

Roman Kuzero

E-commerce Application Using the
MERN Stack with TypeScript &
Redux Toolkit

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

3 December 2023

Abstract

Author: Roman Kuzero

Title: E-commerce Application Using the MERN Stack with

TypeScript & Redux Toolkit

Number of Pages: 34 pages

Date: 3 December 2023

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Mobile Solutions

Supervisors: Amir Dirin, Project Manager

The goal of this final year project was to demonstrate the power of the modern
MERN stack coupled with TypeScript and Redux Toolkit through the development of
the 'qzeromarket' e-commerce application. This platform is specifically designed to
offer a seamless user experience, focusing on robust user interaction.

In the back-end, the application is crafted using Node.js and Express, establishing a
scalable, maintainable architecture that integrates with MongoDB for secure data
management. User security remains a top priority, reinforced by the use of JWT for
robust authentication. TypeScript and Redux Toolkit collaborate to ensure smooth
navigation and consistency across the platform.

The user interface design is characterized by clarity and visual appeal, adhering to
modern design principles that immerse users in an engaging experience. Testing,
guided by heuristic evaluation and stringent unit testing protocols, guarantees
exceptional performance and unwavering reliability.

In conclusion, 'qzeromarket' successfully met its goals, integrating current tech trends
and best practices. The readable and maintainable codebase emphasizes coding for
humans and machines alike. Rigorous testing has confirmed the application's reliability
and functionality, establishing it as a robust, user-focused platform that effectively
achieves its intended outcomes.

Keywords: MERN Stack, E-commerce

ad

Contents

1 Introduction 3

2 Research Questions and Methodology 3

2.1 Research Questions 4

2.2 Methodology 4

3 Foundations of E-commerce 5

3.1 Evolution of E-commerce 5

3.2 E- commerce Business Models 6

3.2.1 Business-to-business (B2B) 6

3.2.2 Business-to-consumer (B2C) 6

3.2.3 Consumer-to-business (C2B) 6

3.2.4 Consumer-to-consumer (C2C) 7

3.2.5 Other Existing Business Models 7

3.3 Understanding the Tools of E-commerce 7

4 Exploring Modern E-commerce Development Stacks 8

4.1 LAMP Stack 8

4.2 MEAN Stack 8

4.3 ASP.NET Core 9

4.4 MERN Stack 9

4.4.1 React 9

4.4.2 TypeScript 10

4.4.3 Redux and Redux Toolkit 11

5 System Design and Visualization 12

5.1 Use Case Diagram 12

5.2 ERD: Concept and Choice 13

5.3 Design Principles and Objectives 14

5.4 User Interface Design 14

5.4.1 Overview of All Pages 15

5.4.2 Store Page 15

6 Implementation 17

ad

6.1 Technologies Used 17

6.1.1 Back-end 17

6.1.2 Front-end 17

6.2 Architecture 18

6.2.1 API 18

6.2.2 Client 19

6.3 UML Diagrams 21

6.3.1 Sequence Diagram 21

6.3.2 Activity Diagram 22

6.4 Code Implementation 23

6.4.1 Redux Store Configuration 23

6.4.2 Redux Slice – Shopping Cart 24

7 Testing 25

7.1 UI Testing 25

7.1.1 Nielsen's Heuristic 25

7.2 Unit Testing 27

7.2.1 Unit testing in Redux Toolkit 29

7.2.2 Back-end Unit Testing 31

7.2.3 Testing with Postman 32

8 Discussion and Conclusion 33

8.1 Discussion 33

8.2 Conclusion 34

References 34

Appendices

Appendix 1: Detailed UI screenshots of "QZM" e-commerce application

Appendix 2: Heuristic Evaluation workbook pages

Appendix1

1 (4)

List of Abbreviations

API: Application Programming Interface, a set of tools and protocols that

allows different software applications to communicate with each

other

AWS: Amazon Web Services, a subsidiary of Amazon providing on-

demand cloud computing platforms and APIs

B2G: Business to Government, refers to businesses selling products or

services directly to government entities

C2G: Consumer to Government, refers to individuals interacting or

transacting with government entities, often for services or payments

DOM: Document Object Model, a programming interface for web

documents, representing the structure of a document as a tree of

objects

HTTP: Hypertext Transfer Protocol: A protocol used for transferring data

over the Internet, especially web pages in the form of HTML

documents

ITU: The International Telecommunication Union, the United Nations

specialized agency for information and communication technologies

JWT: JSON Web Token, a compact and self-contained way for securely

transmitting information between parties as a JSON object

LAMP: Stands for the Linux operating system, the Apache web server, the

MySQL database server, and the PHP programming language

MEAN: The acronym MEAN stands for MongoDB, Express, Angular, and

Node.js

MERN: Stands for MongoDB, Express, React, and Node.js

MVC: Model-View-Controller: A design pattern that separates an

application into three interconnected components: Model (data),

View (user interface), and Controller (logic and user input)

NoSQL: NoSQL databases (also known as "not only SQL") are non-tabular

databases that store data in ways that relational tables do not

OOP: Object-Oriented Programming, a programming paradigm based on

the concept of "objects", which can contain data and code to

manipulate the data

PHP: PHP Hypertext Preprocessor, a popular open-source scripting

language used for web development, embedded into HTML

SPA: Single page application

SQL: A structured query language is a programming language used to

store and process data in a relational database

TDD: Test-Driven Development, a software development approach in

which tests are written before the actual code, ensuring that the

code functions as intended

UCD: User-centered design, an iterative design process that focuses on

the users and their needs in each phase of design and

development

UI: User Interface, the space where interactions between humans and

machines occur, primarily focused on the look and layout

URL: Uniform Resource Locator, the address used to access web

resources on the Internet

1 Introduction

In today’s age the way business is done has been transformed by the rise of e-

commerce. This change has affected companies of all sizes. The thesis explores

this transformative landscape and discusses the challenges and opportunities the

transformation brings.

Moving from brick-and-mortar stores to online platforms comes with various

technical hurdles. It requires consideration of security measures and the ability to

handle growth smoothly. Building an e-commerce platform that puts users first

demands planning. The goal of this study is to shed light on these challenges

focusing on aspects such as scalability, flexibility, and security.

One crucial decision businesses face when venturing into e-commerce is

choosing the right technology stack. The study is centred on the MERN Stack, as

well as technologies such as TypeScript and Redux Toolkit. What advantages or

limitations does this combination offer? Exploring this question forms a theme in

this study.

In summary, this thesis aims to provide an understanding of the technological

components that underpin e-commerce while laying the groundwork for further,

in-depth discussion.

2 Research Questions and Methodology

The rise of e-commerce has introduced both challenges and opportunities,

making it crucial to comprehend the technological underpinnings that power

online platforms. This chapter delineates the research questions guiding this

thesis, followed by the methodology employed to address them.

2.1 Research Questions

This section presents the research questions that aim to explore various facets

of e-commerce application development.

1. Which technologies are commonly used for e-commerce application

development? What differences do they have in terms of scalability,

flexibility, and security?

2. What challenges do e-commerce platforms face, both in terms of

technology and operations? How do these challenges impact the choice

of development tools?

3. Why is the selection of a web development stack important for e-

commerce applications, and what factors guide this decision?

4. What distinguishes web development for e-commerce applications from

other types of projects? How do these differences affect the choice of

technologies and tools?

5. How does the MERN stack, combined with TypeScript and Redux Toolkit,

address the specific needs of e-commerce development?

2.2 Methodology

The research begun with an examination of the existing literature, which shed

light on the challenges faced by the e-commerce sector and guided the

subsequent design phase. Application interfaces were crafted in Figma,

embracing User-centered Design principles for an optimal user experience.

The e-commerce application was developed utilizing the MERN Stack with

TypeScript and the Redux Toolkit, chosen for their reliability and flexibility.

Throughout the development phase, a Test-Driven Development methodology

was followed to ensure functionality and quality.

Nielsen’s Heuristic Evaluation played a role in testing the user interface providing

a structured approach to refining it [1]. This method allowed for iterative

improvements of the interface in line with established usability principles.

Overall, the research combined analysis, user-focused design, meticulous

development practices and strategic UI evaluation to create a robust and user-

friendly e-commerce application.

3 Foundations of E-commerce

Since the very beginning of recorded history as well as beyond, commerce (the

trade of products and services) has been a key driver for human survival. The

past decades have brought a new type of commerce to the top: e-commerce [2].

A growing number of companies is embracing the e-commerce trend as the

appeal of traditional physical trading of goods and currency declines.

3.1 Evolution of E-commerce

The inception of e-commerce does not have a specific date since the emergence

of the concept of e-commerce arose from a chain of various events. E-commerce

acquired a wide range of opportunities with the advent of the Internet, especially

after the launch of the first website on August 6, 1991 [2, 3]. Since then, many

companies have relocated to websites.

Table 1 provides a timeline of key events in the evolution of e-commerce,

illustrating the rapid growth and pivotal developments in the field:

Table 1. Key events in e-commerce evolution

Year Event

1991 The launch of the first website.

1994 Netscape was created, offering consumers a straightforward web

browser with Secure Sockets Layer, a secure online transaction

technology.

1995 Amazon and Ebay, the two major e-commerce brands, were

introduced.

1997 Business-to-business (B2B) e-commerce is launched. The United

States Postal Service issues electronic postal stamps [4].

1998 PayPal, a well-known online payment system, makes its debut.

2000 Peak of the dot-com bubble.

2023 According to the ITU, roughly 5.4 billion people, or 67% of the world's

population, are utilizing the Internet in 2023 [5].

3.2 E- commerce Business Models

There are several models of e-commerce available today, including business-to-

business (B2B), business-to-consumer (B2C), consumer-to-business (C2B), and

consumer-to-consumer (C2C) models, all of which are fundamental forms

discussed in detail in the section.

3.2.1 Business-to-business (B2B)

B2B electronic commerce encompasses any electronic product or service

transactions between businesses. In general, this strategy is used for electronic

trade by manufacturers and conventional industrial wholesale organizations. [6,

7.]

3.2.2 Business-to-consumer (B2C)

In a B2C situation, the seller is a business, and the buyer is a consumer. Because

this case resembles physical retailing, it is usually referred to as electronic

retailing. It is still a two-way function in most cases, but it is normally done purely

over the Internet where an electronic store is put up. [6, 7.]

3.2.3 Consumer-to-business (C2B)

Consumer-to-business e-commerce involves trade between consumers and

businesses in which consumers pick the price they want to be charged and

vendors decide whether to accept the price or not. This concept is built on three

components: a consumer operating to be a seller, a business serving as a

purchaser, and an intermediary that handles the relationship between sellers and

buyers. [6, 7.]

3.2.4 Consumer-to-consumer (C2C)

Any electronic exchange of products or services between customers is classified

as C2C. This transaction is often handled by a third party that provides an online

transaction platform. [6, 7.]

3.2.5 Other Business Models

There are numerous other types of e-commerce available nowadays. Type

names differ from one source to the next, and types evolve over time, with new

ones appearing. Other e-commerce models include B2G (business-to-

government) and C2G (consumer-to-government).

3.3 Understanding the Tools of E-commerce

There are numerous significant dates in the history of e-commerce, as well as

numerous business models. However, there are tools and technologies behind

every online store. They are the platform's foundation, driving its functionality and

growth. A well-designed e-commerce website is more than just visually

appealing. If done effectively, it will result in real sales and profits for the e-

commerce business by easing the order process for clients and generating brand

equity that will help a firm grow. The value of these technological solutions will be

discussed further in Section 4.

4 Exploring Modern E-commerce Development Stacks

4.1 LAMP Stack

Any web application is developed with several technologies. The term "stack"

refers to the combination of these technologies. This concept was popularized by

the LAMP stack [8]. The acronym "LAMP" stands for the following open-source

components:

• Linux: The operating system serves as the base layer, providing the

necessary functionality for the other components to function.

• Apache: The Apache web server manages incoming requests and serves

web resources via HTTP, enabling anyone in the public domain to access

the application using a basic web address.

• MySQL: A relational database management system that is used to store

application data. MySQL enables the storage of all information in a

format that can be readily queried using the SQL language.

• PHP: A scripting language used in conjunction with Apache to create

dynamic websites.

4.2 MEAN Stack

The MEAN stack was among the first open-source stacks to adopt SPA and

NoSQL. The MEAN stack's primary language is JavaScript, and the stack

consists of the following technologies [8, 9]:

• MongoDB: An open-source, cross-platform document-oriented database

management program.

• Express: An open-source server format built entirely in JavaScript and

intended for usage with Node.js [10].

• Angular: A development platform built on TypeScript. It provides a

component-based architecture for constructing scalable web applications,

as well as a library collection encompassing capabilities such as routing,

forms management and client-server communication [11].

• Node.js: A JavaScript runtime application and library that allows web

applications to be executed outside of the client's browser.

4.3 ASP.NET Core

ASP.NET Core is an open-source, multi-platform framework for developing

contemporary, cloud-enabled, Internet-connected applications. ASP.NET Core

enables the creation of server-rendered web pages, back-end server

applications, and HTTP APIs for mobile applications, among other functionalities.

Built on .NET 7, which is the latest version at this time, the framework offers high-

performance, cross-platform, and open-source runtime capabilities. [12, 13.]

4.4 MERN Stack

The MERN stack is yet another well-known collection of JavaScript technology.

This stack integrates MongoDB, Express, Node.js (described before in the MEAN

stack section), and React to facilitate the creation of web and mobile applications

[10, 14].

4.4.1 React

Facebook launched React, an open-source JavaScript library for designing user

interfaces in 2013 [15]. React, unlike AngularJS, is not a framework. It is a public

library. As a result, it does not imply a framework design such as the MVC pattern

on its own. React is utilized for rendering views (the 'V' in MVC), while the

architecture and implementation of the remaining components of the application

are determined by the developer's discretion [8, 16].

To manage dynamic changes, the library employs the concept known as the

virtual DOM. When anything changes, React creates a new virtual DOM based

on the new truth (state) and compares it to the previous virtual DOM. React then

computes the differences between the old and modified Virtual DOMs and applies

them to the actual DOM [17, 18]. The above method assures that the real DOM

receives minimal modifications, resulting in improved performance. Figure 1

illustrates a visual illustration of this approach.

Figure 1. Comparison of virtual DOM update and actual DOM behaviour.

4.4.2 TypeScript

Microsoft TypeScript is an open-source programming language that is created

and maintained by the company [19]. According to a Stack Overflow developer

survey from 2023, TypeScript, which includes JavaScript, is the fourth most

popular programming language. JavaScript is the most popular, followed by

Python and SQL [20]. The advantages of TypeScript over JavaScript are listed

below [19, 21]:

• Static Typing: TypeScript uses static typing for early error detection,

whereas JavaScript uses dynamic typing.

• Compile-time Type Checking: TypeScript catches type-related errors at

compile time, while JavaScript does so at runtime.

• Object-Oriented Features: TypeScript provides a comprehensive

implementation of OOP concepts.

• Module Support: TypeScript inherently supports modules for better code

organization.

• Ease of Migration: Being a superset of JavaScript, any valid JavaScript

code is also valid TypeScript, simplifying the transition for developers.

4.4.3 Redux and Redux Toolkit

Redux is a JavaScript developer tool that keeps the state of apps predictable. It

enables developers to build easily testable applications that can run on a variety

of platforms such as clients, servers, and even native environments. While Redux

is frequently associated with React, it can be used in conjunction with any

JavaScript framework or library to simplify state management in online

applications.

They key concepts of Redux include:

• Single source of truth: The state of the entire application is stored in one

central location, often referred to as the store.

• State is read-only: The only way to change the state is by emitting an

action, which is an object that describes what happened.

• Changes are made with pure functions: Actions are processed by pure

functions called reducers to produce the next state.

[22.]

The Redux Toolkit is the official, opinionated, all-in-one Redux development

toolbox. It was created to support in the simplification of typical Redux use cases

and the reduction of boilerplate code. Here is what the Redux Toolkit offers [22]:

• Pre-configured store: The Redux Toolkit provides a function to create a

store with middleware and DevTools already set up.

• Simplified reducer creation: With createSlice, developers can generate a

reducer and its actions simultaneously.

• Middleware: The toolkit comes with the 'redux-thunk' middleware, allowing

to build async logic that interacts with the store.

Utilizing Redux Toolkit, developers can more efficiently set up a Redux store,

define reducers and actions, and manage side effects, making the whole Redux

workflow more straightforward and less error-prone [23].

5 System Design and Visualization

In addition to being aesthetically pleasing, designing a user interface (UI) is about

forging a connection between people and computer systems. A well-conceived

user interface can significantly enhance the user experience. This chapter will

cover the system's design process, detailing the tools utilized, such as Figma,

and the methodologies followed. The Use Case Diagram will be discussed,

providing clarification on the system's functionality. The primary objective was to

create an intuitive and user-focused interface.

5.1 Use Case Diagram

A use case diagram is a type of behaviour diagram in the Unified Modeling

Language (UML). The use case diagram illustrates the functional needs of the

program. Use case diagrams may be used to understand how the system should

function [24].

Figure 2 shows an example of a use case diagram for the e-commerce

application.

Figure 2. Use case diagram of e-commerce application.

For the created e-commerce system, the use case diagram visually represents

interactions between actors (Admin and Customers) and system functionalities,

offering clarity on main processes and user interactions.

5.2 ERD: Concept and Choice

As its name suggests, an entity-relationship diagram (ERD) characterizes data

through entities and the relationships that bind them. An entity can be understood

as any distinct item—be it a person, place, object, event, or abstract concept—

about which data is stored.

It is essential to highlight that ERDs are primarily designed for relational

databases. When dealing with NoSQL databases, like the one I implemented in

my project, the usual practice often sidesteps the creation of ERDs. This deviation

is largely attributed to the adaptable, non-relational nature of NoSQL databases.

Consistent with this approach, I chose not to construct an ERD for this project.

5.3 Design Principles and Objectives

While crafting the UI, I grounded my decisions in renowned design principles. My

goal was a consistent, functional, and engaging interface.

Embracing the User-centered design (UCD) [25] philosophy, I prioritized

understanding user needs and preferences. Every design element was chosen

to enhance the user experience, aiming to resonate with users.

Simplicity and intuitiveness were paramount. The interface was designed to

integrate aesthetic appeal with functionality while minimizing complexity.

5.4 User Interface Design

The UI makes the system's features accessible. It is the key element of device

communication and human-computer interaction. For designing this interface, I

chose Figma, a modern, free UI design tool [26]. Two significant screenshots that

highlight my methodology and design ethos are presented in the following

sections.

5.4.1 Overview of All Pages

Figure 3 offers a visual summary of the application’s user interface, highlighting

how the various pages are designed to work together seamlessly. For detailed

views of each individual page, please refer to Appendix 1.

Figure 3. Overview of all pages.

This figure provides a snapshot of the system's UI, demonstrating the consistency

in design across the entire application. It visually conveys the structured layout

and the logical flow between different sections, illustrating the careful planning

that went into the interface development.

5.4.2 Store Page

The Store Page is a key interface within e-commerce platforms, designed to

present products and enable smooth user navigation. Figure 4 illustrates the UI

design of the Store Page, emphasizing its structured layout and user-friendly

design.

Figure 4. UI design of store page.

The Store page, the core of an e-commerce platform, displays products and

facilitates user engagement through intuitive design and organized layouts.

6 Implementation

6.1 Technologies Used

6.1.1 Back-end

The back-end of the e-commerce system serves as the backbone of the

application, handling data management, server-side logic, and authentication

processes. The following technologies were carefully selected to ensure robust

performance, security, and scalability.

• Database: MongoDB backed by the Mongoose library was vital for our

flexible and scalable data storage requirements.

• Framework: Node.js with Express formed the framework, streamlining

efficient request handling.

• Authentication: JWT ensured user identity verification seamlessly [27].

• Image Storage: AWS S3 provided reliable server-side image storage.

• Payment: Transactions were secure and smooth with the Stripe API [28].

6.1.2 Front-end

The front-end of the application is the interface through which users interact with

the e-commerce platform. It was imperative to select technologies that not only

deliver an engaging and responsive user experience but also align with the

overall architecture of the system. The technologies chosen for the front-end are

outlined below.

• Framework: ReactJS's efficient rendering with the virtual DOM was crucial.

• Design: MUI (Material-UI) provided modern, responsive design

components [29].

• State Management: The Redux Toolkit modernized our state

management.

6.2 Architecture

The application consists of two main parts: the front-end (Client) and the back-

end (API). The Client and the API are discussed in more detail below.

6.2.1 API

The back-end is organized according to a clean, modular architecture pattern,

which is as follows:

• Controllers handle the logic for the API endpoints. They interact with the

models and services to fetch or manipulate data, then send a response to

the client.

• Helpers are utility functions or constants that assist in performing common

tasks across different parts of the application.

• Middlewares are functions that have access to the request object, the

response object, and the next function in the application’s request-

response cycle. They can be used for tasks such as logging and

authentication.

• Models define the structure of the database collections and the

relationship between the data.

• Routes determine how an application responds to client requests to

particular endpoints.

• Services store/stores business logic. They interact with the database,

execute computations, and so forth.

• Types include/includes custom data types or interfaces used across the

application to maintain consistency.

• Utils are general utility functions or constants that don't fit into helpers.

The entry point for the server starts with server.ts, which initializes and sets up

the server, and app.ts, which brings together all the modules.

Figure 5. Server-side folder structure.

6.2.2 Client

The front-end architecture, also written in TypeScript, is structured as follows:

• Assets: Contains static files such as images, icons, or fonts.

• Components: Reusable UI pieces that can be combined in various ways

across pages.

• Hooks: Custom React hooks to encapsulate logic that can be shared

across components.

• Pages: Each file or folder in this section corresponds to a route in the

application. They assemble components to form complete views.

• Redux: Manages the application's state. The slices folder contains

reducers and actions, while store.ts sets up the global store.

• Styles: This folder contains custom-styled components using Material-UI,

tailoring the look and feel of the application for a consistent and modern

design.

• Types: TypeScript interfaces and types used across different components

and utilities.

The application starts from index.tsx, which renders the App.tsx component and

wraps the whole application in necessary providers, such as Redux's Provider.

Figure 6. Client-side folder structure.

This folder structure allows for a scalable and maintainable codebase. Each piece

of functionality has its place, ensuring that as the project grows, it remains

organized and coherent.

6.3 UML Diagrams

To further understand the interactions and user journey within the platform, UML

diagrams provide a graphical representation of various processes.

6.3.1 Sequence Diagram

Figure 7 showcases a sequence diagram describing the order of operations in a

time-sequenced format, illustrating interactions between different entities in the

system.

Figure 7. UML sequence diagram.

6.3.2 Activity Diagram

The activity diagram offers a flowchart-style representation of the platform's

functionalities and the user's journey through the system.

Figure 8. UML activity diagram.

Anyone involved can gain a better understanding of how the platform works and

see the steps users take by looking at these diagrams.

6.4 Code Implementation

6.4.1 Redux Store Configuration

For state management, I utilized Redux, along with the Redux Toolkit to simplify

common Redux patterns. Listing 1 illustrates a snapshot of how the Redux store

was set up with persistence.

Listing 1. Redux store configuration.

This setup ensures the application state is persisted across sessions, enhancing

the user experience.

import { combineReducers, configureStore } from '@reduxjs/toolkit';

import { persistReducer } from 'redux-persist';

import storage from 'redux-persist/lib/storage';

import { userReducer, productReducer, cartReducer, favoritesReducer } from './slices';

const reducers = combineReducers({

 userReducer,

 productReducer,

 cartReducer,

 favoritesReducer,

});

const persistConfig = {

 key: 'root',

 storage,

};

const persistedReducer = persistReducer(persistConfig, reducers);

const store = configureStore({

 reducer: persistedReducer,

});

export type RootState = ReturnType<typeof store.getState>;

export type AppDispatch = typeof store.dispatch;

export default store;

6.4.2 Redux Slice – Shopping Cart

To manage the shopping cart's state, a specific Redux slice was created. This

slice contains async thunks to fetch and modify the user's shopping cart and

reducers to handle the actions.

Listing 2 gives a brief overview.

Listing 2. Cart slice implementation for shopping cart management.

By employing the Redux Toolkit, the codebase remains concise and modular,

with added benefits from enhanced developer tools and middleware.

import { createAsyncThunk, createSlice } from '@reduxjs/toolkit';

const initialState: CartSliceState = {

 usersShoppingCart: { _id: '', cartItems: [], totalPrice: 0 }

}

export const getUsersShoppingCart = createAsyncThunk(

 'getUsersShoppingCart',

 async ({userId, token}: GetUsersShoppingCartProps) => {

 // API call logic...

 }

)

// ... (Other async thunks)

const cartSlice = createSlice({

 name: 'cart slice',

 initialState: initialState,

 reducers: {

 countTotalPrice: (state) => {

 // Logic to count total price...

 }

 },

 extraReducers: (builder) => {

 builder.addCase(getUsersShoppingCart.fulfilled, (state, action) => {

 state.usersShoppingCart = action.payload

 })

 // ... (Other cases)

 }

})

export const cartReducer = cartSlice.reducer;

7 Testing

Since most e-commerce apps are business vital, testers are still learning how to

best test them, and the industry is still broad and growing. Millions of dollars have

been invested on websites, and investors anticipate success. Unfortunately, the

history of e-commerce is littered with costly failures some of which may have

been prevented if the facility had been tested more thoroughly before it was

released to the public [30].

The negative effects of a poorly functioning website are startling, and they even

affect the actual brick-and-mortar stores associated with the online platform.

Based on the findings from past research, errors identified on an e-commerce

site led to significant customer dissatisfaction: 28% of customers quit shopping

at the site, 23% stop buying from the site, and 6% were so dissatisfied that they

stopped buying at the brick-and-mortar store on which the site is based [31].

Customers may have an idea or an impression that if the firm cannot give a

decent website, they may not be able to provide a quality product from their

stores.

7.1 UI Testing

User Interface (UI) testing is an important part of ensuring an e-commerce

platform's optimal functioning and aesthetic appeal. The goal here was not just to

create a visually appealing interface, but to create one that resonates with

consumers while still offering basic functionality. With this goal in mind, Nielsen's

Heuristic Evaluation emerged as a critical testing approach, providing a

structured method for criticizing and improving the user experience.

7.1.1 Nielsen's Heuristic

Nielsen's Heuristic, illustrated in Figure 9 involved examining the Heuristic

Evaluation Workbook [1]. It covers a range of UI elements based on established

usability principles.

Figure 9. Heuristic evaluation workbook overview.

Figure 10 gives a glimpse into a page of the workbook illustrating the iterative

process of identifying issues and implementing improvements. Through this

approach every aspect of the interface was carefully analysed. This included error

message clarity and the necessity and accessibility of help documentation (?)

and ensuring that the interface is not visually appealing but intuitive and reliable

for end users.

Figure 10. Detailed view of heuristic evaluation workbook pages.

7.2 Unit Testing

Unit testing is an essential component of the software development process, and

while various definitions exist, the core attributes of a unit test remain consistent

across them. A unit test is an automated procedure which includes the following:

• Validates a specific segment of code, commonly referred to as a 'unit'.

• Executes rapidly.

• Operates in isolation, ensuring external factors do not influence the

outcome.

The perception of what constitutes a "rapid" unit test can vary among developers.

Yet, this subjectivity often becomes secondary in importance. The true measure

lies in the practicality: if the execution time of a test suite aligns with a developer's

expectations and does not hinder the development process, then the tests can

be considered efficiently rapid [32].

The importance of comprehensive unit tests is obvious in project development.

They influence how we distribute resources effectively. Figure 11 illustrates the

difference in growth dynamics between projects with good, bad, or no tests. The

chart illustrates how the success path of a project can hinge on the quality and

existence of unit tests. It highlights the need to prioritize building robust tests from

the beginning of a project [33].

Figure 11. Impact of test quality on project progress and work hours spent [33].

7.2.1 Unit Testing in Redux Toolkit

As previously stated, the Redux Toolkit is effective at managing the state of the

front-end application. Unit testing is crucial to guarantee its reliability. The

purpose of these tests is to validate the logic of state management.

Listing 3 illustrates this clearly.

Listing 3. Product reducer test example.

Each individual test starts by setting up a store using the custom utility function

called createTestStore(). After that we dispatch the getProductByID action.

Ensuring that the Redux store can appropriately, retrieving a product using its ID

is the primary objective here.

Beyond the specific action and validation, it is worth noting that this test leverages

a custom utility function, createTestStore(), to initiate a fresh store for every

individual test. Once the store is set, the getProductByID action is dispatched.

The test then verifies if the product retrieval was successful.

Figure 12. Product reducer test result.

import createTestStore from "../utils/testStore"

import { getProductByID } from './../../redux/slices/productSlice';

let store = createTestStore()

beforeEach(() => {

 store = createTestStore()

}) describe('test product reducer', () => {

 test('should get product by id', async () => {

 await store.dispatch(getProductByID('<PRODUCT_ID_PLACEHOLDER>'))

 expect(store.getState().productReducer.currentProduct).toBeDefined()

 })

 // ... other tests

})

The test results confirm that the reducer is capable of retrieving the product

information from the database.

Listing 4. Product reducer example

This reducer takes advantage of Redux Toolkits createAsyncThunk for handling

API calls. Its primary function is to fetch a product based on its ID while also

keeping track of any encountered errors. By comparing this with the test, it is

possible to say that the application’s state management is robust.

7.2.2 Back-end unit testing

Similarly to how it was crucial to perform unit testing for front-end features, the

back-end services of the application were also subjected to a thorough testing

process. The back-end acts as the foundation of the application handling tasks

such as data processing, storage and essential logic. To guarantee its reliability

and strength I made sure to conduct systematic unit testing for this part.

It is important to note that although the methodologies used for unit tests are

similar to those of the front-end, they play a role in maintaining the integrity of the

back-end components. The core principle remains unchanged; it is important to

test elements separately to verify their functioning.

export const getProductByID = createAsyncThunk(

 'getProductByID',

 async (id: string | undefined) => {

 try {

 const response = await axios.get(

 `https://qzero-market-backend.herokuapp.com/api/products/${id}`

);

 return response.data ? response.data : undefined;

 } catch (err) {

 console.log(err);

 }

 }

);

7.2.3 Testing with Postman

During the back-end development, Postman was utilized to manually test the API

endpoints. This approach allowed to quickly identify any issues, making sure that

the endpoints functioned as expected and returned the correct response status

codes. Once the performance of the APIs was confirmed in Postman, the focus

shifted to writing unit tests. These tests served as an automated safety measure,

validating the functions and methods in the code. By combining validation with

manual testing in Postman and automated unit tests, the ongoing reliability of the

back-end services was ensured.

Figure 13. Postman response example.

8 Discussion and Conclusion

8.1 Discussion

The study of technology use in e-commerce development has shown how

important the software stacks that prioritize scalability, flexibility, and security are.

Because of its structured and adaptable nature, the MERN stack, coupled with

TypeScript and the Redux Toolkit, has been recognized as an effective

combination for e-commerce applications.

When it comes to e-commerce, there are challenges to consider, such as

managing traffic and optimizing user experience. These difficulties have a

significant impact on the selection of development tools. The chosen tools must

not only meet requirements but also be adaptable to future market and

technological trends.

Choosing an optimal web development stack is crucial because it directly impacts

an application’s ability to effectively scale data and provide a platform for

transactions. This decision-making process is driven by project needs well as

considerations for potential scalability in the future.

The emphasis on transactions and the need for security measures distinguishes

web development for e-commerce. As a result, technologies with a track record

of dependability are preferred.

Developers can achieve all success requirements by using the MERN stack

alongside TypeScript and Redux Toolkit in e-commerce development projects.

The Redux Toolkit simplifies state management, which is critical for optimizing

user interfaces. TypeScript's powerful type system improves dependability and

maintainability.

The success of the developed e-commerce application also hinges on a

systematic approach to testing. Test-Driven Development, employing Jest for unit

testing, serves as a foundation to ensure correct functionality. To ascertain the

stability and reliability of the back-end and API, comprehensive Postman tests

evaluate the application's server-side capabilities across various scenarios.

Heuristic Evaluation, guided by the Heuristic Evaluation Workbook, plays a

crucial role in meticulously examining the user interface to align it with established

usability standards. The incorporation of a diverse range of testing methods,

including unit front-end and back-end tests, and UI tests, strengthens the

application's dependability and underscores its preparedness for real-world

demands in the e-commerce industry.

8.2 Conclusion

This study presents a tailored e-commerce application crafted to meet specific

market needs while also providing a blueprint for future development. The

technological choices made—anchored in the MERN stack, TypeScript, and

Redux Toolkit—have established a foundation for an application that not only

meets current e-commerce demands but is also poised for future enhancements.

While the current state of the project reflects a significant achievement, certain

areas await further development. Finalizing UI adjustments identified and

incorporating comprehensive payment solutions like Stripe are among the next

steps. These improvements are critical to the evolution of the application,

ensuring that it remains responsive to user needs and technological

advancements in the fast-paced e-commerce landscape.

References

1 J. Nielsen, "10 Usability Heuristics for User Interface Design," Nielsen
Norman Group. [Online]. Available: https://www.nngroup.com/articles/ten-
usability-heuristics/. Accessed: October 21, 2023.

2 S. K. Mourya and S. Gupta, "Introduction," in E-Commerce, 1st ed. Oxford,
United Kingdom: ASI, 2014, pp. 22-39. [Online]. Available:
https://ebookcentral.proquest.com/lib/metropolia-
ebooks/reader.action?docID=5248356&ppg=22. Accessed: September 20,
2023.

3 C. Ferrera and E. Kessedjian, "Evolution of E-commerce and Global
Marketing," in International Journal of Technology for Business (IJTB),
Mar. 2019. [Online]. Available: https://zenodo.org/record/2591544.
Accessed: September 20, 2023.

4 K. T. Smith, "Worldwide Growth of E-commerce," in E-Business, Mar.
2009. [Online]. Available:
https://www.researchgate.net/publication/285773976_Worldwide_Growth_
of_E-Commerce. Accessed: September 21, 2023.

5 Individuals using the Internet, International Telecommunication Union
(ITU), 2023. [Online]. Available: https://www.itu.int/en/ITU-
D/Statistics/Pages/stat/default.aspx. Accessed: September 21, 2023.

6 V. Jain, B. Malviya, and S. Arya, "An Overview of Electronic Commerce (e-
Commerce)," in Journal of Contemporary Issues in Business and
Government (CIBGP), 2021. [Online]. Available:
https://doi.org/10.47750/cibg.2021.27.03.090. Accessed: September 25,
2023.

7 S. K. Mourya and S. Gupta, "E-commerce: Architecture to Models," in E-
Commerce, 1st ed. Oxford, United Kingdom: ASI, 2014, pp. 40-55.
[Online]. Available: https://ebookcentral.proquest.com/lib/metropolia-
ebooks/reader.action?docID=5248356&ppg=22. Accessed: September 25,
2023.

8 V. Subramanian, "Introduction," in Pro MERN Stack: Full Stack Web App
Development with Mongo, Express, React, and Node, 2nd ed. New York
City, NY, USA: Apress, May 2019. [Online]. Available:
https://doi.org/10.1007/978-1-4842-4391-6_1. Accessed: October 4, 2023.

9 MEAN.JS official website. [Online]. Available: https://meanjs.org/.
Accessed: October 6, 2023.

10 P. D. Dutonde, S. S. Mamidwar, S. Korvate, S. Bafna, and D. D.
Shirbhate, “Website Development Technologies: A Review,” in
International Journal for Research in Applied Science & Engineering

Technology (IJRASET), Jan. 2022. [Online]. Available:
https://doi.org/10.22214/ijraset.2022.39839. Accessed: October 9, 2023.

11 "What Is Angular?" Angular official website. [Online]. Available:
https://angular.io/guide/what-is-angular. Accessed: October 9, 2023.

12 D. Roth, R. Anderson, and S. Luttin, "Overview of ASP.NET Core," in
ASP.NET Core documentation, Microsoft, Oct. 3, 2023. [Online]. Available:
https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-
core?view=aspnetcore-7.0. Accessed: October 10, 2023.

13 A. Lock, "Getting Started with ASP.NET Core," in ASP.NET Core in
Action, 3rd ed. New York, NY, USA: Simon and Schuster, 2023. [Online].
Available:
https://books.google.fi/books?id=JuXPEAAAQBAJ&lpg=PR28&ots=BVkJ9
uLd38&dq=ASP.Net%20COre&lr&pg=PR28#v=onepage&q=ASP.Net%20
COre&f=false. Accessed: September 20, 2023.

14 M. Mehra, M. Kumar, A. Maurya, C. Sharma, and Shanu, "MERN Stack
Web Development," in Annals of RSCB, vol. 25, no. 6, pp. 11756–11761,
June 2021.

15 A. Fedosejev, "Installing Powerful Tools for Your Project," in React.js
Essentials. Birmingham, UK: Packt Publishing Ltd, 2015. [Online].
Available:
https://books.google.fi/books?id=Rhl1CgAAQBAJ&lpg=PP1&ots=JkAwmB
yQPD&dq=react%20js&lr&pg=PP1#v=onepage&q=react%20js&f=false.
Accessed: October 10, 2023.

16 S. Aggarwal, J. Verma, "Comparative Analysis of MEAN Stack and MERN
stack," International Journal of Recent Research Aspects (IJRRA), Mar.
2018. [Online]. Available: http://www.ijrra.net/Vol5issue1/IJRRA-05-01-
26.pdf. Accessed: October 11, 2023.

17 D. Muyldermans, “How Does the Virtual DOM Compare to Other DOM
Update Mechanisms in JavaScript Frameworks?” M.Sc. thesis, Interactive
Digital Media, Univ. of Dublin, Dublin, Ireland, 2019. [Online]. Available:
http://www.daisyms.com/THESIS.pdf. Accessed date: October 11, 2023.

18 "Virtual DOM and Internals." React documentation.
https://legacy.reactjs.org/docs/faq-internals.html#gatsby-focus-wrapper.
Accessed: October 11, 2023.

19 E. Elrom, "Learn React Basic Concepts," in React and Libraries. New York
City, NY, USA: Apress, Mar. 2021. [Online]. Available:
https://doi.org/10.1007/978-1-4842-6696-0_1. Accessed: October 11,
2023.

20 "Stack Overflow Developer Survey 2023." Stack Overflow. Available:
https://survey.stackoverflow.co/2023/. Accessed: October 11, 2023.

21 B. Cherny, "TypeScript: A 10_000 Foot View," in Programming TypeScript.
Sebastopol, CA, USA: O'Reilly Media, May 2019. [Online]. Available:
https://learning.oreilly.com/library/view/programming-
typescript/9781492037644/ch01.html. Accessed: October 11, 2023.

22 D. B. Duldulao and R. J. L. Cabagnot, "Managing State Using Redux with
Redux Toolkit," in Practical Enterprise React: Become an Effective React
Developer in Your Team. New York City, NY, USA: Apress, Aug. 2021.
[Online]. Available: https://doi.org/10.1007/978-1-4842-6975-6_9.
Accessed: October 11, 2023.

23 "Redux Toolkit - Quick Start," Redux Toolkit documentation. [Online].
Available: https://redux-toolkit.js.org/introduction/getting-started.
Accessed: October 11, 2023.

24 R. Fauzan, D. Siahaan, S. Rochimah, and E. Triandini, “A Different
Approach on Automated Use Case Diagram Semantic Assessment,” in
International Journal of Intelligent Engineering and Systems (IJIES), Dec.
2020. [Online]. Available: https://doi.org/10.22266/ijies2021.0228.46.
Accessed: October 15, 2023.

25 C. Abras, D. Maloney-Krichmar, and J. Preece, "User-Centered Design,"
in Encyclopedia of Human-Computer Interaction. Thousand Oaks, CA,
USA: Sage Publications, 2004. [Online]. Available:
https://d1wqtxts1xzle7.cloudfront.net/6190316/10.1.1.94.381-
libre.pdf?1390844883=&response-content-
disposition=inline%3B+filename%3DUser_centered_design.pdf&Expires=
1698418838&Signature=TaLuGJey3KPJXR9e4JAwXT8K0Zy962lojImNu1
LzYb5C~orum9WFDEHtYJ48kHCaTwSiJeUODB7rhnkQzM3OHISBOL-
BRWHBj8nFwvq0aRlTLVlg1ohZHN~v~YT7SumLexG2mdMprHTa693~t03
nSKvcXzBNPw5z-0qJFHLiKy-
7CscWKOIRRJahQp0ArV3JtwoVd1jmPlsWDlHQkxaQ9Pytv6c4g-
YaEwav1NU2iKemkIoaISZfmxA088-
ZRvQ54Er0CM~2SUG93eZUB77ogARxdXnQeEbkGOe8ykO. Accessed:
October 17, 2023.

26 Figma official design website. [Online]. Available:
https://www.figma.com/design/. Accessed: October 17, 2023.

27 JWT official website. [Online]. Available: https://jwt.io/. Accessed: October
20, 2023.

28 Stripe official website. [Online]. Available: https://stripe.com/en-fi.
Accessed: October 20, 2023.

29 Material-UI official documentation. [Online]. Available:
https://mui.com/material-ui/getting-started/. Accessed: October 20, 2023.

30 S. Kundu, "Web Testing: Tool, Challenges and Methods," in International
Journal of Computer Science Issues (IJCSI), Mar. 2012. [Online].
Available: https://www.IJCSI.org. Accessed: October 22, 2023.

31 P. Gerrard, "Risk-Based E-Business Testing Part 1: Risks and Test
Strategy," Aug. 15, 2002. [Online]. Available:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c97aa1f
81c9f7c79de657e59991fbf76ddb0fa08. Accessed: October 22, 2023.

32 V. Khorikov, "What is a unit test?" in Unit Testing Principles, Practices, and
Patterns. New York City, NY, USA: Simon and Schuster, Jan. 6, 2020.
[Online]. Available:
https://books.google.fi/books?id=rDszEAAAQBAJ&lpg=PT15&ots=MI6tNIp
KI2&dq=Unit%20testing&lr&pg=PT48#v=onepage&q=Unit%20testing&f=fa
lse. Accessed: October 23, 2023.

33 V. Khorikov, "The goal of unit testing?" in Unit Testing Principles,
Practices, and Patterns. New York City, NY, USA: Simon and Schuster,
Jan. 6, 2020. [Online]. Available:
https://books.google.fi/books?id=rDszEAAAQBAJ&lpg=PT15&ots=MI6tNIp
KI2&dq=Unit%20testing&lr&pg=PT48#v=onepage&q=Unit%20testing&f=fa
lse. Accessed: October 23, 2023.

Appendix1

1 (4)

Detailed UI screenshots of "QZM" e-commerce application

Home page UI design

Store page UI design

Profile page UI design

Appendix 1

2 (4)

Favourites page UI design

Appendix 2

3 (4)

Heuristic Evaluation workbook pages

Appendix 2

4 (4)

