

Kasperi Kiviluoma

Implementing OPC UA server into
embedded device

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

1 December 2023

Abstract

Author: Kasperi Kiviluoma

Title: Implementing OPC UA server into embedded device

Number of Pages: 35 pages

Date: 1 December 2023

Degree: Bachelor of Engineering

Degree Programme: Information and Communication Technology

Professional Major: Smart IoT Systems

Supervisors: Keijo Länsikunnas, Senior Lecturer

 Henri Auer, Software Team Leader

The purpose of this final year project was to explore the possibilities of the Open
Platform Communications Unified Architecture standard and the best practices on
how to integrate it into the case company’s X-MET analyzer device. This was
achieved by providing a prototype server application that integrates into the Linux
environment of the analyzer.

The server application is based on the open62541 C library and the open62541pp
C++ wrapper library. The libraries allowed to rapidly develop the server with a focus
on demonstrating the features of the standard. The server application runs on the
analyzer device and provides an access point for client software to connect to.

The required features for the prototype server application were achieved. As a result,
the server application models the analyzer device in a format defined by the
standard. It provides access to the data produced by the device with any client
software that is compliant with the standard. The prototype server is used to
demonstrate how the company’s analyzer devices can be integrated into the Open
Platform Communications Unified Architecture standard.

The findings of this project help the case company evaluate the possibilities of the
Open Platform Communications Unified Architecture standard for their products. The
next steps for the development of the server application would be to integrate the
server more tightly into the hardware of the device and provide more of the features
of the analyzer available for client applications.

Keywords: OPC UA, Embedded systems, XRF

The originality of this thesis has been checked using Turnitin Originality Check

service.

Tiivistelmä

Tekijä: Kasperi Kiviluoma

Otsikko: OPC UA palvelimen sovittaminen sulautettuun

laitteeseen

Sivumäärä: 35 sivua

Aika: 1.12.2023

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja viestintätekniikka

Ammatillinen pääaine: Smart IoT Systems

Ohjaajat: Lehtori Keijo Länsikunnas

Ohjelmistotiimin johtaja Henri Auer

Opinnäytetyön tarkoituksena oli selvittää Open Platform Communications
Unified Architecture -standardin mahdollisuuksia ja parhaita käytäntöjä sen
integroimiseksi case-yrityksen X-MET-analysaattorilaitteisiin. Tämä saavutettiin
kehittämällä prototyyppipalvelinohjelmisto, joka integroituu analysaattorilaitteen
Linux-ympäristöön.

Palvelin perustuu open62541 C -kirjastoon ja open62541pp C++ -
käärekirjastoon. Kirjastot mahdollistivat palvelimen nopean kehityksen
keskittyen standardin ominaisuuksien esittelyyn. Palvelinohjelmisto toimii
analysaattorilaitteessa ja tarjoaa yhteyspisteen yhteydenpitoon
asiakasohjelmiston kanssa.

Prototyyppipalvelinohjelmisto täyttää sille asetetut toiminnallisuuteen liittyvät
vaatimukset. Palvelin mallintaa analysaattorilaitetta standardissa määritellyssä
muodossa. Se tarjoaa pääsyn laitteen tuottamiin tietoihin millä tahansa
standardin mukaisella asiakasohjelmistolla. Prototyyppipalvelimen avulla
voidaan demonstroida, miten yrityksen analysaattorilaitteet voidaan integroida
Open Platform Communications Unified Architecture -standardiin.

Tämä opinnäytetyö auttaa yritystä arvioimaan Open Platform Communications
Unified Architecture -standardin tarjoamia mahdollisuuksia tuotteilleen.
Seuraavat kehitysvaiheet palvelinohjelmistolle olisi integroida se tiukemmin
analysaattorin laitteiston kanssa ja tarjota enemmän analysaattorilaitteen
ominaisuuksia asiakasohjelmille.

Avainsanat: OPC UA, Sulautetut järjestelmät, XRF

Contents

List of Abbreviations

1 Introduction 1

2 Background 3

2.1 XRF analyzers 3

2.2 Radiation safety 5

2.3 Software architecture of X-MET 7

3 OPC UA key concepts 10

3.1 History 10

3.2 Node 11

3.3 Architecture 13

3.4 Security 14

4 Project design 18

4.1 OPC UA SDKs 18

4.2 Desktop application 20

4.3 Embedded application 21

4.4 Application architecture 22

4.5 Testing 24

5 Project implementation 25

5.1 X-MET information model 25

5.2 In-house RPC 28

5.3 Repository layout 28

5.4 Application logic 31

5.5 Security concerns 32

6 Conclusion 33

6.1 Results 33

6.2 Future development 34

References

List of Abbreviations

API: Application Programming Interface

DI: Devices. OPC UA companion information model.

HHA-FI: Hitachi High-Tech Analytical Science Finland Oy. A subsidiary of the

global Hitachi High-Tech Analytical Science company.

MCU: Microcontroller Unit. Compact computer in a single circuit.

OPC: Open Platform Communications. Originally, the abbreviation came

from Object linking and embedding for Process Control.

OPC UA: Open Platform Communications Unified Architecture. Data

exchange standard used in industrial automation space.

OS: Operating System

PKI: Public Key Infrastructure. A framework to manage public encryption

keys.

RPC: Remote Produce Call. Communication protocol.

SDK: Software Development Kit. A collection of software development

tools and libraries.

UA: Unified Architecture. OPC UA term.

XRF: X-Ray Fluorescence. A measurement technique used in the

elemental analysis of materials.

1

1 Introduction

In today’s fast-evolving technological landscape interoperability between

different devices is becoming increasingly difficult. Because of the technical

issues, many vendors prefer to only support communication between their own

devices in their propriety ecosystems. Standardization is the key element to

mitigate compatibility issues with software and hardware, especially in industrial

applications. An example of an established standard is the Open Platform

Communications Unified Architecture (OPC UA) standard, which is mainly used

in industrial settings. The OPC UA is a communication standard, the key

function of which is to provide a common interface for data exchange between

devices.

This final year project was carried out for Hitachi High-Tech Analytical Science

Finland Oy (HHA-FI), a subsidiary of the global Hitachi High-Tech Analytical

Science company. HHA-FI specializes in analyzer devices and especially in X-

Ray Fluorescence (XRF) handheld analyzers that are used to identify the

composition of a wide variety of materials. These XRF analyzers have

applications in many fields with different use cases. For instance, XRF based

technology is utilized by the latest Mars exploration rovers to provide detailed

analysis of the collected samples.

HHA-FI has recognized the increasing significance of software and its

integration capabilities in their devices. HHA-FI has been exploring integration

options for their analyzers and has chosen the OPC UA standard as the tool for

the job. By providing a standardized way to access the device, the integration

process of the device into an existing infrastructure becomes simpler and easier

to achieve by 3rd party contractors. The goal of this final year project was to

implement the OPC UA standard to HHA-FI’s analyzer device. The OPC UA

was chosen because of its established status in the industrial automation

space. With the integration, HHA-FI’s clients can use the OPC UA compliant

client software of their choice to connect to the analyzer. The client connection

provides access to the data produced by the device. The connection can be

2

used for further processing of the data and to connect the data to an OPC UA

compliant automation system.

The thesis contains six sections. After the introduction, Section 2 provides the

background information of the XRF analyzer targeted by the developed

software. Section 3 discusses relevant key concepts of the OPC UA standard.

Section 4 describes design decisions taken in the project and Section 5

analyzes the implementation phase. Finally, Section 6 contains results and

suggestions for future development.

3

2 Background

This section provides background information on the core features of handheld

XRF analyzers and their operating principles, with a due consideration for

radiation safety. Additionally, it provides an overview of the HHA-FI XRF

analyzer’s software architecture.

2.1 XRF analyzers

Handheld devices with the ability to instantly read the elements of a solid, liquid,

gas or plasma sample only existed in science fiction for a relatively long time.

Only large laboratory devices used to be able to achieve that. [1, p. 1.] First

portable devices with radioactive x-ray sources started to emerge in the

seventies. These devices usually consisted of two parts, a handheld analyzer

unit and a secondary unit containing a battery and other heavy components. At

the beginning of the 21st century, technology had advanced to the point that it

was possible to use a tube-based x-ray source with handheld XRF analyzers.

[1, p. 6.] Figure 1 illustrates a tube based XRF analyzer’s measurement

principle.

4

Figure 1. XRF analyzer’s measurement principle [2, p. 1].

In the measurement cycle the analyzer sends x-rays towards the target sample

as illustrated in Figure 1. During the process of the x-rays hitting the sample,

photons are emitted to the detector. [1, p. 16.] The X-ray spectrum is produced

from the pulses gathered by the detector and counted by a digital pulse

processor. The composition of the sample is analyzed from the produced x-ray

spectrum with an elemental analysis calculation software component. [1, pp. 19-

21.] Finally, the result provided by the analysis calculation is displayed to the

user. The result contains a list of elements that the analyzed material consists

of.

Hitachi High-Tech Analytical Science employ this tube-based x-ray source

solution in their X-MET range XRF analyzers [3]. Figure 2 illustrates an X-

MET8000 analyzer.

5

Figure 2. X-MET8000 [3].

As seen in Figure 2, X-MET line is a typical example of a modern handheld XRF

analyzer. It is equipped with a touch screen user interface and an easily

removable battery. The analyzers have various use cases, usually in an

industrial field. They can be used, for example, in a manufacturing process to

provide quality control for the used material.

2.2 Radiation safety

XRF analyzers emit radiation during measurement. Although they operate at

relatively low power, especially when compared with dental x-ray equipment,

users should be trained in operating the device appropriately [1, p. 179]. Proper

handling of the analyzer ensures that any potential leakage of radiation from the

device is negligible. The radiation level from the device depends on chosen

settings. Table 1 illustrates the worst-case scenarios for the radiation exposure

from the device.

6

Table 1. Permissible radiation exposure [4, p. 9].

Examining Table 1 shows that even with directly exposed skin to the main beam

radiation, there is still sufficient time for one to react and power off the device

before reaching the maximum acceptable dosage limit of 50 mSv per year.

However, eyes are notably more vulnerable to radiation, with a considerably

smaller acceptable dosage limit. Although increasing the distance from the

radiation source rapidly reduces the dosage, the effective dosage limit of 6 mSv

per year can still be reached relatively quickly. [5.]

The user is quite safe from the radiation if the right tools are chosen, depending

on the target sample, and the analyzer is operated properly. Figure 3 displays

the correct way of operating the X-MET XRF analyzer.

Figure 3. Closed and open beam measurement [3; 6].

7

Figure 3 shows two options for a closed beam setup. The first entails shielding

the user from radiation using a robust security stand, while the second option

involves the use of a compact radiation shield cup for low-intensity

measurements. The closed beam configuration becomes essential when

measuring small samples incapable of effectively absorbing the radiation

emitted by the device. On the contrary, an open beam measurement is suitable

for larger targets with high radiation absorption capacity. It is important to note

that during an open beam measurement, the user must refrain from touching

the sample, and no body parts should be positioned behind the nose of the

analyzer, as illustrated in Figure 3.

2.3 Software architecture of X-MET

The X-MET analyzers of HHA-FI are frequently employed in industrial

environments. In such settings, the data generated by the device is usually

needed in some further process, e.g., for controlling an automation process.

This project aimed to streamline the integration between X-MET and the third

party’s own software by leveraging the well-established OPC UA standard.

The integration is achieved by adding an OPC UA server software component

to the X-MET analyzer’s existing software architecture. Figure 4 illustrates the

analyzer’s software architecture.

8

Figure 4. X-MET analyzer’s software architecture [7].

Figure 4 describes the architecture with a division into two logical segments, a

primary module operating in a Linux environment and the hardware segment

governed by two microcontroller units (MCU). In the hardware segment,

Detector MCU is responsible for using the Detector to get raw measurement

results. The low level HW MCU operates the rest of the onboard components,

such as buttons, LEDs and EEPROM memory. The HW Manager software

component is used to control these two MCUs.

In the Linux environment segment, the Core is the most important component,

controlling the device by leveraging other components such as HW Manager.

For example, the Core handles data acquisition from onboard sensors via the

HW Manager and uses the Analytical Engine to process the raw data into

measurement results.

9

The new OPC UA server component will be running in the Linux environment. It

communicates with the Core via an internal web socket connection, employing

an inhouse remote produce call (RPC) protocol, elaborated in Section 5. With

the connection to the Core, the server gains access to the rest of the hardware

of the device. For instance, the OPC UA server can initiate a measurement by

sending a request to the Core, which, uses the HW Manager to start the

measurement. After the measurement is complete, the Core receives the raw

data and employs the Analytical Engine to generate a measurement result and

communicates the result back to the OPC UA server. The OPC UA server is

explored more in detail in Section 4 and Section 5.

10

3 OPC UA key concepts

This section describes the key concepts of the OPC UA standard. OPC UA is a

platform independent standard managed and developed by the OPC

Foundation. It allows the exchange of data between devices in a standardized

way. It is mainly used in industrial automation. [8.] The first sub-section explores

the origin of the standard. Later sub-sections focus on nodes, overall

architecture, and the security aspects of the OPC UA standard.

3.1 History

In its initial release in 1996, the OPC UA standard was known as the OPC

standard. Originally, the acronym OPC originated from object linking and

embedding for process control. Presently, this acronym has evolved to signify

Open Platform Communications (OPC). [8.] As industrial automation systems

started to embrace software-based control in the early nineties, the need for

standardized communication between devices started to emerge. The industry

was in need of a standardized way to access the data generated by various

devices with several bus systems, interfaces and protocols, which led to the

development of the OPC standard. [9, p. 1.]

The first release of the standard consisted of an OPC Data Access

specification, the purpose of which was to act as an interface providing

standardized access to data through the drivers of the device. [9, p. 1.] With this

abstraction it was possible to use the generic read/write requests without writing

device-specific code. The generic requests are converted to device-specific

requests by the Data Access specification. [8.] The success and quick adaption

of the standard was partly possible because it relied on existing Windows

technologies such as Component Object Model and Distributed Component

Object Model. [9, p. 1.] Later in addition to the Data Access specification more

specifications were added to the OPC standard [10]. The additions were OPC

Alarms & Events and OPC Historical Data Access specifications. Nowadays

these older Windows-dependent specifications are known as OPC Classic [8].

11

The OPC foundation released the OPC UA standard in 2008. As the name

Unified Architecture suggests, it integrates all the previous OPC Classic

specifications into one unified architecture. The OPC UA standard adds new

features compared with the OPC classic. The new Unified Architecture (UA)

features are listed below:

• Discovery: find available servers in the network.

• Address space: all data is represented with file-folder structure.

• On-demand: access permissions to read and write data.

• Subscriptions: monitor data changes.

• Events: notify on important information.

• Methods: clients can execute functions defined on the server.

Additionally, UA adds architectural improvements to the standard. It is not

dependent on any operating system (OS) and has focus on the scalability. The

scalability is achieved with multi-layered design and extendable information

models. Information models are discussed later in this section. Backwards

compatibility between Classic and UA standards is supported with wrappers.

[11.]

3.2 Node

One of the fundamental concepts in the OPC UA is a node. Nodes represent

individual points or entities in the system. A collection of nodes is called

namespace. Namespaces are studied more in detail later. A node always has a

class, and there are eight different classes: object, variable, method, view,

object type, variable type, reference type and data type. [9, p. 22.] Figure 5

displays all the available node classes in the OPC UA.

12

Figure 5. OPC UA node classes [12].

The most important classes seen in Figure 5 are variable, method and object

classes. Variables are used to represent values, usually a sensor’s

measurement value. Methods can return a result and can be called by the

server or the client software. Objects can be used to follow the object-oriented

programming design philosophy. They collect nodes to logical groups. [9, p. 30.]

A node consists of attributes and references. Figure 6 illustrates how nodes are

tied together with reference to each other.

Figure 6. Nodes and references [9, p. 22].

13

Nodes are defined by their attributes. A node can have a different set of

attributes, and they are determined by the node’s class. Despite the class, all

nodes have some common base attributes. For example, an ID attribute is

mandatory for every node and it is used to reference the node in the server. [9,

p. 22.] Figure 6 shows that nodes can have multiple references between each

other. Information models are used to define a set of nodes and their

relationships with each other. The concept of the information models is

explained in the next sub-section.

3.3 Architecture

The architecture of the OPC UA consists of several semi-independent modules.

The standard gathers these modules together to provide a unified architecture.

[13.] Figure 7 below illustrates the architecture.

Figure 7. OPC UA architecture [13].

As illustrated in Figure 7, the modules can be organized into three categories:

information model layer, communication model and protocol bindings. The

information model layer category consists of several information models. The

information model is a set of nodes connected to each other with references, in

14

other words a namespace. The meta model defines base concepts and rules for

the information modelling concept. All the information models depend on the

meta model. Built-in information models provide basic OPC functionality, such

as data access. Companion information models define use case specific

models. For example, the ADI specification describes an information model for

analyzer devices. It depends on a generic device specification, which is defined

in the DI companion model. Vendor specific information models are used to

define a vendor’s own products. The OPC foundation recommends that vendors

use companion information models for their products as using a standardized

companion information model to model a physical device ensures that all the

same type of devices have a similar namespace hierarchy. If a companion

model is insufficient, a vendor can extend it with a vendor specific extension.

This extension is a vendor specific information model that depends on an

existing companion model. [13.]

The communication model category consists of services and the message

model. The OPC UA services are used to implement interaction between OPC

clients and servers. The services are abstract as they define information

exchange between OPC UA applications. The message model is responsible

for the publish / subscribe feature of the OPC UA. Concrete protocol

implementations of the services and the message model are defined in the

protocol bindings category. [13.]

3.4 Security

The OPC UA standard can seamlessly run across various operating systems

and platforms, spanning from Windows desktops to embedded devices. Given

this scalability, security measures must also adapt accordingly. OPC UA

addresses this challenge by defining security policies, which are a set of

security components. As OPC UA applications can function as servers, clients,

or both, the primary security emphasis lies in ensuring the secure transport of

data between these applications. This security framework operates across three

distinct layers illustrated in Figure 8. [14.]

15

Figure 8. OPC UA security layers [15].

Figure 8 illustrates the application session, the secure channel, and the

transport layers. The application session can transmit, for example,

measurement data between a client and a server. The application session runs

on top of the secure channel, which is used to exchange certificates and

manage the data integrity with signing and encryption. The application session

and secure channel layers rely on certificates for the security. The OPC UA

standard does not specify infrastructure related to creating, storing, and

managing the certificates. The final layer, the transport layer, oversees the

socket connection between OPC UA applications, focusing primally on things

like IP addresses and ports. [14.]

The connection establishment between a server and a client involves a four-

step process. Initially, the client starts communication with the server to inquire

about available endpoints for the connection, which is carried out unencrypted.

Then the client selects a specific endpoint for the connection and assesses the

trustworthiness of the server's certificate. Following this, an

'openSecureChannel' request is transmitted, accompanied by a selection of

security options such as 'none,' 'sign,' or 'sign&encrypt'. The server, in turn,

retrieves the client's certificate from the unencrypted portion of the message

and, upon validation, decrypts the data using tools associated with the chosen

endpoint. The third step involves the creation of a session atop the secure

channel. Finally, the session is activated, requiring the input of a username and

a password. This process is illustrated in Figure 9. [9, pp. 209-215.]

16

Figure 9. Establishing connection [9, p. 215].

Figure 9 shows that a quite bit of validation is needed before connection is

established between two OPC UA applications. Both symmetric and asymmetric

keys can be used for the validation. Using the asymmetric model has an

advantage as a public key can be shared between applications without worry.

With symmetric keys, the private keys must be transferred securely between the

applications before they can communicate with each other. This transfer is not

defined in the OPC UA standard. [14.]

OPC UA relies on X509 certificates for signing and encryption. Signing is used

to validate that a received message is from an expected sender. This ensures

that messages from rogue sources are ignored. Encryption ensures that

messages cannot be read without decryption. The used encryption protocol

method depends on the chosen OPC UA security policy. The Public Key

Infrastructure (PKI) framework defines the standards for the X509 certificates

17

and outlines procedures for their management. Tools such as ‘openSSL’,

‘openxpi’, and Windows PKI can be employed for efficient PKI management.

[14.]

18

4 Project design

The purpose of this project was to integrate an OPC UA server into the X-MET

analyzer device. The project had two planned stages. The OPC UA server is

first implemented as a standalone application in the Linux and Windows

environments. At this point its only functionality is to start the server and publish

sample data to the network. Published information can be monitored with any

OPC UA client software; there are many to choose from. This first stage of the

project is essential to set up the work environment and workflows. After the

desktop application is up and running, the development of an embedded

application can begin. The embedded application is a service for the analyzer’s

embedded Linux environment. At this stage the first objective is to port the

desktop application to the embedded environment. After that, a connection from

the application to the rest of the device is implemented to enable the extraction

of real data from the analyzer. Section 2 explored in detail how the new OPC

UA server application is connected to the rest of the analyzer’s software

architecture.

This section contains descriptions of the design choices made for this project.

The first sub-section explores the available OPC UA SDKs and the one that

was chosen. After that, a design of the desktop and embedded servers are

explained. Later, the architecture of the developed server application is

described, and the testing procedure made for the project is discussed.

4.1 OPC UA SDKs

Many OPC UA software development kits (SDK) are available, using both

proprietary and open-source licences. The OPC UA foundation maintains its

own SDK, which is accessible for the public for free. Figure 10 describes the

contents of an OPC UA SDK.

19

Figure 10. Structure of an OPC UA SDK

Figure 10 illustrates that the stack is not part of an SDK. The stack contains

implementations of low level OPC UA specifications. Both ANSI-C-based and a

C#-based stack is provided by the OPC foundation. Third party SDKs can

leverage the provided stacks. Typically, an SDK implements high level OPC UA

concepts and provides tools that are not defined in the standard. The SDK

provides client and server application programming interfaces (API), so that the

OPC UA application using the SDK can access its implementations. [9, pp. 261-

263.]

For this project open62541 SDK is selected alongside with the open62541pp

C++ wrapper. Open62541 is an implementation of the UA Stack, provided by

the OPC UA Foundation and is made with C99. The developed OPC UA server

application will access open62541 functions through the open62541pp wrapper

in this project. Open62541 SDK was selected because it has an appropriate

20

open source license, and it is rather mature product itself. The existing C++

wrapper is used to focus on application development rather than on the

infrastructure of the application.

4.2 Desktop application

The initial phase of the project involves establishing a standalone OPC UA

server application. The first step is setting up the development environment with

the chosen programming language for the project, C/C++. The server leverages

the open62541 open-source OPC UA implementation, made with C99. The

Conan package manager is used to manage dependencies, the open62541

library is acquired via Conan, and the server is built using the ‘conan build’

command. The OPC UA is platform independent, so the desktop server

application should run in any desktop OS. Windows is used in the development.

The Linux build is tested with an Ubuntu distribution.

The creation of a custom OPC UA information model, called the vendor specific

information model in OPC terms, is initiated early in the project. Information

models and vendor specific extensions were explained in Section 3. This new

information model is used to model the X-MET analyzer within the OPC UA

framework. The desktop application uses this information model to display

sample data to a client application. The sample data simulates the data

gathered by the analyzer. Client software is essential to test the connection to

the server. OPC UA server should seamlessly work with any client software

adhering to the OPC UA standard. For this project the UA Expert client was

chosen for testing because of its features and graphic user interface. Figure 11

illustrates a client connected to the server.

21

Figure 11. OPC UA client program connected to the desktop server

It can be seen in Figure 11 that when a client connects to the desktop server it

shows the X-MET analyzer object that represents the device and its

characteristics in a hierarchical tree view. The client can monitor the analyzer’s

sensor values, such as checking the battery level of the device in the data

access view. In the embedded server application, these values come from the

device, but in the desktop application these values are simulated and can be set

manually.

4.3 Embedded application

The software of the X-MET analyzer devices relies on ‘OpenEmbedded’, a build

framework for embedded Linux, allowing developers to craft Linux distributions

tailored for embedded systems. The integration of the OPC UA server into the

existing Linux environment is accomplished through the addition of a Yocto

layer of the server. Because of the OPC UA standard’s platform-independence,

the code designed for the desktop server application will work on the embedded

device without modifications. Only build tools need to be changed to Bitbake to

build the embedded server application into the embedded Linux environment.

22

At this point, the next step for the project involves establishing a connection

between the server application and the X-MET device. The analyzer features a

core service that enables the connectivity with the server via the WebSocket

client. The server application code has been C code to this point. To enable the

WebSocket connection, porting the existing server code to C++ is necessary, as

the WebSocket library provided by the X-MET analyzer is a C++ library

alongside with other necessary libraries. As the focus of this project is on

application development, a ready-made wrapper is used rather than developing

it from scratch. The switch from C to C++ is achieved with open62541pp, a C++

wrapper made for the open62541 SDK.

4.4 Application architecture

The OPC UA server application operates within an embedded Linux

environment, leveraging the open source open62541 OPC UA implementation.

Given that open62541 is developed with C99, the adoption of the open62541pp

C++ wrapper adds a layer of convenience. While not all features of open62541

are currently implemented in the open62541pp, the server application can use

the C API of the ope62541 for any missing functionality. The application

architecture is illustrated in Figure 12.

23

Figure 12. Server application architecture

As seen in Figure 12, the server application depends on the open62541 and

open62541pp libraries. It has two running threads. The server thread manages

the server’s connection to the client, serving the client’s requests. The server

thread is implemented by using the open62541 server API, accessing it via the

open62541 wrapper. The WebSocket thread manages the internal WebSocket

client connection to the Core service. The connection to the Core enables

access to the X-MET analyzer. This connection to the X-MET is based on

sending requests and listening for event and uses custom RPC protocol for the

communication. The WebSocket thread listens out for events coming from the

Core service and acts accordingly depending on the received event. For

example, if an event about battery level change is received, it updates the

corresponding OPC UA node’s value.

24

4.5 Testing

The open-source automation server Jenkins is used to execute automatic build

tests. The tests are run if changes are detected in any of the repository’s

branches. Changes are scanned once a day. Figure 13 illustrates the result of a

build test.

Figure 13. Jenkins build test result

It can be seen in Figure 13 that the test consists of several stages. The build

stage is the most important. It is used to check that the build is successful and

to provide the build artefacts available for download. The analysis stage runs

the static code analysis ‘Cppcheck’ tool to provide guidance for cleaner code.

The publish stage is used to provide an executable file, available for download

in the Jenkins interface.

25

5 Project implementation

This section describes in detail the implementation part of the project. It

explores the vendor specific extension made for the server application. It

explains the details of the in-house RPC protocol used for communication with

the hardware of the X-MET analyzer. The main loop of the application is

described, and the security aspects of the project considered.

5.1 X-MET information model

One of the key concepts of the OPC UA is information modelling. To represent

the X-MET device in OPC UA context, it must be modelled by using nodes that

are connected to each other with references. Open62541 has two ways to

populate the OPC UA server’s namespace with nodes. One solution is to

manually write code to define and add nodes to the server. The other, more

versatile solution is to use a ‘NodeSet2.xml’ file. The format of the file is defined

by the OPC Foundation. The open62541 library includes a tool called XML

Nodeset Compiler. The tool can be used with a ‘NodeSet2.xml’ file to generate

C code containing the information model. This solution is used in this project.

A ‘NodeSet2.xml’ file can be written manually but it is prone to syntax errors. A

better solution is to first write a ‘Model.xml’ file, then transform it to the

NodeSet2.xml format. Figure 14 and Figure 15 show differences between the

‘NodeSet2’ and ‘Model’ formats.

Figure 14. Model.xml

26

Figure 15. NodeSet2.xml

As one can be seen in Figure 14 and Figure 15, the NodeSet2 format is more

complex and requires the use of numeric IDs for namespace and identifier

indexes. On the contrary, the ‘Model.xml’ model format is far simpler. The OPC

Foundation provides a UA-ModelCompiler tool to transform the ‘Model.xml’ file

to ‘NodeSet2.xml’ file. The foundation does not provide a specification for the

model files. A namespace is generated with the following process. First, ‘UA-

ModelCompiler’ is used to generate a ‘NodeSet2.xml’ file. Then, the

open62541’s Nodeset compiler can be used to generate the source files. In the

server application code, the namespace can be loaded with a single line

command.

The X-MET information model is constructed by following the OPC UA

specifications. All information models have dependency on the base OPC UA

information model, which defines all the basic functionality of an information

model. The X-MET model is a vendor specific extension to the Devices (DI)

companion information model provided by the OPC foundation. DI specification

ensures that devices are represented in a standardized way in the OPC UA.

Following the DI specification has other benefits as well. Some OPC UA client

software have special support for the DI specification, making it easier to

manage multiple devices in the client. The developed OPC UA server

application supports this too, as the X-MET information model follows the DI

specification. Figure 16 illustrates the X-MET information model.

27

Figure 16. X-MET information model

As seen in Figure 16, the X-MET object is an instance of ‘Xmet Type’, which is

of the ‘XmetDeviceType’ type. ‘XmetDeviceType’ is an abstract base type for all

X-MET instruments. It provides an identification object that has Manufacturer

and Model properties. These properties along with the identification object are

standardized by the DI companion specification that the X-MET model depends

on. Objects cannot be instanced from abstract types, so ‘Xmet Type’ is needed.

It provides ‘Operational’ and ‘Status’ objects. The ‘Operational’ object collects

parameters and methods useful during normal operation. ‘Status’ collects

parameters which describe the health of the device, such as diagnostic,

describing parameters. Both ‘Operational’ and ‘Status’ parent objects are

standardized by the DI.

The children of the ‘MeasurementResult’ object are dynamically constructed

during runtime. The OPC UA server application establishes a connection to the

Core software component via a WebSocket client. Upon the completion of a

new measurement, the server requests results from the Core and creates new

nodes to the ‘MeasurementResut’ based on the result. ‘MeasurementResult’

children are constructed based on values in the response of the Core.

‘MeasurementResult’ always has analytes and grades objects as children. Their

children vary based on the measurement result. The server only holds the latest

measurement result. When it receives information about a new measurement, it

uses the destructor to delete all children under the ‘MeasurementResult’, and

calls the constructor to create them again based on the new response values.

28

5.2 In-house RPC

The in-house RPC protocol is a remote procedure call interface specification

and protocol for inter-process communication. It is used to abstract away low-

level hardware communication in the X-MET analyzer. It uses the streamlined

MessagePack RPC specification. The RPC is designed to be compatible with

any transport layer protocol. The current implementations uses WebSocket as

the transport layer.

RPC communication is based on sending requests and receiving responses.

The response contains either a result or an error message to the request. A

third message type is Event. Events are used to push notifications to clients.

Requests consist of a resource path ID and the name of the method that is to

be called. The response provides a value or an error to the request made. If a

request is made, the server must reply with a respond message. Events may be

sent to the client as they occur in the server. The source of the event can also

be identified, such as the resource which generated the event. When an error

occurs the response message must contain an error field that contains a list of

errors.

5.3 Repository layout

The project consists of two repositories, ‘opc-ua-server’ and ‘meta-opc-ua’. The

main repository, ‘opc-ua-server’ is constructed with a pitchfork layout illustrated

in Figure 17.

29

Figure 17. Repository’s layout.

Figure 17 showcases the pitchfork layout. Build artifacts are stored in a build

directory, which is not part of the remote repository. All the source files are

inside the src folder. The data folder contains non-source files, such as INI files.

Development tools are stored in a tools folder. Test cases, documents and

examples go to corresponding test, doc, and example folders. The extras folder

30

contains optional submodules and ‘external’ folder source code for mandatory

dependencies.

The source code is organized into 'src/config' and 'src' folders. 'src/config'

contains essential functions and classes dedicated to configuring custom

settings for the server, including aspects such as access control and encryption.

Located inside ‘src’ folder the analyzer class is an abstract class, designed for

enabling future integration with various analyzers. The X-MET class inherits the

analyzer class. It models the X-MET device by loading nodes from the X-MET

information model. It is responsible for managing these nodes. For example, it

provides functions to update the specific object node’s values.

‘OpcUaServer.cpp’ initializes and launches the WebSocket and OPC UA server

threads.

The ‘meta-opc-ua’ repository is used to add the server as a layer to the X-MET

analyzer’s Linux environment. It uses the source code from the ‘opc-ua-server’

repository. Figure 18 illustrates the simple layout.

Figure 18. ‘meta-opc-ua’ layout.

As can be seen in Figure 18, ‘meta-opc-ua’ contains only embedded Linux

specific configuration and build files. CMake and source files from the ‘opc-ua-

server’ repository are used to build the project.

31

5.4 Application logic

The server application has two loops running in separate threads. The

WebSocket client connection is run in its own thread. It is used to connect to the

X-MET’s Core service via the in-house RPC protocol. This allows the server to

communicate with the X-MET analyzer’s hardware. The other loop is the

server’s main loop, used to manage the connection to the OPC UA client

application. Figure 19 illustrates the main loop.

Figure 19. Server application’s operation logic

As seen in Figure 19, first a WebSocket connection to the Core is created and

the OPC UA server initialised and started. After the initialization a WS thread

and an OPC UA server thread are started. If an event is received from the Core

service, it is processed. If the event contains data belonging to some of the

nodes, the received value is written to the corresponding node. In the event of

RPC disconnection, the thread tries to reconnect. The OPC UA server handles

communication between clients and the server.

32

5.5 Security concerns

The OPC UA has built-in security methods, for example access control to

manage user’s access to the server. A user can be limited to view only specific

nodes or allowed only to read the node values without write access. Traffic

between the server and the client can be encrypted with ‘OpenSSL’ or ‘Mbed

TLS’. The developed server application implements OPC UA security policies,

‘none’ and ‘aes128’. ‘None’ is needed to announce available endpoints to the

clients. Still, ‘none’ is not provided as a valid endpoint for the client to connect

to. The only endpoint available for clients is the ‘aes128’ one. Clients need a

username and password to establish connection. Certification files can be used

instead of a password. The server creates its own certification file at the start-

up. It also maintains a trust list, so only clients with trusted certificates can

connect the server.

Adding the OPC UA server to the Linux environment of the X-MET analyzer

opens a new attack vector for unauthorized access to the device. Because the

server has access to the device’s hardware, the radiation safety of the analyzer

is threatened as well. However, this risk is mitigated by the fact that the X-MET

device with the OPC UA server running will probably be used with the device

installed on a fixed location. The installation can be done in a way that the

operator cannot be exposed to the radiation, even if the device is accidently on.

The built-in security of the OPC UA standard can be trusted as the standard is

quite a mature product. However, a human error could lead to the failure of the

server’s security and grant the attacker access to the analyzer. The risk can be

minimized by allowing the remote connection to the OPC UA server only from a

local network. With the access to the OPC UA server, the attacker could

execute several malicious acts such as deleting the measurement database

from the device or starting an unscheduled measurement with the analyzer.

This could lead to a situation where operators are exposed to radiation if the

analyzer is measuring unexpectedly.

33

6 Conclusion

This section summarizes the results of the project and draws conclusions based

on them. Additionally, suggestions for future development are given.

XRF analyzers are used to determine elemental composition of a wide variety of

materials. The analyzation process emits harmful x-rays, so a user needs to be

properly trained to use an XRF analyzer. HHA-FI produces handheld X-MET

XRF analyzers.

The OPC UA standard is a communication standard, which is widely used in

industrial automation. It allows devices from different vendors to communicate

with each other. OPC UA applications are either servers or clients. A server

application contains data structured into namespaces. A Namespace consists of

nodes. A node can for example hold temperature data produced by a

temperature sensor. The OPC UA client application can connect to a server and

read and write data in it.

The purpose of this project was to implement an OPC UA server into the Linux

environment of the X-MET XRF analyzer. To do that, the X-MET analyzer is

modelled in the X-MET namespace information model, which follows OPC UA

definitions for a vendor specific namespace extension. The implemented OPC

UA server application uses the internal WebSocket connection of the X-MET to

get sensor readings from the analyzer. The OPC UA client can be used to

connect to the server and read the data produced by the X-MET.

6.1 Results

The X-MET analyzer’s embedded Linux environment now contains an OPC UA

server. It can communicate with the analyzer using a WebSocket connection

with the in-house RPC protocol. Any OPC UA compliant client can be used to

connect to the analyzer to get access to the data produced by the device.

34

The X-MET information model was created because of this project. The

information model is in the ‘Model.xml’ format that can be converted to the

‘NodeSet2.xml’ format by tools provided by the OPC UA foundation. The

‘NodeSet2.xml’ file can be used with a wide variety of OPC UA SDKs to

generate the information model source code for the specific SDK in use. This

ensures that the information is portable and not tied to any specific OPC UA

SDK. It can also be easily expanded. After any modification the information

model code can just be generated again without refactoring existing code.

Achieving the goal of this project, the X-MET XRF analyzer now has a

standardized way for the client to connect and extract data. This is achieved

with the OPC UA server that runs in the device’s Linux environment. Previously

data access was achieved by REST style API connection. This requires

knowledge of the X-MET device to integrate it into the client’s systems. The new

OPC UA server integration ensures that the connection to the X-MET is

standardized and any contractor familiar with OPC UA can integrate the device

into the client’s system without any previous knowledge of the analyzer itself.

6.2 Future development

The scope of the server is limited to one target device, but the server could be

developed further to provide a generic OPC UA server for multiple models of X-

MET XRF analyzers.

The OPC UA server can be developed further by implementing more of the X-

MET’s features to the server. The OPC UA allows clients to use methods to

execute actions on the server side. This is an essential feature that should be

implemented in the future on the produced server. For example, a method for

starting the measurement could exist on the server, so the client could initiate

the start of the measurement remotely. There could also be a method to search

the device’s measurement database for old measurements and return their

contents to the client.

35

The OPC UA foundation is planning on releasing a new Laboratory and

Analytical Device Standard (LADS) Q1/2024. LADS will be implemented as an

OPC UA companion specification. When the new specification is released, it will

be used in the X-MET’s OPC UA server. Both the X-MET namespace and

LADS depend on the DI specification, so implementing this new standard in the

existing custom X-MET namespace should be straightforward. This new

specification is an excellent fit for the X-MET device.

References

1 Drake BL, MacDonald BL, editors. Advances in Portable X-ray Fluorescence
Spectrometry: Instrumentation, Application and Interpretation. 1st edition.
Cambridge: Royal Society of Chemistry; 2022. 548 pages

2 XRF presentation OIA. 2010. Internal documentation of HHA-FI.

3 Handheld XRF Analyzers | X-MET8000 Range [Internet]. Hitachi High Tech
Analytical Science. [cited 2023 May 27]. Available at: https://hha.hitachi-
hightech.com/en/product-range/products/handheld-xrf-libs-
analyzers/handheld-xrf-analyzers

4 Lindholm S. 2020. HS 518 Radiation Safety Training. Internal documentation
of HHA-FI.

5 Radiation and Nuclear Safety Authority (STUK). Säteilyaltistuksen
enimmäisarvojen soveltaminen ja säteilyannoksen laskemisperusteet,
8.8.2014. 2014 [cited 2023 October 9]. Available at:
https://www.stuklex.fi/fi/haku/ohje/ST7-2

6 Systems TMQC. X-MET 8000 Smart XRF Spectrometer [Internet]. Troy-Met
Quality Control Systems. [cited 2023 October 24]. Available from:
https://www.troy-met.com/en/product/191/x-met-8000-smart-xrf-
spectrometer

7 Aho J. 2023. X-MET Software Architecture. Internal documentation of HHA-
FI.

8 What Is OPC? [Internet]. OPC Foundation. [cited 2023 May 21]. Available
from: https://opcfoundation.org/about/what-is-opc/

9 Mahnke W, Leitner SH, Damm M. OPC Unified Architecture [Internet]. 1st ed.
Berlin, Heidelberg: Springer Berlin Heidelberg; 2009 [cited 2023 May 28].
Available at: http://link.springer.com/10.1007/978-3-540-68899-0

10 History [Internet]. OPC Foundation. [cited 2023 May 28]. Available at:
https://opcfoundation.org/about/opc-foundation/history/

11 Unified Architecture [Internet]. OPC Foundation. [cited 2023 May 28].
Available at: https://opcfoundation.org/about/opc-technologies/opc-ua/

12 C++ Based OPC UA Client/Server/PubSub SDK: Address Space Concepts
[Internet]. [cited 2023 Oct 27]. Available at: https://documentation.unified-
automation.com/uasdkcpp/1.7.3/html/L2UaAddressSpaceConcepts.html#L3
UaAdrSpaceConceptNodeModel_nodeclasses

13 C++ Based OPC UA Client/Server/PubSub SDK: OPC Unified Architecture
Overview [Internet]. [cited 2023 July 17]. Available at:

https://documentation.unified-
automation.com/uasdkcpp/1.7.3/html/L2OpcUaFundamentalsOverview.html

14 Key OPC UA Security Concepts [Internet]. [cited 2023 August 8]. Available
at: https://www.ptc.com/en/blogs/iiot/opc-ua-security

15 OPC UA Redefines Automation Architectures [Internet]. Automation.com.
[cited 2023 October 27]. Available at: https://www.automation.com/en-
us/articles/2011-1/opc-ua-redefines-automation-architectures

	1 Introduction
	2 Background
	2.1 XRF analyzers
	2.2 Radiation safety
	2.3 Software architecture of X-MET

	3 OPC UA key concepts
	3.1 History
	3.2 Node
	3.3 Architecture
	3.4 Security

	4 Project design
	4.1 OPC UA SDKs
	4.2 Desktop application
	4.3 Embedded application
	4.4 Application architecture
	4.5 Testing

	5 Project implementation
	5.1 X-MET information model
	5.2 In-house RPC
	5.3 Repository layout
	5.4 Application logic
	5.5 Security concerns

	6 Conclusion
	6.1 Results
	6.2 Future development

	References

