/user-
guide/nodes#inject

The History of Rhino. (2020, December 4). Retrieved from Robert McNeel & Associates
Wiki: https://wiki.mcneel.com/rhino/rhinohistory

The Raspberry Pi: A Technology Disrupter, and the Enabler of Dreams. (2017, July
12). Southampton, United Kingdom: mdpi.

Townsend, K., Cufi, C., Akiba, & Davidson, R. (2014). Getting Started with Bluetooth
Low Energy. 1005 Gravenstein Highway Nort, Sebastopol, CA 95472: O’Reilly
Media, Inc.

UltiMaker Cura. (n.d.). Retrieved from UltiMaker:
https://ultimaker.com/software/ultimaker-cura/

Units of measurement. (2023, July 25). Retrieved from elementor:
https://elementor.com/help/whats-the-difference-between-px-em-rem-vw-
and-vh/

Use EJS as Template Engine in Node.js. (n.d.). Retrieved from geeksforgeeks: Use EJS as
Template Engine in Node.js

What are NURBS? (n.d.). Retrieved from Rhinoceros:
https://www.rhino3d.com/features/nurbs/

What are the system requirements for Ultimaker Cura? (n.d.). Retrieved from
UltiMaker:
https://support.makerbot.com/s/article/1667410778209?_gl=1*6m2m7z*_g
a*MzYwOTAxMTIyLjE2ODMyMDI0Njk.*_ga_JHX8W909G8*MTY4MzI3ODAwNi

95

4yLjEuMTY4MzI3ODU2Mi41OS4wLjA.*_ga_CJM2DTBWYF*MTY4MzI3ODAwNi
4yLjEuMTY4MzI3ODU2Mi41OS4wLjA.

What Is IoT? (2021, June 16). Retrieved from Renke: https://www.renkeer.com/iot-
sensors-applications/

What is JavaScript? (2023, March 05). Retrieved from Resources for Developers:
https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/First_steps/What_is_JavaScript

Woolley, M. (2022, June 6). Introducing: The Bluetooth. Retrieved from Bluetooth:
https://www.bluetooth.com/blog/introducing-the-bluetooth-low-energy-
primer/

Zakas, N. C. (2009, July 21). Introduction to sessionStorage. Retrieved from Human
Who Codes: https://humanwhocodes.com/blog/2009/07/21/introduction-
to-sessionstorage/

APPENDICES

Appendices with a lot of code that is too long and too extensive to be included in the
main text will be visible here, these codes will be attached below with different
references. There is also one appendix included of the user manual in Swedish.

Appendix I – Arduino Code

/* Arduino Nicla Sense ME BLE Sense Dashboard */

// Include outside libraries in this sketch.
#include "Nicla_System.h"
#include "Arduino_BHY2.h"
#include <ArduinoBLE.h>

// Define gives a name to a constant value before the program is compiled.
#define ACC_SENSOR_UPDATE_INTERVAL (1000)
#define GYRO_SENSOR_UPDATE_INTERVAL (1000)

// Store different data types in a single definition
union sensor_data {
 struct __attribute__((packed)) {
 float values[3]; // float array for data (it holds 3)
 bool updated = false;
 };
 uint8_t bytes[3 * sizeof(float)]; // size as byte array
};

union sensor_data accData;
union sensor_data gyroData;

// Environment UUIDS
BLEService Env_service("181a"); // Service UUID for Environment sensors.
// Pre-designed UUID for temperature: 2a6e with the properties of read.
BLEFloatCharacteristic temperatureCharacteristic("2a6e", BLERead);
// Pre-designed UUID for humidity: 2a6f with the properties of read.
BLEUnsignedIntCharacteristic humidityCharacteristic("2a6f", BLERead);
// Pre-designed UUID for pressure: 2aa3 with the properties of read.
BLEFloatCharacteristic pressureCharacteristic("2a6d", BLERead);
// Custom-designed UUID for gas: 19b10000-1001-537e-4f6c-d104768a1214 with the properties of read.
BLEUnsignedIntCharacteristic gasCharacteristic("a7f5a4f3-1001-4941-bc75-6d7f5d27f436", BLERead);
// Custom-designed UUID for co2: 19b10000-1002-537e-4f6c-d104768a1214 with the properties of read.
BLEIntCharacteristic co2Characteristic("a7f5a4f3-1002-4941-bc75-6d7f5d27f436", BLERead);

// Motion UUIDS
BLEService Motion_service("03505D7C-0000-4997-AD89-CD1456DC7490"); // Service UUID for Motion
sensors.

// Custom UUID for accelerometer and gyroscope sensors with properties of read and notify.
BLECharacteristic accCharacteristic("03505d7c-1001-4997-ad89-cd1456dc7490", BLERead | BLENotify,
sizeof accData.bytes);
BLECharacteristic gyroCharacteristic("03505d7c-1002-4997-ad89-cd1456dc7490", BLERead | BLENotify,
sizeof accData.bytes);

// Battery level UUID
BLEService Battery_service("180f"); // Service UUID for Battery level.
// Custom UUID for Battery level with properties of read.
BLEUnsignedIntCharacteristic batterylvlCharacteristic("2a19", BLERead);

// Get (Class | sensor name | Sensor Id Macro) of the needed sensors from Nicla Sense
Sensor temperature(SENSOR_ID_TEMP);
Sensor humidity(SENSOR_ID_HUM);
Sensor gas(SENSOR_ID_GAS);
Sensor pressure(SENSOR_ID_BARO);
SensorBSEC bsec(SENSOR_ID_BSEC);
SensorXYZ accelerometer(SENSOR_ID_ACC);
SensorXYZ gyroscope(SENSOR_ID_GYRO);

// Setup required at the beginning of the program.
void setup(){
 Serial.begin(115200); // Sets the data rate in bits per second (baud rate) for serial monitor
 Serial.println("Start"); // Prints "Start" when compling is finished

 // Start Nicla Sense and set the led indicator colour to red.
 nicla::begin();
 nicla::leds.begin();
 nicla::leds.setColor(red);

 pinMode(p25, OUTPUT); // Configure the specidied pin as an output.

 nicla::enableCharge(100); // Enable charge function of 100 mA

 //Sensors initialization
 BHY2.begin();
 temperature.begin();
 humidity.begin();
 gas.begin();
 pressure.begin();
 bsec.begin();
 accelerometer.begin();
 gyroscope.begin();

 // write initial value
 for (int i = 0; i < 3; i++) {
 accData.values[i] = i;

 gyroData.values[i] = i;
 }

 // Set the advertised service UUID used when advertising to the value of the BLEservice provided.
 BLE.setAdvertisedService(Env_service);
 BLE.setAdvertisedService(Motion_service);
 BLE.setAdvertisedService(Battery_service);

 // Add all the previously defined Characteristics to the specific services
 Env_service.addCharacteristic(temperatureCharacteristic);
 Env_service.addCharacteristic(humidityCharacteristic);
 Env_service.addCharacteristic(gasCharacteristic);
 Env_service.addCharacteristic(pressureCharacteristic);
 Env_service.addCharacteristic(co2Characteristic);

 Motion_service.addCharacteristic(accCharacteristic);
 Motion_service.addCharacteristic(gyroCharacteristic);

 Battery_service.addCharacteristic(batterylvlCharacteristic);

 // Connect event handler
 BLE.setEventHandler(BLEConnected, blePeripheralConnectHandler);

 // Disconnect event handler
 BLE.setEventHandler(BLEDisconnected, blePeripheralDisconnectHandler);

 // Sensors event handlers
 temperatureCharacteristic.setEventHandler(BLERead, onTemperatureCharacteristicRead);
 humidityCharacteristic.setEventHandler(BLERead, onHumidityCharacteristicRead);
 gasCharacteristic.setEventHandler(BLERead, onGasCharacteristicRead);
 pressureCharacteristic.setEventHandler(BLERead, onPressureCharacteristicRead);
 co2Characteristic.setEventHandler(BLERead, onCo2CharacteristicRead);
 batterylvlCharacteristic.setEventHandler(BLERead, onBatterylvlCharacteristicRead);

 BLE.setLocalName("Nicla"); // Add bluetooth name to the device
 BLE.addService(Env_service); // Add a BLE service to the set of services the BLE device provides.
 BLE.addService(Motion_service); // Add a BLE service to the set of services the BLE device provides.
 BLE.addService(Battery_service); // Add a BLE service to the set of services the BLE device provides.
 BLE.advertise(); // Start advertising.
}

// When device connected change led to green.
void blePeripheralConnectHandler(BLEDevice central){
 nicla::leds.setColor(green);
}

// After the device connected once and after that disconnects the led changes to blue.
void blePeripheralDisconnectHandler(BLEDevice central) {
 nicla::leds.setColor(red);

}

// Loops consecutively, allowing the program to change and respond.
void loop(){

 // Activate tasks while BLE is connected.
 while (BLE.connected()){
 BHY2.update();

 bleAccTask();
 if (accSensorTask()) {
 }
 bleGyroTask();
 if (gyroSensorTask()) {
 }
 }
}

// Bool holds one of two values (true or false).
bool accSensorTask() {
 static long previousMillis2 = 0;
 unsigned long currentMillis2 = millis(); // Returns the number of milliseconds passed since the board began
running the current program.
 static float x = 0.00, y = 0.00, z = 0.00;
 if (currentMillis2 - previousMillis2 < ACC_SENSOR_UPDATE_INTERVAL) {
 return false;
 }
 previousMillis2 = currentMillis2; // Writing over the time to currentMillis2.
 if(accelerometer.begin()){
 float x, y, z;
 x = accelerometer.x();
 y = accelerometer.y();
 z = accelerometer.z();

 accData.values[0] = x;
 accData.values[1] = y;
 accData.values[2] = z;
 accData.updated = true;
 }
 return accData.updated;
}

// Same procedure as accSensorTask.
bool gyroSensorTask() {
 static long previousMillis2 = 0;
 unsigned long currentMillis2 = millis();
 static float x = 0.00, y = 0.00, z = 0.00;
 if (currentMillis2 - previousMillis2 < GYRO_SENSOR_UPDATE_INTERVAL) {
 return false;
 }
 previousMillis2 = currentMillis2;

 if(gyroscope.begin()){
 float x, y, z;
 x = gyroscope.x();
 y = gyroscope.y();
 z = gyroscope.z();

 gyroData.values[0] = x;
 gyroData.values[1] = y;
 gyroData.values[2] = z;
 gyroData.updated = true;
 }
 return gyroData.updated;
}

// Request read and write value from sensor.
void onTemperatureCharacteristicRead(BLEDevice central, BLECharacteristic characteristic){
 float temperatureRaw = temperature.value(); // Read raw data temperature value.
 temperatureCharacteristic.writeValue(bsec.comp_t()); // Write and send compensated temperature value.
 Serial.println(String("Temperature Raw: ") + String(temperatureRaw)); // Print raw data temperature to
serial monitor.
 Serial.println(String("Temperature Compensated: ") + String(bsec.comp_t())); // Print compensated
temperature value
}

void onHumidityCharacteristicRead(BLEDevice central, BLECharacteristic characteristic){
 float humidityRaw = humidity.value(); // Read raw data humidity value.
 humidityCharacteristic.writeValue(bsec.comp_h()); // Write and send compensated humidity value.
 Serial.println(String("Humidity Raw: ") + String(humidityRaw)); // Print raw data humidity to serial monitor.
 Serial.println(String("HumidityComp Compensated: ") + String(bsec.comp_h())); // Print compensated
humidity value
}

void onGasCharacteristicRead(BLEDevice central, BLECharacteristic characteristic){
 unsigned int gasValue = gas.value(); // Read gas value uint.
 gasCharacteristic.writeValue(gasValue); // Write and send gas value
 Serial.println(String("Gas: ") + String(gasValue));
}

 void onPressureCharacteristicRead(BLEDevice central, BLECharacteristic characteristic){
 float pressureValue = pressure.value(); // Read float pressure value.
 pressureCharacteristic.writeValue(pressureValue); // Write and send pressure value.
 Serial.println(String("Pressure: ") + String(pressureValue));
 }

void onCo2CharacteristicRead(BLEDevice central, BLECharacteristic characteristic){
 uint32_t co2Value = bsec.co2_eq(); // Read uint co2 value.
 co2Characteristic.writeValue(co2Value); // Write and send co2 value.
 Serial.println(String("Co2: ") + String(co2Value));
}

void onBatterylvlCharacteristicRead(BLEDevice central, BLECharacteristic characteristic){

 digitalWrite(p25, HIGH); // Write high value to digital pin.
 static int batteryValue = nicla::getBatteryStatus(); // Get the current battery status.
 batterylvlCharacteristic.writeValue(batteryValue); // Write and send battery value.
 digitalWrite(p25, LOW); // Write low value to digital pin.
}

void bleAccTask()
{
 const uint32_t BLE_UPDATE_INTERVAL = 1000;
 static uint32_t previousMillis = 0;
 uint32_t currentMillis = millis();
 if (currentMillis - previousMillis >= BLE_UPDATE_INTERVAL) {
 previousMillis = currentMillis;
 BLE.poll();
 }
 if (accData.updated) {
 // When bluetooth connected update values and write on request
 int16_t accelerometer_X = round(accData.values[0]);
 int16_t accelerometer_Y = round(accData.values[1]);
 int16_t accelerometer_Z = round(accData.values[2]);
 accCharacteristic.writeValue(accData.bytes, sizeof accData.bytes);
 int16_t helpme = (accData.bytes, sizeof accData.bytes);

 Serial.println(String(accelerometer_X));
 accData.updated = false;
 }
}

void bleGyroTask()
{
 const uint32_t BLE_UPDATE_INTERVAL = 1000;
 static uint32_t previousMillis = 0;
 uint32_t currentMillis = millis();
 if (currentMillis - previousMillis >= BLE_UPDATE_INTERVAL) {
 previousMillis = currentMillis;
 BLE.poll();
 }
 if (gyroData.updated) {
 // When bluetooth connected update values and write on request
 int16_t gyroscope_X = round(gyroData.values[0]);
 int16_t gyroscope_Y = round(gyroData.values[1]);
 int16_t gyroscope_Z = round(gyroData.values[2]);
 gyroCharacteristic.writeValue(gyroData.bytes, sizeof gyroData.bytes);
 gyroData.updated = false;
 }
}

Appendix II – dashboard.ejs

<!DOCTYPE html>
<html lang="en">
<head>
<!-- Defines metadata (information) about the HTML document -->
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title><%=dashboardTitle%></title>
<link
href="https://fonts.googleapis.com/icon?family=Material+Symbols+Sharp"
rel="stylesheet"
/>
<!-- Scripts points to external script files -->
<script src="https://cdn.plot.ly/plotly-2.16.1.min.js"></script>
<script src="https://unpkg.com/mqtt/dist/mqtt.min.js"></script>
<script src = "https://code.jquery.com/jquery-2.1.4.min.js" ></script>
<!-- Import style.css document -->
<link rel="stylesheet" href="./style.css" />
</head>
<!-- Body element defines the document's body.-->
<body>
<div class="container">
<!-- Start of contents on the left side-->
<aside>
<div class="top">
<div class="logo">

<h2><%=name%></h2>
</div>
<div class="close" id="close-btn">
 close
</div>
</div>
<div class="sidebar">

<div class="insights">

<h3>Environment Sensors:</h3>
<div class="temperature">
<div class="middle">
<div class="left">
<div class="icon">
 device_thermostat Temperature
</div>
<h2 id="temperature"></h2>
</div>
</div>
</div>
<!-- End of temperature -->

<div class="humidity">
<div class="middle">
<div class="left">
</div>
<div class="icon">

 humidity_percentage Humidity
</div>
<h2 id="humidity"></h2>
</div>
</div>
<!-- End of humidity -->

<div class="pressure">
<div class="middle">
<div class="left">
</div>
<div class="icon">
 partly_cloudy_day Pressure
</div>
<h2 id="pressure"></h2>
</div>
</div>
<!-- End of barometer -->

<div class="co2">
<div class="middle">
<div class="left">
</div>
<div class="icon">
 speed Co2
</div>
<h2 id="co2"></h2>
</div>
</div>
<!-- End of Co2 -->

<div class="gas">
<div class="middle">
<div class="left">
</div>
<div class="icon">
 gas_meter Gas
</div>
<h2 id="gas"></h2>
</div>
</div>
<!-- End of gas -->

<h3>Motion Sensors:</h3>
<div class="accelerometer">
<div class="middle">
<div class="left">
</div>
<div class="icon">
open_with Accelerometer
</div>
<h2 id="accelerometer"></h2>
</div>
</div>
<!-- End of Accelerometer -->

<div class="gyroscope">
<div class="middle">
<div class="left">

</div>
<div class="icon">
explore Gyroscope
</div>
<h2 id="gyroscope"></h2>
</div>
</div>
<!-- End of Gyroscope -->
</div>
</aside>
<!-- End of contents on the left side-->
<!-- Start of contents on center-->
<main>
<h1><%=dashboardTitle%></h1>
<!-- Start of contents on the top of right side-->
<div class="right">
<div class="top">
<button id="menu-btn">
 menu
</button>
<div class="theme-toggler">
 light_mode
 dark_mode
</div>
</div>
<!-- End of top -->
<div class="inline">
<div>
<div class="bluetooth-btn">
<button id="BLEconnect-btn">Connect</button>
<button id="BLEdisconnect-btn">Disconnect</button>
<button id="Batterystatus-btn">Battery Status
(not in use)</button>
</div>
<table id="connection-status" border="1">
<tr><h3><td><centre><center>Description:</center></td> <td><center>Status:</center></td></h3></tr>
<tr><h3><td>Dashboard MQTT Connection:</td> <td><center><span
class="status">Disconnected</center></td></h3></tr>
<tr><h3><td>Sensor MQTT Connection:</td> <td><center><span
class="BLEMQTTstatus">Unknown</center></td></h3></tr>
<tr><h3><td>Bluetooth Connection:</td> <td><center><span
class="BLEstatus">Unknown</center></td></h3></tr>
<tr><h3><td>Battery Status - Updated: </td>
<td><center>Unknown</center></td></h3></tr>
</table>
</div>
<div class="Env">
<p>Environment Sensors</p>
<table id="Environment" border="1">
<div class="Sensor_Select">
<div class="Time_Interval">
<tr><td>
<label id="TimeInterval" for="TimeInterval">Sampling Time (ms)</label>

<input type="text" id="Time_Interval_Env" value=>
<div>

<!-- Checkboxes-->
<div id="tblSensors" type="checkbox">
<input id="envCheck1" type="checkbox" value="2a6e"/><label>Temperature</label>

<input id="envCheck2" type="checkbox" value="2a6f"/><label>Humidity</label>
</br>
<input id="envCheck3" type="checkbox" value="2a6d"/><label>Pressure</label>

<input id="envCheck4" type="checkbox"
value="a7f5a4f310024941bc756d7f5d27f436"/><label>Co2</label>

<input id="envCheck5" type="checkbox"
value="a7f5a4f310014941bc756d7f5d27f436"/><label>Gas</label></td></tr>
</div>
</div>
</div>
</div>
</table>
</div>
<div class="control-btn">
<button type="submit" id="Start_command">Start</button>
<button type="stop" id="Stop_command">Stop</button>

<button type="button" id="DownloadCSV-btn">Download</button>
<button type="button" id="clearButton" onclick="clearStorage()">Clear</button>
</br>
</div>
<div class="Motion">
<p> Motion Sensors</p>
<table id="Motion" border="1">
<div class="Motion_Sensor_Select">
<div class="Time_Interval">
<tr><td>
<label id="TimeInterval" for="TimeInterval">Sampling Time (ms)</label>

<input type="text" id="Time_Interval_Motion" value=>
<div>

<!-- Checkboxes-->
<div id="motion_tblSensors" type="checkbox">
<input id="motionCheck1" type="checkbox"
value="03505d7c10014997ad89cd1456dc7490"/><label>Accelerometer</label>

<input id="motionCheck2" type="checkbox"
value="03505d7c10024997ad89cd1456dc7490"/><label>Gyroscope</label></td></tr>
</div>
</div>
</div>
</div>
</table>
</div>
</div>
</div>
<!-- End of Insights -->
<div class="histories">
<h2>Line Charts</h2>
<div class="history-charts">
<div id="temperature-history" class="history-divs"></div>
<div id="humidity-history" class="history-divs"></div>
<div id="pressure-history" class="history-divs"></div>
<div id="co2-history" class="history-divs"></div>
<div id="gas-history" class="history-divs"></div>
<div id="accelerometer-history" class="history-divs"></div>
<div id="gyroscope-history" class="history-divs"></div>

</div>
</div>
</main>
<!-- End of contents on center-->
</div>
</div>
<script type="module" src="./index.js"></script>
<script type="module" src="./mqttService.js"></script>
<script type="text/javascript"></script>
</body>
</html>

Appendix III – Style.CSS

/*Style dashboard*/
@import
url("https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600;700;800&display=swap");

:root {
 --color-primary: #7380ec;
 --color-danger: #ff7782;
 --color-success: #41f1b6;
 --color-warning: #ffbb55;
 --color-white: #fff;
 --color-info-dark: #7d8da1;
 --color-info-light: #dce1eb;
 --color-dark: #363949;
 --color-light: rgba(132, 139, 200, 0.18);
 --color-primary-variant: #111e88;
 --color-dark-variant: #636363;
 --color-background: #f6f6f9;

/* Color of measurement pictures*/
 --color-insight-1: rgb(99, 209, 35);
 --color-insight-2: rgb(233, 245, 59);
 --color-insight-3: rgb(255, 21, 1);
 --color-insight-4: rgb(56, 183, 238);
 --color-insight-5: rgb(255, 62, 150);
 --color-insight-6: rgb(238, 159, 238);
 --color-insight-7: rgb(211, 211, 211);

 --card-border-radius: 2rem;
 --border-radius-1: 0.4rem;
 --border-radius-2: 0.8rem;
 --border-radius-3: 1.2rem;

 --card-padding: 1.8rem;
 --padding-1: 1.2rem;

 --box-shadow: 0 2rem 3rem var(--color-light);

/* Plotly Chart Color */
 --chart-background: #fff;
 --chart-font-color: #444;
 --chart-axis-color: #444;
 --color-commands: #e5e4e2;
}

/* Dark theme color variables */
.dark-theme-variables {
 --color-background: #090d3e;
 --color-white: #0b0f4a;
 --color-primary: #fff;
 --color-dark: #edeffd;
 --color-dark-variant: #fff;
 --color-light: rgba(0, 0, 0, 0.4);
 --box-shadow: 0 2rem 3rem var(--color-light);

 --chart-background: #0d1256;
 --chart-font-color: #fff;

 --chart-axis-color: #fff;
 --color-commands: #D3D3D3;

}

/* Select of all element */
* {
 margin: 0;
 padding: 0;
 outline: 0;
 text-decoration: none;
 list-style: none;
 box-sizing: border-box;
}

html {
 font-size: 14px;
}

/* Define the document's body */
body {
 width: 100vw;
 height: 100vh;
 font-family: poppins, san-serif;
 font-size: 0.88rem;
 background: var(--color-background);
 user-select: none;
 overflow-x: hidden;
 color: var(--color-dark-variant);
}

/* Settings on class container */
.container {
 display: grid;
 width: 96%;
 margin: 0 auto;
 gap: 1.8rem;
 grid-template-columns: 14rem auto 30rem;
}

a {
 color: var(--color-dark);
}

/* Images settings */
img {
 display: block;
 width: 100%;
}

/* Headings */
h1 {
 font-weight: 800;
 font-size: 1.8rem;
}

h2 {
 font-size: 1.4rem;
}

h3 {
 font-size: 0.87rem;
}

/* Color info */
p {
 color: var(--color-dark-variant);
}

b {
 color: var(--color-dark-variant);
}

/** Sidebar **/
aside {
 height: 100vh;
}

aside .top {
 display: flex;
 align-items: center;
 justify-content: space-between;
 margin-top: 1.4rem;
}

aside .logo {
 display: flex;
 gap: 2rem;
}

aside .logo img {
 width: 6rem;
 height: 6re;
}

aside .close {
 display: none;
}

/***** Left sidebar *****/
aside .sidebar {
 display: flex;
 flex-direction: column;
 height: 86vh;
 position: relative;
 top: 3rem;
}

aside h3 {
 font-weight: 500;
}

aside .sidebar a {
 display: flex;
 color: var(--color-info-dark);
 margin-left: 2rem;
 gap: 1rem;
 align-items: center;

 position: relative;
 height: 3.7rem;
 transition: all 300ms ease;
}

aside .sidebar a span {
 font-size: 1.6rem;
 transition: all 300ms ease;
}

aside .sidebar a:hover {
 color: var(--color-primary);
}

aside .sidebar a:hover span {
 margin-left: 1rem;
}

/** Main tag **/
main {
 margin-top: 1.5rem;
}

/* Insights Measurement Gagues */
aside .insights > div {
 background: var(--color-white);
 padding: var(--card-padding);
 border-radius: var(--card-border-radius);
 margin-top: 1rem;
 box-shadow: var(--box-shadow);
 transition: all 300ms ease;
}

aside .insights > div:hover {
 box-shadow: none;
}

aside .insights > div span {
 background: var(--color-primary);
 padding: 0.1rem;
 border-radius: 60%;
 color: var(--color-white);
 font-size: 1.5rem;
}

/* Insights different colors*/
aside .insights > div.temperature span {
 background: var(--color-insight-1);
}

aside .insights > div.humidity span {
 background: var(--color-insight-2);
}

aside .insights > div.co2 span {
 background: var(--color-insight-3);
}

aside .insights > div.gas span {
 background: var(--color-insight-4);
}

aside .insights > div.pressure span {
 background: var(--color-insight-5);
}

aside .insights > div.accelerometer span {
 background: var(--color-insight-6);
}

aside .insights > div.gyroscope span {
 background: var(--color-insight-7);
}

/* Font size of heading for gauges and margin */
aside .insights h3 {
 margin: 1rem 0 0.6rem;
 font-size: 1rem;
}

/** End of Insights **/

/** History Charts **/
main .histories {
 margin-top: 2rem;
}

main .history-charts {
 display: grid;
 grid-template-columns: repeat(2, 1fr);
 gap: 2.5rem;
 background: var(--color-white);
 border-radius: var(--border-radius-1);
 padding: var(--card-padding);
 text-align: center;
 box-shadow: var(--box-shadow);
}

main .history-charts:hover {
 box-shadow: none;
}

main .history-charts .history-divs {
 text-align: center;
}

main .histories h2 {
 margin-bottom: 0.8rem;
}

/** The class RIGHT **/
.right {
 margin-top: 1.4rem;
}

.right .top {

 display: flex;
 justify-content: end;
 gap: 2rem;
}

.right .top button {
 display: none;
}

.right .theme-toggler {
 background: var(--color-light);
 display: flex;
 justify-content: space-between;
 align-items: center;
 height: 1.6rem;
 width: 4.2rem;
 cursor: pointer;
 border-radius: var(--border-radius-1);
}

.right .theme-toggler span {
 font-size: 1.2rem;
 width: 50%;
 height: 100%;
 display: flex;
 align-items: center;
 justify-content: center;
}

.right .theme-toggler span.active {
 background: var(--color-primary);
 color: white;
 border-radius: var(--border-radius-1);
}

/* MEDIA QUERIES (decission based on display screen)*/
@media screen and (max-width: 1200px) {
 aside .container {
 width: 94%;
 grid-template-columns: 7rem auto 23rem;
 }
 aside .logo h2 {
 display: none;
 }

 aside .sidebar h3 {
 display: none;
 }
 aside .sidebar a {
 width: 5.6rem;
 }
 aside .sidebar a:last-child {
 position: relative;
 margin-top: 1.8rem;
 }
 main .insights {
 grid-template-columns: 1fr;
 }
 main .histories {

 width: 94%;
 position: absolute;
 left: 50%;
 transform: translateX(-50%);
 margin: 2rem 0 0 8.8rem;
 }
 main .histories .history-charts {
 grid-template-columns: 1fr;
 width: 54vw;
 }
}

@media only screen and (max-width: 992px) {
 .container {
 width: 94%;
 grid-template-columns: 12rem auto 23rem;
 }
 main .insights {
 grid-template-columns: repeat(2, 1fr);
 gap: 1.6rem;
 }
 main .histories .history-charts {
 grid-template-columns: 1fr;
 align-items: center;
 justify-content: center;
 }
}

@media screen and (max-width: 768px) {
 .container {
 width: 100%;
 grid-template-columns: 1fr;
 }
 aside {
 position: fixed;
 left: -100%;
 background: var(--color-white);
 width: 18rem;
 z-index: 3;
 box-shadow: 1rem 3rem 4rem var(--color-light);
 height: 150vh;
 padding-right: var(--card-padding);
 display: none;
 animation: showMenu 350ms ease forwards;
 }
 @keyframes showMenu {
 to {
 left: 0;
 }
 }
 img {
 width:80%;
 }
 aside .logo {
 margin-left: 1rem;
 }
 aside .logo h2 {
 display: inline;
 }

 aside .sidebar h3 {
 display: inline;
 }
 aside .sidebar a {
 width: 100%;
 height: 3.4rem;
 }

 aside .close {
 display: inline-block;
 cursor: pointer;
 }
 main {
 margin: 8rem 2rem 2rem 2rem;
 padding: 0 1rem;
 }
 main .histories {
 position: relative;
 margin: 3rem 0 0 0;
 width: 100%;
 }
 main .histories .history-charts {
 width: 140%;
 justify-content: right;
 align-items: right;
 display: flex;
 flex-direction: column;
 justify-content: right;
 align-items: right;
 }
 .right {
 width: 90%;
 margin: 0 auto 0rem auto;
 }
 .right .top {
 position: fixed;
 top: 0;
 left: 0;
 align-items: center;
 padding: 0 0.8rem;
 height: 5rem;
 background: var(--color-white);
 width: 100%;
 margin: 0;
 z-index: 2;
 box-shadow: 0 1rem 1 rem var(--color-light);
 }
 .right .top .theme-toggler {
 width: 4.4rem;
 position: absolute;
 right: 2rem;
 }

 .right .top button {
 display: inline-block;
 background: transparent;
 cursor: pointer;
 color: var(--color-dark);
 position: absolute;

 left: 1rem;
 }
 .right .top button span {
 font-size: 2rem;
 }
}

@media screen and (max-width: 600px) {
 .container {
 width: 150%;
 grid-template-columns: 1fr;
 margin: 1rem 0 1rem 0;
 }
 main {
 margin: 5rem 1rem 1rem 1rem;
 padding: 0 1rem;
 width: 90vw;
 }

 main .insights {
 gap: 0.4rem;
 }
 main .insights > div {
 padding: 0.4rem;
 }

 main .history-charts {
 display: grid;
 grid-template-columns: 1fr;
 }

h1 {
 font-weight: 800;
 font-size: 1.4rem;
}

#Start_command{
margin-left: -100px;
}

#Stop_command{
margin-left: -100px;
}

#DownloadCSV-btn{
margin-left: -100px;
}

#clearButton{
margin-left: -100px;
}

.Env{
width: 100%;
margin: 1rem -1rem 0rem 1rem;
}

.Motion{
width: 20%;

margin: 19rem 6rem 0rem 2rem;
}

#connection-status{
 font-weight: bold;
 table-layout: auto;
 width: 130%;
 margin-top: 60px;
}

#BLEconnect-btn{
 background: lightgreen;
 margin: 3rem 0rem 0rem 0rem;
}

#BLEdisconnect-btn{
 background: red;
 margin: 1rem 0rem 0rem 0rem;
}

#Batterystatus-btn{
 background: lightblue;
 margin: 1rem 0rem 0rem 0rem;
}

table {
width: 140px;
}

}

button{
 border: none;
 padding-top: 10px;
 padding-bottom: 10px;
 color: black;
 font-weight: bold;
 width: 100px;
 margin-bottom: 15px;
 border-radius: 50px;
 cursor: pointer;
}

#BLEconnect-btn{
 background: lightgreen;
}

#BLEdisconnect-btn{
 background: red;
}

#Batterystatus-btn{
 background: lightblue;
 right: 50px;
}

#connection-status{
 font-weight: bold;
 table-layout: auto;

 width: 130%;
}

.inline{
 display: flex;
}

.control-btn{
 justify-content: center;
 Position:relative;
 right: -40px;
 top: 40px;
}

#Start_command{
background: var(--color-commands);
}

#Stop_command{
background: var(--color-commands);
}

#DownloadCSV-btn{
background: var(--color-commands);
}

#clearButton{
background: var(--color-commands);
}

.Time_Interval{
 padding: 7px 0;
 display: inline;
 justify-content: center;
 font-weight: bold;
}

#tblSensors{
Position:relative;
right: -10px;
}

#motion_tblSensors{
Position:relative;
right: -10px;
}

input[label] {
 width: 100px;
}

label {
 padding-left: 5px;
 text-align: center;
}

input[type="text"] {
width: 80px;
Position:relative;

right: -25px;
}

.Sensor_Select{
 Position:relative;
 right: -200px;
}

#TimeInterval{
text-align: center;
right: 5px;
position: center;
}

.Env{
Position:relative;
right: -120px;
width: 20%;
top: -25px;
}

.Motion{
Position:relative;
right: -50px;
width: 20%;
top: -25px;
}

Appendix IV – Index.js

// Import MQTT service
import { MQTTService } from "./mqttService.js";

// Target specific HTML items
const sideMenu = document.querySelector("aside");
const menuBtn = document.querySelector("#menu-btn");
const closeBtn = document.querySelector("#close-btn");
const themeToggler = document.querySelector(".theme-toggler");

const bleConnect = document.querySelector("#BLEconnect-btn");
const bleDisconnect = document.querySelector("#BLEdisconnect-btn");
const batterystatuscmd = document.querySelector("#Batterystatus-btn");

const clearButton = document.querySelector("#clearButton");
const cb_start = document.querySelector("#start-btn");

// Environment Sensor Checkboxes true or false
var envCheck1 = document.querySelector('#envCheck1');
var envCheck2 = document.querySelector('#envCheck2');
var envCheck3 = document.querySelector('#envCheck3');
var envCheck4 = document.querySelector('#envCheck4');
var envCheck5 = document.querySelector('#envCheck5');

// Motion Sensor Checkboxes true or false
var motionCheck1 = document.querySelector('#motionCheck1');
var motionCheck2 = document.querySelector('#motionCheck2');

var boxCheckEnv = document.getElementById("tblSensors");
var boxCheckMotion = document.getElementById("motion_tblSensors");

boxCheckEnv.addEventListener("change", (event) => {
 if (envCheck1.checked == true || envCheck2.checked == true || envCheck3.checked == true ||
envCheck4.checked == true || envCheck5.checked == true) {
 document.getElementById("motionCheck1").checked = false;
 document.getElementById("motionCheck2").checked = false;
 }
});

boxCheckMotion.addEventListener("change", (event) => {
 if (motionCheck1.checked == true || motionCheck2.checked == true) {
 document.getElementById("envCheck1").checked = false;
 document.getElementById("envCheck2").checked = false;
 document.getElementById("envCheck3").checked = false;
 document.getElementById("envCheck4").checked = false;
 document.getElementById("envCheck5").checked = false;
 }
});

// Holds the background color of all chart
var chartBGColor = getComputedStyle(document.body).getPropertyValue(
 "--chart-background"
);
var chartFontColor = getComputedStyle(document.body).getPropertyValue(

 "--chart-font-color"
);
var chartAxisColor = getComputedStyle(document.body).getPropertyValue(
 "--chart-axis-color"
);

/*
 Event listeners for any HTML click
*/
menuBtn.addEventListener("click", () => {
 sideMenu.style.display = "block";
});

closeBtn.addEventListener("click", () => {
 sideMenu.style.display = "none";
});

themeToggler.addEventListener("click", () => {
 document.body.classList.toggle("dark-theme-variables");
 themeToggler.querySelector("span:nth-child(1)").classList.toggle("active");
 themeToggler.querySelector("span:nth-child(2)").classList.toggle("active");

 // Update Chart background
 chartBGColor = getComputedStyle(document.body).getPropertyValue(
 "--chart-background"
);
 chartFontColor = getComputedStyle(document.body).getPropertyValue(
 "--chart-font-color"
);
 chartAxisColor = getComputedStyle(document.body).getPropertyValue(
 "--chart-axis-color"
);
 updateChartsBackground();
});

/*
 Plotly.js graph and chart setup code
*/

var temperatureHistoryDiv = document.getElementById("temperature-history");
var humidityHistoryDiv = document.getElementById("humidity-history");
var co2HistoryDiv = document.getElementById("co2-history");
var gasHistoryDiv = document.getElementById("gas-history");
var pressureHistoryDiv = document.getElementById("pressure-history");
var accelerometerHistoryDiv = document.getElementById("accelerometer-history");
var gyroscopeHistoryDiv = document.getElementById("gyroscope-history");

const historyCharts = [
 temperatureHistoryDiv,
 humidityHistoryDiv,
 co2HistoryDiv,
 gasHistoryDiv,
 pressureHistoryDiv,
 accelerometerHistoryDiv,
 gyroscopeHistoryDiv,

];

// History Data
var temperatureTrace = {
 x: [],
 y: [],
 name: "Temperature",
 mode: "lines+markers",
 type: "line",
};
var humidityTrace = {
 x: [],
 y: [],
 name: "Humidity",
 mode: "lines+markers",
 type: "line",
};
var co2Trace = {
 x: [],
 y: [],
 name: "Co2",
 mode: "lines+markers",
 type: "line",
};
var gasTrace = {
 x: [],
 y: [],
 name: "Gas",
 mode: "lines+markers",
 type: "line",
};
var pressureTrace = {
 x: [],
 y: [],
 name: "Pressure",
 mode: "lines+markers",
 type: "line",
};
var accelerometerXTrace = {
 x: [],
 y: [],
 name: "Accelerometer X",
 mode: "lines",
 type: "line",
};

var accelerometerYTrace = {
 x: [],
 y: [],
 name: "Accelerometer Y",
 mode: "lines",
 type: "line",
};

var accelerometerZTrace = {
 x: [],
 y: [],
 name: "Accelerometer Z",

 mode: "lines",
 type: "line",
};

var gyroscopeXTrace = {
 x: [],
 y: [],
 name: "Gyroscope X",
 mode: "lines",
 type: "line",
};

var gyroscopeYTrace = {
 x: [],
 y: [],
 name: "Gyroscope Y",
 mode: "lines",
 type: "line",
};

var gyroscopeZTrace = {
 x: [],
 y: [],
 name: "Gyroscope Z",
 mode: "lines",
 type: "line",
};

var temperatureLayout = {
 autosize: true,
 title: {
 text: "Temperature",
 },
 font: {
 size: 12,
 color: chartFontColor,
 family: "poppins, san-serif",
 },
 colorway: ["#05AD86"],
 margin: { t: 40, b: 40, l: 30, r: 30, pad: 0 },
 plot_bgcolor: chartBGColor,
 paper_bgcolor: chartBGColor,
 xaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 gridwidth: "2",
 autorange: true,
 },
 yaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 gridwidth: "2",
 autorange: true,
 },
};
var humidityLayout = {
 autosize: true,
 title: {

 text: "Humidity",
 },
 font: {
 size: 12,
 color: chartFontColor,
 family: "poppins, san-serif",
 },
 colorway: ["#05AD86"],
 margin: { t: 40, b: 40, l: 30, r: 30, pad: 0 },
 plot_bgcolor: chartBGColor,
 paper_bgcolor: chartBGColor,
 xaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 gridwidth: "2",
 },
 yaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 },
};
var co2Layout = {
 autosize: true,
 title: {
 text: "Co2",
 },
 font: {
 size: 12,
 color: chartFontColor,
 family: "poppins, san-serif",
 },
 colorway: ["#05AD86"],
 margin: { t: 40, b: 40, l: 30, r: 30, pad: 0 },
 plot_bgcolor: chartBGColor,
 paper_bgcolor: chartBGColor,
 xaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 gridwidth: "2",
 },
 yaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 },
};
var gasLayout = {
 autosize: true,
 title: {
 text: "Gas",
 },
 font: {
 size: 12,
 color: chartFontColor,
 family: "poppins, san-serif",
 },
 colorway: ["#05AD86"],
 margin: { t: 40, b: 40, l: 30, r: 30, pad: 0 },
 plot_bgcolor: chartBGColor,
 paper_bgcolor: chartBGColor,

 xaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 gridwidth: "2",
 },
 yaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 },
};

var pressureLayout = {
 autosize: true,
 title: {
 text: "Pressure",
 },
 font: {
 size: 12,
 color: chartFontColor,
 family: "poppins, san-serif",
 },
 colorway: ["#05AD86"],
 margin: { t: 40, b: 40, l: 30, r: 30, pad: 0 },
 plot_bgcolor: chartBGColor,
 paper_bgcolor: chartBGColor,
 xaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 gridwidth: "2",
 },
 yaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 },
};

var accelerometerLayout = {
 autosize: true,
 title: {
 text: "Accelerometer",
 },
 font: {
 size: 12,
 color: chartFontColor,
 family: "poppins, san-serif",
 },
 colorway: ["#b60c26", "#357b3e", "#0000ff"],
 margin: { t: 40, b: 40, l: 30, r: 30, pad: 0 },
 plot_bgcolor: chartBGColor,
 paper_bgcolor: chartBGColor,
 xaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 gridwidth: "2",
 },
 yaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 },

};

var gyroscopeLayout = {
 autosize: true,
 title: {
 text: "Gyroscope",
 },
 font: {
 size: 12,
 color: chartFontColor,
 family: "poppins, san-serif",
 },
 colorway: ["#b60c26", "#357b3e", "#0000ff"],
 margin: { t: 40, b: 40, l: 30, r: 30, pad: 0 },
 plot_bgcolor: chartBGColor,
 paper_bgcolor: chartBGColor,
 xaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 gridwidth: "2",
 },
 yaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 },
};

var config = { responsive: true, displayModeBar: false };

// Event listener when page is loaded
window.addEventListener("load", (event) => {
 Plotly.newPlot(temperatureHistoryDiv, [temperatureTrace], temperatureLayout, config);
 Plotly.newPlot(humidityHistoryDiv, [humidityTrace], humidityLayout, config);
 Plotly.newPlot(co2HistoryDiv, [co2Trace], co2Layout, config);
 Plotly.newPlot(gasHistoryDiv, [gasTrace], gasLayout, config);
 Plotly.newPlot(pressureHistoryDiv, [pressureTrace], pressureLayout, config);
 Plotly.newPlot(accelerometerHistoryDiv, [accelerometerXTrace, accelerometerYTrace,
accelerometerZTrace], accelerometerLayout, config);
 Plotly.newPlot(gyroscopeHistoryDiv, [gyroscopeXTrace, gyroscopeYTrace, gyroscopeZTrace],
gyroscopeLayout, config);

 // Get MQTT Connection
 fetchMQTTConnection();

 // Run it initially
 handleDeviceChange(mediaQuery);
});

// Will hold the arrays we receive from our Nicla Sense
var xArray = [];
var newxArray = [];
var xArrayUpd;

// Temperature
let newTempYArray = [];
// Humidity
let newHumidityYArray = [];
// Co2

let newCo2YArray = [];
// gas
let newgasYArray = [];
// pressure
let newpressureYArray = [];
// Accelerometer X
let newAccxYArray = [];
// Accelerometer Y
let newAccyYArray = [];
// Accelerometer Z
let newAcczYArray = [];
// Gyroscope X
let newGyrxYArray = [];
// Gyroscope Y
let newGyryYArray = [];
// Gyroscope Z
let newGyrzYArray = [];

// The maximum number of data points displayed on our scatter/line graph

let MAX_GRAPH_POINTS_X = 50;
let MAX_GRAPH_POINTS_Y = 49;

let MAX_GRAPH_POINTS_X_MOTION = 101;
let MAX_GRAPH_POINTS_Y_MOTION = 100;

var ctr = 0;

// Motion Sensors Callback function that will retrieve our latest sensor readings and redraw our Gauge with
the latest readings
function updateMotionSensorReadings(jsonResponse) {
 if(motionCheck1.checked == true || motionCheck2.checked == true) {

 if (hasBeenCleared == true) {
 hasBeenCleared = false;
 Plotly.deleteTraces(accelerometerHistoryDiv, [0]);
 Plotly.deleteTraces(gyroscopeHistoryDiv, [0]);

 var accelerometerXTrace = {
 x: [],
 y: [],
 name: "Accelerometer X",
 mode: "lines",
 type: "line",
 line_color:"red",
 };

 var accelerometerYTrace = {
 x: [],
 y: [],
 name: "Accelerometer Y",
 mode: "lines",
 type: "line",
 };

 var accelerometerZTrace = {
 x: [],

 y: [],
 name: "Accelerometer Z",
 mode: "lines",
 type: "line",
 };

 var gyroscopeXTrace = {
 x: [],
 y: [],
 name: "Gyroscope X",
 mode: "lines",
 type: "line",
 };

 var gyroscopeYTrace = {
 x: [],
 y: [],
 name: "Gyroscope Y",
 mode: "lines",
 type: "line",
 };

 var gyroscopeZTrace = {
 x: [],
 y: [],
 name: "Gyroscope Z",
 mode: "lines",
 type: "line",
 };

 Plotly.newPlot(accelerometerHistoryDiv, [accelerometerXTrace, accelerometerYTrace,
accelerometerZTrace], accelerometerLayout, config);
 Plotly.newPlot(gyroscopeHistoryDiv, [gyroscopeXTrace, gyroscopeYTrace, gyroscopeZTrace],
gyroscopeLayout, config);

 xArray = [];
 xArrayUpd = [1];
 ctr = 0;
 }

 var accX;
 var accY;
 var accZ;
 var gyrX;
 var gyrY;
 var gyrZ;

 if(jsonResponse.accelerometer){
 var accX = Number(jsonResponse.accelerometer[0]).toFixed();
 var accY = Number(jsonResponse.accelerometer[1]).toFixed();
 var accZ = Number(jsonResponse.accelerometer[2]).toFixed();
 } else {
 var accX = NaN;
 var accY = NaN;
 var accZ = NaN;
 }

 if(jsonResponse.gyroscope){

 var gyrX = Number(jsonResponse.gyroscope[0]).toFixed();
 console.log(gyrX);
 var gyrY = Number(jsonResponse.gyroscope[1]).toFixed();
 console.log(gyrY);
 var gyrZ = Number(jsonResponse.gyroscope[2]).toFixed();
 console.log(gyrZ);
 } else {
 var gyrX = NaN;
 var gyrY = NaN;
 var gyrZ = NaN;
 }
 let time = (jsonResponse.Time).toString();

 updateMotionBoxes(accX, accY, accZ, gyrX, gyrY, gyrZ);
 sensorMotionValues(accX, accY, accZ, gyrX, gyrY, gyrZ, time);
 updatexArray(xArray);

 // Update Accelerometer Line Chart
 updateMotionCharts(
 accelerometerHistoryDiv,
 newxArray,
 newAccxYArray,
 newAccyYArray,
 newAcczYArray,
 accX,
 accY,
 accZ
);
 // Update Gyroscope Line Chart
 updateMotionCharts(
 gyroscopeHistoryDiv,
 newxArray,
 newGyrxYArray,
 newGyryYArray,
 newGyrzYArray,
 gyrX,
 gyrY,
 gyrZ
);
}
}

function updateMotionBoxes(accX, accY, accZ, gyrX, gyrY, gyrZ) {
 let accelerometerDiv = document.getElementById("accelerometer");
 let gyroscopeDiv = document.getElementById("gyroscope");

 accelerometerDiv.innerHTML = "x: " + accX + " y: " + accY + " z: " + accZ;
 gyroscopeDiv.innerHTML = "x: " + gyrX + " y: " + gyrY + " z: " + gyrZ;
}

function updateMotionCharts(lineChartDiv, newxArray, yxArray, yyArray, yzArray, sensorReadX,
sensorReadY, sensorReadZ) {
 if (xArrayUpd.length >= MAX_GRAPH_POINTS_X_MOTION) {
 xArrayUpd.shift();
 }
 if (yxArray.length >= MAX_GRAPH_POINTS_Y_MOTION) {
 yxArray.shift();
 }

 if (yyArray.length >= MAX_GRAPH_POINTS_Y_MOTION) {
 yyArray.shift();
 }

 if (yzArray.length >= MAX_GRAPH_POINTS_Y_MOTION) {
 yzArray.shift();
 }

 yxArray.push(sensorReadX);
 yyArray.push(sensorReadY);
 yzArray.push(sensorReadZ);

 var data_update = {
 x: [xArrayUpd],
 y: [yxArray,yyArray,yzArray],
 };
 Plotly.update(lineChartDiv, data_update);
}

// Environment Sensors Callback function that will retrieve our latest sensor readings and redraw our Gauge
with the latest readings
function updateSensorReadings(jsonResponse) {
 if(envCheck1.checked == true || envCheck2.checked == true || envCheck3.checked == true ||
envCheck4.checked == true || envCheck5.checked == true) {
 if (hasBeenCleared == true) {
 hasBeenCleared = false;
 Plotly.deleteTraces(temperatureHistoryDiv, [0]);
 Plotly.deleteTraces(humidityHistoryDiv, [0]);
 Plotly.deleteTraces(co2HistoryDiv, [0]);
 Plotly.deleteTraces(gasHistoryDiv, [0]);
 Plotly.deleteTraces(pressureHistoryDiv, [0]);

 temperatureTrace = {
 x: [],
 y: [],
 name: "Temperature",
 mode: "lines+markers",
 type: "line",
 };

 humidityTrace = {
 x: [],
 y: [],
 name: "Humidity",
 mode: "lines+markers",
 type: "line",
 };

 co2Trace = {
 x: [],
 y: [],
 name: "Co2",
 mode: "lines+markers",
 type: "line",
 };

 gasTrace = {
 x: [],
 y: [],

 name: "Gas",
 mode: "lines+markers",
 type: "line",
 };

 pressureTrace = {
 x: [],
 y: [],
 name: "Pressure",
 mode: "lines+markers",
 type: "line",
 };

// Temperature
 newTempYArray = [];

// Humidity
 newHumidityYArray = [];

// Co2
 newCo2YArray = [];

// gas
 newgasYArray = [];

// pressure
 newpressureYArray = [];

 Plotly.newPlot(temperatureHistoryDiv, [temperatureTrace], temperatureLayout, config);
 Plotly.newPlot(humidityHistoryDiv, [humidityTrace], humidityLayout, config);
 Plotly.newPlot(co2HistoryDiv, [co2Trace], co2Layout, config);
 Plotly.newPlot(gasHistoryDiv, [gasTrace], gasLayout, config);
 Plotly.newPlot(pressureHistoryDiv, [pressureTrace], pressureLayout, config);

 xArray = [];
 xArrayUpd = [1];
 ctr = 0;
 }

 let temperature = Number(jsonResponse.temperature).toFixed(1);
 let humidity = Number(jsonResponse.humidity).toFixed();
 let co2 = Number(jsonResponse.co2).toFixed();
 let gas = Number(jsonResponse.gas).toFixed();
 let pressure = Number(jsonResponse.pressure).toFixed(1);
 let time = (jsonResponse.Time).toString();

 updateEnvBoxes(temperature, humidity, co2, gas, pressure);
 sensorValues(temperature, humidity, co2, gas, pressure, time);
 updatexArray(xArray);

 // Update Temperature Line Chart
 updateEnvCharts(
 temperatureHistoryDiv,
 newxArray,
 newTempYArray,
 temperature

);
 // Update Humidity Line Chart
 updateEnvCharts(
 humidityHistoryDiv,
 newxArray,
 newHumidityYArray,
 humidity
);

 // Update Co2 Line Chart
 updateEnvCharts(
 co2HistoryDiv,
 newxArray,
 newCo2YArray,
 co2
);

 // Update gas Line Chart
 updateEnvCharts(
 gasHistoryDiv,
 newxArray,
 newgasYArray,
 gas
);

 // Update pressure Line Chart
 updateEnvCharts(
 pressureHistoryDiv,
 newxArray,
 newpressureYArray,
 pressure
);

}
}

function updateEnvBoxes(temperature, humidity, co2, gas, pressure) {
 let temperatureDiv = document.getElementById("temperature");
 let humidityDiv = document.getElementById("humidity");
 let co2Div = document.getElementById("co2");
 let gasDiv = document.getElementById("gas");
 let pressureDiv = document.getElementById("pressure");

 temperatureDiv.innerHTML = temperature + " °C";
 humidityDiv.innerHTML = humidity + " %";
 co2Div.innerHTML = co2 + " ppm";
 gasDiv.innerHTML = gas + " Ω";
 pressureDiv.innerHTML = pressure + " hPa";
}

function updatexArray(xArray) {
 xArray.push(++ctr);
 xArrayUpd = xArray;
 var newxArray = {
 x: [xArray],
 };
}

function updateEnvCharts(lineChartDiv, newxArray, yArray, sensorRead) {
 if (xArrayUpd.length >= MAX_GRAPH_POINTS_X) {
 xArrayUpd.shift();
 }
 if (yArray.length >= MAX_GRAPH_POINTS_Y) {
 yArray.shift();
 }
 yArray.push(sensorRead);
 var data_update = {
 x: [xArrayUpd],
 y: [yArray],
 };
 Plotly.update(lineChartDiv, data_update);
}

function updateChartsBackground() {

 // updates the background color of historical charts
 var updateHistory = {
 plot_bgcolor: chartBGColor,
 paper_bgcolor: chartBGColor,
 font: {
 color: chartFontColor,
 },
 xaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 },
 yaxis: {
 color: chartAxisColor,
 linecolor: chartAxisColor,
 },
 };
 historyCharts.forEach((chart) => Plotly.relayout(chart, updateHistory));
}

const mediaQuery = window.matchMedia("(max-width: 600px)");

mediaQuery.addEventListener("change", function (e) {
 handleDeviceChange(e);
});

function handleDeviceChange(e) {
 if (e.matches) {
 console.log("Inside Mobile");
 var updateHistory = {
 width: 323,
 height: 250,
 "xaxis.autorange": true,
 "yaxis.autorange": true,
 };
 historyCharts.forEach((chart) => Plotly.relayout(chart, updateHistory));
 } else {
 var updateHistory = {
 width: 550,
 height: 260,
 "xaxis.autorange": true,
 "yaxis.autorange": true,

 };
 historyCharts.forEach((chart) => Plotly.relayout(chart, updateHistory));
 }
}

// Bluetooth connection status Message Handling Code

const BLEStatus = document.querySelector(".BLEstatus");

// This is the function which handles subscribing to topics after a connection is made
function BLEConnectionStatus(mqttServer, mqttBLEConnectionStatusTopic){
 console.log(
 `Initializing connection to :: ${mqttServer}, topic :: ${mqttBLEConnectionStatusTopic}`
);

 var fnCallbacks = { onMessageArrived };
 var mqttService = new MQTTService(mqttServer, fnCallbacks);

 mqttService.connect();
 mqttService.subscribe(mqttBLEConnectionStatusTopic);
};

function updateBLEstatus(stringmessage) {
 console.log(stringmessage);
 var BatteryCheckDisc = stringmessage;
 BLEStatus.textContent = stringmessage;
 if(BatteryCheckDisc == "Disconnected"){
 BatteryStatus.textContent = "Unknown";
 BatteryStatusTime.textContent = "";
 }
}

/*
 Bluetooth device MQTT connection status Message Handling Code
*/

const BLEMQTTStatus = document.querySelector(".BLEMQTTstatus");

// This is the function which handles subscribing to topics after a connection is made
function BLEMQTT_Status(mqttServer, mqttBLEStatusTopic){
 console.log(
 `Initializing connection to :: ${mqttServer}, topic :: ${mqttBLEStatusTopic}`
);

 var fnCallbacks = { onMessageArrivedMQTTBLE };
 var mqttService = new MQTTService(mqttServer, fnCallbacks);

 mqttService.connect();
 mqttService.subscribe(mqttBLEStatusTopic);
};

function updateMQTTBLEstatus(stringmessage) {
 console.log(stringmessage);
 BLEMQTTStatus.textContent = stringmessage;
}

//Nicla Sense Battery Statys Handling Code
const BatteryStatus = document.querySelector(".NiclaBatterystatus");

const BatteryStatusTime = document.querySelector(".NiclaBatterystatusTime");

// This is the function which updates the Nicla Sense battery status
function NBatteryStatus(mqttServer, mqttBatteryStatusTopic){
 console.log(
 `Initializing connection to :: ${mqttServer}, topic :: ${mqttBatteryStatusTopic}`
);

 var fnCallbacks = { onMessageArrivedBatteryStatus };
 var mqttService = new MQTTService(mqttServer, fnCallbacks);

 mqttService.connect();
 mqttService.subscribe(mqttBatteryStatusTopic);
};

var StatusDisconnected = "Disconnected";

function updateBatterystatus(stringmessage) {
 var battery = stringmessage.split(',');
 var time = battery[0];
 var batterupdatenow = battery[1];
 BatteryStatus.textContent = batterupdatenow;
 BatteryStatusTime.textContent = time;
}

// MQTT Message Handling Code
const mqttStatus = document.querySelector(".status");

function onConnect(message) {
 mqttStatus.textContent = "Connected";
}

function onMessage(topic, message) {
 var stringResponse = message.toString();
 var messageResponse = JSON.parse(stringResponse);
 updateSensorReadings(messageResponse);
}

function onMessageMotion(topic, message) {
 var stringResponse = message.toString();
 var messageResponse = JSON.parse(stringResponse);
 updateMotionSensorReadings(messageResponse);
}

function onMessageArrived(topic, message) {
 var stringmessage = message.toString();
 updateBLEstatus(stringmessage);
}

function onMessageArrivedMQTTBLE(topic, message) {
 var stringmessage = message.toString();
 updateMQTTBLEstatus(stringmessage);
}

function onMessageArrivedBatteryStatus(topic, message) {
 var stringmessage = message.toString();
 updateBatterystatus(stringmessage);
}

function onError(error) {
 console.log(`Error encountered :: ${error}`);
 mqttStatus.textContent = "Error";
}

function onClose() {
 console.log(`MQTT connection closed!`);
 mqttStatus.textContent = "Closed";
}

function fetchMQTTConnection() {
 fetch("/mqttConnDetails", {
 method: "GET",
 headers: {
 "Content-type": "application/json; charset=UTF-8",
 },
 })
 .then(function (response) {
 return response.json();
 })
 .then(function (data) {
 MQTTEnvConnection(data.mqttServer, data.mqttTopicEnv);
 MQTTMotionConnection(data.mqttServer, data.mqttTopicMotion);
 BLEConnect_message(data.mqttServer, data.mqttBLEConnectTopic);
 BLEDisconnect_message(data.mqttServer, data.mqttBLEDisconnectTopic);
 BLEConnectionStatus(data.mqttServer, data.mqttBLEConnectionStatusTopic);
 BLEMQTT_Status(data.mqttServer, data.mqttBLEStatusTopic);
 mqttSensorCommands(data.mqttServer, data.mqttSensorCommandsTopic);
 BatteryStatusCommand(data.mqttServer, data.mqttBatteryStatusCommandTopic);
 NBatteryStatus(data.mqttServer, data.mqttBatteryStatusTopic);
 })
 .catch((error) => console.error("Error getting MQTT Connection :", error));
}
function MQTTEnvConnection(mqttServer, mqttTopic) {
 console.log(
 `Initializing connection to :: ${mqttServer}, topic :: ${mqttTopic}`
);
 var fnCallbacks = { onConnect, onMessage, onError, onClose };

 var mqttService = new MQTTService(mqttServer, fnCallbacks);
 mqttService.connect();
 mqttService.subscribe(mqttTopic);
}

function MQTTMotionConnection(mqttServer, mqttTopicMotion) {
 console.log(
 `Initializing connection to :: ${mqttServer}, topic :: ${mqttTopicMotion}`
);
 var fnCallbacks = { onConnect, onMessageMotion, onError, onClose };

 var mqttService = new MQTTService(mqttServer, fnCallbacks);
 mqttService.connect();
 mqttService.subscribe(mqttTopicMotion);
}

// Send command connect BLE device
function BLEConnect_message(mqttServer, mqttBLEConnectTopic) {
 console.log(

 `Initializing connection to :: ${mqttServer}, topic :: ${mqttBLEConnectTopic}`
);
 bleConnect.addEventListener("click", BLEConnectActivate);

 var mqttService = new MQTTService(mqttServer);
 mqttService.connect();
 function BLEConnectActivate() {
 mqttService.publish(mqttBLEConnectTopic);
 }
}

// Send command disconnect BLE device
function BLEDisconnect_message(mqttServer, mqttBLEDisconnectTopic) {
 console.log(
 `Initializing connection to :: ${mqttServer}, topic :: ${mqttBLEDisconnectTopic}`
);
 bleDisconnect.addEventListener("click", BLEDisconnectActivate);

 var mqttService = new MQTTService(mqttServer);
 mqttService.connect();
 function BLEDisconnectActivate() {
 mqttService.publish(mqttBLEDisconnectTopic)
 }
}

// Send command to get Nicla Sense Battery Status
function BatteryStatusCommand(mqttServer, mqttBatteryStatusCommandTopic) {
 console.log(
 `Initializing connection to :: ${mqttServer}, topic :: ${mqttBatteryStatusCommandTopic}`
);
 batterystatuscmd.addEventListener("click", BatteryStatusActivate);

 var mqttService = new MQTTService(mqttServer);
 mqttService.connect();
 function BatteryStatusActivate() {
 mqttService.publish(mqttBatteryStatusCommandTopic)
 }
}

let start = document.querySelector('#Start_command');
let stop = document.querySelector('#Stop_command');
let timerId; // makes the variable global

function mqttSensorCommands(mqttServer, mqttSensorCommandsTopic) {
 start.addEventListener('click', function() {

//Create an Array.
 var selected = new Array();
 var chks;

//Reference the Environment Table.
 if (envCheck1.checked == true || envCheck2.checked == true || envCheck3.checked == true ||
envCheck4.checked == true || envCheck5.checked == true) {
 var timeInterval = document.querySelector('#Time_Interval_Env').value;
 var chks = tblSensors.getElementsByTagName("INPUT");
 }

//Reference the Motion Table.
 if (motionCheck1.checked == true || motionCheck2.checked == true) {
 var chks = motion_tblSensors.getElementsByTagName("INPUT");
 var timeInterval = document.querySelector('#Time_Interval_Motion').value;
 }
 var mqttService = new MQTTService(mqttServer);
 mqttService.connect();

// Loop and push the checked CheckBox value in Array.
 for (var i = 0; i < chks.length; i++) {
 if (chks[i].checked) {
 selected.push(chks[i].value);
 }
 }

//Display the selected CheckBox values.
 if (selected.length > 0) {
 var commands = ("" + selected.join(","));
 let timerId = setInterval(function() {
 mqttService.publish(mqttSensorCommandsTopic, commands);
 }, timeInterval);

 // Stopping the timer:
 stop.addEventListener('click', function() {
 console.log("stop")
 clearInterval(timerId);
 });
 }
 });
}

let downloadCSVbtn = document.querySelector('#DownloadCSV-btn');

var sessionData = [];
var sesssionDataCSV;
var sessionRow = 0;
var restoreKey;
var restoreData;
var restoreGraph;

//clears the entire sessionStorage
window.onload = function clearStorage() {
 sessionStorage.clear();
}

var hasBeenCleared = false;

document.getElementById("clearButton").onclick = function clearData() {
 sessionStorage.clear();
 restoreKey = 1;
 restoreData = 1;
 restoreGraph = 1;

 hasBeenCleared = true;
}

function sensorValues(temperature, humidity, co2, gas, pressure, time) {

 if (restoreKey > 0) {
 sessionStorage.clear();
 console.log("clear records");
 restoreKey = 0;
 sessionRow = 0;
 } else {
 sessionRow;
 }

 sessionRow++;

 var sensorData = [sessionRow, time, temperature, humidity, pressure, co2, gas];
 var sensorDataString = JSON.stringify(sensorData);

 sessionStorage.setItem(sessionRow, sensorDataString);
}

function sensorMotionValues(accX, accY, accZ, gyrX, gyrY, gyrZ, time) {
 if (restoreKey > 0) {
 sessionStorage.clear();
 console.log("clear records");
 restoreKey = 0;
 sessionRow = 0;
 } else {
 sessionRow;
 }

 sessionRow++;

 if (motionCheck1.checked == true && motionCheck2.checked == true) {
 var sensorData = [sessionRow, time, accX, accY, accZ, gyrX, gyrY, gyrZ];
 }
 else {
 if (motionCheck1.checked == true) {
 var sensorData = [sessionRow, time, accX, accY, accZ];
 }

 if (motionCheck2.checked == true) {
 var sensorData = [sessionRow, time, gyrX, gyrY, gyrZ];
 }
 }

 var sensorDataString = JSON.stringify(sensorData);

 sessionStorage.setItem(sessionRow, sensorDataString);
}

//create a user-defined function to download CSV file
downloadCSVbtn.addEventListener('click', function(){

 // iterate sessionStorage
 for (var i = 0; i < sessionStorage.length; i++) {
 // set iteration key name
 var key = sessionStorage.key(i);
 // use key name to retrieve the corresponding value
 var value = sessionStorage.getItem(key);
 sessionData.push(JSON.parse(value));

 console.log(sessionData);
 }

 //define the heading for each row of the data

 if (envCheck1.checked == true || envCheck2.checked == true || envCheck3.checked == true ||
envCheck4.checked == true || envCheck5.checked == true) {
 var csv = 'Sample,Timestamp,Temperature,Humidity,Pressure,Co2,Gas\n';
 }

 if (motionCheck1.checked == true && motionCheck2.checked == true) {
 var csv = 'Sample,Timestamp,accX,accY,accZ,gyrX,gyrY,gyrZ\n';
 }
 else {

 if (motionCheck1.checked == true) {
 var csv = 'Sample,Timestamp,accX,accY,accZ\n';
 }

 if (motionCheck2.checked == true) {
 var csv = 'Sample,Timestamp,gyrX,gyrY,gyrZ\n';
 }
 }

 //merge the data with CSV
 sessionData.forEach(function(row) {
 csv += row.join(',');
 csv += "\n";
 });

 var hiddenElement = document.createElement('a');
 hiddenElement.href = 'data:text/csv;charset=utf-8,' + encodeURI(csv);
 hiddenElement.target = '_blank';

 //provide the name for the CSV file to be downloaded
 hiddenElement.download = 'SensorData.csv';
 hiddenElement.click();

 sessionData = [];

});

Appendix V – mqttService.js

// MQTT Service, Publish, Subscribing, Messagecallback
export class MQTTService {
 constructor(host, messageCallbacks) {
 this.mqttClient = null;
 this.host = host;
 this.messageCallbacks = messageCallbacks;
 }

// Connect to MQTT Broker
 connect() {
 var options = {username: "****", password: "****",
 this.mqttClient = mqtt.connect(this.host, options);

 // MQTT Callback for 'error' event
 this.mqttClient.on("error", (err) => {
 console.log(err);
 this.mqttClient.end();
 if (this.messageCallbacks && this.messageCallbacks.onError)
 this.messageCallbacks.onError(err);
 });

 // MQTT Callback for 'connect' event
 this.mqttClient.on("connect", () => {
 console.log(`MQTT client connected`);
 if (this.messageCallbacks && this.messageCallbacks.onConnect) {
 this.messageCallbacks.onConnect("Connected");
 }
 });

 // MQTT Callback function when environment message arrived
 this.mqttClient.on("message", (topic, message) => {
 if (this.messageCallbacks && this.messageCallbacks.onMessage) {
 this.messageCallbacks.onMessage(topic, message);
 }
 });

 // MQTT Callback function when motion message arrived
 this.mqttClient.on("message", (topic, message) => {
 if (this.messageCallbacks && this.messageCallbacks.onMessageMotion) {
 this.messageCallbacks.onMessageMotion(topic, message);
 }
 });

 // MQTT Callback function when connection status message arrived
 this.mqttClient.on("message", (topic, message) => {
 if (this.messageCallbacks && this.messageCallbacks.onMessageArrived) {
 this.messageCallbacks.onMessageArrived(topic, message);
 }
 });

 // MQTT Callback function when mqtt ble status connection message arrived
 this.mqttClient.on("message", (topic, message) => {
 if (this.messageCallbacks && this.messageCallbacks.onMessageArrivedMQTTBLE) {
 this.messageCallbacks.onMessageArrivedMQTTBLE(topic, message);
 }
 });

 // Callback function when battery status message arrived
 this.mqttClient.on("message", (topic, message) => {
 if (this.messageCallbacks && this.messageCallbacks.onMessageArrivedBatteryStatus) {
 this.messageCallbacks.onMessageArrivedBatteryStatus(topic, message);
 }
 });

 // Callback function when mqtt client disconnected message arrived
 this.mqttClient.on("close", () => {
 console.log(`MQTT client disconnected`);
 if (this.messageCallbacks && this.messageCallbacks.onClose)
 this.messageCallbacks.onClose();
 });
 }

 // Publish MQTT Message
 publish(topic, message, options) {
 this.mqttClient.publish(topic, message, {
 qos: 0,
 retain: false,
 });
}

 // Subscribe to MQTT Message
 subscribe(topic, options) {
 this.mqttClient.subscribe(topic, options);
}
}

Appendix VI – app.js

//This app starts a server and listens on port 4000.
const express = require("express");
const app = express();
const port = 4000;

// Load .env file to read environment, motion, commands, status variables
require("dotenv").config();

// Used to assign the setting name to value
app.set("view engine", "ejs");

// Serve Static Files
app.use(express.static("public"));

//routes
const dashboardRouter = require("./routes/dashboard");

// Process and get topics
app.get("/mqttConnDetails", (req, res) => {
 res.send(
 JSON.stringify({
 mqttServer: process.env.MQTT_BROKER,
 mqttTopicEnv: process.env.MQTT_TOPIC_ENV,
 mqttTopicMotion: process.env.MQTT_TOPIC_MOTION,
 mqttBLEConnectTopic: process.env.BLE_Connect_TOPIC,
 mqttBLEDisconnectTopic: process.env.BLE_Disconnect_TOPIC,
 mqttBLEConnectionStatusTopic: process.env.BLE_Connection_Status_TOPIC,
 mqttBLEStatusTopic: process.env.BLE_MQTT_Status_TOPIC,
 mqttSensorCommandsTopic: process.env.MQTT_Sensor_Commands_TOPIC,
 mqttBatteryStatusCommandTopic: process.env.Battery_Status_Command_TOPIC,
 mqttBatteryStatusTopic: process.env.Battery_Status_TOPIC,
 })
);
});

app.get("/", dashboardRouter);
app.listen(port, () => {
 console.log(`Listening on port ${port}`);
});

Appendix VII – dashboard.js

// Create modular, mountable route handlers
const express = require("express");
const router = express.Router();

// Render view and send it to the dashboard.
router.get("/", function (req, res) {
 res.render("pages/dashboard", {
 name: process.env.NAME, // Title of the left side
 dashboardTitle: process.env.DASHBOARD_TITLE, // Header title
 });
});

module.exports = router;

Appendix VIII – .env

// ** Titles on the dashboard **

NAME=Novia UAS
DASHBOARD_TITLE=Nicla Sense Dashboard

// ** Specify the topics and websocket mqtt address **

MQTT_Broker = ws://address:port/mqtt

MQTT_TOPIC_ENV=nicla/env
MQTT_TOPIC_MOTION= nicla/motion

MQTT_Sensor_Commands_TOPIC = nicla/commands

BLE_Connect_TOPIC = nicla/Connect
BLE_Disconnect_TOPIC = nicla/Disconnect

BLE_Connection_Status_TOPIC = nicla/BLEstatus
BLE_MQTT_Status_TOPIC = nicla/MQTTBLEstatus

Battery_Status_Command_TOPIC = nicla/BatteryStatusCommand
Battery_Status_TOPIC = nicla/Batterystatus

Appendix IX – User manual (Swedish)

Språk: Svenska

Användarmanual

Nicla Sense ME

Bilden nedan visar en överblick hur kommunikation förbindelsen
fungerar, Nicla Sense kontrollern skickar data trådlöst via Bluetooth
Low Energy till Raspberry Pi. Programmet Node-Red körs på
Raspberry Pi som håller kommunikationen med Nicla Sense samt är
uppkopplad till Novias MQTT Broker där datan skickas vidare till
användargränssnittet på server datorn / datorerna. Node-Red körs på
port nummer 1880 och för att komma till programmerings sidan
öppnar man upp browsern och fyller i: (<Raspberry Pi IP
address>:1880)

Då servern för användargränssnittet körs på till exempel Novias
nätverk kan flera användare vara ansluten till samma
användargränssnitt för att få tillgång till samma data. Detta görs
genom att man öppnar upp browsern och fyller i ip addressen för
användargränssnittets server dator samt port nummer 4000 (
<Hostname IP>:4000).

På grund av säkerhetsskäl kan inte användare utanför nätverket
ansluta till samma användargränssnitt. För att få tillgång till samma
data så måste en ny server startas per nätverk. Det som bör noteras
för att få tillgång till datan under insamlingen så måste någon av
sensorerna vara ikryssad för att starta funktionen.

För att start upp servern för användargränssnittet görs på följande
sätt:

 Högerklicka på mappen (Novia User Interface) där alla filerna
är samlade och tryck på öppna i Terminal.

 Kör kommandot ”npm run dev” som sedan startar upp servern
(se bild nedan). Sök efter ip addressen genom ipconfig från
terminalen, använd ip addressen samt port nummer 4000 för
att ansluta till servern.

 För att stänga servern, tryck samtidigt (CTRL + C) sedan Y
och Enter.

Överblick av Nicla Sense kontrollern med skyddsbox:

Bild 1: Blå markering hål för ventilation av luftflöde även övre lock.
Röd markering, genomföring av buntband för att fästa
mikrokontrollern.

Bild 2: Lock för att öppna upp skyddsboxen.

Bild 3: Orange markering led indikation. Lila markering hål för
Nicla Sense inbydda omstart knapp.

Bild 4: Gul markering, brytare för av/på läge av Nicla Sense. Vit
markering, ESLOV kontakt. Brun markering, MicroUSB kontakt.

Steg:

1. Öppna upp webbläsaren för datorn eller smarttelefonen och

anslut till användargränssnittet: ip:4000, nedan visas en

överblick av sidan.

2. Kontrollera anslutningarna på sidan:

- Dashboard MQTT Connection: Connected.
- Sensor MQTT Connection: Connected.

Om anslutningarna visar ”Unknown”, vänta 30 sekunder för
uppdatering av status. Om inte statusen ändrar efter 1 minut se
problem på sidan 5.

3. Slå på Nicla Sense kontrollern från strömbrytaren, en röd led
indikation skall börja lysa samt Bluetooth Connection Status
ändras till ”Disconnected”.

4. Koppla upp Nicla Sense kontrollern genom att trycka på
”Connect” knappen. ”Connecting” visas en stund som sedan
övergår till ”Connected” och en grön led indikation skall visas
på kontrollern. Ifall Bluetooth Connection Status återgår till
”Disconnected” försök igen.

5. För att uppdatera batteri status tryck på ”Battery Status”

knappen (ej tillförlitlig för tillfället).

6. Överst på högra sidan finns en knapp som går att ställa in

dag/natt läge.

7. För att följa upp och samla in sensor värden så kryssar man i

rutan för de sensorerna som önskas. Det går endast att välja

mellan ”Environment Sensors” eller ”Motion Sensors” och

inte båda samtidigt. Då sensorerna är valda samt sampling

tiden vald, tryck på ”Start” knappen och sensorerna börja ta in

värden.

8. Längst till vänster på sidan kan man se engångsvärden av de
olika sensorerna och till höger kan man se olika grafer som
ritar upp historiken av datan.

9. Det går att starta om insammlingen av datan genom att trycka
på ”Clear” knappen. Då man är nöjd med datan trycker man
på ”Stop” knappen och sedan trycker på ”Download”. Filen
kommer att laddas ned till den lokala datorn under Hämtade
filer som en csv. fil.

10. Öppna upp programmet Microsoft Excel, gå till Data 
Hämta Data  Från fil  Från text/CSV och välj sedan den
nedladdade csv filen. Följande inställningar används:
Filursprung: 1252: Västeuropeiska (Windows), Avgränsare:
Komma, Datatypsidentifiering: Identifiera inte datatyper,
enligt bild nedan och välj ”Transformera data”.

11. Makera alla kolumner och välj sedan ”Använd första
raden som rubriker”. Efter det markera endast kolumn
”Sample” och sedan välj ”Identifiera datatyp” som finns under
”Transformera”. För att sedan sortera datan i rätt ordning,
tryck på pilen vid kolumnen ”Sample” och välj sortera
stigande.

12. Då datan är sorterad välj ”stäng och läs in” som sedan
för in datan till Excel som sedan kan börja användas.

Rekommendationer och noteringar:

 Environment sensors samplings tid rekommenderas att inte
sampla snabbare än 1000 ms per sampel (1 Hz).

 Motion sensors samplings tid rekommenderas att inte sampla
snabbare än 250 ms per sampel (4 Hz).

 Regelbundet rekommenderas att ladda upp batteriet genom
MicroUSB anslutningen och laddningen är begränsad till 100
mA. För att ladda batteriet krävs det att man har brytaren i på
läge.

 Notera det tar en stund (ungefär 3 minuter) vid uppstart av
Nicla Sense att reglera temperatur samt humidity sensorerna
för att få nogrannare mätvärden.

 Co2 mätningar kan vara låsta vid 500 ppm, det krävs att Nicla
Sense har varit igång 4 – 5 minuter för att börja läsa av riktiga
värden.

 I ett sent skede av utvecklingen märktes att batteri status
knappen inte fungerar som den ska, möjligtvis på grund av
uppdateringar under utvecklingen och kan därför ge felaktig
information. Det finns även en risk att man mister allt data för
en sample sekvens om man under insamlingsskedet trycker på
batteri status knappen.

Problemsökning:

 Nicla Sense indikation lämnat grön: Slå av Nicla Sense
brytaren och slå på igen efter en kort stund.

 Användargränssnittet verkar ha fastnat: Slå av Nicla Sense
och uppdatera sidan, slå på kontrollern igen och vänta tills
anslutnings statusarna har uppdaterats.

 Disconnected status men går inte att koppla upp: Stäng av
Nicla Sense och vänta på Missing status, sätt igång Nicla
Sense och vänta tills Disconnected blir synlig och därefter
tryck på Connect knappen.

 Plötslig frånkoppling under inspelning: Tryck på knappen
”Stop” och prova anslut igen. Om inte återanslutningen
lyckas, stäng av Nicla Sense tills status missing blir synlig och
slå på igen.

 Bluetooth statusförklaring:
- Missing: Tappat BLE kommunikationen, för långt avstånd

från Raspberry Pi eller mikrokontrollern av.
- Disconnected: Nicla Sense och Raspberry Pi hittat varandra

men inte ännu ansluten.
- Connecting: Försöker ansluta sig till Raspberry Pi.
- Connected: Nicla Sense är ansluten till Raspberry Pi.
- Disconnecting: Nicla Sense kopplar sig från Raspberry Pi.
- Error: När ett oväntat fel inträffar.

LIST OF CODES

Code example 1. Function node (Motion Check). ... 61
Code example 2. Function node (Environment Check). ... 61
Code example 3. Function node (Battery lvl Check). .. 62
Code example 4. Function of BLE Connection Status. ... 65
Code example 5. Function of BLE MQTT Status. ... 65
Code example 6. The function of BLE Status Send. .. 66
Code example 7. The function of BLE MQTT Status Send. .. 67
Code example 8. The background color of the symbol for temperature. 72
Code example 9. Function of environmental sensor checkboxes. 75
Code example 10. sessionStorage setItem or clear. ... 76
Code example 11. sessionStorage gets data and download function. 76

LIST OF TABLES

Table 1. Features of Nicla Sense ME BLE. ... 7
Table 2. Recommended operating condition for Nicla Sense. .. 7
Table 3. Power consumption test performed by Arduino. .. 8
Table 4. Features and power consumption of sensor BHI260AP. 11
Table 5. Features of BME688 sensor. .. 12
Table 6. Description of one part of BSEC outputs. ... 12
Table 7. Features of sensor BMP390. .. 13
Table 8. Key features of sensor BMM150. ... 14
Table 9. Specifications of RPI4. .. 15
Table 10. Common supported file formats for Rhino 7. .. 23
Table 11. History of Bluetooth versions. ... 26
Table 12. Differences between C and C++. .. 36

LIST OF FIGURES

Figure 1. View of sensor data acquisition tool communication. .. 1
Figure 2. Novia UAS logo (Product logos, u.d.). .. 3
Figure 3. Technobothnia co-owned schools, VAMK, Vaasan yliopisto & Novia
(Technobothnia, u.d.). .. 4
Figure 4. Overview of the Internet of Things. ... 4
Figure 5. Arduino company logo (About Arduino, n.d.). ... 5
Figure 6. Arduino Nicla Sense ME with four Bosch Sensortec sensors (Arduino Nicla
Sense ME, n.d.). ... 6
Figure 7. Connect the battery to header pins (Connect a battery to Nicla Sense ME or
Nicla Vision, 2022). ... 8
Figure 8. Connect the battery to the connector (Connect a battery to Nicla Sense ME
or Nicla Vision, 2022). .. 9
Figure 9. Raspberry Pi 4 hardware. (Raspberry Pi 4 Tech Specs, u.d.). 15
Figure 10. Explanation of Arduino IDE functions. .. 17
Figure 11. Logo of Rhinoceros software (Rhinoceros, u.d.). .. 20
Figure 12. Overview of the program Rhino 7. ... 21
Figure 13. Important 3D model options in Solid Tools. ... 22
Figure 14. Blocks for 3D drawing. .. 22
Figure 15. UltiMaker Cura software. ... 24
Figure 16. OSI Model layers and examples of protocols. ... 25
Figure 17. Bluetooth LE specifications (Woolley, 2022). .. 28
Figure 18. Example of Profile, Services, and Characteristics (Afaneh, Bluetooth GATT:
How to Design Custom Services & Characteristics, u.d.). .. 29
Figure 19. Connection event over BLE (Derhgawen, 2020). .. 31
Figure 20. Illustration of publisher and subscriber arrangement. 32
Figure 21. Quality of Service levels. ... 34
Figure 22. The instructions of the source code are compiled into machine code. 35
Figure 23. Node-Red editor. .. 40
Figure 24. Node-Red nodes used in the project. ... 41
Figure 25. Install driver at Board Manager for Nicla Sense. .. 44
Figure 26. Install libraries at Manage Libraries for Nicla Sense. .. 44
Figure 27. GATT transactions (Profile / Services / Characteristics). 47
Figure 28. Link Layer Packet Structure (Michel, 2019). .. 48
Figure 29. Raspberry Pi Imager .. 49
Figure 30. “ip r | grep default” command .. 54
Figure 31. Commands in "dhcpcd.conf" file. ... 55
Figure 32. Overview of the Node-Red flow of the project. .. 58
Figure 33. Settings of MQTT in node. .. 59
Figure 34. Settings of Change node. ... 59
Figure 35. Settings of Generic BLE in node. .. 60
Figure 36. Settings of buffer - parser for the accelerometer. ... 63
Figure 37. Settings of join node. .. 63
Figure 38. Settings for JSON node. .. 64
Figure 39. Change node for battery status. ... 64
Figure 40. Settings of BLE Status node. .. 65
Figure 41. Settings for filter and delay node. ... 67
Figure 42. Overview of files used for graphical user interface. .. 68
Figure 43. Before and after the use of the Boolean difference tool. 78

Figure 44. Before and after recess for hatches. ... 79
Figure 45. Nicla Sense box details. ... 80
Figure 46. The final version of the Nicla Sense box with dimensions. 81
Figure 47. UltiMaker Cura with settings of the print. ... 82
Figure 48. Right: 3D printed box with supports. Left: complete protection box. 83
Figure 49. BLE connection range test. .. 87

