

Rose D. Mohammad

Electricity Generator Automation

Prototype

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

4 Nov 2023

PREFACE

I am proud to be a graduate of Metropolia University, and I extend my heartfelt

gratitude for welcoming me into this esteemed academic community. My journey here

began in 2021 when I arrived in Finland as a diplomat's family member. Fortunate to

commence my master's degree in September 2022, I aimed for a subject that

seamlessly blends my interest with a positive impact on my home country's daily

electricity service.

Gratitude and thanks to my dedicated tutor, Mr. Ville Jääskeläinen, whose unwavering

support has been invaluable from the outset of this project. Equally, I appreciate Miss.

Saana Vallius, whose class in the second semester sparked the idea for my thesis. Her

guidance and passion amplified my love for the master's program.

Special acknowledgment goes to Mr. Eetu Jääskeläinen for his assistance with

schematic diagrams. I extend my gratuities to all my professors at Metropolia University

whose teachings made this significant day possible.

I extend my deepest appreciation to my mother, Ms. Tania Hussein, Deputy Charge of

the Iraqi Embassy in Finland, and Estonia. Her unwavering support and guidance

throughout my academic journey have been instrumental.

Special thanks to my father, Mr. Dislahd Mohammad Sh, Deputy Minister of Electricity

in KRG, Iraq, whose support and encouragement, both financially and professionally,

steered me towards this thesis idea. Being an electrical engineer and an expert in

Electricity Generators, his insights have profoundly shaped this project. The installation

of this automated generator system will take place in my personal home in Iraq as a

start before it will be introduced in market.

21/Spe/2023

Rose D. Mohammad Sh

Abstract

Author: Rose D. Mohammad

Title: Electricity Generator Automation

Number of Pages: xx pages + x appendices

Date: 1/March/2023

The persistent shortage of electricity in numerous Middle Eastern nations,
notably Iraq, is a challenging predicament. The state sector provides power
supply in most Middle Eastern countries, including Iraq, and the government
funds power plants. Despite Iraq's substantial oil reserves, it grapples with the
challenge of satisfying its electricity demand, stemming from multifaceted factors.

Local electricity generators have emerged as a prevailing solution for bridging the
electricity deficit in Iraq. The government and local people depend on these
electric generators for everyday life, and the private sector owns them.

The prevalent use of Iraq's types of Electricity Generators (EG) adds complexity,
entangled with challenges, including manual operation, the exigency of
maintenance, and the necessity for vigilant monitoring of engine oil quality for
local EG. These electric generators are small-sized local generators that can
supply electricity for nearly 200-400 homes.

The core aim of this thesis is to forge an automated operation system granting a
solution to govern these local Electricity Generators, the central tenets of this
objective include the automation of operational control, seamless integration of
sensors, facilitation of a user-friendly interface, and the implementation of
automated responses.

This project details the creation of a conceptual framework and methodology for
a project involving designing and implementing a prototype with specific
hardware components, including microcontrollers. It emphasizes the explanation
of functions for these elements and their integration into the prototype.

The thesis process includes schematic diagrams, hardware and sensor testing,
software development, and coding for Raspberry Pi Pico and a user-friendly
interface. Testing procedures encompass both hardware and coding, leading to a
summary of crucial findings for automating Electricity Generator operations and
future upgrades.

Keywords: Electricity Shortage, Iraq Energy Crisis, Energy sector in Iraq,
Electricity Generation, Generator Automation, Raspberry Pi Pico, Generator
Monitoring System, Microcontrollers, User-Friendly Interface, Automated Control
Systems, Electronics, MicroPython.

Contents

1 Introduction 1

1.1 Electricity Production in Iraq 2

1.2 Business challenges 3

1.3 Objectives 4

1.4 Study plan 4

2 Electricity Generator 7

2.1 Current Used Method 11

2.1.1 Importance of Electricity Generator 11

2.1.2 Disadvantages of Electricity Generators 14

2.1.3 Components and Operation of Electricity Generator: 15

2.2 Generator Control Panel 20

3 Microcontrollers and Sensors Error! Bookmark not defined.

3.1 Microcontroller Types 23

3.2 Microcontroller Models 24

3.3 Microcontroller Selection 25

3.4 Components Selection 27

4 Implementation 36

4.1 Schematic Diagram Design 36

4.2 Prototype Component Connections 39

4.3 Software Design 41

4.3.1 Coding Pico 43

4.3.2 User Interface 48

5 Testing 56

5.1 Hardware Manual Testing 57

5.1.1 Raspberry Pi Pico Testing 57

5.1.2 Sensor Testing and Calibration 58

5.2 Code Testing 61

5.2.1 Step by Step Testing 62

6 Summary and Conclusion 69

References 71

List of Abbreviations

AC Alternate Current(electric current continuously changes direction)

DC Direct Current(electrical current that always flows in one direction)

EG Electricity Generators.

GPIO General-Purpose Input/Output

HTML Hyper Text Markup Language

IoT Internet of Things

IC Integrated Circuits

IDE Integrated Development Environment

kW Kilowatt

kVA kilo-Volt-Amperes (a unit of power eq ual to (1000 * 0.8) watts)

SBC Single Board Computers

TW Terawatt

UML Unified Modelling Language

1

1 Introduction

Most Middle Eastern countries, especially Iraq, suffers from chronic

electricity shortage. While Iraq is rich in oil, is a member of OPEC and has

8% of the global oil reserve yet it does not have sufficient electricity power,

this is for varied reasons (1). Electricity in Iraq depends on natural

resources such as Diesel at 8.83%, Hydro 13.71%, Thermal 29.75%, and

Gas Turbine 47.70%.

The demand for electricity in the past years in Iraq has increased due to the

population increase and the consequences of climate change. The

temperature in Iraq reaches above 50 degrees Celsius during summer, and

the climate change that resulted in sandstorms most of the days during the

summer season has increased electricity demand. In Iraq, the government

produces and sells electricity and the price is subsidised by national

income.

Most of the cities in Iraq have power plants that can provide a limited

electricity supply, which is not enough for 24 hours a day. For this reason,

the private sector sells electricity by operating small generators, covering

the power supply deficiency by 50% of locally requested electricity needs.

These generators are spread in all cities in Iraq and are favoured by local

users to cover the daily need for electricity. Take one city as an example, if

the population of a city is one million, the number of generators needed is

2500 of 1000kVA output power. This requires at least ten thousand

operators over two shifts, and two operators cover each working shift.

Since these generators are used widely everywhere in Iraq, this project

aims to help the generator operators to have an automated control and the

ability to switch on, off, restart, standby and reading water level,

temperature, and engine oil quality.

2

1.1 Electricity Production in Iraq

Iraq's energy sector has faced challenges due to its limited and old

infrastructure, resulting in electricity shortages and frequent power outages.

Iraq's overburdened infrastructure needs help to keep up with the country's

rising electrical demand. The government predicted the peak demand

climbed 1.4 GW annually to a new record 34.18 GW for summer 2023.

According to Ministry of Electricity records, demand rose 8.8% in the last

three years to an average of 19.81GW.

The Ministry of Electricity records an estimated available electricity capacity

raised to 22GW last year, and it will be a challenge to meet the demand in

the following years. According to the documents, the predicted gap between

the supply that can meet demand at the summer peak has increased from

9GW to 10.8GW in the last three years. The difference grows to roughly

12.2 GW, up from 11.66 GW when transmission losses are considered(2).

Conflicts, political instability, and other unforeseen circumstances have

further exacerbated the situation, making it challenging to maintain a

consistent and uninterrupted energy supply. In 2004, the country's

electricity demand exceeded the installed capacity by 3,950 MW. From

2010 to 2020, Iraq witnessed an average annual increase of 7% in net

energy generation, producing an estimated 92-terawatt hours of electricity.

However, despite this growth, the rising electricity demand has outpaced

the expansion of generating capacity, leading to frequent power disruptions

experienced by most homes in Iraq.

The country relies on renewable energy for only 19% of its electricity

production, further exacerbating the gap. As a solution to this problem,

many households have resorted to personal generators, which offer a

convenient and cost-effective means of compensating for the electricity

shortfall. These generators are readily available and require minimal

maintenance.

3

District generators include one or more large-scale generators supplying

electricity to multiple households within a district, run by the private sector.

These systems involve heavy equipment and require a substantial

transmission capacity and a dedicated maintenance team.

On the other hand, individual home generators are typically smaller and are

powered by fuels such as gasoline, diesel, natural gas, or propane and

serve to provide electricity to individual households. Personal generators

are more cost-effective, requiring less maintenance and offering ease of

installation and operation. However, their capacity is limited by the

generator's power output.

In both cases, there is an abundance of generators in the country that

require regular maintenance. The workers overseeing these generators

must allocate time to ensure proper supervision and prevent system

breakdowns or disruptions. Unfortunately, despite these efforts, power

outages are still common occurrences.

1.2 Business challenges

The Electricity Generator (EG) system presents several challenges for its

users. Firstly, users must stay alert when the system stops or shuts down

due to overload or extended operation. In such cases, users must manually

switch it on or restart the system, which can be inconvenient and requires

constant attention.

In addition to that, maintaining proper levels of engine water and fuel is

crucial for the system's smooth operation. Users need to be mindful of the

engine water level, ensuring it stays within accepted level, and monitor the

fuel level to prevent it from running too low. Neglecting these levels can

lead to disruptions and adversely affect the performance of the EG system.

Moreover, the quality of the engine oil plays a vital role in engine

performance. Regularly checking the oil levels and ensuring their quality

daily is essential for keeping the engine well-lubricated, reducing friction,

4

and minimizing unnecessary power loss. Failing to monitor and maintain the

oil levels and quality can result in inefficient operation and potential system

failures.

1.3 Objectives

This project aims to implement an automated system capable of monitoring

and controlling the switch on/off functionality and the standby mode

operations of an electricity generator. This system will also collect data from

various sensors, measuring water level, engine oil quality, and temperature

levels.

The primary purpose of this system is to establish an efficient and

comprehensive control platform that empowers users to maintain optimal

control over the system's various functions. Additionally, it can spot

problems, such as sudden temperature increases or declines in oil quality

and respond quickly.

To ensure user-friendliness and ease of operation, the system will feature a

graphical user interface that simplifies the management of functions and

provides users with a comprehensive overview of the system.

The system will deliver real-time readings from the various sensors,

enabling users to promptly identify any abnormal readings and take

appropriate action.

In summary, the objective of this automated system is to provide an efficient

and secure platform for managing and monitoring the switch on/off and

standby modes of an electricity generator. This system is an excellent

option for users looking for a trustworthy and effective control system

because of its user-friendly interface and extensive security features.

1.4 Study plan

The project plan contains the following steps:

5

1. Identifying the key elements of Electricity Generators

2. Selection of suitable prototype platform

3. Implementation of Hardware

4. Implementation of Software

5. Testing hardware and software of the prototype

Figure 1 Thesis Flow

This thesis is divided into six sections; the first includes a brief overview of

the Middle East's chronic electricity shortage, focusing on Iraq. The

introduction explains the significance of the problem and the challenges the

region faces. It also outlines the project's primary objective: to develop an

automated system for controlling electricity generators. The section

concludes with a summary of what to expect in the report.

In the second section, the report delves into the theoretical background of

the project. It discusses the current manual methods used to operate and

maintain electricity generators. The importance of electricity generators is

highlighted, along with the disadvantages associated with them. The

section also explores the components and operation of these generators.

Additionally, it provides insights into hardware design research.

The third section focuses on microcontrollers and their types, evaluation of

the existing system, hardware design, and explanations of selected

components. Also, schematic diagrams, UML diagrams, and the printed

prototyping process are explained.

6

The fourth section focuses on the implementation and practical aspects of

the project, followed by the software design, emphasising the coding for

Raspberry Pi Pico and the development of a user-friendly interface.

The fifth section of the research outlines the testing procedures, it includes

hardware testing, which involves evaluating the Raspberry Pi Pico and

sensors. The research describes how the hardware was evaluated to

ensure successful functionality. Testing also included step-by-step code

testing and user interface testing.

7

2 Electricity Generator

The history of electricity dates back to ancient times when people

discovered that certain materials, such as amber, could generate a static

electric charge when rubbed against fur or wool. However, only in the late

18th century was progress made in understanding and harnessing

electricity.

In 1752, Benjamin Franklin conducted his famous kite experiment, where

he flew a kite with a metal key attached during a thunderstorm. This

experiment demonstrated the connection between lightning and electricity

and laid the foundation for further exploration.

In the early 19th century, scientists such as Alessandro Volta and Michael

Faraday contributed significantly to understanding electricity. In 1800, Volta

created the first electric battery, the Voltaic Pile, which generated an

uninterrupted flow of electric current. Faraday's experiments with

electromagnetic induction led to the development of the electric generator,

transforming mechanical energy into electricity.

Based on information from the Institute of Electrical and Electronic

Engineers (IEEE), Iberdrola, a Spanish global energy leader, generated a

photo illustration in Figure 2 (3).

8

Thomas Edison's discovery of the light bulb in 1879 was a ground-breaking

innovation that transformed how we illuminate our environment. Edison's

light bulb utilized a filament inside a glass bulb, which emitted light when an

electric current passed through it.

As the electricity demand grew, Power generation and distribution systems

used to fulfil the increasing energy demand as the need for electricity

increased. The first water turbine created by Lester Alan Pelton in 1880.

The first centralized power station was established by Edison in New York

City in 1882, providing electricity to a small area, which marked the

beginning of the modern electrical grid system.

The late 19th and early 20th centuries saw rapid advancements in

electricity generation. Nikola Tesla's work on alternating current (AC)

systems and George Westinghouse's support led to the widespread

adoption of AC power distribution, which offered advantages in long-

distance transmission.

The development of power plants using various energy sources accelerated

throughout the twentieth century. Coal-fired power plants became

Figure 2 “History of Electricity- by Iberdrola

9

prevalent, using natural gas, nuclear energy, and renewable sources such

as hydroelectric, wind, and solar power.

Renewable energy sources have gained significant attention with

technological advancements and the need for cleaner and more sustainable

energy. Worldwide renewable energy installations have increased

significantly in the twenty-first century as nations work to cut their carbon

footprints and make the transition to a greener future.

Today, electricity plays a central role in our lives, powering our homes,

businesses, industries, and technology. It has become indispensable to

modern society, driving economic growth, innovation, and improved living

standards.

The journey from the discovery of static electricity to the development of

advanced power generation and distribution systems has been a testament

to human ingenuity and scientific progress. As we progress, the focus

remains on enhancing efficiency, sustainability, and reliability in electricity

generation, distribution, and utilization.

Iraq Electricity History:

The history of electricity in Iraq stretches back several decades, with

notable improvements and problems. Early developments in the

introduction of electricity in Iraq may be linked back to the early twentieth

century. The first hydroelectric plant in Iraq was built in 1915, using the

country's water resources to create electricity. It was based on a steam

turbine which used steam to boiler and turn a turbine connected to an

electrical generator and convert the rotational energy from the turbine into

electrical energy. In addition, a British engineer made an electric machine in

Baghdad's 'Khan Dala' building, signaling the beginning of the capital city's

energy infrastructure.

The systems were upgraded over the years, and the electricity network

grew as per population demands in Iraq. Power generation stations were

10

upgraded, and the electrical grid expanded to cover more regions

nationwide to support the development of many sectors, such as industry,

commerce, and residential regions.

Despite efforts to expand the electricity infrastructure, Iraq has faced

significant challenges in meeting the increasing electricity demand.

Population growth, conflicts, and limited production capabilities have

resulted in electricity shortages and frequent power outages. The

inadequacy of the electrical power generation stations to meet the demand

has been a persistent issue(4).

Diversification of Energy Sources in Iraq's electricity generation has

traditionally relied heavily on fossil fuels, particularly oil and natural gas.

However, there has been a push towards diversifying the energy mix and

incorporating renewable energy sources in recent years.

Iraq has over fifty electricity power plants; the government has installed

several gas turbine power plants to minimize the gap; power suppliers'

companies such as (Stratford, Siemens, Caterpillar, and GE) have installed

gas turbine power plants across the country.

These installations have helped to supplement the electricity supply and

reduce the dependency on conventional power sources. Iraq has also

utilized hydropower as a significant source of electricity, providing electricity

over 70%. However, the reliance on hydropower has faced challenges due

to climate change and changing water resources.

As a result, the capacity of hydropower plants in Iraq has significantly

decreased, impacting the overall electricity supply. Three of those power

plants have been installed in the north region of Iraq, that area has

hydropower plants.

In Iraq, electricity demand has continually surpassed available generation

capacity, resulting in ongoing power outages. Many households and

11

businesses rely on personal generators as an alternate source of electricity

to make up for the gap.

It is important to note that the electricity situation in Iraq is dynamic and

subject to numerous factors, including political, social, and economic

conditions. Efforts are ongoing to address the challenges and improve the

electricity infrastructure to provide a stable and sustainable power supply

for the people of Iraq.

Although the electricity distribution always had its limitations, the quantity of

demands changes per season of the year. The Iraq weather is a reason for

the increase in electricity demands(5).

2.1 Current Used Method

A power source generates electricity using the electromagnetic induction

principle, which relies on the interaction of electrical conductors and a

magnetic field to generate current. Depending on the design and

arrangement, the generator produces alternating (AC) or direct (DC) energy

by revolving a rotor inside a still stator.

Electricity generators are crucial in various sectors to ensure continuous

power supply, support critical operations in commercial, industrial, and

residential demands, prevent disruptions, and maintain productivity and

quality of life. They serve as reliable backup power sources, bridging the

gap during power outages or in areas without reliable grid infrastructure.

2.1.1 Importance of Electricity Generators

The importance of electricity generators in various sectors can be

summarized as follows(6):

• Residential Sector: Electricity generators provide continuous power

supply to homes, ensuring that essential appliances like refrigerators,

heating/cooling systems, and security systems remain operational during

power outages. They offer comfort and convenience by maintaining

12

lighting and enabling electronic devices, allowing residents to continue

with their daily activities uninterrupted.

• Commercial and Business Sector: Generators are critical for

businesses to maintain uninterrupted operations. They ensure that

essential equipment such as computers, servers, communication

systems, and cash registers remain functional during power disruptions.

By avoiding downtime and maintaining business continuity, generators

enable businesses to serve customers, protect valuable data, and avoid

financial losses.

• Industrial Sector: Electric generators are a reliable backup power

source in industries to prevent production losses and maintain smooth

operations. They provide power during grid failures, ensuring that critical

machinery, manufacturing processes, and industrial equipment continue

to function, which helps avoid costly interruptions, equipment damage,

and delays in production schedules.

• Healthcare Sector: Hospitals, clinics, and medical facilities require a

continuous and reliable power supply to operate life-saving equipment,

maintain critical care units, and support patient care. Electricity

generators offer backup power during power outages or emergencies,

ensuring that medical services, surgeries, and patient care are not

compromised.

• Data Centers and IT Sector: Data centers and IT infrastructure rely on

uninterrupted power to safeguard sensitive information and maintain

operational efficiency. Generators provide backup power during grid

failures, allowing data centers to continue operating, preventing data

loss, and avoiding disruptions to online services and digital infrastructure.

• Emergency Services: In emergency service buildings like fire stations,

police stations, and emergency response centers, generators are

necessary. They ensure continuous power supply to communication

networks, emergency lights, and crucial equipment, allowing for effective

emergency response and coordination during critical situations.

• Events and Entertainment Sector: Outdoor events, concerts, and

entertainment venues often require a reliable power source in areas

13

where grid supply may be limited or unavailable. Generators power the

stage lighting, sound systems, food stalls, and other event infrastructure,

ensuring the smooth and uninterrupted operation of the event.

• Remote Areas and Construction Sites: Generators are vital in remote

areas with limited or nonexistent grid access. They provide power for

construction sites, remote research facilities, off-grid residences, and

rural communities, enabling basic amenities, infrastructure development,

and economic activities.

• Energy Resilience and Grid Stability: Generators contribute to energy

resilience by providing backup power during grid failures, natural

disasters, or emergencies. They help maintain grid stability by supporting

it during peak demand periods or providing ancillary services such as

frequency regulation. Generators function as a safety net, preventing

widespread outages and minimizing the impact of power disruptions.

• Disaster Relief and Humanitarian Aid: In disaster-stricken areas,

electricity generators are crucial for powering relief efforts, emergency

shelters, field hospitals, and communication systems. They facilitate

essential services, medical care, and aid distribution during humanitarian

crises, contributing to relief and recovery.

• Off-Grid and Renewable Energy Systems: Generators play a role in

off-grid locations with limited access to the electricity grid. They provide

backup power during periods of low renewable energy generation or high

demand, ensuring a stable and reliable electricity supply. Generators can

be integrated into off-grid renewable energy systems, enabling a

balanced and sustainable energy mix.

• Economic Growth and Development: A reliable electricity supply

catalyzes economic growth and development. Generators support

productivity, attract investments, create job opportunities, and drive

economic progress in urban and rural areas by providing consistent

power to businesses, industries, and infrastructure projects.

• Environmental Applications: Generators powered by cleaner fuels or

renewable energy sources contribute.

14

2.1.2 Disadvantages of Electricity Generators

While electricity generators offer numerous benefits, they also have some

disadvantages that should be considered:

• Fuel Dependency: Most power plants use fossil fuels like natural gas,

diesel, or gasoline. It can also make generators susceptible to

fluctuations in fuel prices and availability.

• Environmental Impact: Using fossil fuel-powered generators

contributes to air pollution, emitting carbon dioxide (CO2), nitrogen

oxides (NOx), and particulate matter. These emissions can adversely

affect air quality, contributing to air pollution.

• Noise Pollution: Generators, especially older or larger models, can be

noisy. The constant noise can be disruptive, particularly in residential

areas, quiet environments, or during night-time operations. However,

newer generator models and soundproofing techniques are available to

reduce noise levels.

• Maintenance and Operation: This includes frequent oil changes, filter

replacements, and fuel management. Additionally, gasoline expenses

can be substantial, particularly during prolonged power outages or high

demand. Buying and installing one can be expensive based on the

generator type.

• Limited Fuel Storage: Generators that rely on fuel require adequate fuel

storage capacity. It can be challenging when access to fuel sources is

limited, such as during natural disasters or in remote areas. Ensuring a

sufficient fuel supply is essential to maintain generator operation during

extended periods without grid power.

• Emissions Regulations: Generators may be required to comply with

emissions rules and get permits, depending on the jurisdiction. These

restrictions are intended to reduce the environmental impact of generator

emissions, but they may increase compliance costs and administrative

burdens.

• Safety Hazards: Generators involve fuel combustion and power

generation, which can offer safety risks if not managed and maintained

15

appropriately. Fire, carbon monoxide poisoning, electric shocks, and fuel

leaks are all possibilities. Following safety requirements, providing

sufficient ventilation, and inspecting and servicing the generator regularly

can all assist in reducing these dangers.

• Limited Runtime: Generators have a limited runtime based on fuel

capacity and power demand. Extended power outages may require

periodic refueling, which can cause interruptions in the power supply.

Additionally, standby generators that run on natural gas or propane may

depend on a continuous supply of these fuels.

Despite these disadvantages, advancements in technology are addressing

some of these concerns. The development of cleaner and more efficient

generator models, increased use of renewable energy sources, and the

integration of energy storage systems are improving the sustainability and

reliability of electricity generation(7).

2.1.3 Components and Operation of Electricity Generator:

as per the following Figure 3 from ADE shows the functionality and components of

Generators (8):

Figure 3 The Main Fueatuers of Electricity Generator

Several engines are used in Iraq, such as (Caterpillar, Cummins, MTU,

Perkins, Volvo, MQV, Mitsubishi, etc). Take the Diesel Powered Generating

Set (SPG1000-C1), provided by Sakr Power Generation(9), as an example

16

to get a better understanding of the features and components of generators

and how they operate:

A. Standard Generation Set Features:

• Water Cooled Diesel Engine

• Oil and fuel filter

• Lube-oil drain valve

• 24V D.C. Electric Starter & Charge Alternator

• Normal duty air filter

• Single-bearing alternator

• Standard Voltage 230/400 Volts 50 Hz

• Digital Voltage Regulator

• 3-pole Circuit Breaker with shunt trip

• Auto Start AMF Module DEIF GC1F as standard, other controllers are

available for different applications.

• Fitted with low coolant level shutdown.

• Welded steel base frame with integral

• Anti-vibration mountings

• Industrial type silencer: Noise attenuation

• Stainless steel exhaust bellow

• Set mounted starting batteries.

• Operation & Maintenance Manual

• Parts Manual

• Standard set of labels

• The generating set and its components are factory-built, type and

production-tested.

B. The essential Engine components of most common components of any

Electricity Generator are:

• Rotor: usually referred to as an armature, typically made of copper wire

coils.

• Stator: which surrounds the rotor, it is a stationary element.

17

• Magnetic field: electricity production requires the creation of a

magnetic field by use of an electromagnet or a magnet. The rotor is

typically equipped with electromagnets or contains permanent magnets.

C. Operation of an Electricity Generator:

1. Rotation: is a fundamental process in an electricity generator that

involves the connection of a mechanical power source to the rotor. The

crucial generator component rotor is designed to rotate at high speeds

when the power supply is activated.

An automatic power source is coupled to the rotor. This power source

can vary depending on the type of generator and the specific

application. Examples include steam turbines, gas engines, or water

turbines, which can harness different forms of energy to drive the rotor.

When turned on, the mechanical power source transfers its significance

to the rotor, causing it to spin rapidly. This rotational motion is vital in

generating electricity, as it sets the subsequent processes of

electromagnetic induction and power generation in action. The rotor's

rotation generates a changing magnetic field, which induces an electric

current in the rotor's wire coils.

This electric current is then harnessed and converted into usable

electrical energy for various applications. A mechanical power source,

such as a steam turbine, gas engine, or water turbine, can aid in the

rotation of an electricity generator's rotor. This rotational motion is

essential for generating electricity and is a crucial step in the overall

operation of the generator.

2. Magnetic induction: Magnetic induction is a crucial process in

electricity generators, occurring as the rotor rotates. As the rotor spins,

it generates a dynamic and changing magnetic field.

This changing magnetic field interacts with the copper wire coils in the

rotor, resulting in the induction of an electric current. According to

Faraday's law of electromagnetic induction, an induced voltage or

18

electromotive power (EMF) occurs when a conductor, like copper wire

coils, passes along magnetic lines of force(10).

In the case of an electricity generator, the changing magnetic field

created by the rotor's rotation allows the copper wire coils to cut through

the magnetic lines of force, generating an electric current. The copper

wire coils, being conductors, act as pathways for the induced electric

current to flow. Then, this electric current can be captured and used for

various tasks, such as powering electronics or distributing electricity via

power lines.

As a result of the rotor spinning and producing a fluctuating magnetic

field, magnetic induction occurs in an electricity generator. According to

Faraday's law of electromagnetic induction, this fluctuating magnetic

field causes an electric current to be induced in the copper wire coils of

the rotor.

3. Alternating current (AC) or direct current (DC) output: This is the

form in which the rotor of an electricity generator produces electricity.

For some uses, the AC output is used directly; however, when direct

current (DC) is needed, the generator's AC output must be rectified into

DC using a rectifier.

A rectifier is a device that transforms AC power into DC. It typically

consists of diodes arranged in a specific way. The rectifier produces a

DC output when the AC output from the generator passes through it.

The diodes make sure that the current only flows in one direction. When

using electronics, batteries, or other electrical systems that require DC

power, such as DC motors, it is necessary to convert the AC output to

DC. The rectifier is essential to this conversion process because it

alters the rotor's generated power into a suitable form for the intended

application.

In conclusion, an electricity generator uses the rotation of its rotor to

create electricity in the form of alternating current (AC). The AC output

is sent to a rectifier, which turns it into direct current (DC) by permitting

the wind to flow in one direction if a direct current is required. The

19

electricity generated is compatible with systems and equipment that

need DC power.

4. Control and Regulation: The control and regulation systems in an

electricity generator, including voltage regulators and governors, are

crucial parts that guarantee the stability and quality of the electricity

generated, making it suitable for various applications and fulfilling the

unique needs of electrical systems.

5. Power Regulation: It is critical for an electricity generator to maintain a

consistent output voltage and frequency. Automatic voltage regulators

(AVRs) are crucial in achieving this regulation. AVRs continuously

monitor and adjust the output voltage to keep it within the desired

range. By maintaining a stable output voltage, AVRs ensure

compatibility with the electrical grid and enable the generator to supply

consistent and reliable power. Additionally, frequency regulation

ensures that the generated electricity matches the desired frequency of

the electrical grid, allowing for seamless integration and operation of

electrical devices.

6. Control and Protection Systems: are integral components of an

electricity generator, ensuring safe and reliable operation. These

systems incorporate a range of sensors, instruments, and protection

devices to monitor various variables and safeguard against potential

issues. Sensors measure essential parameters such as voltage,

current, temperature, and speed, providing real-time data on the

generator's performance.

Instruments interpret the sensor readings and provide critical

information for monitoring and control purposes. Protection devices are

implemented to prevent damage to the generator from electrical faults,

overloads, and abnormal operating conditions. These devices include

circuit breakers, fuses, relays, and surge protectors designed to

interrupt the electrical flow or trigger protective actions when necessary.

By detecting anomalies and responding swiftly, the control and

protection systems help to minimize the risk of equipment damage,

20

ensure operator safety, and maintain the overall integrity of the

generator.

7. Maintenance and Servicing: An electrical generator's reliable and

effective operation depends on regular maintenance and service. This

process entails several standard duties and actions to maintain the

generator in top shape. Regular checks are carried out to evaluate the

generator's general condition, spot any wear or damage, and handle

any possible problems before they become more serious. Lubrication

keeps the moving parts in good working order, lessens friction, and

increases component longevity.

A vital maintenance component is testing, which enables the evaluation

of the generator's performance and the detection of any functional

abnormalities: load testing, voltage testing, frequency checks, and

evaluation of safety measures to confirm their effectiveness.

Operators can reduce the danger of unexpected failures, maximize the

generator's performance, and lengthen its operational life by following a

thorough maintenance and repair schedule. This proactive strategy

ensures the generator stays in top shape and is prepared to provide

dependable electricity.

Overall, The basic idea of electromagnetic induction applies to all electrical

generators, including diesel generators, gas turbines, and wind

turbines(11). The type and use of the generator will determine the size,

capacity, and components. Through the technique of electromagnetic

induction, an electricity generator transforms mechanical energy into

electrical energy, offering a dependable supply of power for numerous

purposes.

2.2 Generator Control Panel

A control panel of an electricity generator is a centralized device or interface

that allows operators to monitor, regulate, and manage the generator's

operation. It often comprises switches, buttons, meters, indicators, and

21

displays that provide information about the generator's performance and

allow modifications.

The control panel serves as the generator's command centre, allowing

operators to start, stop, and control the generator's output. It offers critical

information such as voltage, current frequency, and power output, letting

operators ensure that the generator operates within the parameters set.

The control panel may also include safety measures and protection

mechanisms to avoid generator damage and ensure safe operation.

Examples are circuit breakers, overload protection, emergency stop

buttons, and alarms to inform operators of any problems or irregularities.

The purpose of this thesis is to have remote control over the operation. A

microcontroller can be attached to the control panel for remote control and

monitoring. Integrating a microcontroller with the control panel can be

automated and regulate numerous generating functions remotely.

The microcontroller receives commands or instructions data from a remote

device or system, such as a computer, smartphone, or dedicated control

interface. It can then transmit signals to the control panel to start or stop the

generator, change parameters like voltage and frequency, and monitor its

performance.

Additionally, the microcontroller is connected to sensors that collect real-

time data from the generator, such as temperature, fuel level, and power

output. This data can be transmitted wirelessly or via a network connection

to a remote monitoring system or user interface, enabling remote

monitoring, diagnostics, and generator troubleshooting.

Several types of microcontrollers are used in remote controlling an

Electricity generator, depending on the operators' or users' complexity of

tasks.

22

3 Microcontrollers and Sensors

Microcontrollers or Single Board Computers (SBCs) are integrated circuits

(ICs) with a microprocessor core, memory, and peripherals on a single chip.

They are miniature computers designed to do specific tasks with minimal

external components and power consumption(12). Microcontrollers are

widely employed in various applications requiring control, automation, and

embedded systems. The Figure 4 represents Raspberry Pi 4 Model B(13).

Some of the most essential qualities and features of microcontrollers are as

followings:

• Microprocessor Core: A microcontroller's central processing unit (CPU)

or microprocessor core executes instructions and conducts

computations.

• Memory: They often have built-in memory, such as read-only memory

(ROM) for storing firmware or program instructions and random-access

memory (RAM) for storing temporary data.

• Peripherals: On-chip peripherals include timers, analogue-to-digital

converters (ADCs), digital-to-analogue converters (DACs), input/output

(I/O) ports, serial communication interfaces (UART, SPI, I2C), and

interrupt controllers. These add-ons enable interaction with external

devices and sensors.

Figure 4 Microcontroller Example (Raspberry Pi 4 model b)

23

• Low Power Consumption: Microcontrollers are designed to function

with low power consumption, making them ideal for battery-powered or

energy-efficient applications.

• Real-Time Capabilities: Many microcontrollers have real-time features

like timers and interrupt controllers that enable accurate timing and

reaction to external events.

• Programming: Specific programming languages, such as C or assembly

language, are used to program microcontrollers. Microcontroller code is

written, compiled, and debugged using development tools and compilers.

• Embedded Systems: Microcontrollers are primarily used in embedded,

dedicated computer systems built to perform specific jobs or functions

within larger systems. Robotics, industrial automation, consumer

electronics, automotive systems, medical gadgets, and household

appliances are among the examples.

3.1 Microcontroller Types

There are many types of microcontrollers that can be used for this project

that involves automation control of a generator with sensors and monitoring.

Several Single-Board Computers (SBCs) could be suitable depending on

specific requirements and preferences. Many microcontrollers are available

in the market, each with unique features and capabilities(12). Some of the

most used types of microcontrollers or SBCs are:

1. 8-bit Microcontrollers: These are some of the simplest and most cost-

effective. They are often used in simple embedded systems that require

basic functionality, such as switching on/off LEDs or sensors.

2. 16-bit Microcontrollers: These are more powerful than 8-bit

microcontrollers and suitable for applications requiring more processing

power and memory. They are used frequently in applications such as

motor control and home automation.

3. 32-bit Microcontrollers: These SBCs are useful for computationally

intensive applications and provide significantly more processing and

24

memory than 16-bit microcontrollers. They are extensively employed in

applications for robotics, sophisticated motor control, and audio/video

processing.

4. ARM-based Microcontrollers: These are based on the ARM architecture

and are frequently utilized in applications requiring high performance

while consuming little power. They are prevalent in applications like

smartphones, tablets, and other portable devices.

5. FPGA-based Microcontrollers: These are based on Field Programmable

Gate Arrays (FPGAs) and offer high flexibility and customization. They

are commonly used in signal, image, video, aerospace, and defense

systems.

3.2 Microcontroller Models

Many microcontroller models are available, each with unique features and

capabilities. The choice of microcontroller depends on the application's

specific requirements, such as processing power, memory, and power

consumption. Some brand examples of SBCs are:

1. Raspberry Pi Pico: Raspberry Pi Pico is versatile and suitable for various

applications, such as robotics, automation, home electronics, and

educational projects. Its compact size, powerful microcontroller, and

affordable price make it a popular choice among hobbyists, educators,

and professionals alike, and it can be programmed using MicroPython,

C/C++, or other programming languages. Inexperienced and seasoned

developers can use it because it supports well-known development tools

and environments.

2. Raspberry Pi 4: More specifically, Raspberry Pi 4 model B is a well-liked

option for automation projects because of its priced, low power-

consuming, and extensive user and development communities.

Connecting to sensors and other peripherals is simple because of its

numerous USB ports, Ethernet, Wi-Fi, and Bluetooth connectivity.

25

Raspbian, Ubuntu, and other Linux variants are among the operating

systems that the Raspberry Pi 4 can run.

3. Beagle-Bone Black: The Beagle-Bone Black is another popular choice

for automation projects due to its powerful processor, large memory

capacity, and high-speed connectivity(14). It has multiple USB ports,

Ethernet, and HDMI (High-Definition Multimedia Interface) connectivity,

making it easy to connect to sensors and other peripherals. The Beagle-

Bone Black runs on a Debian-based Linux operating system and is

compatible with many programming languages, such as Python, C++,

and Java.

4. Odroid XU4: Equipped with an octa-core processor and 2GB of RAM, the

Odroid XU4 is a high-performance SBC. Thanks to its many USB ports,

Ethernet, and HDMI connectivity, it is simple to connect to sensors and

other peripherals(15). The Odroid XU4 is compatible with numerous

programming languages, including Python, C++, and Java, and it is

compatible with various Linux distributions, including Ubuntu, Debian,

and Arch Linux.

Regardless of the SBC chosen, the system needs to connect the sensors to

the SBC's GPIO (General-Purpose Input/Output) pins, write code to read

sensor data and control the generator based on the readings. Programming

languages like Python, C++, or Java can be utilized to build up the user

interface to display readings of the water or fuel level and notify the user

when they cross a predetermined threshold.

3.3 Microcontroller Selection

The choice of which board to use for the Prototype depends on various

factors, including the project requirements, desired features, and budget. A

comparison of the options provided are:

1. Raspberry Pi Pico:

26

- Pros: It is a low-cost microcontroller board with a powerful processor

and many GPIO pins. It is suitable for small-scale projects and

applications that require real-time control and fast response times.

- Cons: It has limited memory and lacks some features found in full-

fledged single-board computers, such as built-in networking or

multimedia capabilities.

2. Raspberry Pi 4:

- Pros: It is a powerful single-board computer with a quad-core

processor, ample RAM, built-in networking (Ethernet and Wi-Fi), and

multimedia support. It offers many connectivity options and can handle

more complex tasks than microcontrollers.

- Cons: It may cost more than the Raspberry Pi Pico and has fewer

GPIO capabilities.

3. BeagleBone Black:

- Pros: It is a single-board computer that mixes performance and cost

well. It has a potent processor, plenty of RAM, and many GPIO pins. It

also includes networking and supports a variety of operating systems.

- Cons: It may not be as popular or widely supported as the Raspberry

Pi boards and its community, and documentation may be less

extensive.

4. Odroid XU4:

- Pros: It is a powerful single-board computer with an octa-core

processor and ample RAM. It offers more processing power compared

to the other options listed.

- Cons: It is relatively more expensive, and its GPIO capabilities may not

be as extensive as the Raspberry Pi boards.

Considering the component required for the Prototype (water level sensor,

temperature level sensor, oil quality sensor, LED control), the Raspberry Pi

Pico, more specifically (Raspberry Pi Pico W), is a suitable choice due to its

low cost, sufficient processing power, and GPIO capabilities. However, if it

requires additional features, networking capabilities, or more processing

27

power for advanced simulations, consider using the Raspberry Pi 4,

BeagleBone Black, or Odroid XU4.

3.4 Components Selection

This phase included the identification and selection of the hardware

components used in the system and other necessary elements based on

the requirements for the Prototype, such as:

1 Microcontroller:

Figure 5 Raspberry Pi Pico W (original photo)

The key features and specifications of the selected Raspberry Pi Pico

include:

a. Microcontroller: It is built on the RP2040 microcontroller chip

developed by Raspberry Pi. The RP2040 features a dual-core Arm

Cortex-M0+ processor running up to 133MHz, providing sufficient

processing power for various applications.

b. Memory: Raspberry Pi Pico has 264KB of SRAM for data storage and

2MB of onboard flash memory for programming storage.

c. GPIO Pins: The board has 26 multi-function GPIO pins for digital input

and output, analogue input, and other devices. These pins can be

programmed to interface with sensors, actuators, displays, and other

components.

28

d. Programming: Raspberry Pi Pico can be programmed using

MicroPython, C/C++, or other programming languages. It supports

popular development tools and environments, making it accessible to

developers of various skill levels.

e. Connectivity: The board offers USB 1.1, Wi-Fi, and Bluetooth enabling

to connect to other devices and computers.

Raspberry Pi Pico is known for its low cost, high performance, and

flexibility. It suits various projects, including robotics, home automation, IoT

(Internet of Things) devices, and educational applications. With its compact

size and extensive GPIO capabilities, Raspberry Pi Pico is popular among

makers, hobbyists, and educators. The Prototype need Raspberry Pi Pico

W and a micro-USB cable for power and programming.

2 Breadboard: A breadboard is a standard board used in electronics

prototyping. It is a reusable device that allows quick building and testing

of electronic circuits without soldering (16). It consists of a rectangular

plastic board with a grid of interconnected metal sockets or holes, one

of the tools used as a base in the prototype.

3 LED Lights: Light-emitting diodes, or LEDs, are frequently employed

with microcontrollers for various tasks, including visual feedback, status

signalling, and user interface components(17). LEDs are compact, low-

power gadgets emitting light when an electric current flows through

them. Some key points regarding the use of LED lights with

microcontrollers:

• Visual Feedback: LEDs often provide visual feedback to users or

indicate the status of a system or a specific function. For example, an

LED can be programmed to light up when a condition blinks at a

specific rate to indicate a specific mode or operation.

• GPIO Pins: Microcontrollers typically have General-Purpose

Input/Output (GPIO) pins that can be configured as digital output

pins. These pins can be connected to an LED with a series resistor

to control illumination.

29

• Circuit Connection: Because LEDs have polarity, they must be

connected in the proper direction for them to work. The LED's shorter

leg (cathode) should be linked to the microcontroller's GPIO pin

through a current-limiting resistor. The LED's longer leg (anode)

should be connected to the positive voltage supply (VCC).

• Current-Limiting Resistors: LEDs need current-limiting resistors to

avoid an excessive current flow that could harm the LED or the

microcontroller. Ohm's Law can calculate the resistor's value based

on the LED's forward voltage and the desired current.

• Multiplexing: Microcontrollers with limited GPIO pins may utilize

multiplexing techniques to control multiple LEDs using smaller pins.

This involves rapidly switching between LEDs to create the illusion of

simultaneous illumination.

• PWM Control: A LED's brightness can be adjusted using pulse width

modulation (PWM). By modifying the duty cycle of a PWM signal

given to an LED, it is possible to change how bright the LED

perceives itself to be.

• External LED Drivers: For more advanced LED applications or

when driving multiple high-power LEDs, external LED driver ICs or

modules may be used. These devices provide features such as

constant current control, dimming capabilities, and higher power

handling.

4 Sensors: several sensors will be used in the prototype implementation,

such as:

a) Water Level: The engine coolant is an essential part to control the

overloaded shutdown caused by rising temperature in the country

during summer season . The Water amount Sensor DC3V-5V is a

sensor that detects water in a tank or container(18). It is extensively

used in automatic water level control systems, aquariums, industrial

tanks, and water storage systems.

30

Figure 6 Water level Sensor DC3V-5V

The sensor often comprises several exposed metal probes or

electrodes set at various levels along the tank's height. The number of

probes varies according to the model of the water level sensor. The

sensor module is attached to these probes.

When the water level rises and encounters the probes, an electrical

circuit is completed, and the sensor module detects the change in

conductivity. This change in conductivity is used to determine the

water level.

The Water Level Sensor DC3V-5V is designed to operate within a 3V

to 5V DC voltage range, making it compatible with most

microcontrollers and development boards. It typically provides a digital

output signal (such as HIGH or LOW) to indicate the presence or

absence of water at a specific level.

b) Temperature/Humidity sensor: This sensor measures the digital

temperature and humidity. The sensor model is DHT11, often used in

projects and applications that require ambient temperature and humidity

monitoring(19). The sensor gives accurate and trustworthy

measurements within a specific range and is affordable and widely

available. A specific voltage range is required to operate the DHT11

temperature and humidity sensor. The DHT11 sensor operates with a

3.3V to 5V DC source voltage. Most popular microcontrollers and

31

development boards operating at 3.3V or 5V logic levels are compatible

with this voltage range.

Figure 7 Temperature/Humidity Sensor DHT11

• Temperature Measurement: The DHT11 sensor has a limited range

of 0 Co to 50 Co, and the precision is 2 Co.

• Humidity Measurement: With an accuracy of 5%, the sensor can

monitor humidity in the 20% to 90% range.

• Low Power Consumption: The DHT11 operates on low power and

requires minimal external components, making it suitable for battery-

powered applications.

• Simple Interface: The sensor has three pins - VCC (power supply),

GND (ground), and OUT (data output). It can be connected to

microcontrollers or development boards Raspberry Pi Pico.

c) Turbidity Sensor TSD-10: A turbidity sensor measures the clarity or

cloudiness of a liquid by determining the number of suspended particles

or solids present in the liquid(20). It is commonly used in water quality

monitoring, environmental monitoring, and industrial applications such

as food and beverage production, pharmaceutical manufacturing, and

chemical processing where the particulate matter level in a liquid must

be assessed. They also are used in research studies and scientific

experiments involving particulate matter analysis in liquids.

Turbidity sensors work based on the principle of light scattering. They

emit light into the liquid sample and measure the intensity of the

scattered or reflected light to the sensor. The light scatters when there

are suspended particles in the liquid, lowering the measured intensity. It

32

is connected to a single connector board (LMV358), a three-pin

interface is provided by the LMV358 IC-based module to connect to

microcontroller, and the module also has an analogue/digital selector

switch to switch between analogue and digital output mode, also

contain calibrator that user can calibrate the sensor when needed.

The turbidity sensor provides a quantitative measurement of turbidity,

typically in units of nephelometric turbidity units (NTU) or Formazin

turbidity units (FTU). The NTU and FTU are standard units used to

express turbidity levels.

It is crucial to remember that the voltage range can vary depending on

the demands and specifications of the turbidity sensor. Others may

function at more comprehensive voltage ranges, while specific turbidity

sensors may have a smaller voltage range, such as 4.5V to 5.5V.

 Figure 8 Turbidity Sensor

Figure 9 Single Conector Board

33

A turbidity sensor used for engine oil quality testing, should include the

following features and considerations:

• Oil Compatibility: The sensor should be compatible with engine oils

and able to operate reliably in oil environments. It should be resistant

to oil contamination and designed to withstand the properties of

engine oil, such as temperature, viscosity, and chemical composition.

• Particle Size Detection: The sensor needs to be able to identify a

variety of particle sizes that are important for engine oil analysis.

Engine oil can contain varying-sized particles, from large metal

fragments to microscopic contaminants, so the sensor should have

appropriate sensitivity and measurement range.

• Accuracy and Sensitivity: The sensor should provide accurate and

reliable measurements capable of detecting even low levels of

turbidity or suspended particles. It should be sensitive enough to

detect changes in oil cleanliness over time.

• Robust Construction: The sensor should be built to withstand the

harsh conditions of engine environments, including temperature

variations, vibrations, and potential exposure to oil contaminants.

Robust construction ensures long-term durability and consistent

performance.

• Calibration and Calibration Standards: The turbidity sensor may

require calibration to establish a correlation between turbidity

measurements and oil quality parameters. Calibration standards or

reference samples can configure the sensor and ensure accurate

readings.

5 Jumper Wires: Jumper wires are essential in microcontroller circuits.

They establish electrical connections between various components on a

breadboard or a circuit board, such as Component connections,

Microcontroller pin connections, Breadboard connections, Prototyping,

and External circuit connections(16).

Depending on the type of connections needed, they are typically

available in different lengths and can be male-to-male, male-to-female,

34

or female-to-female. Jumper wires provide the flexibility and

convenience required modifications, controller circuit development and

testing phases, allowing for easy connection modifications, and

troubleshooting.

6 Resistors: Resistors are adaptable parts used in a variety of electronic

applications, and they are essential for shaping electrical signals,

regulating current flow, and setting voltage levels in electronic circuits,

such as:

• Current Limiting: One of the primary functions of resistors is to limit

the flow of electric current in a circuit. By resisting the current flow,

they prevent excessive current from damaging sensitive components.

• Voltage Division: Resistors are used in voltage dividers, circuits that

divide a voltage into smaller parts. This is useful in various

applications, including setting reference voltages, level shifting, and

biasing transistors.

Figure 10 Jumper Wires

35

• Biasing: In transistor circuits, resistors are used to provide the

necessary bias voltage to ensure the proper operation of the

transistor.

• Signal Conditioning: Resistors can modify and shape electrical

signals in a circuit by filtering high-frequency noise or attenuating

signals.

• Pull-Up and Pull-Down: The resistors ensure that digital inputs to

microcontrollers or other digital circuits are at a known voltage level

when not actively driven.

• Current Sensing: Resistors been used in current sensing circuits to

measure the amount of current flowing through a particular circuit part.

• Voltage Dropping: In power supply circuits, resistors can drop

voltage and regulate current in certain circuit parts.

• Timing: Resistors, in combination with capacitors, are used to create

timing circuits, such as in oscillator circuits or timing delays.

• Temperature Sensing: Some types of resistors, like thermistors,

change their resistance with temperature. These are used in

temperature sensing applications.

• Matching and Calibration: In precision circuits, resistors may be

used for calibration and matching to ensure accurate and consistent

performance.

Figure 11 Resistors

36

4 Implementation

The implementation section contains hardware diagram design, connecting

prototype components, microcontroller coding, and user interface design.

4.1 Schematic Diagram Design

A schematic design, a circuit diagram, is a graphical representation of an

electronic circuit. It uses standardized symbols to depict the various

electronic components and their interconnections within the circuit(21).

Schematic designs serve as blueprints or visual representations of the

circuit's functionality, allowing engineers, designers, and technicians to

understand how the circuit works without the need to examine physical

components. Key features of a schematic design include:

1. Symbols: Each electronic component in the circuit is represented by a

specific symbol. These symbols are standardized and universally

recognized, making conveying the circuit's functionality easier

regardless of language or region.

2. Component Labels: Each component is typically labelled with its

reference designator, such as R1 for a resistor or C2 for a capacitor.

These labels help identify and reference components in the circuit.

3. Interconnections: Lines or wires illustrate the electrical connections

between components. The interconnections show how the components

are linked and how signals flow through the circuit.

4. Power and Ground Symbols: Symbols representing power supply

connections (VCC, +V, etc.) and ground (GND) are commonly used to

indicate the power and reference points in the circuit.

5. Nets and Labels: Nets name specific interconnecting wires or nodes

within the circuit. Labels are placed next to nets to indicate their

purposes, such as input, output, or specific signal names.

6. Design Rules: Schematic designs adhere to specific design rules and

conventions to ensure clarity, readability, and consistency. These rules

help convey the circuit's function accurately.

37

The schematic diagram in Figure 12 contains the main components of the

prototype, and how they have been connected to the microcontroller, details

of the functionality of the sensors, such as the turbidity sensor and water

level sensor. The diagram was drawn using KiCad 7.0, “an open-source

software suite for creating electronic circuit schematics and printed circuit

boards (PCBs)”(22).

In the Automation system, as shown in the schematic diagram, three LED

lights are connected to different pins on the microcontroller through male-to-

male jumper wires, representing the On, Off, Restart Electricity generator

system. Also, a temperature and humidity sensor are connected to the

microcontroller that will measure the temperature inside the electricity

generator engine (installed inside the generator engine's walls). The water

level sensor will measure the water of the coolant tank in the engine, which

will be connected to the analogue pin of the microcontroller. The schematic

diagram indicates how the data is collected through an electric circuit on the

sensor. The turbidity sensor has been connected to the microcontroller that

will measure the quality of the engine oil, and the schematic diagram

indicates how the turbidity sensor can collect data. It has both an analogue

and digital system, but as it will be used on Raspberry Pi Pico, the digital

circuit will be used. Also, the sensor has a potentiometer for manual

calibration.

38

Figure 12 Automation system Schematic Diagram

39

4.2 Prototype Component Connections

The physical prototype of the hardware system has been built based on the

schematic diagram design. Assembling the components, pairing the

connections, and testing the initial functionality of the system, as in Figure

14. The left of the figure shows the sensor setups, and the right shows the

connection between sensors and the microcontroller.

Figure 14 shows the LEDs' connection, which is connected through a male-to-

male jumper. Each LED have 10k resistor to limit the electricity flow for the

LED's.

Figure 13 Componenets Connection

Figure 14 LED's Connection

40

Figure 15 shows the connection between the Temperature and Humidity

sensor with the microcontroller, and the connection is made through male-

to-female jumpers.

Figure 16 shows the connection between the Water level sensor and the

microcontroller, the connection is made through male-to-female jumpers.

Figure 15 Temperature and Humidity Connection

Figure 16 Water level Connection

41

The Turbidity sensor comes with jumpers with small clips that fit into the

circuit connectors, male-to-male jumpers are used for extra length and easy

access, and three 1K resistors to regulate the circuit, as in Figure 17.

4.3 Software Design

The software design entirely depends on the project needs that can be

done with Raspberry Pi Pico. Pico is a microcontroller board that supports

Micro Python, and can create various projects involving sensors, actuators,

communication, and more projects. At first steps, setting up a Raspberry Pi

Pico and designing the software involves several steps, as followings:

A. Hardware Setup: Obtain a Raspberry Pi Pico board, a micro-USB cable

for programming or testing, and supply power.

B. Software Setup:

1. Install the Thonny IDE (Integrated Development Environment)(23) on

the computer. Thonny is a beginner-friendly Python IDE and comes

pre-installed with Raspbian (now known as Raspberry Pi OS).

a. Select the Raspberry Pi Pico as the Interpreter: In Thonny, click on the

"View" menu and choose "Interpreter." in the Interpreter window, a

Figure 17 Turbidity Connection

42

drop-down menu appears under "Interpreter" in the top-right corner.

Click on it and select "MicroPython (Raspberry Pi Pico)".

b. Write and run MicroPython Code: Write or paste the MicroPython code

into the Thonny editor. Click the "Run" button (a green arrow) in the

top toolbar.

c. Monitor the Output: The code output will appear as print statements or

error messages in the "Shell" tab at the bottom of the Thonny window.

d. Debugging: Thonny also supports debugging features like

breakpoints, variable inspection, and Save Project.

2. Install the MicroPython Firmware: install the Micro Python firmware for

Raspberry Pi Pico. as per the following steps:

• Downloading the latest MicroPython UF2 file for the Raspberry Pi Pico

from the official MicroPython website:

https://micropython.org/download/rp2-pico/ (24)

• Plug Raspberry Pi Pico W into the computer via USB while holding the

BOOTSEL button, this will put it into bootloader mode.

• When the device appears as a drive, drag, and drop the downloaded

UF2 file onto this drive. The Pico will reset itself, and MicroPython it will

be installed.

• Also, the Micropythong firmware can be downloaded directly from

Thonny(a free and open-source integrated development environment

for Python).

3. Write and Upload code:

• By opening the Thonny IDE on the computer, select "Raspberry Pi

Pico" as the interpreter by going to Tools > Options > Interpreter and

choosing the Pico from the dropdown.

• Write sample Python code in Thonny.

• Running the code on the Raspberry Pi Pico. Thonny will automatically

upload the code to Pico and execute it.

43

4.3.1 Coding Pico

Coding with the Raspberry Pi Pico involves writing code in a programming

language supported by Pico's Micro Python firmware. Micro Python is a

subset of Python 3 specifically optimized for microcontrollers. After installing

the Thony IDE and Micro Python Firmware the first test needs to be done

with a single LED connected to the GPIO Pin {25} on the Raspberry Pi Pico,

as in the following listing 1:

 Listing 1 First Pico test

This code imports the necessary libraries (machine for hardware access

and time for utime-related functions). It sets up Pin 25 as an output pin and

then toggles the state of the LED (ON and OFF) every second in an infinite

loop using the {utime.sleep()} function.

As explained previously there are three LEDs and three sensors connected

to the microcontroller, every component needs to be coded separately, and

then putting all the codes together to have a fully functional prototype, the

next step is calibration and testing for each sensor.

1. LED's Coding: the LED coding is to show the status of the EG, which

represents the on, off, and restart systems. The idea is that when the EG

is off, the status will show (Standby), and the red LED will turn on. When

EG runs, the user interface will receive a notification that EG is

(Running). When EG is stopped due to overload, overheating, under-

import machine

import utime

led = machine.Pin(25, machine.Pin.OUT)

while True:

 led.toggle()

 utime.sleep(1)

44

speed, etc., the user interface will receive a notification as (Restart), and

the yellow LED will turn on.

 Listing 2 LED's setup

• Initialize LED Pins: GPIO pins are initialized for red, green, and yellow

LEDs connected to the microcontroller (Raspberry Pi Pico W). The PINs

are defined as constants RED_PIN, GREEN_PIN, and YELLOW_PIN.

The machine. Pin class is to set up the pins as output pins

(machine.Pin.OUT), which means these pins will send signals to the

LEDs.

• Control LEDs with control_leds Function: The control_leds function

is defined to control the LEDs based on the received generator status. It

takes one argument(status), which should be one of three strings:

"standby", "running", or "restart". Depending on the status received, it

turns on or off the appropriate LEDs.

a) If the status is "standby", it turns on the red LED and turns off the

green and yellow LEDs.

b) If the status is "running", it turns off the red and yellow LEDs while

turning on the green LED.

c) If the status is "restart", it turns off the red and green LEDs and turns

on the yellow LED.

Initialize the LED pins (modify the GPIO pin numbers as needed)

RED_PIN = 3

GREEN_PIN = 1

YELLOW_PIN = 0

red_led = machine.Pin(RED_PIN, machine.Pin.OUT)

green_led = machine.Pin(GREEN_PIN, machine.Pin.OUT)

yellow_led = machine.Pin(YELLOW_PIN, machine.Pin.OUT)

Function to control the LEDs based on the generator status

def control_leds(status):

 if status == "stand-by":

 red_led.on()

 green_led.off()

 yellow_led.off()

 elif status == "running":

 red_led.off()

 green_led.on()

 yellow_led.off()

 elif status == "restart":

 red_led.off()

 green_led.off()

 yellow_led.on()

 else:

 print("Invalid generator status.")

45

d) If the status is error, it prints "Invalid generator status".

2. Temperature and Humidity Sensor Coding: The sensor will collect the

temperature from surroundings and will deliver back to the

microcontroller to show the value in the user interface. The sensor

cannot receive any data from the microcontroller. The code reads

temperature and humidity data from the DHT11 sensor, prints it to the

console, and continues to do so in an infinite loop. If there are any errors

while reading the sensor, it prints an error message.

Listing 3 Temperature and Humidity sensor setup

3. Water Level Sensor Coding: the sensor will be installed in the water

tank of the EG so that the sensor can have constant water level data.

This data is as vital as the temperature data, as the water tank keeps the

engine coolant running.

The coding of the sensor is designed to collect data from the sensor and

be received by the microcontroller and the user interface app.

Initialize DHT11 sensor on GPIO pin 18

dht_sensor = DHT11(Pin(18))

while True:

 try:

 # Read temperature and humidity

 dht_sensor.measure()

 temperature = dht_sensor.temperature()

 humidity = dht_sensor.humidity()

Printing temperature and humidity

 print("Temperature: {}°C".format(temperature))

print("Humidity: {}%".format(humidity))

Wait for 5 seconds before the next reading

utime.sleep(5)

Printing error-e in case of any error and code will be

blocked in (exception)

 except Exception as e:

 print("Error:", e)

46

Listing 4 Water Level sensor setup

4. Turbidity Sensor Coding: The most crucial part is that the sensor

needs manual calibration to avoid the low-level density and viscosity of

the engine oil. Then coding the sensor is needed to receive the data and

send it to the user interface. The level of quality will be read as over

100% for high quality and under 70% for low quality.

The code continuously reads analogue data from an analogue sensor,

calculates the voltage, and determines the percentage of the sensor's

position within a specified range. It then prints these values to the

console with a 1-second interval between readings. It helps monitor and

analyse data from analogue sensors.

Define the GPIO pin of the Water Level sensor

FLOAT_SWITCH_PIN = 26

Initialize the GPIO pin

float_switch = Pin(FLOAT_SWITCH_PIN, Pin.IN)

Define the threshold values for water levels

LOW_THRESHOLD = 0.5

HIGH_THRESHOLD = 2

MEDIUM_THRESHOLD = 1

def read_water_level():

 water_level = float_switch.value()

 if water_level < LOW_THRESHOLD:

 return "Water level is low"

 elif water_level < MEDIUM_THRESHOLD:

 return "Water level is medium"

 elif water_level < HIGH_THRESHOLD:

 return "Water level is high"

 else:

 return "Water level is very high"

Main loop

try:

 while True:

 # Read and print the water level

 level = read_water_level()

 print(level)

 # Delay before reading again

 utime.sleep(5)

Printing interruption code in case of any error and

code will be blocked in (exception)

except KeyboardInterrupt:

 print("Program interrupted by user")

47

 Listing 5 Turbidity sensor coding

5. Wi-Fi Connection Coding: The coding essentially imports necessary

modules that is more compatible with Pico, such as network and socket,

then sets up the Wi-Fi credentials (SSID and password) for the network

connection, where it prints the IP address obtained after successfully

connecting to the Wi-Fi network and prepares a server to handle

incoming requests on a specified IP address '0.0.0.0' and port 80.

Moreover, it prints information about the server, specifically the address

that is listening from.

import network

import socket

Wi-Fi credentials

ssid = 'DNA-Mokkula-2G-8Q6596'

password = '51307104019'

Set up Wi-Fi connection

wlan = network.WLAN(network.STA_IF)

wlan.active(True)

wlan.connect(ssid, password)

while not wlan.isconnected():

 pass

print('Wi-Fi connected. IP:', wlan.ifconfig()[0])

from machine import ADC, Pin

import utime

in_pin = ADC(26)

conversion_factor = 3.3 / 65535

low, high = 750, 34900

while True:

 raw = in_pin.read_u16()

 volts = raw * conversion_factor

 percentage = (int(((raw - low) * 100) / (high - low)))

 print('Raw: {} '.format(raw), 'Voltage {:.1f}V'.format(volts),'Percentage: {}%'.format(percentage))

 utime.sleep(1)

Set up the server

addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]

s = socket.socket()

s.bind(addr)

s.listen(1)

print('Listening on', addr)

48

Listing 6Wi-Fi Connection Coding

4.3.2 User Interface

A user interface (UI) is the interactive part of a software application or

system that allows users to interact with and control the application. It

serves as a bridge between the user and the underlying software, enabling

users to communicate their intentions and receive feedback from the

system. The user interface encompasses various elements, including:

1. Graphical User Interface (GUI): Users can interact with the windows,

icons, buttons, menus, and other graphical components, by using a

mouse, touchpad, or touchscreen for the user interface.

2. Text-Based User Interface (TUI): Sometimes referred to a command-

line interface, TUI provides an interactive way for users to interact with

the application using text through a terminal or command prompt

entering commands.

3. Web User Interface (Web UI): This type of interface is used for web-

based applications and is displayed within a web browser. It involves

web pages, forms, buttons, and other web elements that users can

interact with.

4. Mobile User Interface (Mobile UI): This is specific to mobile applications

and designed to work on smaller screens with touch-based input.

5. Voice User Interface (VUI): A VUI, which is frequently featured in voice

assistants and bright gadgets enable users to interact with the

application through voice commands and responses.

6. Gesture-Based User Interface: This interface type enables users to

interact with the application through gestures such as swiping, tapping,

and pinching, commonly used in touch screen devices.

A user interface's main objective is to provide simple, effective, and user-

friendly interaction between the user and the software. A well-designed user

interface provides clear, straightforward navigation, meaningful feedback,

and a pleasant user experience.

49

In the context of the project, the user interface can refer to the HTML(

Hypertext Markup Language) Web User interface, where users will be able

to view data from the microcontroller (Raspberry Pi Pico) and show the

status of the generator (e.g., on, off, restart).

The Raspberry Pi Pico has several challenges one is the communication

between the Pico(MicroPython) code and the application (React Native)

codes, and the memory capacity of Pico. As a result, the user interface will

allow users to interact with the system and remotely manage the generator

using Web user interface (HTML) and not a mobile application (Mobile UI).

UML diagram:

The UML diagram(Unified Modelling Language) shown in Figure 18 the

design of the HTML user interface.

Figure 18 UML User Interface Diagrma

As per the UML diagram the user interface main window contain:

50

1. Main Page: the main page contains all the EG main controls and sensor

data so the user can get updated status, temperature, humidity, water

level, and Oil quality. Also, the main page can provide the actual date

and time per the country/city zone.

2. Login Alert Box: in the main page a button is set to open an alert box

where the user can write the credentials, also the alert box is verifying

the username and password.

3. EG Statues: the EG statue contain updated statue such as (standby,

running, and restart) as well as buttons that can change the status from

one to another.

4. Sensor’s Control: the sensors data will be updated automatically every

5 seconds so that the user can have the most updated data.

Figure 18 User Interface Main page

Content of the Main window coding and design:

1. Page Styling: the page styling is designed considering font and text

styling, background colour, and paragraph styling on the main page

body. Separating the contents by boxes, specify the borders, width, text

alignment, box shadow, merging, display style, also giving styles to

buttons.

51

2. Functions:

a) Login Authentication Function: The function manages a simple

login/logout functionality using browser local storage and prompts for

username and password. If the user ID is correct, it logs in, and if not, it

prompts for credentials. As well as it allows the user to log out.

Listing 8 Login Authentication Function

function toggleLogin() {

 const loggedIn = localStorage.getItem('loggedIn');

 if (loggedIn) {

 if (confirm('Are you sure you want to logout?')) {

 localStorage.removeItem('loggedIn');

 document.getElementById('loginButton').innerText = 'Login';

 }

 } else {

 const username = prompt('Username:');

 const password = prompt('Password:');

 if (username && password) {

 localStorage.setItem('loggedIn', 'true');

 document.getElementById('loginButton').innerText = 'Logout';

 alert('Login successful!');

 } else {

 alert('Login failed. Please try again.'); } } }

Listing 7 Style of the Main page

<style>

body {

 font-family: Arial, sans-serif;

 margin: 0;

 padding: 0;

 background-color: #EACEC9;

 text-align: center; }

.box {

 border-radius: 5px;

 padding: 20px;

 box-shadow: 0 0 5px rgba(0, 0, 0, 0.1);

 margin: 10px;

 text-align: center;

 display: inline-block;

 width: 30%; }

button {

 display: block;

 width: 80%;

 margin: 10px auto; }

 h2 {

 color: #333;

 font-size: 24px;

 margin-bottom: 10px; }

 p {

 font-size: 18px;

 color: #555; }

 #loginButton {

 width: 100px;

 height: 40px; }

</style>

52

b) EG Statue Function: The function is designed to update the displayed

status on the web page and make an asynchronous HTTP GET request

to a server to update the generator's status. It logs messages to the

console for debugging and handles success or error scenarios when

communicating with the server. The server's response is examined to

determine whether the update was successful or if an error occurred.

Listing 9 Statue Function

c) Temperature and Humidity Function: The code establishes a

mechanism for fetching temperature and humidity data from the sensor

at regular intervals and updating the corresponding HTML elements on

a web page with the latest data. The initial call ensures that data is

displayed when the page loads. The (setInterval) function ensures that

data updates continue every 5 seconds, providing a real-time or

periodically updated display.

function updateGeneratorStatus(status) {

 console.log("updateGeneratorStatus called with status:", status);

 document.getElementById("status").textContent = "Current Status: " + status;

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/generator_status?status=" + status, true);

 xhr.onload = function() {

 console.log("Response status:", xhr.status); // Log the response status

 if (xhr.status === 200) {

 console.log("Generator status updated successfully.");

 } else {

 console.error("Error updating generator status. Response text:", xhr.responseText);

 }

 };

 xhr.onerror = function() {

 onsole.error("Network error occurred.");

 };

 xhr.send();

 }

53

Listing 10 Temperature and Humidity function

d) Water Level Function: Creates a new Request variable, configures the

variable to send an asynchronous GET request to the "/water level" .

Moreover, it sets up an event handler for the variable load event. It

retrieves an HTML element with the ID "water-level-status." and

updates the text content of this HTML element with the response text

received from the sensor.

(updateWaterLevel();) ensures that the water level data is fetched and

displayed on the web page as soon as it loads. (setInterval) calling the

updateWaterLevel() function every 5 seconds (5000 milliseconds),

which can be changed per user request and necessity, this creates a

real-time or periodic data update mechanism on the webpage.

 function updateTemperatureAndHumidity() {

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/temperature_and_humidity", true);

 xhr.onload = function() {

 var data = xhr.responseText.split(",");

 var temperatureElement = document.getElementById("temperature-value");

 var humidityElement = document.getElementById("humidity-value");

 temperatureElement.innerText = data[0];

 humidityElement.innerText = data[1];

 };

 xhr.send();

 }

// Call the updateTemperatureAndHumidity function initially

 updateTemperatureAndHumidity();

// Call the updateTemperatureAndHumidity function every 5 seconds

 setInterval(updateTemperatureAndHumidity, 5000);

54

Listing 11 Water Level function

e) Turbidity Function: The function code establishes a mechanism for

regularly fetching Turbidity data from the sensor and updating the

corresponding HTML element on the web page with the latest Oil

quality status. The initial call ensures that data is displayed when the

page loads and the setInterval function ensures that data updates

continue every 5 seconds, providing a real-time or periodically updated

display.

Listing 12 Oil Quality function

3. Main Page Body: Header with the title "Generator Automation System".

And secondary header that displays the current date and time with

JavaScript code to fetch the current date and time (const d = new date

function updateTurbiditySensor() {

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/turbidity_sensor", true);

 xhr.onload = function() {

 var turbidityElement = document.getElementById("turbidity-value");

 turbidityElement.innerText = "Turbidity: " + xhr.responseText + "%";

 };

 xhr.send();

 }

 // Call the updateTurbiditySensor function initially

 updateTurbiditySensor();

 // Call the updateTurbiditySensor function every 5 seconds

 setInterval(updateTurbiditySensor, 5000);

 function updateWaterLevel() {

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/waterlevel", true);

 xhr.onload = function() {

 var waterLevelElement = document.getElementById("water-level-status");

 waterLevelElement.innerText = "Water Level: " + xhr.responseText; };

 xhr.send();

 }

 updateWaterLevel();

 setInterval(updateWaterLevel, 5000);

55

();) and update the content of the element with the ID "demo" and the

current date and time. The main page contents are grouped with (<div

class="box">).

• The first box section for displaying the generator status initially

displays "Loading..." and will be updated with JavaScript to show the

current generator status. The user can interact with the generator

status using <button> components. They update the generator status

by calling JavaScript functions (updateGeneratorStatus) with various

status values when clicked.

• The second box section for displaying temperature and humidity

information where initially it displays "Loading..." will be updated with

JavaScript to show the current temperature value.

• The third box section displaying water level information will be updated

with JavaScript.

• Four box sections for displaying turbidity sensor information.

Listing 13 Main body HTML code

<body>

 <div id="header">

 <h1>Generator Automation System</h1>

 </div>

 <div id="header2">

 <h5>Date & Time</h5>

 <p id="demo"></p>

 <script>

 const d = new Date();

 document.getElementById("demo").innerHTML = d;

 </script>

 </div>

<button id="loginButton" onclick="toggleLogin()">Login</button>

 <div class="box">

 <div id="led-status">

 <h2>Generator Status</h2>

 <p>Loading...</p>

 <button onclick="updateGeneratorStatus('stand-by')">Stand By

 </button>

 <button onclick="updateGeneratorStatus('running')">Running

 </button>

 <button onclick="updateGeneratorStatus('restart')">Restart

 </button>

</div>

</div>

<div class="box">

 <h2>Temperature and Humidity</h2>

 <p><span id="temperature-

value">Loading...</p>

 <p><span id="humidity-

value">Loading...</p>

 </div>

 <div class="box">

 <h2>Water Level</h2>

 <p><span id="water-level-

status">Loading...</p>

 </div>

 <div class="box">

 <h2>Turbidity Sensor</h2>

 <p><span id="turbidity-

value">Loading...</p>

 </div>

</body>

56

5 Testing

Testing is the systematic process of evaluating, verifying, and validating a

product, system, or component to determine if it meets specified

requirements and works as intended. Testing is critical in developing quality

assurance for various products, including software applications, electronic

devices, mechanical systems, sensors, etc.

The automation system prototype has been tested based on the following

critical aspects of testing:

1. Evaluation: Testing involved examining the system to assess its

functionality, performance, and adherence to predefined specifications

and user requirements.

2. Verification: testing confirmed that the system has been designed and

implemented correctly, ensuring that meets the intended purpose and

design objectives.

3. Validation: Testing ensured the system meets the end-users needed and

expectations.

4. Defect Identification: During testing, any issues, errors, or deviations

from the desired behaviors are identified and documented as defects or

bugs.

5. Improvement and Assurance: Offered insightful feedback for enhancing

the performance, dependability, and quality of the system.

6. Documentation: In this chapter, testing activities are well-documented,

including test plans, test cases, test results, and any defects found during

the process.

7. Types of Testing: Various testing techniques carried out, including

functional testing, performance testing, security testing, usability testing,

and more, each serving a specific purpose in assessing various aspects

of the system.

57

5.1 Hardware Manual Testing

Hardware manual testing involved, testing electronic hardware components,

circuits, or systems to ensure proper functioning, performance, and

reliability. Unlike automated testing, which relies on software scripts and

tools, and manual testing involves physical hardware interaction and human

intervention.

5.1.1 Raspberry Pi Pico Testing

Testing a Raspberry Pi Pico (RPi Pico W model) involved some coding and

software testing as following steps:

1. Verification and Validation: During the preliminary test, the Raspberry Pi

Pico W(RP 2040) meets the intended purpose and design objectives.

The configurations for the Pico (pin assignments and power/data

connector) are correct. It also meets the end user's needs and

expectations as the project is a prototype, the connection to the network

is done correctly, response time and processing speed are at an average

level, and power consumption is as required. Raspberry Pi Pico W is

compatible (and has been tested)with both analogue and digital sensors.

Pico W is user-friendly and easy to work with as it uses both C/C++ and

MicroPython languages.

2. Defect Identification: during the tests and performance of the project, the

Pico gave some issues/bugs*, such as:

• Length on the HTML code implementation: as in the project, HTML

code has been used as a user interface. The demonstrated web page

gave issues, such as during the implementation of (username,

password) as login account for security reasons, the length of the code

affected in the demonstration of the main page and some parts of the

sections were disappearing, and this issue could not be fixed as the

length of the main page code could not change because of the

importance of the main page sections. In other words, Pico W can have

limited code lines for HTML.

58

• Library limitation: Raspberry Pi Pico W have a limitation in libraries that

affects the connectivity between Mobile applications and the

microcontroller. The solution is using third-party mobile applications as

user interfaces and not creating the required application.

5.1.2 Sensor Testing and Calibration

1. Sensor Testing: Sensor testing involves the evaluation of a sensor's

performance under various conditions to determine if it meets specified

requirements and standards. The goal is to ensure that the sensor

provides accurate and consistent measurements.

• Functional Testing: is to verify that the sensor operates as expected

when exposed to its intended stimuli (e.g., temperature, pressure,

light, motion).

• Accuracy Testing: Measure the sensor's accuracy by comparing its

readings to known reference values. This helps identify any calibration

errors.

• Precision Testing: Evaluate the sensor's ability to provide consistent

and repeatable measurements. Repeated readings should closely

match each other.

• Sensitivity Testing: Determine the slightest change in input that the

sensor can detect and accurately measure.

• Linearity Testing: Assess how well the sensor's response follows a

linear relationship with the input. Non-linear behavior may require

correction.

• Response Time Testing: Calculate how long the sensor reacts when

the conditions change. For applications that need real-time data, this

is crucial.

• Stability and Drift Testing: Determine if the sensor's readings change

over time when exposed to continuous operation or varying conditions.

• Cross-Sensitivity Testing: Evaluate if the sensor responds to factors

other than the intended stimulus (e.g., a temperature sensor reacting

to humidity).

59

• Power Consumption Testing: Assess the energy consumption of the

sensor, which is especially important for battery-powered devices.

Table 1 explains that the first test made on the sensors based on the

testing conditions, before the calibration phase:

Table 1 First Sensor Testing before Calibration

The table above shows testing carried out on different testing conditions

using different data variables when stated not passed means it was not

passed at first step later adjusted and aligned with different data’s during

calibration phase.

When testing Temperature and humidity sensor (passed) In above table

means that during testing phase temperature was gained from surrounding

and did not need calibration.

N Sensors Testing Temperature &

Humidity Sensor

Water Level

Sensor

Turbidity

Sensor

Note

1 Functional testing Passed Not passed Not passed

2 Accuracy testing Passed Not passed Not passed

3 Precision Testing Passed Not passed Not passed

4 Sensitivity testing Passed Not passed Not passed

5

Linearity testing N/A

The sensors have

no input, and they

only have output

(the sensors are

only sender and not

receivers)

6 Response Time Passed Passed Passed

7 Stability & Drift** Passed Not passed Passed

8 Cross Sensitivity Passed Not passed Passed

9 Power

Consumption***

Low consumption

of power 3.3V

Low to

moderate

consumption

between 3.3V

to 5.5V

Very High

consumptio

n of power

5.5V

60

A. Water level sensor:

1. The water level sensor functioned correctly but did not provide the

expected output and response, therefor the testing was not passed

because the sensor had to be set up based on the values of the

variables used for coding calibration.

2. In the accuracy and precision testing the water level sensor did not

provide accurate , consistent, and repeatable measurements therefore

the test counted as not pass.

3. The water level sensor did not accurately detect and respond to small

changes or variation in water level measurement parameter, for that

the sensitivity testing was counted as not passed.

4. Linearity testing was not applicable for the sensors.

5. All sensors responded within an acceptable and specific time frame.

6. The water level sensor (not passed) exhibited instability and significant

changes in its output and behavior over time.

7. The sensor exhibited significant interference and response to factors

other than the intended parameter.

8. Low to moderate consumption in water level sensor means that the

sensor consumes the intended power and a bit higher than the power

provided by the microcontroller(the microcontroller provides 3.3V but

the water level sensor can consume between 3.3V to 5.5V).

B. The turbidity sensor :(not passed) for functionality, accuracy, precision

and sensitivity testing in above table means when turbidity sensor was

connected to power source, light flashed spontaneously, this resulted as

not passed until it was adjusted manually. Power consumption testing is

carried out on turbidity sensor and the sensor needed 5.5V power supply

and this consider as high consumption.

2. Sensor Calibration

Calibration refers to adjusting or determining the accuracy of a

measurement device or sensor by comparing its output to a known

61

reference or standard. It involves establishing the relationship between

the measured values and the actual values measured.

In this research both Water Level, and Turbidity sensor were calibrated

to correct any inherent biases or imperfections in the sensor's output and

provide reliable and consistent results and recommended to periodically

recalibrate the sensor to maintain accuracy, significantly if environmental

conditions or other factors change over time.

The water level sensor is calibrated by coding as in listing 4 water level

sensor setup (p. 47) . In this process calibration setup made as following:

when water level on the sensor reaches high level reads 2 and when it

reaches middle it reads 1 and when very low reads 0.5 .

Turbidity sensor’s calibrated in two steps one by connecting and

disconnecting the sensor. Secondly by calibrating through using different

density liquids while manual calibration made on single connector board

see (Figure 10) (p. 33). Then the Turbidity sensor submerged into the

engine oil the sensor gave 140% clarity of the oil. To check on other non-

clear liquids, another dark messy liquid was used to test the sensor. This

result gave less than 30%to 70%.

5.2 Code Testing

Code testing in the context of prototype implementation with Micro Python

and HTML coding involves systematically evaluating and verifying the

correctness, functionality, and performance of the software code written in

Micro Python (for the backend logic) and HTML (for the frontend user

interface). Code testing aims to identify and fix any issues or bugs, ensure

the code operates as expected, and validate that the prototype functions as

intended.

Critical aspects of code testing in this case include:

1. Unit Testing: Test individual units or components of the code in isolation

to ensure they perform as expected. For Micro Python, this involves

62

testing functions, methods, and classes, while in the case of HTML,

entail verifying the correctness of individual HTML elements and their

attributes.

2. Integration Testing: Test how different units of code work together to

ensure seamless integration and proper communication between the

Micro Python backend and HTML front.

3. Functional Testing: Verify that the prototype functions correctly and

delivers the intended functionality. For example, this could involve

checking if user inputs are processed correctly, data is stored or

retrieved as expected, and the HTML user interface renders

appropriately.

4. User Interface (UI) Testing: Ensure the HTML user interface is

responsive across various devices and screen sizes, and user-friendly.

5. Compatibility Testing: Ensure the prototype works well with various

browsers and platforms and that Micro Python code runs effectively on

the target hardware or platform.

6. Performance Testing: Assess the prototype's speed, responsiveness,

and resource usage to ensure it meets performance expectations.

7. Security Testing: Identify and address potential security vulnerabilities,

such as input validation and data handling, to prevent security breaches.

8. Regression Testing: Regression analysis should be done when code

changes are made to ensure the functionality is not adversely affected.

9. Usability Testing: Solicit user feedback to assess the prototype's usability

and gather insights for improvements.

5.2.1 Step by Step Testing

A. Test Plan: The test plan sets the foundation for a structured and

organized testing process, ensuring that the testing objectives are

aligned with the project goals, risks are managed, and resources are

optimally utilized to achieve successful testing outcomes, as shown in

Table 2:

Table 2 Test Plan

63

Section Content

Project Name

and

Information

EG Automation system Prototype

 The Generator Automation System aims to monitor and

control various aspects of a generator system, ensuring

its reliable operation. The system involves multiple

components and functionalities

Objectives • Provide a user-friendly interface for controlling the

generator's status.

• Ensure real-time monitoring of temperature and

humidity levels.

• Continuously monitor the water level and categorize it.

• Integrate a turbidity sensor for assessing water quality.

• Display all relevant data through a web-based

dashboard.

Scope • The project includes the development of software to

control and monitor the generator, temperature,

humidity, water level, and turbidity.

• It involves the integration of various sensors and the

creation of a web-based user interface.

• The project's scope covers data presentation, user

interaction, and sensor integration.

Schedule Start 01/Aug/2023

 End 10/Sep/2023

Resources

Raspberry Pi Pico W, USB power cable, LED,

Temperature and Humidity sensor, Water level sensor,

and Turbidity sensor.

 MicroPython, HTML, CSS, Javascript

Test

Environment

Hardware Setup

 Software Configuration

Test

Deliverables

• A fully functional Generator Automation System with a

user interface.

• Producing test case, and test result reports.

Risks and

Assumptions

• Technical challenges related to hardware and sensor

integration.

• Network or connectivity issues affecting data

transmission.

• Potential inaccuracies in sensor readings.

 • Assumption of accurate sensor data.

• Availability of required hardware components.

• The stability of the network infrastructure.

Dependencies • Proper hardware components, including sensors and

64

the generator system.

• Stable network connectivity for data transmission.

• Availability of development and testing environments.

Testing

Approach

Section by section execution sequence

The above plan table provides an overview of the project which contains the

project name and description. The plan objectives clearly state what the

testing aims to achieve by specifying the goals and targets.

The test scope is to define the boundaries by inclusion (what will be tested)

and exclusions (what will not be tested).

The resources were to identify the tools and equipment needed for the

testing. Also, specifying the technical environments in which testing will

occur, such as hardware, software, network configuration, and sensors.

In test deliverables, listing the expected outcomes and producing test cases

and test result reports.

Risk management Identifies potential risks and assumptions to consider

during testing, such as risks that might impact testing and assumptions

made during planning.

The testing approach describes the overall testing methodology and criteria

to deliver required results. All the tests have been done based on a certain

schedule that provided a timeline for the testing phases, enabling efficient

planning and execution of the testing activities.

B. Test Cases : As shown in Table 3, where the test objects been identified,

a prediction, test steps, and test environment has been set for each

objects.

65

Test

Case

ID

Test

Objective

Preconditi

on
Test Steps Expected Results Test Environment

Postconditio

ns

T01-1

Generator

Status

Control

Switch to

"Stand By"

Mode

Click the

"Stand By"

button on

the user

interface

The generator

status should

change to "Stand

By," and the "Stand

By" LED should

turn on

Raspberry Pi (or

equivalent device-

LED) running the

Generator

Automation System

simulator

The

generator

status is

updated

correctly,

and the

LEDs

change their

state

accordingly.

T01-2

Generator

Status

Control

Switch to

"Running"

Mode

Click the

"Running"

button on

the user

interface

The generator

status should

change to

"Running," and the

"Running" LED

should turn on

Raspberry Pi (or

equivalent device-

LED) running the

Generator

Automation System

simulator

T01-3

Generator

Status

Control

Switch to

"Restart"

Mode

Click the

"Restart"

button on

the user

interface

The generator

status should

change to "Restart"

required, and the

"Restart" LED

should turn on

Raspberry Pi (or

equivalent device-

LED) running the

Generator

Automation System

simulator

T02-1

Temperatu

re and

Humidity

Monitoring

Display

Temperatur

e and

Humidity

(Automatic

reading

every 5

seconds)

The temperature

and humidity

values should be

updated every 5

seconds, and

accurate values

should be

displayed on the

user interface

DHT11

temperature and

humidity sensor

The

temperature

and humidity

data are

accurately

displayed on

the user

interface

T03-1

Water

Level

Monitoring

Low Water

Level

Simulate a

low water

level

condition.

The system should

detect the low

water level and

display "Low" on

the user interface.

Water Level sensor
The water

level

condition

(low,

medium,

high) is

correctly

detected

and

displayed on

the user

interface.

T03-2

Water

Level

Monitoring

Medium

Water Level

Simulate a

low water

level

condition.

The system should

detect the medium

water level and

display "Medium"

on the user

interface.

Water Level sensor

T03-3

Water

Level

Monitoring

High Water

Level

Simulate a

low water

level

condition.

The system should

detect the high-

water

level and display

"High" on the user

interface.

Water Level sensor

Table 3 Test Cases

66

T04

Turbidity

Sensor

Integration

Display

Turbidity

Percentage

(Automatic

reading

every 5

seconds)

The turbidity

percentage should

update every 5

seconds, and

accurate values

should display on

the user interface.

Turbidity sensor

The turbidity

percentage is

correctly

integrated,

and its

values

displayed on

the user

interface.

T05-1

User

Authenticat

ion

Login with

Correct

Credentials

Enter the

correct and

incorrect

username

and

password

The system should

grant or deny

access to the user,

allowing them to

control and monitor

the system.

Web server

software for

hosting the user

interface.

Web browser (for

accessing the user

interface).

The system

either grants

or denies

access

based on the

correctness

of the

entered

credentials. T05-2

User

Authenticat

ion

Login with

Correct

Credentials

User login

successful

The system should

show login button

as logout

Web server

software for

hosting the user

interface.

Web browser (for

accessing the user

interface).

C. Test Results: the result of the testes executed after calibration of the

sensors and implementing correct codes, and the teste result were as

follow:

67

 Table 4 Test Result

In summary the test was successful in most parts of the prototype, all the sensors

been calibrated, and results are sent back as required. The EG statue controls are

well implemented as they are being represented by LED's. Temperature and

humidity sensor are functioning properly (with only 2-degree difference, as this

depends -on the reference temperature device and the area they been placed).

Test

Case

ID

Test

Execution

Date

Test

Execution

Status

Actual

Results
Notes Defects or Issues

T01-1 01-Aug

Pass Passed

The test was

successful and

is working

T01-2 01-Aug

T01-3 01-Aug

T02-1 10-Aug Pass Passed

The test was

successful and is

working

T03-1 15-Aug

Pass Passed

The test was

successful and is

working

T03-2 15-Aug

T03-3 15-Aug

T04 21-Aug Pass Passed

The test was

successful and is

working

T05-1 25-Aug

Pass Passed
the test was

successful

Des.: the button

converts to logout, a

basic login function

used Severity: the

level of impact is

critical as its

security. Status:

solved.

T05-2 25-Aug

68

The water level sensor is an analogue sensor and the readings during tests are

only (low and high), usually calibration is needed often.

During the testing phase, the user authentication was successful, when using

basic login all operations are successfully loaded in the webpage and the login

button on the main page changes from (Login) to (Logout) after successful login

with specific username and password. But when using advanced login for user ID

and authentication the web page loading was blocked , this is due to the HTML

code length in Raspberry Pi Pico W and limited memory.

Figure 19 Temprature Refrencing

69

6 Summary and Conclusion

The motivation of this research was to upgrade and automate electrical power

generators operations. Electrical generators are used locally for hospitals,

buildings, education sector, businesses and homes in Iraq and neighbouring

countries.

Iraq suffers continuous chronic electricity power shortage, this problem triggered

by diverse factors such as climate change, population growth, and infrastructural

inadequacies.

Government in Iraq failed to deal with power shortage in general, therefor the

electricity power shortage is locally managed by individuals who owns electricity

generators. These Electrical generators are significantly contributing to mitigating

the electricity deficit in Iraq.

The background information helps contextualize the study and highlights the

importance of the research topic. The journey through this thesis has

encompassed an understanding of the brief historical background of electricity,

and Iraq's electricity evolution.

This project finding has enhanced and upgraded the manually operated electricity

power generators, to automated operation system and control of EG. These new

findings will save operators time and effort.

This research describes and explains the design of the conceptual framework

used in developing the prototype. It also includes the evaluation, verification, and

implementation phases of the prototype.

The study also explains the hardware components selected for the prototype.

Details of selected materials, circuits, sensors, and other relevant hardware

aspects together with the system design, assembly, and configuration processes

70

and described. Validation was carried out on the prototype, and it also covers

code evaluation, step-by-step process, and software verification.

This project was a successful step to automate EG operation with the possibility

to expand and upgrade to include different microcontrollers, more sensors, and

mobile application user interface, though it is possible to add later more sensors

such as engine oil level, vibration, load cell, strain gauges, speed sensors,

proximity sensors, encoder sensor, and Hall Effect sensors. Also, by using

different microcontroller, the advance user authentication and multiuser ID is

possible.

In conclusion, the potential impact of this research extends beyond power

generators in one city in Iraq, serving as a blueprint for similar regions grappling

with electricity challenges.

This project enables more control over EG operation in term of time consuming

and efforts. This project could be considered as an entrepreneur opportunity to

set up a business to sell this application. For sure the first application will be

installed at my home generator.

71

References

1. Ministry of planning. National Development Plan 2018-2022. 2018 p. 38.

2. Al-Maleki Y. Iraq Summer Power Shortages Grow Despite New CCGT. 2022 Jul
8;(65/27).

3. Iberdrola. A Brief History of electricity. 2022; Available from:
https://www.iberdrolaa.com/sustainability/history-electricity

4. International Energy Agency. Iraq’s energy sector: A roadmap to a brighter future
[Internet]. OECD; 2019 [cited 2023 Sep 16]. Available from: https://www.oecd-
ilibrary.org/energy/iraq-s-energy-sector_949e7e1e-en

5. Al-Hamadani S. Solar energy as a potential contributor to help bridge the gap
between electricity supply and growing demand in Iraq: A review. Int J Adv Appl Sci.
2020 Dec 1;9(4):302.

6. Bansal R, editor. Handbook of Distributed Generation [Internet]. Cham: Springer
International Publishing; 2017 [cited 2023 Sep 16]. Available from:
http://link.springer.com/10.1007/978-3-319-51343-0

7. Muslim HN. Challenges and barriers in Iraq for solar PV generation: a review. Int J
Energy Environ. 2019;10(3).

8. The ADE Power Generator Team. How does an Electricity Generator work?
[Internet]. 2018 Spe. Available from: https://ade-power.com/blog/how-does-an-
electric-generator-work

9. Sakr. Diesel Power Generating Set. Power Generation; Report No.: DS-SPG1000-
C1-02-D.

10. Farzidayeri J, Bedekar V. Design of a V-Twin with Crank-Slider Mechanism Wind
Energy Harvester Using Faraday’s Law of Electromagnetic Induction for Powering
Small Scale Electronic Devices. Energies. 2022 Aug 26;15(17):6215.

11. Grigsby LL. Electric Power Generation Transmission and Distribution. 2012. 768 p.

12. Krunal A M, Ankita A T, Pratik N B, Pradip K B, Bachwani ProfSA. Review on
Different Microcontroller Boards Used in IoT. IJRASET [Internet]. 2022 Mar 1;(2321–
9653). Available from: https://www.ijraset.com/research-paper/different-
microcontroller-boards-used-in-iot

13. Raspberry Pi. Providers Raspberry Pi [Internet]. Available from:
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

14. BeagleBoard. BeagleBone Black Boards Documentation [Internet]. Available from:
https://docs.beagleboard.org/latest/boards/beaglebone/black/ch03.html

15. ODROID Wiki. Introduction of ODROID-XU4 [Internet]. Available from:
https://wiki.odroid.com/odroid-xu4/odroid-xu4

72

16. Scherz P, Monk S. Practical Electronics for Inventors, Fourth Edition, 4th Edition.
McGraw-Hill Education TAB; 2016.

17. Song K, Taghipour F, Mohseni M. Microorganisms inactivation by wavelength
combinations of ultraviolet light-emitting diodes (UV-LEDs) [Internet]. 2019.
Available from: https://pubmed.ncbi.nlm.nih.gov/30893742/

18. Happy heart32. Water level sensor DIY [Internet]. Available from:
https://projecthub.arduino.cc/happyheart32/water-level-sensor-diy-ff331f

19. Arcaegecengiz. Using DHT11 [Internet]. 2023. Available from:
https://projecthub.arduino.cc/arcaegecengiz/using-dht11-12f621

20. Team A. This remote sensor system determines changes in water quality [Internet].
2023. Available from: https://blog.arduino.cc/2023/03/23/this-sensor-determines-if-
water-is-good-for-drinking/?queryID=undefined

21. SACE A. Electrical installation handbook Protection, control and electrical devices.
6th ed. ABB SACE; 2010. 548 p.

22. Charras J, Tappero F, Evans J. KiCad 7.0 [Internet]. Available from:
https://docs.kicad.org/7.0/en/kicad/kicad.html

23. Aivarannamaa. Thonny Instalation Guithub [Internet]. Available from:
https://github.com/thonny/thonny/releases/tag/v4.1.1

24. Raspberry Pi. MicroPython Firmware [Internet]. 2023. Available from:
https://micropython.org/download/RPI_PICO/

Table of Figures

Figure 2 Thesis Flow --- 5

Figure 3 “History of Electricity- by Iberdrola --- 8

Figure 4 The Main Fueatuers of Electricity Generator -- 15

Figure 5 Microcontroller Example (Raspberry Pi 4 model b) --------------------------------- 22

Figure 6 Raspberry Pi Pico W (original photo) -- 27

Figure 7 Water level Sensor DC3V-5V -- 30

Figure 8 Temperature/Humidity Sensor DHT11 -- 31

Figure 9 Turbidity Sensor --- 32

Figure 10 Single Conector Board --- 32

Figure 11 Jumper Wires --- 34

Figure 12 Resistors --- 35

file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296664
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296666
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296671
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296672
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296673

73

Figure 13 Automation system Schematic Diagram--- 38

Figure 14 Componenets Connection--- 39

Figure 15 LED's Connection --- 39

Figure 16 Temperature and Humidity Connection-- 40

Figure 17 Water level Connection -- 40

Figure 18 Turbidity Connection -- 41

Figure 19 UML User Interface Diagrma --- 49

Figure 20 Temprature Refrencing -- 68

Tables

Table 1 First Sensor Testing before Calibration .. 59

Table 2 Test Plan .. 62

Table 3 Test Cases ... 65

Table 4 Test Result ... 67

Table of Source codes

Listing 1 First Pico test ... 43

Listing 2 LED's setup .. 44

Listing 3 Temperature and Humidity sensor setup .. 45

Listing 4 Water Level sensor setup ... 46

Listing 5 Turbidity sensor coding .. 47

Listing 6 Style of the Main page .. 51

Listing 7 Statue Function .. 52

Listing 8 Temperature and Humidity function .. 53

Listing 9 Water Level function ... 54

Listing 10 Oil Quality function ... 54

Listing 11 Main body HTML code ... 55

file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296674
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296675
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296676
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296677
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296678
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296679
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296681
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%2020-10.docx%23_Toc149296717
file:///C:/Users/Click/Desktop/Thesis%20Review%20updates%20Zetro%20with%20grammerly.docx%23_Toc146139797

Appendix A

1 (14)

1

Mobile Application

Mobile application is created and will be used as a user interface in the upgraded

version. It was not used in this project because the Raspberry Pi Pico W did not connect

to the application due to memory limitation.

The mobile application design and development were created with Expo Snack,

which is an online code editor that enables developers to build and test React

Native code in the browser. Without requiring the installation of any software, it

can swiftly develop and test apps.

the designing of the application contains the following :

1. Raspberry Pi Pico W coding: the Pico was modified as per the mobile application
coding and the requests from the react native. the code configures a microcontroller
to serve as a primary HTTP server, handle specific API requests for sensor data,
control LEDs based on generator status, and provide simulated or actual sensor data
as responses. as following:

Appendix A

2 (14)

2

Listing 14 Pico HTTP request coding

import ujson

import network

from machine import Pin, ADC

from dht import DHT11

import time

import random

import usocket as socket

The Wi-Fi connection Set up, LEDs, DHT11, Water level, Turbidity sensors set up are the same as in the HTML Pico coding.

The functions of the sensors are the same as in HTML Pico coding.

def http_server():

 addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.bind(addr)

 s.listen(1)

 print('Listening on', addr)

 while True:

 cl, addr = s.accept()

 print('Client connected from', addr)

 request = cl.recv(1024)

 request = request.decode('utf-8')

 print('Received request:', request)

 if '/generator_status' in request:

 print('Received generator status request')

 path, query = request.split('?')

 status = query.split('status=')[1].split(' ')[0]

 print("Received status:", status)

 control_leds(status)

 generator_status = status

 response = 'HTTP/1.1 200 OK\r\nContent-Type:

text/plain\r\n\r\n' + generator_status

 cl.send(response.encode())

 elif '/temperature_and_humidity' in request:

 temperature, humidity = read_temperature_and_humidity()

 response = {'temperature': temperature, 'humidity': humidity}

 response_json = ujson.dumps(response)

 print("Temperature and Humidity Sent:", response)

 cl.send(response_json.encode())

 elif '/waterlevel' in request:

 water_level = read_water_level()

 response_json = ujson.dumps(water_level)

 cl.send(response_json.encode())

 print("Water Level Sent:", water_level)

elif '/turbidity_sensor' in request:

 turbidity_percentage = read_turbidity_sensor()

 response_json = ujson.dumps(turbidity_percentage)

 cl.send(response_json.encode())

 print("Turbidity Sent:", turbidity_percentage)

 else:

 response_data = {} # Create an empty response

 response_json = ujson.dumps(response_data)

 response = 'HTTP/1.1 200 OK\r\nContent-Type:

application/json\r\n\r\n' + response_json

 cl.send(response.encode())

 cl.close()

 print('Connection closed')

try:

 http_server()

except Exception as e:

 print('Error:', e)

Appendix A

3 (14)

3

2. The App.js file in a React Native application is the entry point and central
configuration file. t typically initializes the app, sets up navigation, and defines the
overall structure of the application.

Listing 15 App.js coding

import React from 'react';

import { NavigationContainer } from '@react-navigation/native';

import { createBottomTabNavigator } from '@react-navigation/bottom-tabs';

import AboutPage from './AboutPage';

import LEDControlPage from './LEDControlPanel';

import TempHumidityPage from './TempHumidityPage';

import WaterTurbidityPage from './WaterTurbidityPage';

import AuthPage from './AuthPage';

const Tab = createBottomTabNavigator();

const App = () => {

 return (

 <NavigationContainer>

 <Tab.Navigator>

 <Tab.Screen name="Home" component={AboutPage} />

 <Tab.Screen name="EG Control" component={LEDControlPage} />

 <Tab.Screen name="Temp & Hum" component={TempHumidityPage} />

 <Tab.Screen name="Water & E.Oil" component={WaterTurbidityPage} />

 <Tab.Screen name="Login" component={AuthPage} />

 </Tab.Navigator>

 </NavigationContainer>

);

};

export default App;

Appendix A

4 (14)

4

3. Home Page: The home page or landing page is the main page containing a

short description and aim of the app. AboutPage.js is where the illustration

picture, page title, and short description has been created. As shown in Figure

21,

Figure 20 Application Home Page

Appendix A

5 (14)

5

Listing 16 AboutPage.js Main Home Page coding

import React from 'react';

import { View, Text, SafeAreaView, Image } from 'react-native';

const AboutPage = () => {

 return (

 <SafeAreaView style={{ flex: 1 }}>

 <View style={{ flex: 1 , padding: 16}}>

 <Text style={{ fontSize: 20, textAlign: 'center', marginBottom: 16 }}>

 Electricity Generator Automation system

 </Text>

 <View style={{flex: 1, alignItems: 'center', justifyContent: 'center' }}>

 <View style={{ justifyContent: "center", alignItems: "center" }}>

 <Image

 source={require('./Pages/EG2.jpg')}

 style={{width: 150, height: 150}}

 />

 <Text style={{ fontSize: 16, textAlign: 'center', marginBottom: 16 }}>

 About

 </Text>

 </View>

 <Text style={{ fontSize: 12, textAlign: 'center', marginBottom: 16 }}>

 The objective of this automated system is to provide an efficient and secure

platform for managing and monitoring the switch on/off and standby modes. With its user-

friendly interface and comprehensive security measures, this system is an excellent choice

for users seeking a reliable and efficient control system

 </Text>

 </View>

 </View>

 </SafeAreaView>

);

};

export default AboutPage;

Appendix A

6 (14)

6

4. EG Control Page: the tab contains the statue of the electricity generator where there

are buttons to change from a statue to another as shown in the Figure 22:

Figure 21 EG Control Page

Appendix A

7 (14)

7

Listing 17 EG Control Page Coding

import React, { useState, useEffect } from 'react';

import { View, Text, Button } from 'react-native';

import {EGStyles} from './Mystyles';

const LEDControlPage = () => {

 const [ledStatus, setLedStatus] = useState('Loading...');

 const fetchLedStatus = () => {

 console.log('Fetching LED status...');

 // Simulate response for demonstration purposes

 const randomStatus = Math.random() < 0.5 ? 'ON' : 'OFF';

 setLedStatus(randomStatus);

 };

 const handleLEDControl = async (status) => {

 try {

 const response = await fetch(`http://192.168.1.136:80/generator_status?status=${status}`);

 if (!response.ok) {

 throw new Error('Network response was not ok');

 }

 const data = await response.text();

 console.log('LED Control Response:', data);

 // Fetch LED status after control

 fetchLedStatus();

 } catch (error) {

 console.error('Error updating LED status:', error);

 setLedStatus('Error');

 }

};

 useEffect(() => {

 // Fetch initial LED status when the component mounts

 fetchLedStatus();

 }, []);

 return (

 <View style={EGStyles.container}>

 <Text style={EGStyles.text}>LED Status: {ledStatus}</Text>

 <Button title="Running" onPress={() => handleLEDControl('running')} />

 <Button title="Standby" onPress={() => handleLEDControl('stand-by')} />

 <Button title="Restart" onPress={() => handleLEDControl('restart')} />

 </View>

);

};

export default LEDControlPage;

Appendix A

8 (14)

8

5. Temperature and Humidity Page: The tab display temperature and humidity

data of the inside shield of the EG and a button to refresh the page to get

updated data when needed.

Figure 22 Temperature and Humidity Page

Appendix A

9 (14)

9

Listing 18 Temperature and Humidity Page coding

import React, { useState, useEffect } from 'react';

import { View, Text, Button } from 'react-native';

import {TempStyles} from './Mystyles';

import {fetchTemperatureAndHumidity} from './PicoAPI';

const TempHumidityPage = () => {

 const [temperature, setTemperature] = useState(null);

 const [humidity, setHumidity] = useState(null);

 const fetchData = async () => {

 try {

 const data = await fetchTemperatureAndHumidity();

 setTemperature(data.temperature);

 setHumidity(data.humidity);

 } catch (error) {

 console.error('Error fetching temperature and humidity:', error);

 }

 };

 useEffect(() => {

 fetchData();

 }, []);

 return (

 <View style={TempStyles.container}>

 <Text style={TempStyles.text}>Temperature: {temperature} °C</Text>

 <Text style={TempStyles.text}>Humidity: {humidity} %</Text>

 <Button title="Refresh" onPress={fetchData} />

 </View>

);

};

export default TempHumidityPage;

Appendix A

10 (14)

10

6. Water level and Engin Oil Page: The tab shows real time water level and engine oil

quality data, also contains button to refresh the page for more updated data. As

shown in the following Figure 24:

Figure 23 water and Engin Oil page

Appendix A

11 (14)

11

Listing 19 Water level and Engin Oil Page coding

7. The HTTP request function file (PicoAPI.js): the following code defines a set of

functions to make asynchronous HTTP requests to a Raspberry Pi Pico's HTTP

server for specific sensor data.

import React, { useState, useEffect } from 'react';

import { View, Text, Button, StyleSheet } from 'react-native';

import {WaterStyles} from './Mystyles';

import { fetchWaterLevel, fetchTurbidity } from './PicoAPI';

const WaterTurbidityPage = () => {

 const [waterLevel, setWaterLevel] = useState(null);

 const [turbidity, setTurbidity] = useState(null);

 const fetchWaterLevelAndTurbidity = async () => {

 try {

 const waterLevelData = await fetchWaterLevel();

 setWaterLevel(waterLevelData);

 const turbidityData = await fetchTurbidity();

 setTurbidity(turbidityData);

 } catch (error) {

 console.error('Error fetching water level and turbidity:', error);

 }

 };

 useEffect(() => {

 // Fetch water level and turbidity data when the component mounts

 fetchWaterLevelAndTurbidity();

 }, []);

 return (

 <View style={WaterStyles.container}>

 <Text style={WaterStyles.text}>Water Level: {waterLevel}</Text>

 <Text style={WaterStyles.text}>Engin Oil: {turbidity} %</Text>

 <Button title="Refresh" onPress={fetchWaterLevelAndTurbidity} />

 </View>

);

};

export default WaterTurbidityPage;

Appendix A

12 (14)

12

Listing 20 PicoAPI HTTP request coding

const picoBaseUrl = 'http://192.168.1.136:80';

export const fetchTemperatureAndHumidity = async () => {

 try {

 const response = await fetch(`${picoBaseUrl}/temperature_and_humidity`);

 if (!response.ok) {

 throw new Error('Network response was not ok');

 }

 const data = await response.json(); // Assuming the response is in JSON format

 return data;

 } catch (error) {

 console.error('Error fetching temperature and humidity:', error);

 throw error;

 }

};

export const fetchWaterLevel = async () => {

 try {

 const response = await fetch(`${picoBaseUrl}/waterlevel`);

 if (!response.ok) {

 throw new Error('Network response was not ok');

 }

 const data = await response.json(); // Assuming the response is in JSON format

 return data;

 } catch (error) {

 console.error('Error fetching water level:', error);

 throw error;

 }

};

export const fetchTurbidity = async () => {

 try {

 const response = await fetch(`${picoBaseUrl}/turbidity_sensor`);

 if (!response.ok) {

 throw new Error('Network response was not ok');

 }

 const data = await response.json(); // Assuming the response is in JSON format

 return data;

 } catch (error) {

 console.error('Error fetching turbidity:', error);

 throw error;

 }

};

Appendix A

13 (14)

13

8. User Authentication page: A simple login and registration for security was

created.

Figure 24 User Authentication Page

Appendix A

14 (14)

14

Listing 21 Authentication Page coding

import React, { useState } from 'react';

import { View, TextInput, Button, StyleSheet, Alert } from 'react-native';

import { createStackNavigator } from '@react-navigation/stack';

const Stack = createStackNavigator();

const AuthPage = ({ navigation }) => {

 const [username, setUsername] = useState('');

 const [password, setPassword] = useState('');

 const handleLogin = () => {

 // Handle login logic based on username and password

 // For now, we'll just show an alert

 Alert.alert('Login', `Username: ${username}\nPassword: ${password}`);

 navigation.navigate('About'); // Navigate to About after successful login

 };

 const handleRegister = () => {

 // Handle registration logic based on username and password

 // For now, we'll just show an alert

 Alert.alert('Register', `Username: ${username}\nPassword: ${password}`);

 navigation.navigate('About'); // Navigate to About after successful registration

 };

 return (

 <View style={styles.container}>

 <TextInput

 style={styles.input}

 placeholder="Username"

 onChangeText={(text) => setUsername(text)}

 />

 <TextInput

 style={styles.input}

 placeholder="Password"

 secureTextEntry

 onChangeText={(text) => setPassword(text)}

 />

 <Button title="Login" onPress={handleLogin} />

 <Button title="Register" onPress={handleRegister} />

 </View>

);

};

export default AuthPage;

