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The purpose of this final year project was to explore the possibilities of the Open 
Platform Communications Unified Architecture standard and the best practices on 
how to integrate it into the case company’s X-MET analyzer device. This was 
achieved by providing a prototype server application that integrates into the Linux 
environment of the analyzer. 
 
The server application is based on the open62541 C library and the open62541pp 
C++ wrapper library. The libraries allowed to rapidly develop the server with a focus 
on demonstrating the features of the standard. The server application runs on the 
analyzer device and provides an access point for client software to connect to. 
 
The required features for the prototype server application were achieved. As a result, 
the server application models the analyzer device in a format defined by the 
standard. It provides access to the data produced by the device with any client 
software that is compliant with the standard. The prototype server is used to 
demonstrate how the company’s analyzer devices can be integrated into the Open 
Platform Communications Unified Architecture standard.  
 
The findings of this project help the case company evaluate the possibilities of the 
Open Platform Communications Unified Architecture standard for their products. The 
next steps for the development of the server application would be to integrate the 
server more tightly into the hardware of the device and provide more of the features 
of the analyzer available for client applications. 

Keywords: OPC UA, Embedded systems, XRF 

___________________________________________________________ 

 

The originality of this thesis has been checked using Turnitin Originality Check 

service. 



 

 

Tiivistelmä 

Tekijä:  Kasperi Kiviluoma 

Otsikko: OPC UA palvelimen sovittaminen sulautettuun 

laitteeseen 

Sivumäärä: 35 sivua 

Aika: 1.12.2023 

Tutkinto: Insinööri (AMK) 

Tutkinto-ohjelma: Tieto- ja viestintätekniikka 

Ammatillinen pääaine:  Smart IoT Systems 

Ohjaajat: Lehtori Keijo Länsikunnas 

Ohjelmistotiimin johtaja Henri Auer 

 

Opinnäytetyön tarkoituksena oli selvittää Open Platform Communications 
Unified Architecture -standardin mahdollisuuksia ja parhaita käytäntöjä sen 
integroimiseksi case-yrityksen X-MET-analysaattorilaitteisiin. Tämä saavutettiin 
kehittämällä prototyyppipalvelinohjelmisto, joka integroituu analysaattorilaitteen 
Linux-ympäristöön. 
 
Palvelin perustuu open62541 C -kirjastoon ja open62541pp C++ -
käärekirjastoon. Kirjastot mahdollistivat palvelimen nopean kehityksen 
keskittyen standardin ominaisuuksien esittelyyn. Palvelinohjelmisto toimii 
analysaattorilaitteessa ja tarjoaa yhteyspisteen yhteydenpitoon 
asiakasohjelmiston kanssa. 
 
Prototyyppipalvelinohjelmisto täyttää sille asetetut toiminnallisuuteen liittyvät 
vaatimukset. Palvelin mallintaa analysaattorilaitetta standardissa määritellyssä 
muodossa. Se tarjoaa pääsyn laitteen tuottamiin tietoihin millä tahansa 
standardin mukaisella asiakasohjelmistolla. Prototyyppipalvelimen avulla 
voidaan demonstroida, miten yrityksen analysaattorilaitteet voidaan integroida 
Open Platform Communications Unified Architecture -standardiin. 
 
Tämä opinnäytetyö auttaa yritystä arvioimaan Open Platform Communications 
Unified Architecture -standardin tarjoamia mahdollisuuksia tuotteilleen. 
Seuraavat kehitysvaiheet palvelinohjelmistolle olisi integroida se tiukemmin 
analysaattorin laitteiston kanssa ja tarjota enemmän analysaattorilaitteen 
ominaisuuksia asiakasohjelmille. 

Avainsanat: OPC UA, Sulautetut järjestelmät, XRF



 

 

Contents 

List of Abbreviations 

1 Introduction 1 

2 Background 3 

2.1 XRF analyzers 3 

2.2 Radiation safety 5 

2.3 Software architecture of X-MET 7 

3 OPC UA key concepts 10 

3.1 History 10 

3.2 Node 11 

3.3 Architecture 13 

3.4 Security 14 

4 Project design 18 

4.1 OPC UA SDKs 18 

4.2 Desktop application 20 

4.3 Embedded application 21 

4.4 Application architecture 22 

4.5 Testing 24 

5 Project implementation 25 

5.1 X-MET information model 25 

5.2 In-house RPC 28 

5.3 Repository layout 28 

5.4 Application logic 31 

5.5 Security concerns 32 

6 Conclusion 33 

6.1 Results 33 

6.2 Future development 34 

References  



 

 

List of Abbreviations 

API: Application Programming Interface 

DI: Devices. OPC UA companion information model. 

HHA-FI: Hitachi High-Tech Analytical Science Finland Oy. A subsidiary of the 

global Hitachi High-Tech Analytical Science company. 

MCU: Microcontroller Unit. Compact computer in a single circuit. 

OPC: Open Platform Communications. Originally, the abbreviation came 

from Object linking and embedding for Process Control. 

OPC UA: Open Platform Communications Unified Architecture. Data 

exchange standard used in industrial automation space. 

OS: Operating System 

PKI: Public Key Infrastructure. A framework to manage public encryption 

keys. 

RPC: Remote Produce Call. Communication protocol. 

SDK: Software Development Kit. A collection of software development 

tools and libraries. 

UA: Unified Architecture. OPC UA term. 

XRF: X-Ray Fluorescence. A measurement technique used in the 

elemental analysis of materials.



1 

 

1 Introduction 

In today’s fast-evolving technological landscape interoperability between 

different devices is becoming increasingly difficult. Because of the technical 

issues, many vendors prefer to only support communication between their own 

devices in their propriety ecosystems. Standardization is the key element to 

mitigate compatibility issues with software and hardware, especially in industrial 

applications. An example of an established standard is the Open Platform 

Communications Unified Architecture (OPC UA) standard, which is mainly used 

in industrial settings. The OPC UA is a communication standard, the key 

function of which is to provide a common interface for data exchange between 

devices. 

This final year project was carried out for Hitachi High-Tech Analytical Science 

Finland Oy (HHA-FI), a subsidiary of the global Hitachi High-Tech Analytical 

Science company. HHA-FI specializes in analyzer devices and especially in X-

Ray Fluorescence (XRF) handheld analyzers that are used to identify the 

composition of a wide variety of materials. These XRF analyzers have 

applications in many fields with different use cases. For instance, XRF based 

technology is utilized by the latest Mars exploration rovers to provide detailed 

analysis of the collected samples. 

HHA-FI has recognized the increasing significance of software and its 

integration capabilities in their devices. HHA-FI has been exploring integration 

options for their analyzers and has chosen the OPC UA standard as the tool for 

the job. By providing a standardized way to access the device, the integration 

process of the device into an existing infrastructure becomes simpler and easier 

to achieve by 3rd party contractors. The goal of this final year project was to 

implement the OPC UA standard to HHA-FI’s analyzer device. The OPC UA 

was chosen because of its established status in the industrial automation 

space. With the integration, HHA-FI’s clients can use the OPC UA compliant 

client software of their choice to connect to the analyzer. The client connection 

provides access to the data produced by the device. The connection can be 
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used for further processing of the data and to connect the data to an OPC UA 

compliant automation system.  

The thesis contains six sections. After the introduction, Section 2 provides the 

background information of the XRF analyzer targeted by the developed 

software. Section 3 discusses relevant key concepts of the OPC UA standard. 

Section 4 describes design decisions taken in the project and Section 5 

analyzes the implementation phase. Finally, Section 6 contains results and 

suggestions for future development. 
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2 Background 

This section provides background information on the core features of handheld 

XRF analyzers and their operating principles, with a due consideration for 

radiation safety. Additionally, it provides an overview of the HHA-FI XRF 

analyzer’s software architecture. 

2.1 XRF analyzers 

Handheld devices with the ability to instantly read the elements of a solid, liquid, 

gas or plasma sample only existed in science fiction for a relatively long time. 

Only large laboratory devices used to be able to achieve that. [1, p. 1.] First 

portable devices with radioactive x-ray sources started to emerge in the 

seventies. These devices usually consisted of two parts, a handheld analyzer 

unit and a secondary unit containing a battery and other heavy components. At 

the beginning of the 21st century, technology had advanced to the point that it 

was possible to use a tube-based x-ray source with handheld XRF analyzers. 

[1, p. 6.] Figure 1 illustrates a tube based XRF analyzer’s measurement 

principle. 
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Figure 1. XRF analyzer’s measurement principle [2, p. 1]. 

In the measurement cycle the analyzer sends x-rays towards the target sample 

as illustrated in Figure 1. During the process of the x-rays hitting the sample, 

photons are emitted to the detector. [1, p. 16.] The X-ray spectrum is produced 

from the pulses gathered by the detector and counted by a digital pulse 

processor. The composition of the sample is analyzed from the produced x-ray 

spectrum with an elemental analysis calculation software component. [1, pp. 19-

21.] Finally, the result provided by the analysis calculation is displayed to the 

user. The result contains a list of elements that the analyzed material consists 

of. 

Hitachi High-Tech Analytical Science employ this tube-based x-ray source 

solution in their X-MET range XRF analyzers [3]. Figure 2 illustrates an X-

MET8000 analyzer. 
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Figure 2. X-MET8000 [3]. 

As seen in Figure 2, X-MET line is a typical example of a modern handheld XRF 

analyzer. It is equipped with a touch screen user interface and an easily 

removable battery. The analyzers have various use cases, usually in an 

industrial field. They can be used, for example, in a manufacturing process to 

provide quality control for the used material. 

2.2 Radiation safety 

XRF analyzers emit radiation during measurement. Although they operate at 

relatively low power, especially when compared with dental x-ray equipment, 

users should be trained in operating the device appropriately [1, p. 179]. Proper 

handling of the analyzer ensures that any potential leakage of radiation from the 

device is negligible. The radiation level from the device depends on chosen 

settings. Table 1 illustrates the worst-case scenarios for the radiation exposure 

from the device. 
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Table 1. Permissible radiation exposure [4, p. 9]. 

 

Examining Table 1 shows that even with directly exposed skin to the main beam 

radiation, there is still sufficient time for one to react and power off the device 

before reaching the maximum acceptable dosage limit of 50 mSv per year. 

However, eyes are notably more vulnerable to radiation, with a considerably 

smaller acceptable dosage limit. Although increasing the distance from the 

radiation source rapidly reduces the dosage, the effective dosage limit of 6 mSv 

per year can still be reached relatively quickly. [5.] 

The user is quite safe from the radiation if the right tools are chosen, depending 

on the target sample, and the analyzer is operated properly. Figure 3 displays 

the correct way of operating the X-MET XRF analyzer. 

 

Figure 3. Closed and open beam measurement [3; 6]. 
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Figure 3 shows two options for a closed beam setup. The first entails shielding 

the user from radiation using a robust security stand, while the second option 

involves the use of a compact radiation shield cup for low-intensity 

measurements. The closed beam configuration becomes essential when 

measuring small samples incapable of effectively absorbing the radiation 

emitted by the device. On the contrary, an open beam measurement is suitable 

for larger targets with high radiation absorption capacity. It is important to note 

that during an open beam measurement, the user must refrain from touching 

the sample, and no body parts should be positioned behind the nose of the 

analyzer, as illustrated in Figure 3. 

2.3 Software architecture of X-MET 

The X-MET analyzers of HHA-FI are frequently employed in industrial 

environments. In such settings, the data generated by the device is usually 

needed in some further process, e.g., for controlling an automation process. 

This project aimed to streamline the integration between X-MET and the third 

party’s own software by leveraging the well-established OPC UA standard. 

The integration is achieved by adding an OPC UA server software component 

to the X-MET analyzer’s existing software architecture. Figure 4 illustrates the 

analyzer’s software architecture. 
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Figure 4. X-MET analyzer’s software architecture [7]. 

Figure 4 describes the architecture with a division into two logical segments, a 

primary module operating in a Linux environment and the hardware segment 

governed by two microcontroller units (MCU). In the hardware segment, 

Detector MCU is responsible for using the Detector to get raw measurement 

results. The low level HW MCU operates the rest of the onboard components, 

such as buttons, LEDs and EEPROM memory. The HW Manager software 

component is used to control these two MCUs. 

In the Linux environment segment, the Core is the most important component, 

controlling the device by leveraging other components such as HW Manager. 

For example, the Core handles data acquisition from onboard sensors via the 

HW Manager and uses the Analytical Engine to process the raw data into 

measurement results. 
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The new OPC UA server component will be running in the Linux environment. It 

communicates with the Core via an internal web socket connection, employing 

an inhouse remote produce call (RPC) protocol, elaborated in Section 5. With 

the connection to the Core, the server gains access to the rest of the hardware 

of the device. For instance, the OPC UA server can initiate a measurement by 

sending a request to the Core, which, uses the HW Manager to start the 

measurement. After the measurement is complete, the Core receives the raw 

data and employs the Analytical Engine to generate a measurement result and 

communicates the result back to the OPC UA server. The OPC UA server is 

explored more in detail in Section 4 and Section 5. 
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3 OPC UA key concepts 

This section describes the key concepts of the OPC UA standard. OPC UA is a 

platform independent standard managed and developed by the OPC 

Foundation. It allows the exchange of data between devices in a standardized 

way. It is mainly used in industrial automation. [8.] The first sub-section explores 

the origin of the standard. Later sub-sections focus on nodes, overall 

architecture, and the security aspects of the OPC UA standard. 

3.1 History 

In its initial release in 1996, the OPC UA standard was known as the OPC 

standard. Originally, the acronym OPC originated from object linking and 

embedding for process control. Presently, this acronym has evolved to signify 

Open Platform Communications (OPC). [8.] As industrial automation systems 

started to embrace software-based control in the early nineties, the need for 

standardized communication between devices started to emerge. The industry 

was in need of a standardized way to access the data generated by various 

devices with several bus systems, interfaces and protocols, which led to the 

development of the OPC standard. [9, p. 1.] 

The first release of the standard consisted of an OPC Data Access 

specification, the purpose of which was to act as an interface providing 

standardized access to data through the drivers of the device. [9, p. 1.] With this 

abstraction it was possible to use the generic read/write requests without writing 

device-specific code. The generic requests are converted to device-specific 

requests by the Data Access specification. [8.] The success and quick adaption 

of the standard was partly possible because it relied on existing Windows 

technologies such as Component Object Model and Distributed Component 

Object Model. [9, p. 1.] Later in addition to the Data Access specification more 

specifications were added to the OPC standard [10]. The additions were OPC 

Alarms & Events and OPC Historical Data Access specifications. Nowadays 

these older Windows-dependent specifications are known as OPC Classic [8]. 
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The OPC foundation released the OPC UA standard in 2008. As the name 

Unified Architecture suggests, it integrates all the previous OPC Classic 

specifications into one unified architecture. The OPC UA standard adds new 

features compared with the OPC classic. The new Unified Architecture (UA) 

features are listed below: 

• Discovery: find available servers in the network. 

• Address space: all data is represented with file-folder structure. 

• On-demand: access permissions to read and write data. 

• Subscriptions: monitor data changes. 

• Events: notify on important information. 

• Methods: clients can execute functions defined on the server. 

Additionally, UA adds architectural improvements to the standard. It is not 

dependent on any operating system (OS) and has focus on the scalability. The 

scalability is achieved with multi-layered design and extendable information 

models. Information models are discussed later in this section. Backwards 

compatibility between Classic and UA standards is supported with wrappers. 

[11.] 

3.2 Node 

One of the fundamental concepts in the OPC UA is a node. Nodes represent 

individual points or entities in the system. A collection of nodes is called 

namespace. Namespaces are studied more in detail later. A node always has a 

class, and there are eight different classes: object, variable, method, view, 

object type, variable type, reference type and data type. [9, p. 22.] Figure 5 

displays all the available node classes in the OPC UA. 
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Figure 5. OPC UA node classes [12]. 

The most important classes seen in Figure 5 are variable, method and object 

classes. Variables are used to represent values, usually a sensor’s 

measurement value. Methods can return a result and can be called by the 

server or the client software. Objects can be used to follow the object-oriented 

programming design philosophy. They collect nodes to logical groups. [9, p. 30.] 

A node consists of attributes and references. Figure 6 illustrates how nodes are 

tied together with reference to each other. 

 

Figure 6. Nodes and references [9, p. 22]. 
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Nodes are defined by their attributes. A node can have a different set of 

attributes, and they are determined by the node’s class. Despite the class, all 

nodes have some common base attributes. For example, an ID attribute is 

mandatory for every node and it is used to reference the node in the server. [9, 

p. 22.] Figure 6 shows that nodes can have multiple references between each 

other. Information models are used to define a set of nodes and their 

relationships with each other. The concept of the information models is 

explained in the next sub-section. 

3.3 Architecture 

The architecture of the OPC UA consists of several semi-independent modules. 

The standard gathers these modules together to provide a unified architecture. 

[13.] Figure 7 below illustrates the architecture. 

 

Figure 7. OPC UA architecture [13]. 

As illustrated in Figure 7, the modules can be organized into three categories: 

information model layer, communication model and protocol bindings. The 

information model layer category consists of several information models. The 

information model is a set of nodes connected to each other with references, in 
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other words a namespace. The meta model defines base concepts and rules for 

the information modelling concept. All the information models depend on the 

meta model. Built-in information models provide basic OPC functionality, such 

as data access. Companion information models define use case specific 

models. For example, the ADI specification describes an information model for 

analyzer devices. It depends on a generic device specification, which is defined 

in the DI companion model. Vendor specific information models are used to 

define a vendor’s own products. The OPC foundation recommends that vendors 

use companion information models for their products as using a standardized 

companion information model to model a physical device ensures that all the 

same type of devices have a similar namespace hierarchy. If a companion 

model is insufficient, a vendor can extend it with a vendor specific extension. 

This extension is a vendor specific information model that depends on an 

existing companion model. [13.]  

The communication model category consists of services and the message 

model. The OPC UA services are used to implement interaction between OPC 

clients and servers. The services are abstract as they define information 

exchange between OPC UA applications. The message model is responsible 

for the publish / subscribe feature of the OPC UA. Concrete protocol 

implementations of the services and the message model are defined in the 

protocol bindings category. [13.] 

3.4 Security 

The OPC UA standard can seamlessly run across various operating systems 

and platforms, spanning from Windows desktops to embedded devices. Given 

this scalability, security measures must also adapt accordingly. OPC UA 

addresses this challenge by defining security policies, which are a set of 

security components. As OPC UA applications can function as servers, clients, 

or both, the primary security emphasis lies in ensuring the secure transport of 

data between these applications. This security framework operates across three 

distinct layers illustrated in Figure 8. [14.] 
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Figure 8. OPC UA security layers [15]. 

Figure 8 illustrates the application session, the secure channel, and the 

transport layers. The application session can transmit, for example, 

measurement data between a client and a server. The application session runs 

on top of the secure channel, which is used to exchange certificates and 

manage the data integrity with signing and encryption. The application session 

and secure channel layers rely on certificates for the security. The OPC UA 

standard does not specify infrastructure related to creating, storing, and 

managing the certificates. The final layer, the transport layer, oversees the 

socket connection between OPC UA applications, focusing primally on things 

like IP addresses and ports. [14.] 

The connection establishment between a server and a client involves a four-

step process. Initially, the client starts communication with the server to inquire 

about available endpoints for the connection, which is carried out unencrypted. 

Then the client selects a specific endpoint for the connection and assesses the 

trustworthiness of the server's certificate. Following this, an 

'openSecureChannel' request is transmitted, accompanied by a selection of 

security options such as 'none,' 'sign,' or 'sign&encrypt'. The server, in turn, 

retrieves the client's certificate from the unencrypted portion of the message 

and, upon validation, decrypts the data using tools associated with the chosen 

endpoint. The third step involves the creation of a session atop the secure 

channel. Finally, the session is activated, requiring the input of a username and 

a password. This process is illustrated in Figure 9. [9, pp. 209-215.] 
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Figure 9. Establishing connection [9, p. 215]. 

Figure 9 shows that a quite bit of validation is needed before connection is 

established between two OPC UA applications. Both symmetric and asymmetric 

keys can be used for the validation. Using the asymmetric model has an 

advantage as a public key can be shared between applications without worry. 

With symmetric keys, the private keys must be transferred securely between the 

applications before they can communicate with each other. This transfer is not 

defined in the OPC UA standard. [14.] 

OPC UA relies on X509 certificates for signing and encryption. Signing is used 

to validate that a received message is from an expected sender. This ensures 

that messages from rogue sources are ignored. Encryption ensures that 

messages cannot be read without decryption. The used encryption protocol 

method depends on the chosen OPC UA security policy. The Public Key 

Infrastructure (PKI) framework defines the standards for the X509 certificates 



17 

 

and outlines procedures for their management. Tools such as ‘openSSL’, 

‘openxpi’, and Windows PKI can be employed for efficient PKI management. 

[14.] 
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4 Project design 

The purpose of this project was to integrate an OPC UA server into the X-MET 

analyzer device. The project had two planned stages. The OPC UA server is 

first implemented as a standalone application in the Linux and Windows 

environments. At this point its only functionality is to start the server and publish 

sample data to the network. Published information can be monitored with any 

OPC UA client software; there are many to choose from. This first stage of the 

project is essential to set up the work environment and workflows. After the 

desktop application is up and running, the development of an embedded 

application can begin. The embedded application is a service for the analyzer’s 

embedded Linux environment. At this stage the first objective is to port the 

desktop application to the embedded environment. After that, a connection from 

the application to the rest of the device is implemented to enable the extraction 

of real data from the analyzer. Section 2 explored in detail how the new OPC 

UA server application is connected to the rest of the analyzer’s software 

architecture. 

This section contains descriptions of the design choices made for this project. 

The first sub-section explores the available OPC UA SDKs and the one that 

was chosen. After that, a design of the desktop and embedded servers are 

explained. Later, the architecture of the developed server application is 

described, and the testing procedure made for the project is discussed. 

4.1 OPC UA SDKs 

Many OPC UA software development kits (SDK) are available, using both 

proprietary and open-source licences. The OPC UA foundation maintains its 

own SDK, which is accessible for the public for free. Figure 10 describes the 

contents of an OPC UA SDK. 
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Figure 10. Structure of an OPC UA SDK 

Figure 10 illustrates that the stack is not part of an SDK. The stack contains 

implementations of low level OPC UA specifications. Both ANSI-C-based and a 

C#-based stack is provided by the OPC foundation. Third party SDKs can 

leverage the provided stacks. Typically, an SDK implements high level OPC UA 

concepts and provides tools that are not defined in the standard. The SDK 

provides client and server application programming interfaces (API), so that the 

OPC UA application using the SDK can access its implementations. [9, pp. 261-

263.] 

For this project open62541 SDK is selected alongside with the open62541pp 

C++ wrapper. Open62541 is an implementation of the UA Stack, provided by 

the OPC UA Foundation and is made with C99. The developed OPC UA server 

application will access open62541 functions through the open62541pp wrapper 

in this project. Open62541 SDK was selected because it has an appropriate 
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open source license, and it is rather mature product itself. The existing C++ 

wrapper is used to focus on application development rather than on the 

infrastructure of the application. 

4.2 Desktop application 

The initial phase of the project involves establishing a standalone OPC UA 

server application. The first step is setting up the development environment with 

the chosen programming language for the project, C/C++. The server leverages 

the open62541 open-source OPC UA implementation, made with C99. The 

Conan package manager is used to manage dependencies, the open62541 

library is acquired via Conan, and the server is built using the ‘conan build’ 

command. The OPC UA is platform independent, so the desktop server 

application should run in any desktop OS. Windows is used in the development. 

The Linux build is tested with an Ubuntu distribution.  

The creation of a custom OPC UA information model, called the vendor specific 

information model in OPC terms, is initiated early in the project. Information 

models and vendor specific extensions were explained in Section 3. This new 

information model is used to model the X-MET analyzer within the OPC UA 

framework. The desktop application uses this information model to display 

sample data to a client application. The sample data simulates the data 

gathered by the analyzer. Client software is essential to test the connection to 

the server. OPC UA server should seamlessly work with any client software 

adhering to the OPC UA standard. For this project the UA Expert client was 

chosen for testing because of its features and graphic user interface. Figure 11 

illustrates a client connected to the server. 
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Figure 11. OPC UA client program connected to the desktop server 

It can be seen in Figure 11 that when a client connects to the desktop server it 

shows the X-MET analyzer object that represents the device and its 

characteristics in a hierarchical tree view. The client can monitor the analyzer’s 

sensor values, such as checking the battery level of the device in the data 

access view. In the embedded server application, these values come from the 

device, but in the desktop application these values are simulated and can be set 

manually. 

4.3 Embedded application 

The software of the X-MET analyzer devices relies on ‘OpenEmbedded’, a build 

framework for embedded Linux, allowing developers to craft Linux distributions 

tailored for embedded systems. The integration of the OPC UA server into the 

existing Linux environment is accomplished through the addition of a Yocto 

layer of the server. Because of the OPC UA standard’s platform-independence, 

the code designed for the desktop server application will work on the embedded 

device without modifications. Only build tools need to be changed to Bitbake to 

build the embedded server application into the embedded Linux environment. 
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At this point, the next step for the project involves establishing a connection 

between the server application and the X-MET device. The analyzer features a 

core service that enables the connectivity with the server via the WebSocket 

client. The server application code has been C code to this point. To enable the 

WebSocket connection, porting the existing server code to C++ is necessary, as 

the WebSocket library provided by the X-MET analyzer is a C++ library 

alongside with other necessary libraries. As the focus of this project is on 

application development, a ready-made wrapper is used rather than developing 

it from scratch. The switch from C to C++ is achieved with open62541pp, a C++ 

wrapper made for the open62541 SDK.  

4.4 Application architecture 

The OPC UA server application operates within an embedded Linux 

environment, leveraging the open source open62541 OPC UA implementation. 

Given that open62541 is developed with C99, the adoption of the open62541pp 

C++ wrapper adds a layer of convenience. While not all features of open62541 

are currently implemented in the open62541pp, the server application can use 

the C API of the ope62541 for any missing functionality. The application 

architecture is illustrated in Figure 12. 
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Figure 12. Server application architecture 

As seen in Figure 12, the server application depends on the open62541 and 

open62541pp libraries. It has two running threads. The server thread manages 

the server’s connection to the client, serving the client’s requests. The server 

thread is implemented by using the open62541 server API, accessing it via the 

open62541 wrapper. The WebSocket thread manages the internal WebSocket 

client connection to the Core service. The connection to the Core enables 

access to the X-MET analyzer. This connection to the X-MET is based on 

sending requests and listening for event and uses custom RPC protocol for the 

communication. The WebSocket thread listens out for events coming from the 

Core service and acts accordingly depending on the received event. For 

example, if an event about battery level change is received, it updates the 

corresponding OPC UA node’s value. 
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4.5 Testing 

The open-source automation server Jenkins is used to execute automatic build 

tests. The tests are run if changes are detected in any of the repository’s 

branches. Changes are scanned once a day. Figure 13 illustrates the result of a 

build test. 

 

Figure 13. Jenkins build test result 

It can be seen in Figure 13 that the test consists of several stages. The build 

stage is the most important. It is used to check that the build is successful and 

to provide the build artefacts available for download. The analysis stage runs 

the static code analysis ‘Cppcheck’ tool to provide guidance for cleaner code. 

The publish stage is used to provide an executable file, available for download 

in the Jenkins interface. 
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5 Project implementation 

This section describes in detail the implementation part of the project. It 

explores the vendor specific extension made for the server application. It 

explains the details of the in-house RPC protocol used for communication with 

the hardware of the X-MET analyzer. The main loop of the application is 

described, and the security aspects of the project considered. 

5.1 X-MET information model 

One of the key concepts of the OPC UA is information modelling. To represent 

the X-MET device in OPC UA context, it must be modelled by using nodes that 

are connected to each other with references. Open62541 has two ways to 

populate the OPC UA server’s namespace with nodes. One solution is to 

manually write code to define and add nodes to the server. The other, more 

versatile solution is to use a ‘NodeSet2.xml’ file. The format of the file is defined 

by the OPC Foundation. The open62541 library includes a tool called XML 

Nodeset Compiler. The tool can be used with a ‘NodeSet2.xml’ file to generate 

C code containing the information model. This solution is used in this project. 

A ‘NodeSet2.xml’ file can be written manually but it is prone to syntax errors. A 

better solution is to first write a ‘Model.xml’ file, then transform it to the 

NodeSet2.xml format. Figure 14 and Figure 15 show differences between the 

‘NodeSet2’ and ‘Model’ formats. 

 

Figure 14. Model.xml 



26 

 

 

Figure 15. NodeSet2.xml 

As one can be seen in Figure 14 and Figure 15, the NodeSet2 format is more 

complex and requires the use of numeric IDs for namespace and identifier 

indexes. On the contrary, the ‘Model.xml’ model format is far simpler. The OPC 

Foundation provides a UA-ModelCompiler tool to transform the ‘Model.xml’ file 

to ‘NodeSet2.xml’ file. The foundation does not provide a specification for the 

model files. A namespace is generated with the following process. First, ‘UA-

ModelCompiler’ is used to generate a ‘NodeSet2.xml’ file. Then, the 

open62541’s Nodeset compiler can be used to generate the source files. In the 

server application code, the namespace can be loaded with a single line 

command. 

The X-MET information model is constructed by following the OPC UA 

specifications. All information models have dependency on the base OPC UA 

information model, which defines all the basic functionality of an information 

model. The X-MET model is a vendor specific extension to the Devices (DI) 

companion information model provided by the OPC foundation. DI specification 

ensures that devices are represented in a standardized way in the OPC UA. 

Following the DI specification has other benefits as well. Some OPC UA client 

software have special support for the DI specification, making it easier to 

manage multiple devices in the client. The developed OPC UA server 

application supports this too, as the X-MET information model follows the DI 

specification. Figure 16 illustrates the X-MET information model. 
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Figure 16. X-MET information model 

As seen in Figure 16, the X-MET object is an instance of ‘Xmet Type’, which is 

of the ‘XmetDeviceType’ type. ‘XmetDeviceType’ is an abstract base type for all 

X-MET instruments. It provides an identification object that has Manufacturer 

and Model properties. These properties along with the identification object are 

standardized by the DI companion specification that the X-MET model depends 

on. Objects cannot be instanced from abstract types, so ‘Xmet Type’ is needed. 

It provides ‘Operational’ and ‘Status’ objects. The ‘Operational’ object collects 

parameters and methods useful during normal operation. ‘Status’ collects 

parameters which describe the health of the device, such as diagnostic, 

describing parameters. Both ‘Operational’ and ‘Status’ parent objects are 

standardized by the DI. 

The children of the ‘MeasurementResult’ object are dynamically constructed 

during runtime. The OPC UA server application establishes a connection to the 

Core software component via a WebSocket client. Upon the completion of a 

new measurement, the server requests results from the Core and creates new 

nodes to the ‘MeasurementResut’ based on the result. ‘MeasurementResult’ 

children are constructed based on values in the response of the Core. 

‘MeasurementResult’ always has analytes and grades objects as children. Their 

children vary based on the measurement result. The server only holds the latest 

measurement result. When it receives information about a new measurement, it 

uses the destructor to delete all children under the ‘MeasurementResult’, and 

calls the constructor to create them again based on the new response values. 
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5.2 In-house RPC 

The in-house RPC protocol is a remote procedure call interface specification 

and protocol for inter-process communication. It is used to abstract away low-

level hardware communication in the X-MET analyzer. It uses the streamlined 

MessagePack RPC specification. The RPC is designed to be compatible with 

any transport layer protocol. The current implementations uses WebSocket as 

the transport layer. 

RPC communication is based on sending requests and receiving responses. 

The response contains either a result or an error message to the request. A 

third message type is Event. Events are used to push notifications to clients. 

Requests consist of a resource path ID and the name of the method that is to 

be called. The response provides a value or an error to the request made. If a 

request is made, the server must reply with a respond message. Events may be 

sent to the client as they occur in the server. The source of the event can also 

be identified, such as the resource which generated the event. When an error 

occurs the response message must contain an error field that contains a list of 

errors. 

5.3 Repository layout 

The project consists of two repositories, ‘opc-ua-server’ and ‘meta-opc-ua’. The 

main repository, ‘opc-ua-server’ is constructed with a pitchfork layout illustrated 

in Figure 17. 
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Figure 17. Repository’s layout. 

Figure 17 showcases the pitchfork layout. Build artifacts are stored in a build 

directory, which is not part of the remote repository. All the source files are 

inside the src folder. The data folder contains non-source files, such as INI files. 

Development tools are stored in a tools folder. Test cases, documents and 

examples go to corresponding test, doc, and example folders. The extras folder 
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contains optional submodules and ‘external’ folder source code for mandatory 

dependencies. 

The source code is organized into 'src/config' and 'src' folders. 'src/config' 

contains essential functions and classes dedicated to configuring custom 

settings for the server, including aspects such as access control and encryption. 

Located inside ‘src’ folder the analyzer class is an abstract class, designed for 

enabling future integration with various analyzers. The X-MET class inherits the 

analyzer class. It models the X-MET device by loading nodes from the X-MET 

information model. It is responsible for managing these nodes. For example, it 

provides functions to update the specific object node’s values. 

‘OpcUaServer.cpp’ initializes and launches the WebSocket and OPC UA server 

threads. 

The ‘meta-opc-ua’ repository is used to add the server as a layer to the X-MET 

analyzer’s Linux environment. It uses the source code from the ‘opc-ua-server’ 

repository. Figure 18 illustrates the simple layout. 

 

Figure 18. ‘meta-opc-ua’ layout. 

As can be seen in Figure 18, ‘meta-opc-ua’ contains only embedded Linux 

specific configuration and build files. CMake and source files from the ‘opc-ua-

server’ repository are used to build the project. 
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5.4 Application logic 

The server application has two loops running in separate threads. The 

WebSocket client connection is run in its own thread. It is used to connect to the 

X-MET’s Core service via the in-house RPC protocol. This allows the server to 

communicate with the X-MET analyzer’s hardware. The other loop is the 

server’s main loop, used to manage the connection to the OPC UA client 

application. Figure 19 illustrates the main loop. 

 

Figure 19. Server application’s operation logic 

As seen in Figure 19, first a WebSocket connection to the Core is created and 

the OPC UA server initialised and started. After the initialization a WS thread 

and an OPC UA server thread are started. If an event is received from the Core 

service, it is processed. If the event contains data belonging to some of the 

nodes, the received value is written to the corresponding node. In the event of 

RPC disconnection, the thread tries to reconnect. The OPC UA server handles 

communication between clients and the server. 
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5.5 Security concerns 

The OPC UA has built-in security methods, for example access control to 

manage user’s access to the server. A user can be limited to view only specific 

nodes or allowed only to read the node values without write access. Traffic 

between the server and the client can be encrypted with ‘OpenSSL’ or ‘Mbed 

TLS’. The developed server application implements OPC UA security policies, 

‘none’ and ‘aes128’. ‘None’ is needed to announce available endpoints to the 

clients. Still, ‘none’ is not provided as a valid endpoint for the client to connect 

to. The only endpoint available for clients is the ‘aes128’ one. Clients need a 

username and password to establish connection. Certification files can be used 

instead of a password. The server creates its own certification file at the start-

up. It also maintains a trust list, so only clients with trusted certificates can 

connect the server. 

Adding the OPC UA server to the Linux environment of the X-MET analyzer 

opens a new attack vector for unauthorized access to the device. Because the 

server has access to the device’s hardware, the radiation safety of the analyzer 

is threatened as well. However, this risk is mitigated by the fact that the X-MET 

device with the OPC UA server running will probably be used with the device 

installed on a fixed location. The installation can be done in a way that the 

operator cannot be exposed to the radiation, even if the device is accidently on. 

The built-in security of the OPC UA standard can be trusted as the standard is 

quite a mature product. However, a human error could lead to the failure of the 

server’s security and grant the attacker access to the analyzer. The risk can be 

minimized by allowing the remote connection to the OPC UA server only from a 

local network. With the access to the OPC UA server, the attacker could 

execute several malicious acts such as deleting the measurement database 

from the device or starting an unscheduled measurement with the analyzer. 

This could lead to a situation where operators are exposed to radiation if the 

analyzer is measuring unexpectedly. 
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6 Conclusion 

This section summarizes the results of the project and draws conclusions based 

on them. Additionally, suggestions for future development are given. 

XRF analyzers are used to determine elemental composition of a wide variety of 

materials. The analyzation process emits harmful x-rays, so a user needs to be 

properly trained to use an XRF analyzer. HHA-FI produces handheld X-MET 

XRF analyzers. 

The OPC UA standard is a communication standard, which is widely used in 

industrial automation. It allows devices from different vendors to communicate 

with each other. OPC UA applications are either servers or clients. A server 

application contains data structured into namespaces. A Namespace consists of 

nodes. A node can for example hold temperature data produced by a 

temperature sensor. The OPC UA client application can connect to a server and 

read and write data in it. 

The purpose of this project was to implement an OPC UA server into the Linux 

environment of the X-MET XRF analyzer. To do that, the X-MET analyzer is 

modelled in the X-MET namespace information model, which follows OPC UA 

definitions for a vendor specific namespace extension. The implemented OPC 

UA server application uses the internal WebSocket connection of the X-MET to 

get sensor readings from the analyzer. The OPC UA client can be used to 

connect to the server and read the data produced by the X-MET. 

6.1 Results 

The X-MET analyzer’s embedded Linux environment now contains an OPC UA 

server. It can communicate with the analyzer using a WebSocket connection 

with the in-house RPC protocol. Any OPC UA compliant client can be used to 

connect to the analyzer to get access to the data produced by the device. 
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The X-MET information model was created because of this project. The 

information model is in the ‘Model.xml’ format that can be converted to the 

‘NodeSet2.xml’ format by tools provided by the OPC UA foundation. The 

‘NodeSet2.xml’ file can be used with a wide variety of OPC UA SDKs to 

generate the information model source code for the specific SDK in use. This 

ensures that the information is portable and not tied to any specific OPC UA 

SDK. It can also be easily expanded. After any modification the information 

model code can just be generated again without refactoring existing code. 

Achieving the goal of this project, the X-MET XRF analyzer now has a 

standardized way for the client to connect and extract data. This is achieved 

with the OPC UA server that runs in the device’s Linux environment. Previously 

data access was achieved by REST style API connection. This requires 

knowledge of the X-MET device to integrate it into the client’s systems. The new 

OPC UA server integration ensures that the connection to the X-MET is 

standardized and any contractor familiar with OPC UA can integrate the device 

into the client’s system without any previous knowledge of the analyzer itself. 

6.2 Future development 

The scope of the server is limited to one target device, but the server could be 

developed further to provide a generic OPC UA server for multiple models of X-

MET XRF analyzers. 

The OPC UA server can be developed further by implementing more of the X-

MET’s features to the server. The OPC UA allows clients to use methods to 

execute actions on the server side. This is an essential feature that should be 

implemented in the future on the produced server. For example, a method for 

starting the measurement could exist on the server, so the client could initiate 

the start of the measurement remotely. There could also be a method to search 

the device’s measurement database for old measurements and return their 

contents to the client. 
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The OPC UA foundation is planning on releasing a new Laboratory and 

Analytical Device Standard (LADS) Q1/2024. LADS will be implemented as an 

OPC UA companion specification. When the new specification is released, it will 

be used in the X-MET’s OPC UA server. Both the X-MET namespace and 

LADS depend on the DI specification, so implementing this new standard in the 

existing custom X-MET namespace should be straightforward. This new 

specification is an excellent fit for the X-MET device. 
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