

!!!!!!!!!!!
!
!
!
!
THE DESIGN AND IMPLEMENTATION OF A HYDROPONICS CONTROL
SYSTEM
!
!!!!!!!!!!!!!!!
!
!
!
 !

!
!

!
!
!
!
!
!
!
!
!
!
Mark Griffiths

!
THE DESIGN AND IMPLEMENTATION OF A HYDROPONICS CONTROL
SYSTEM

!
!
!
!
!
!
!
!
!
!
!
!
 Mark Griffiths
 Master’s thesis
 Autumn 2014
 Information Technology
 Oulu University of Applied Sciences

ABSTRACT !!
Oulu University of Applied Sciences
MEng Information Technology !
___ !
Author: Mark Griffiths
Title of thesis: The Design and Implementation of a Hydroponics Control System.
Supervisor: Dr. Kari Laitinen
Term and year when the thesis was submitted: Autumn 2014 Number of pages: 74
___ !
This thesis was born out of the idea to make hydroponic food growing easier and cheaper,
hydroponics is essentially the growing of plants without the use of soil. The idea of it being open
source is also in keeping with the general community feeling surrounded by the hydroponic
movement. !
The objective of the thesis was to create a working hydroponic controller, which is cheap and
simple enough to build. It will monitor and control the key environmental ingredients needed for
successful hydroponic growing, chiefly the pH, EC, air and water levels. Visual alarms will be
raised if these go outside of predefined ranges. The controller will also be able to control external
HW, such as lights, water heater and a water pump. !
A circuit board was developed, which will act as a shield for an Arduino 2560 board. The circuit
board will help in the ease of building the system. It acts too, as a way of keeping the HW more
stable, as wires will not come loose and interference will be minimised. The SW and HW design
will be available for everyone to download. !
Knowledge of what is important in hydroponic growing was considered and these factors were
used as inputs into driving the SW and HW requirements. UI usability studies were carried out to
ensure that the controller would be enjoyable to use. Software design and software patterns
were taken into use to make the SW more module and expandable. Investigation into any third
party SW libraries was done and consideration into licensing was carried out. !
This thesis details the HW and SW and why certain design decisions were made. The design of
the SW classes are also described as well as the overall functioning of the SW. An explanation of
how to build the system is also given. !!!!!!!!!

Keywords: Hydroponics, Open Source, Software Design, Hardware Design, Arduino

�3

PREFACE !
!
I would like to thank Niina Kuokkanen for participating in the UI usability study and Kari Laitinen,

my project supervisor, for giving feedback on the project.

!
!
Mark Griffiths, Oulu, October 2014

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�4

CONTENTS !!
ABSTRACT 3
PREFACE 4
CONTENTS 5
TERMS AND ABBREVIATIONS 7
1 INTRODUCTION 8
2 WHAT IS HYDROPONICS? 11

2.1 Nutrient Solutions 12
2.2 pH Level 13
2.3 Electrical Conductivity: EC Level 13
2.4 Water Temperature 14
2.5 Air Temperature 15
2.6 Light Level 15

3 CONTROLLER HW REQUIREMENTS & DESIGN 16
3.1 DHT11 Temperature sensor 16
3.2 DS18B20 Water Temperature Sensor 17
3.3 Photo-resistor 18
3.4 DS3234 Real Time Clock 18
3.5 TFT Touchscreen 20
3.6 Transmitter & Plugs 21
3.7 EC Circuit 22
3.8 pH Circuit 23
3.9 Enclosure 25
3.10 HW Layout 25
3.11 Overall View of the System 27

4 SW REQUIREMENTS AND DESIGN 28
4.1 UML Overall Package Diagram 29
4.2 UI Package 29
4.3 UTFT Library 37
4.4 Engine 40
4.5 Plug Receiver and Transmitter Library 41
4.6 DS3234 RTC Library 42
4.7 Dallas Water Temperature Library 43
4.8 DHT11 Air Temperature Library 43

�5

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

4.9 EC Probe 44
4.10 pH Probe 50
4.11 The Main Loop Controller 54

5 DISTRIBUTION OF THE SW 56
6 UI USABILITY STUDY 57

6.1 Usage Scenarios 58
6.2 Description of Test Procedure 64
6.3 Observations of the Execution 64
6.4 Recommendations 65
6.5 Usability Conclusion 66

7 BUILD MANUAL 67
8 PROBLEMS FACED 70
9 FUTURE DEVELOPMENT POSSIBILITIES 71
10 CONCLUSIONS 72

REFERENCES 73

�6

!
TERMS AND ABBREVIATIONS !!
HW! Hardware

EEPROM Electrically Erasable Programmable Read-
Only
Memory

RTC Real Time Clock

Data Used to get the temperature.

pH power of Hydrogen - The measure of the
acidity !
or basicity of an aqueous solution.!

EC Electrical Conductivity

SW Software

UI User Interface

GND Ground

PCB! Printed Circuit Board

VCC Voltage

BT Bluetooth

TDS Total Disolved Salts

API! Application Programming Interface

�7

1 INTRODUCTION
!!
This master’s thesis focuses on making an open source hydroponics controller. The significance

of hydroponics is in providing a way for the average person to grow their own food without the

need of soil, for example, for people living in flats and inner city areas. Correct pH, EC and

temperature levels of the water are critically important in hydroponics. Therefore, the help of a

controller that monitors these factors is invaluable and will ensure higher success and efficiency

rates of the grower.

!
At the moment, however, such controllers are expensive and none of them are open source.

Occasionally people will say they have made a controller themselves, but they never give the

code or plans away. The end goal of the project is to design and build a hydroponics controller in

which the hardware and software are open source. There are many places to learn how to build

the actual hydroponics system, the main one being our.Windowfarms [10]. The controller would

complement this.

!
The controller itself controls lights, a water pump and a fan to aid in the growing of food. The use

of appropriate lighting would make it possible for people living in conditions of little light, e.g.

Finland, to grow fresh food all year round too. This would be especially useful now that food

prices are increasing.

!
A general overview of hydroponics and its advantages over soil based planting is given by Hector

Munoz [1].

!
By providing an open source controller it will allow more people to access hydroponic growing.

This will be achieved as the controller will be cheaper and will allow busy people to grow the food

as the controller will take care of most of the aspects involved. For example, making sure the pH/

EC level or water/air temperature is correct.

!
It is also in keeping with the Window Farms project in which the infrastructure for the growing is

open source.

!

�8

As food gets more expensive, it will allow people to grow their own food more cheaply especially

in areas where soil, light or temperature can be problematic for growing.

!
According to Wikipedia[2] , the advantages of hydroponics are the following.

!
• No soil is needed for hydroponics
• The water stays in the system and can be reused - thus, a lower water requirement
• It is possible to control the nutrition levels in their entirety - thus, lower nutrition

requirements
• No nutrition pollution is released into the environment because of the controlled system
• Stable and high yields
• Pests and diseases are easier to get rid of than in soil because of the container's mobility
• Ease of harvesting
• No pesticide damage
• Plants grow healthier
• It is better for consumption

!
Today, hydroponics is an established branch of agronomy. Progress has been rapid, and results

obtained in various countries have proved it to be thoroughly practical and to have very definite

advantages over conventional methods of horticulture.

!
There are two chief merits of the soil-less cultivation of plants. First, hydroponics may potentially

produce much higher crop yields. Also, hydroponics can be used in places where in-ground

agriculture or gardening are not possible.

!
In essence, the question to be answered in this Master’s Thesis is:

!
What engineering solution can be made to make it easier for people to successfully engage in hydroponics
at a reasonable price?
!
The purpose in doing this Masters Thesis would be to build a prototype hydroponics controller. It

would be functional and ready to use although the UI and look and feel may not be perfected. A

�9

circuit will be designed, which will be a shield for an Arduino Mega 2560. The circuit will be open

source and available for download along with the code.

!
A manual for the system will be written, which would allow people to easily put the HW together

and flash the SW. The project will be hosted on GitHub.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�10

2 WHAT IS HYDROPONICS?
!
!
Before the SW and HW were designed, a study into the methods and usage of hydroponics was

carried out. This way it is ensured that the controller will offer the maximum usage to the end

user.

!
Essentially hydroponics can be summarised as “gardening without soil”. Instead plants get the

extra nutrients they need from a water based solution, which is passed over their roots.

!
Passing the water over the roots is possible by hand. However it is generally impractical when

you have more than a couple of plants. An automated system gives the advantage of working the

pumps and timers for you, ensuring that the plants will always get the required nutrients and

raising the success rate of the plants. The controller offers the advantage that the plants can be

watered, even if the user is away from the house.

!
The controller is used in conjunction with a system. The system is the actual structure in which

the plants will sit. There are four common types of system:

!
Flood/Drain system

In this system, the reservoir of water sits directly below the growing area. At certain intervals a

pump will fill the growing area with water. When the pump is switched off, the water will drop

back down into the reservoir.

!
Drip system

In the drip system the water pump will pump the water up over the plants in small drips, this may

be continuously or at timed intervals. The water, via gravity, will drip over the plants and back into

the reservoir.

!
!
!
!

�11

Nutrient Film Technique (NFT) System

Essentially the same system as the drip system, except the plants are set-up in troughs and the

water pumped into the troff and directly to the roots.

!
Aeroponic System

The same as the NFT system except you use a high pressure pump with holes cut out every six

inches or so in the tube. This way the water sprays up at the roots.

!
The aeroponic system, is of current interest as it may be used to feed people on space missions.

It has also been proven to be the best, in terms of nutrients, for growing food. According to

Wikipedia [2]

!
“NASA research has shown that aeroponically grown plants have an 80% increase in dry
weight biomass (essential minerals) compared to hydroponically grown plants. Aeroponics
used 65% less water than hydroponics. NASA also concluded that aeroponically grown
plants requires ¼ the nutrient input compared to hydroponics. Unlike hydroponically grown
plants, aeroponically grown plants will not suffer transplant shock when transplanted to
soil, and offers growers the ability to reduce the spread of disease and pathogens.
Aeroponics is also widely used in laboratory studies of plant physiology and plant
pathology. Aeroponic techniques have been given special attention from NASA since a
mist is easier to handle than a liquid in a zero gravity environment.” !

All systems have the same basic premise as their underlying methodology, namely to keep the

roots wet and exposed to air. The hydroponics controller considered in this thesis will support all

of the above systems, making it versatile over a large range of growing methods.

!
2.1 Nutrient Solutions
!
Nutrient solutions can be bought directly from shops. However there are some free open source

tools created by professional chemists that allow you to make your own. These are:

!
HydroBuddy[11]

HydroCal [12]

!

�12

The controller system will measure the following properties of the environment/nutrient solution,

which are important when hydroponically growing plants. These are discussed in the next

sections.

2.2 pH Level
!
The control of pH is extremely important, not only in hydroponics but in soil as well. Plants lose

the ability to absorb different nutrients when the pH varies. Different plants have a particular pH

that is optimal for them, generally though most plants prefer a slightly acid growing environment.

An ideal pH level is between 5.5 and 7. Changing the pH level too quickly is not a good idea as

this will stress the plant out too much. Generally, just make sure that the pH level is between the

range above.

!
The controller has the benefits that the pH level of the water is constantly being reported (every

five seconds). The user can set limits on the pH levels and so there will be a visual cue on the

main screen if the pH level fluctuates outside of the predefined levels. Without the controller the

user would need to use an external device, which may be carried out only a few times a day. By

which time the pH could be too out of range causing damage to the plants.

!
2.3 Electrical Conductivity: EC Level
!
After pH level, the second most important element to measure in the water solution is the EC

level. EC is a measure of the concentration of nutrients in the solution. However as each nutrient

has a different salt content, you could have a high concentration of one nutrient and a lack of

another. According to Fernandez [4]

!
 “Of paramount importance are the ions that determine pH which have conductivities
 hundreds of times larger than other ions”. !
Therefore, EC should always be measured at a constant pH. The controller allows the user to

know the pH when measuring the EC and so this requirement will always be met.

!
The reason why the EC level is so important is outlined here:

!

�13

“The electrical conductivity can tell you if your solution has lost nutrients or water due to
evaporation, if measurements are done at the exact same pH value. The EC should be
measured when the solution is prepared and three times each day after then. If your
solution’s EC becomes too high, you can add water to lower it to the original value. If EC
becomes too low (70% of original value), you should not add nutrients. This means that
your solution has been substantially changed in composition by the plant and it needs to
be disposed off and a fresh one needs to be prepared.”[4] !

Just like the pH level the EC is constantly being reported back to the user (every five seconds),

with the ability for them to set alarms at predefined levels. A visual cue will be given if the EC

level falls out of some predefined range. Again, without the controller, the user would need some

external device to do this and ensure it is carried out a few times a day.

!
Why should we use EC instead of TDS?

!
“EC stands for Electrical Conductivity and is measured in mS/cm or millisiemens per
centimeter. TDS stands for Total Dissolved Solids and is measured in PPM or parts per
million. TDS is acquired by taking the EC value and performing a calculation to
determine the TDS value. Because TDS is actually a calculation it is really only a guess at
what the nutrient concentration is. On top of that, there are three different conversion
factors to determine TDS and different manufacturers use different conversion factors. In
other words you could test the same solution with two different meters and get two totally
different readings. But the EC is read the same by all meters the only difference is the
conversion factor.”[3] !

2.4 Water Temperature
!
In order for the nutrients to be properly absorbed by the plants the temperature of the water

should be in the range of 18-26°C. If the water temperature is too low, then a water heater can be

used to warm it back up again.

!
The controller reports the water temperature in real time back to the user on the main screen.

The user has the ability to set the lower and upper limits of the water temperature. The user, if

they are using a water heater, can set it so that if the temperature falls too low, then the water

heater will switch on. It switches off if the water becomes too warm, ensuring that the

temperature remains constant. This feature is more useful if the user is using the controller

outside, like in a greenhouse.

!
!

�14

2.5 Air Temperature
!
The controller reports the air temperature in real time back to the user on the main screen. Like

the other main screen reports, if the value falls outside of a user specified range, a red light will

show on the screen. If the temperature is within the range it will be green. The controller has

currently no way of controlling the air temperature. A possible extension of the project would be

that a fan could be controlled if the air temperature is too high.

!
2.6 Light Level
!
Not just a hydroponics problem, but light level is a general problem of growers. If light levels are

too low, the controller can be used to turn on a grow light. As the system will control external

remote plugs, it means that the user has flexibility in the devices they choose.

!
As shown above, the main advantages of the controller are that it allows the most important

aspects of growing to be automated and alerts the user immediately if some element is out of a

preset range.

!
!
!
!
!
!
!
!
!
!

�15

3 CONTROLLER HW REQUIREMENTS & DESIGN
!
!
In order for the controller to be used for growing, a study was made on how people actually use

hydroponic systems and these will be the requirements with which I will base the HW and SW on.

In addition to this, thought has been given to the people that will actually make the hydroponic

system and how the system can be made easy for them. The justification for the usage of the

HW and SW is described in this and the following chapter.

!
The HW platform will be the Arduino Mega 2560. This will be used as it is open source and it

provides enough pins to support a 3.2” TFT screen and numerous sensors. In addition, it provides

access to pins which support interrupts making it ideal for this project. The available space for

SW is 250KB, which is more than enough for this project. It supports EEPROM storage meaning

that any user data can be permanently stored.

!
3.1 DHT11 Temperature sensor
!
The controller must be able to measure the air temperature. For this a DHT11 sensor will be

used. This was chosen as its temperature range falls well into the range required for growing

food, which is 0-50°C It also has a temperature accuracy of ±2°C. However, this can be

improved by using an offset in the SW to configure it to the actual temperature using a mercury

based thermometer. The sensor can only get new data once every 2 seconds. This should not be

a problem though for hydroponics. The chances of a big fluctuation in air temperature within two

seconds is not very likely.

!
The full technical details are[13]:

!
• Operates between 3 to 5V

• 2.5mA max current use during conversion (while requesting data)

• Good for 0-50°C temperature readings ±2°C accuracy

• No more than 1 Hz sampling rate (once every second)

!

�16

Long time exposure to strong sunlight and ultraviolet light may debase the performance. For this

reason, the DHT11 will be within the enclosure itself. The circuit does not dissipate much heat

and tests done with a mercury thermometer show that the temperature is equal to that outside the

enclosure. This way we can get the actual temperature and not that, which would be higher, for

example if the sun was shining directly onto it.

!
When soldering the DHT11 to the circuit, the temperature should be below 260°C. Also, the

sensor will not work well under dew conditions.

!
The pins of this sensor are described in Table 1.

!
TABLE 1. DHT11 Pin Descriptions

!

!
The DHT11 used in this project came with its own resistors attached. This has the benefit as it will

use less space on the circuit board and makes it easier for end users to build.

!
3.2 DS18B20 Water Temperature Sensor
!
The temperature sensor used for the water will be a DS18B20 [14]. It will be encased in plastic to

allow it to be submerged indefinitely. These are widely sold and so any user will be able to get

hold of these. Many come with a 3m long cable. This is handy as then the controller does not

need to be directly next to the water tank, giving extra flexibility to the user. Its temperature range

is -55°C - 125°C, so more than enough for growing food. The accuracy is ±0.5°C over the range

-10°C to 85°C.

!

Pin Description

GND Ground

VCC Between 3 to 5.0v

Data Used to get the
temperature.

�17

The resolution of the temperature sensor is user configurable to 9,10,11 or 12 bits, corresponding

to increments of 0.5°C, 0.25°C, 0.125°C and 0.0625°C. In this project 9bit resolution is used. A

half a degree was considered enough accuracy for hydroponic food growing.

!
The sensor communicates over a 1-wire bus and so by definition requires only one data line. The

used pins are given in table 2.

!
TABLE 2. DS18B20 Pin Descriptions

!

!
3.3 Photo-resistor
!
A photo-resistor is used to measure the amount of light available. If the light is too low then the

grow lamp can be signalled to switch on. The photo-resistor will not be attached to the circuit

board but will use the pins of the Arduino board. The reason for this is that attaching the resistor

to the circuit board will save some space. Other benefits include the fact that the resistor will

need to be on the outside of the enclosure and so it is easy to just attach some wires to it.

!
3.4 DS3234 Real Time Clock
!
The DS3234 is the RTC and is controlled via a SPI interface. It comes with a built in power sense

circuit that detects power failures and automatically switches to battery backup, which is ideal if

the system is powered down. The clock is a central component of the controller as the user will

want to power up the pumps at certain intervals and leave them on for a required time. The

accuracy of the timer is ±2ppm between 0°C and 40°C. It also supports alarms. They are not

used in this project but this ability gives some extra flexibility when expanding the features in the

future. The primary driver for selecting this device was its accuracy, achieved via its temperature

Pin Description

GND Ground

VCC Between 3 to 5.5v

Data Used to get the
temperature

�18

compensated crystal oscillator as described in the data sheet [15]. The pins on the RTC are

shown in table 3.

!
TABLE 3. DS3234 Pin Descriptions

!

!
!
The Arduino SPI interface guidelines were followed [16], when programming the device to ensure

robust usage.

!
In an earlier design of the controller, a cheaper DS1307 RTC was used, the time was not kept

properly. A few minutes per day were lost irregularly, which made it difficult to compensate for.

Because the timer operation is important for this device, it was decided it would be better to buy a

Pin Description

GND Ground

VCC Between 3 to 5.5v

SS (Slave Select) - the pin
on each device that the
master can use to
enable and disable
specific devices.

MISO (Master In Slave Out) -
The Slave line for
sending data to the
master

MOSI (Master Out Slave In) -
The Master line for
sending data to the
RTC.

SCK (Serial Clock) - The
clock pulses which
synchronize data
transmission generated
by the master

SQW (Square Wave) Not
used in this project.

�19

more expensive and reliable one. The DS1307 RTC had the advantage that it used the I2C to

control it, which meant that less pins were needed. However, timer accuracy is more important.

!
3.5 TFT Touchscreen

The user will interact with the controller through this touchscreen. A 3.2” Sainsmart touchscreen

was chosen for this purpose. The size is not too small so that it would be difficult to control and it

is not too big as to make the controller itself too big.

!
The compatible shield that comes with this has been taken into use. This helps in the building as

then the pins will connect easier with the Arduino. It has support for a SD card too, so that

images can be kept on there for making the UI look better. This project does not make use of the

SD card, but this is something that will be used as further study to make the UI more pleasurable

to use.

!
Other options were to control the system only via a mobile phone or computer. However this

makes it less independent and means that many versions of SW would need to be written for

numerous OSs. By using the TFT it makes the HW available to a far wider audience. The TFT

does not cost too much and so overall it adds value to the product. However a future

development may be to let the device connect to a network, in which a computer could be used to

analyse the data which the controller has generated. It could also be controlled remotely, via the

net, when the user is away from home.

!
The graphics libraries I will be using are provided by Henning Karlsen [17]. These libraries come

with decent documentation and give me just the functionality that I need. Using external libraries

will lower the development time and increase quality as these libraries are used by numerous

people and are open sourced.

!
More information about the SW libraries used in conjunction with the TFT HW are discussed in

the SW section.

!
!
!
!

�20

3.6 Transmitter & Plugs
!
A transmitter will be required to send information to the wireless plugs. The transmitter will need

to operate at 433.92 MHz as this is an open frequency in Europe (and many other parts of the

world too) for data transmission. As stated by the ECC Recommendation 70-03 [5].

It is also the frequency that wireless plugs operate at in Europe and so in order for the controller

to be compatible with the greatest arrange of plugs, this frequency must be used.

!
Other options could be used over a transmitter and wireless plugs, for example using a relay. It

was decided not to use this approach however as it puts a lot of people off building their own

devices. One of the principals of the project is to increase the use of and success rate of

hydroponics. In many cases people may not be familiar with electronics and so messing around

with mains electricity may be too scary.

!
Using wireless plugs also gives the advantage of positioning the controller itself in more locations,

so not necessarily right next to the system itself.

!
There are no real drawbacks to this system, except if it is to be used in some countries, most

notably the USA, as the 433 MHz is more restricted there. However, the transmitter used can

broadcast on the 315 MHz frequency, too. One future development could be to switch the

frequency of the transmitter based on a user’s setting.

!
The wireless plugs used in this project are the NEXA PBR-2300, although any self programmable

plugs that operate at the 433 MHz frequency can be used.

!
The plugs will be connected to lights, a water pump and a water heater. The controller will turn

them on and off when needed based on the environment or user settings.

!
When testing indoors and with no antenna attached, the plugs could be switched on and off at a

range of 10m. With an antenna, distances of up to 100m could be achieved. This is more than

enough range for this project. During the testing of this project, no antenna was used.

!
�21

3.7 EC Circuit
!
For measuring the EC levels of the water an Atlas Scientific stamp 3.1 [18] has been used. This

is used as their level of quality is high and there is a lot of documentation on how to use them.

The circuit is small and fits easily into a breadboard or a small shield that would be used on an

Arduino. There are also some debugging LEDs, which can be used as an indication that

commands are indeed being sent to the circuit. The end user will not see these but they are

useful in the development life cycle.

!
As described in table four, Atlas Scientific sell three different types of circuits, each are especially

designed for certain kinds of water. This project will use the sensor K0.1 as drinking water will be

used for watering the plants. The pins used are described in table 5.

!
TABLE 4. EC Circuit Sensor Types

!

!
!
!
!
!
!
!
!
!
!

Sensor Type Type of water Sensor Range

K0.1 Pure water and drinking
water

K1.0 Fresh water to brackish
water

K10 Salt water

� to �11µs / cm 3,000µs / cm

� to
�
1,300µs / cm
40,000µs / cm

� to
�
36,000µs / cm
92,000µs / cm

�22

TABLE 5. EC Pin Descriptions

!

!
The circuit itself requires only two data lines and operates at 5v, which ensures accurate

readings. The circuit can be stored at ranges between -20°C up to 125°C.

!
It is important to note that when testing, the BNC connector and the circuit must be connected

directly on the breadboard and not using any wires, otherwise the noise will cause inaccurate

readings. As this will be soldered onto the circuit board, the device should not suffer from any of

these problems.

!
3.8 pH Circuit
!
The 5.0 version of the pH circuit from Atlas Scientific has been used [19]. It has support for full

pH readings (.01 to 14.00) and the accuracy is within two significant figures. It also offers

temperature dependent or independent readings. Even though, only temperature readings will be

used as the controller comes with a water temperature sensor. The circuit itself has a storage

temperature range of -40°C to 125°C. The pins used are described in Table 6.

!

Pin Description

GND Ground

TX The output delivers
asynchronous serial
data in TTL Rs-232
format.

RX The input receives
asynchronous serial
data in TTL Rs-232
format.

VCC Operates at 5.0v

PRB Connects to the BNC
probe data connection

PRB GND Connects to the BNC
probe GND connection

�23

TABLE 6. pH Pin Descriptions

!

!
The default baud rate is 38400, 8bits no parity. However, the circuit supports eight different baud

rates:

!
1. 300

2. 1200

3. 2400

4. 9600

5. 19.2k

6. 38.4k

7. 57.6k

8. 115.2k

!
The pH circuit is very sensitive and touching it can cause an inaccurate reading for about five

minutes. As the circuit will be enclosed with the hydroponics controller, this should not pose any

problems.

Pin Description

GND Ground

TX The output delivers
asynchronous serial
data in TTL RS-232
format.

RX The input receives
asynchronous serial
data in TTL RS-232
format.

VCC Operates on 3.3v to
5.5v

PRB Connects to the BNC
probe data connection

PRB GND Connects to the BNC
probe GND connection

�24

3.9 Enclosure
!
The enclosure is only there for the look and feel and to protect the equipment from any water that

might splash onto the circuit. This project has used a basic plastic enclosure, which will have

holes cut out in the front and back for the TFT screen and any wires.

!
3.10 HW Layout
!
An Arduino shield will be designed and made that will connect all the parts of the HW together

and hold them firmly in place. Below is a diagram for that. Everything will be designed using

Fritzing, as it is free with no restrictions and allows the manufacture of PCB boards. The PCB

board used in this thesis was made by Fritzing.

!
A circuit board was made up as this will make the hydroponic controller more stable and less

likely for the reading to be affected by interference. It also eliminates the need for messy wires

and for any HW errors to occur; such as a wire coming lose.

FIGURE 1. The Hydroponic Circuit Board

!

�25

The circuit used in this project is shown in Figure 1. It uses two copper layers, with a copper

layering on top to minimise the risk of interference from the transmitter and receiver. The TFT will

just connect using a molex connector to the pins that it needs. The circuit was designed so that

the connections would not cross too much and would be as short as possible. Thought was also

given to the build of the system, for this reason the pH and EC BNC connectors are at the back.

This way the system will look better as all the connections will be at the back of the device. The

power lead for the Arduino will sit just below the BNC connectors.

!
One of the main challenges when designing the HW, was that of space. All of the components

just about fit on the board. If any extra HW would be needed then a bigger board would be

needed too. This may not cause too much problems if the enclosure has enough space to

accommodate it. However a bigger board will also cost more, one goal of the project was to

make the controller as cheap as possible.

!
Almost all of the Arduino interrupt and digital pins are now in use. Any extra expansion to the HW

would require a rethink into which processor and board should power the device. Since the

creation of the project, much more powerful Arduino boards and other similar boards have

entered the market. In this sense a rethink of the HW layout would need to be reconsidered.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�26

3.11 Overall View of the System

!
!
!

!
!

!
!
FIGURE 2. Overall view of the system

!
Figure 2 shows how the Controller fits into the system as a whole. As can be seen the external

HW like the water pump, lights and water heater are not directly connected to the controller

adding flexibility into the system. The pump is used to pump water across the roots of the plants.

!
!
!
!

�27

Water Tank

Controller

Lights

Plants

Heater

pH !
EC Probes

Pump

Tx Plug

Tx Plug

Tx Plug

Temperature
Sensor

!
4 SW REQUIREMENTS AND DESIGN
!
!
Developing the software was the most time consuming part of making the controller, as this is

where all the logic is. The language used is C++ and the Arduino IDE was used as the compiler to

flash the SW on to the HW. The bulk of the SW has been built from scratch although some open

source libraries have been used when interfacing with the HW.

!
The software not only needs to read the sensor information but also needs to be used to calibrate

the pH and EC probes as well as the other sensors, to provide details of the information to the

user, to function as an alert to the user if some setting e.g the pH level is too high or low and to

control certain other devices, like lights and water pumps.

!
The controller itself works without the aid of a computer and all inputs come from an intuitive

touch screen which gives warnings to the user when necessary.

!
The SW has been designed in a way that each HW component has its own library and the UI,

controller and engine have been separated out from each other. The controller is simply the loop

function which is the main function of the Arduino.

!
The reason for this split is that in the future a different TFT screen may be used. Then only the UI

section would need to be rewritten. Likewise for the HW libraries, if in the future a different HW

device is used, then only that library will need to be rewritten. If needed, just an interface

wrapper would need to be constructed.

!
!
!
!
!
!
!
!

�28

4.1 UML Overall Package Diagram
!
Figure 3 shows the libraries used in the SW and their relationships with each other. The packages

Engine, Main Loop Controller and UI are self made for this project. All other packages are third

party packages, all external packages are used to control some specific HW. The packages are

discussed in more detail in the next few chapters.

!
!
!

!
!

!
!
!
!
!

!
FIGURE 3. Package Diagram

!
!
4.2 UI Package
!
The UI package is where most of the code and logic for the controller is. This package is

responsible for drawing the UI, as well as capturing the touches from the screen. It will raise an

alarm to the UI if some values are out of range. The values are passed to the UI via the controller

from the engine.

!
!

�29

!
!
!
!
!

!
!
!

!
!

!
!

!
!
!
FIGURE 4. The UI Class Diagram

!
A UML class diagram of the UI package is shown in Figure 4. Each of the classes, except the

base classes represents one screen. Therefore it has one specific job to do related to the

functionality. The UI classes are described in more detail below.

!
First, there are two base classes. MinMaxScreen and Screen.

!
MinMaxScreen
!
This is a base class to many other screens. It can be used when the screen to be used requires

that only a min and max value are given. The screens in those cases are pretty generic and it is

this generic data and layout that is encapsulated within this class. The derived classes then only

need to give the specific information, like the text, which shall be on the screen.

!
!
!

�30

!
Screen
!
This base class encapsulates the button handling logic of screens that will handle settings or in

which a lot of buttons will be displayed on the screen. It makes it easier for derived classes to

handle the button logic,

!
The following classes represent a screen and will draw to the screen and perform some function.

!
Water Screen
!
This screen allows the user to set the lower and higher thresholds for the water temperature.

Upon exiting from the screen, the min and max values are saved to the EEPROM.

!
Air Screen
!
This screen allows the user to set the lower and higher thresholds for the air temperature. Upon

exiting from the screen, the min and max values are saved to the EEPROM.

!
pH Screen
!
This screen allows the user to set the lower and higher thresholds for the pH levels. Upon exiting

from the screen the min and max values are saved to the EEPROM. This screen also draws the

pH calibration button. When the user presses this, they will open the pHCalibrationScreen.

!
EC Screen
!
This screen allows the user to set the lower and higher thresholds for the EC levels. Upon exiting

from the screen, the min and max values are saved to the EEPROM. This screen also draws the

EC calibration button. When the user presses this, they will open the ECCalibrationScreen.

!
!
!

�31

!
Time Screen
!
From this screen the user can change the time. They are given two options, hour and min, In

this way it is similar to min and max. This is the reason why this screen derives from

MinMaxScreen. On exit the values are not saved to the EEPROM but the time is saved to the

DS3234 circuit.

!
Pump Screen
!
The user sets on this screen the interval at which the pump will come on. Again hours and mins

are the options. If the user selects 0 hours and 8mins, this will mean that the pump will switch on

every 8 minutes.

!
Pump Duration Screen
!
The user sets on this screen the interval at which the pump will stay on. Again hours and mins

are the options. If the user selects 0 hours and 4mins, this will mean that the pump will stay on

for 4 minutes. If the duration period is longer than the interval, then the pumps will never switch

off.

!
pH Calibration Screen
!
This screen presents the user with the following options:

!
• Reset
!
This will send a reset command to the device and all saved data will be lost. The device

will need to be re-calibrated for it to function properly.

!
• Info
!
This will query the device firmware version and firmware date.

�32

!
• Read
!

This will return one read from the sensor.

!
• TRead
!

This will return one temperature calibrated read from the sensor.

!
• Stop
!

This will stop the circuit from asking the pH probe for any data.

!
• Start
!

The circuit will start asking the pH probe for data again. If it has been already started,

then this button has no effect.

!
• Calibrate
!

This screen walks the user through calibrating the pH circuit. They are given instructions

for each stage. Each stage takes a few minutes and the library simpleTimer is used to

achieve this. The screen is asynchronous and does not block the updating of other HW

devices, e.g. turning on the pump.

!
EC Calibration Screen
!
This screen presents the user with the following options:

!
• Reset
!

This will send a reset command to the device and all saved data will be lost. The device

will need to be re-calibrated for it to function properly.

�33

!
• Info
!

This will query the device firmware version and firmware date.

!
• Read
!

This will return one read from the sensor.

!
• TRead
!

This will return one temperature calibrated read from the sensor.

!
• Stop
!

This will stop the circuit from asking the EC probe for any data.

!
• Start
!

The circuit will start asking the EC probe for data again. If it has been already started

then, this button has no effect.

!
!
• Calibrate
!

This screen walks the user through calibrating the EC circuit. They are given instructions

for each stage. Each stage takes a few minutes and the library simpleTimer is used to

achieve this. The screen is asynchronous and does not block the updating of other HW

devices, e.g. turning on the pump.

!
!
!
!

�34

Plug Screen
!
This screen allows the user to calibrate the plugs for the lights, pump or heater. Upon pressing

one of the buttons, the user is asked to press a button on the plugs remote. The device will then

capture the plugs ID and will use this when transmitting information to the plug to switch on or off.

The user can also access the screen PlugSettingsScreen.

!
Plug Settings Screen
!
This screen allows the user switch the pump, lights and heater on manually. This is useful if the

user wants the lights off despite there being too little light etc.. This is just a way to give the user

some extra control over the device.

!
Main Screen
!
This is where the controller will spend most of its time. The main screen displays information

about the environment, like the EC and pH levels as well as the air and water temperature. The

alerts are shown here too, for example if one of the levels is out of range. The time is also

displayed. From here the user can access the SetupScreen, WaterScreen, AirScreen, ECScreen

or pHScreen.

!
Setup Screen
!
The setup screen is just a menu screen where the user can navigate to other screens. It

accesses all of the above mentioned screens.

!
Hydroponics UI
!
This class is the brains of the UI package. This is where the touch screen captures are passed

over so that the right screen is activated. The controller will initialise this at boot and in turn this

class will initialise all of the other classes in the package.

!

�35

The following piece of source code shows how each screen is activated,

CheckForScreenTouch is called every 100ms from the controller. The UTouch library is

used to see if the TFT screen has been touched.

!
void HydroponicsUI::CheckForScreenTouch()

{

 if (myTouch.dataAvailable())

 {

 switch(whichScreen)

 {

 case MAIN_SCREEN:

 {

 handleButtons(iMainScreen->handleScreen());

 break;

 }

 case ABOUT_SCREEN:

 {

 handleButtons(iAboutScreen->handleScreen());

 break;

 }

 case SETUP_SCREEN:

 {

 handleButtons(iSetupScreen->handleScreen());

 break;

 }

!
in the following function the actual screen is drawn.

!
void HydroponicsUI::handleButtons(int aHandleWhichButton)

{

 switch(aHandleWhichButton)

 {

 case AIR_BUTTON:

�36

 {

 iAirScreen->drawScreen(whichScreen);

 whichScreen = AIR_SCREEN;

 break;

 }

 case PH_BUTTON:

 {

 ipHScreen->drawScreen(whichScreen);

 whichScreen = PH_SCREEN;

 break;

 }

!
!
!
4.3 UTFT Library
!
A freely available open sourced UTFT library was used to put text and graphics onto the screen

[5].

!
From the SW point of view, we use some global variables throughout the whole code. For the

TFT screen these are defined as:

!
//Global definition for whole of the UI

UTFT myUTFT(ITDB32S, 38,39,40,41);

UTouch myTouch(6,5,4,3,2);

UTFT_Buttons myButtons(&myUTFT, &myTouch);

!
Those numbers represent the pins that are used by the screen. After doing this, the libraries for

the TFT screen are ready to use.

!
With this library I can initialise the screen , set its colour, clear and fill it. The full API can be found

in [5] and it comes as a pdf file along with the code.

!

�37

The following code example shows how this SW library is used.

!
myUTFT.clrScr();

myUTFT.setBackColor(0, 0, 255);

myUTFT.print("Reset", 55, 30);

!
In the above example the screen was cleared of all other text and pictures, the background colour

was set to blue and the text “Reset” was printed at the given x,y coordinates.

!
UTouch Library
!
The UTouch library [20] is used for telling when the screen has been touched and the location of

the touch. Using this library, we tell the orientation of the screen; in this project it is always

landscape.

!
An example of setting up the screen is
!
myTouch.InitTouch();

myTouch.setPrecision(PREC_MEDIUM);

!
Here the myTouch object was initialised and the precision of the touch screen has been set to

medium. After this, the UTouch library is not used directly but via the UButtons library as

described below.

!
UButtons Library
!
The UButtons library helps simplify the UI code by easily drawing buttons on the screen. It

notifies when a certain button has been pressed by returning the ID of the button back. It can

enable/disable buttons and set text and icons to them. This is the most used library in the UI

code.

!
!
!

�38

An example would be the following:

!
resetButton = myButtons.addButton(10, 10, MAIN_BUTTON_X,

MAIN_BUTTON_Y, mainButton);

!
This code creates a button at x 10 and y 10 of size MAIN_BUTTON and uses the image

mainButton to make the button. resetButton is the ID of this button and can be used to know

when the button has been pressed.

!
int pressed_button = myButtons.checkButtons();

!
if (pressed_button==backButton)

 {

 handleExitScreen();

 return EC_BUTTON;

 }

if (pressed_button==resetButton)

 {

 factoryReset();

 }

!!
In the code snippet above we just check which button has been pressed and preform some

action based on this. Using this library significantly improved the readability and maintainability of

the code.

!

�39

4.4 Engine
!
!
!
!
!
!
!
!
!
!
!
FIGURE 5. The Engine External Libraries

!
The main task of the Engine is to get the data from the HW sensors, e.g. the water temperature

and update the sensor struct. It is the sensor struct that is passed from the Engine to the UI, via

the controller that is used when updating the UI. The sensor struct is only passed if there is some

updated information from the HW, like if the temperature has changed. The controller does this

check as described here.

!
if(Hydro_Eng.doesScreenNeedUpdating())

 {

 //Update the UI of the latest Sensor Info

Hydro_UI.updateInfoFromSensors(Hydro_Eng.getSensorInformat

ion());

 //Update the screen with the new info.

 Hydro_UI.refreshScreen();

 //Inform the engine that the UI has been updated.

 Hydro_Eng.screenUpdated();

 }

!
!

�40

The struct containing the updated sensor data is given to the UI in the following.
Hydro_UI.updateInfoFromSensors(Hydro_Eng.getSensorInformat

ion());

!
A refresh of the screen is then done to ensure that the UI always displays the most up to date

information.

!
The Engine Library is made up of just one class that interfaces with the HW libraries. As can be

seen in Figure 5, each HW component has its own library and is described in more detail in the

following sections. Each of the libraries is external and all are open source. [21]

!
4.5 Plug Receiver and Transmitter Library
!
The library used to control the receiver and transmitter is called 433MHz for Arduino [22].This

package contains several small libraries for Arduino 1.0 which add communication capability with

some radio controlled (433MHz / 434MHz) domestic appliances. The libraries can be used for

easy home automation using cheap, off-the-shelf components.

!
This library was used in order to turn on and off the remote plugs. Each plug must be set to a

function, for example a water pump. This can be done by the user via the UI.

!
To get the details of the plug, the remote of the plugs needs to be used. When on the plug

screen, you just need to press a button and the device will capture the plug details. In code this

is done via a callback. When the transmitter picks up information, it will capture and store that, as

shown in the code example.

!
First the receiver is set up for the correct pin and a callback waitForReceiver is given. The

number one, given as the second parameter below, means that this will be done only once. No

repeats are allowed.

!
NewRemoteReceiver::init(RECEIVER_PIN, 1, waitForReceiver);

!

�41

When the user presses the button, the callback is called. In the callback the information is stored

in EEPROM for later use.
!
setAddresstoEEPROM(receivedCode.address);

 if(plugDevice.lights)

 {

EEPROM.write(EEPROM_LEARNED_LIGHTS_UNIT,receivedCode.unit);

 plugDevice.lights = false;

 }

 if(plugDevice.pump)

 {

EEPROM.write(EEPROM_LEARNED_PUMP_UNIT,receivedCode.unit);

 plugDevice.pump = false;

 }

 if(plugDevice.heater)

 {

EEPROM.write(EEPROM_LEARNED_HEATER_UNIT,receivedCode.unit);

 plugDevice.heater = false;

 }

!
4.6 DS3234 RTC Library
!
Using this library makes time management very easy and through an intuitive API, which is now

described. The DS3234 library [23] is initialised by passing the SS pin number.

!
DS3234 rtc(RTC_PIN);

!
After this, the time can be set based on the user input as such. The zero means how many

seconds. The user cannot choose this and so it is set to zero.

!

�42

rtc.setTime(aHour, aMin, 0);

When the time is queried, the code is the following.

!
void HydroponicsEngine::GetTime(int& aHour, int& aMin)

{

 clock = rtc.getTime();

 aHour = clock.hour;

 aMin = clock.min;

}

!
4.7 Dallas Water Temperature Library
!
The water temperature library [24] is first asked to get the temperature using the following

command:

!
waterTempSensor.requestTemperatures();

!
After this, we can get the current temperature of the water by calling

!
int temp = waterTempSensor.getTempCByIndex(0)+

waterTempCal;

!
Here waterTempCal is a calibration constant. During testing, I called this function and compared

it with a mercury thermometer and noticed that it was out by a degree or two. Trusting the

mercury thermometer more I added a constant to it which would change the temperature based

on tests. For each different HW that is used, this constant will need to be changed based on the

results of testing.
!
4.8 DHT11 Air Temperature Library
!
The DHT11 library [25] is very straight forward to use. In order to get the temperature we just

need to call the read function, with the pin that the DHT11 is connected to.

As in this example:

�43

!
int chk = DHT11.read(DHT11_PIN);

sensorInfo.airTemp = DHT11.temperature();

!
After this call, we have the temperature in Celsius located in sensorInfo.airTemp and we can

update the UI and anything else as needed. If we wanted the temperature in Fahrenheit, we

would call
!
DHT11.fahrenheit();

!
The library also supports getting the temperature in Kelvin and for getting the dew point. This SW

does not make use of those features.

!
4.9 EC Probe
!
The EC probe does not use its own library as all communication with it is done over the serial

port. In essence, this is its library. The baud rate is 38400.

The full manual and data sheet are available here [18].

!
The following commands listed in Table 7 are used to control the EC circuit. For example, the

command R - This tells the EC circuit to return a single EC reading. This instruction takes

1000ms to complete. An example is the following.

!
inputstring = "R\r"; //Command to get reading

Serial3.print(inputstring); //send command to sensor.

!
All commands must end with a carriage return. This tells the EC circuit that we have sent our

command.

!
For most commands the circuit will respond with the serial ports callback function. Assuming we

are using serial port 3, this would be void serialEvent3(). This callback function is

only called every time the main loop function has ended.
!
After sending the command R, the circuit will respond with:

�44

EC,TDS,SAL<CR>
!
Where:  
EC is the electrical conductivity in µs/cm 
TDS is Total Dissolved Solids (referenced to Kcl) 
SAL is Salinity (Practical Salinity scale 1978) expressed as a whole number only.

!
As with sending the command, each response back ends with a carriage return (<CR>). This

way my software knows that the full response has been received.
!
In the serialEvent3 function we get the results of what the circuit has done. In some cases it gives

us the data we asked for and in others it is just a conformation that everything went as expected.

That function is shown here:

!
void serialEvent3()

{

sensorstring="";

while(Serial3.available())

 {

 char inchar = (char)Serial3.read();

 sensorstring += inchar;

 if(inchar == '\r') {sensor_stringcomplete = true;}

 }

!
!
Serial.print(sensorstring.length());

!
if(sensorstring.length() == 9) //length of EC response.

{

 ECLevelString = sensorstring.substring(0,3);

}

!
!

�45

//check which data we are waiting for.

if(waiting_for_info && sensor_stringcomplete)

 {

 drawInfoScreen();

 waiting_for_info = false;

 sensor_stringcomplete = false;

 }

if(waiting_for_single_reading && sensor_stringcomplete)

 {

 drawReadingScreen();

 waiting_for_single_reading = false;

 sensor_stringcomplete = false;

 }

!
}

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�46

TABLE 7. EC Circuit Commands

Command Function Callback Description

R Return a single
EC/TDS/salinity
reading. Temp
assumed to be
23C

EC,TDS,SAL EC is the
electrical
conductivity in
μs/cm 
TDS is Total
Dissolved Solids
(referenced to
Kcl) 
SAL is Salinity
(Practical Salinity
scale 1978)
expressed as a
whole number
only.	

TT.T Like R but returns
a temperature
compensated
reading.

EC,TDS,SAL EC is the
electrical
conductivity in
μs/cm 
TDS is Total
Dissolved Solids
(referenced to
Kcl) 
SAL is Salinity
(Practical Salinity
scale 1978)
expressed as a
whole number
only.	

�47

!
!
!

C Returns a
continuous
reading every
1000ms at the
temperature
previously used.

EC,TDS,SAL EC is the
electrical
conductivity in
μs/cm 
TDS is Total
Dissolved Solids
(referenced to
Kcl) 
SAL is Salinity
(Practical Salinity
scale 1978)
expressed as a
whole number
only.	

E Stops all
readings and the
circuit enters
standby mode.

None The E.C. Circuit
will respond by
ceasing data
transmission.
There is no ASCII
response to this
instruction	

X Does a factory
reset of the
circuit.

Factory reset

I Returns
Information about
the circuit.

E,V3.0,4/11 E =E.C. Circuit 
V3.0= Firmware
version  
4/12= Date
firmware was
written	

Command Function Callback Description

�48

The EC circuit must be calibrated by the SW in the following order:

1. Set Sensor type

2. Calibrate for a dry sensor

3. Calibrate for a high side reading

4. Calibrate for a low side reading.

!
All of the data is stored on the circuits EEPROM memory and will not be lost during power down.

!
!
TABLE 8. EC Circuit Calibration Commands

!

The commands used only during calibration are listed in Table 8. When calibrating we wait five

minutes before sending the reading to the circuit. It takes this amount of time for the EC readings

to stabilise.

!
The calibration of the EC circuit is conducted in the class ECCalibrateScreen. During the

calibration stage, access to calibration solutions will be needed.

The waiting of the five minute period is asynchronous from a HW and SW point of view. During

this time the UI will be updated every three seconds informing the user how long is left of the

calibration process. The user will not be able to do anything except wait for the calibration to be

done. The updating of the UI is done so that the user does not think that the device has frozen.

Command Function Callback Description

P,1 Tell the circuit it is
of type 0.1

K0.1 All OK

Z0 Informs the E.C.
Circuit to
calibrate for a dry
Sensor.

Dry Cal Calibration Done

Z30<CR> High side
calibration for
3,000 solution

90,000 μs/cm cal Calibration Done

Z2 Low side
calibration for
220 solution

220 μs/cm cal Calibration Done

�49

During this time though, the SW still polls the HW in order to get the EC level and it will only set

the EC level for that calibration when the time has expired.

!
4.10 pH Probe
!
The pH probe [19], like the EC probe does not use its own library as all communication with it is

done over the serial port. The baud rate is 38400.

!
The following commands are used to control the pH circuit. For example R - tells the pH circuit to

return a single pH reading. This instruction takes 378ms to complete. An example is the

following.

!
inputstring = "R\r"; //Command to get reading

Serial2.print(inputstring); //send command to sensor.

!
The pH circuit and the EC circuit are both made by the same manufacturer. As can been seen

from the section on the EC probe, there are many similarities between these two probes.

!
Again all commands must end with a carriage return. This tells the pH circuit that we have sent

our command.

!
For most commands the circuit will respond with the serial ports callback function. Assuming we

are using serial port 2, this would be void serialEvent2(). This callback function is

only called every time the main loop function has ended.
!
After sending the command R, the circuit will respond with “XX.XX”. This is the current pH value,

e.g 7.5. If the pH circuit reads a pH that is out of range, it will respond with the error message

“check probe”.

!
As with sending the command, each response ends with a carriage return (<CR>). This way my

software knows that the full response has been received.
!

�50

In the serialEvent2 function we get the results of what the circuit has done. In some cases

it gives us the data we asked for and in others it is just a conformation that everything went as

expected.

!
The other commands and responses are summarised in the table below.

!
TABLE 9. pH Circuit Commands

!
Command Function Callback Description

R Instructs the pH
circuit to return a
single pH
reading.

xx.xx Where xx.xx is
some pH value. 	

TT.TT By transmitting a
temperature to
the pH circuit a
temperature
compensated
reading will be
returned.

xx.xx Where xx.xx is
some pH value. 	

Temperature data
will be lost if the
circuit loses
power.	

�51

!
The pH circuit must be calibrated by the SW in the following order:

1. Calibrate in a pH7 solution.

C The pH circuit will
operate in
continuous mode
and deliver a pH
reading every
378ms until the
“e” command is
transmitted.

xx.xx If the pH circuit
detects that a pH
sensor is not
connected or
damaged it will
respond with the
error message
“check probe”	

E Stops all
readings and the
circuit enters
standby mode.

None The pH circuit
will respond by
ceasing data
transmission.
There is no ASCII
response to this
instruction	

X Does a factory
reset of the
circuit.

reset The pH circuit will
respond “reset”

I Returns
Information about
the circuit.

P,V5.0,5/13 P =pH Circuit 
V5.0= Firmware
version  
5/13= Date
firmware was
written	

Command Function Callback Description

�52

2. Calibrate in a pH4 solution

3. Calibrate in a pH10 solution

!
All of the data is stored on the circuits EEPROM memory and will not be lost during power down.

!
TABLE 10. pH Circuit Calibration Commands

!

The commands used only during calibration are listed in Table 10. Calling any of the commands

when the pH sensor is not immersed in the correct pH solution will calibrate the pH circuit to an

arbitrary value and can lead to significant errors.

!
When calibrating, we wait three minutes before sending the reading to the circuit. It takes this

amount of time for the pH readings to stabilise.

!
The calibration of the pH circuit is conducted in the class pHCalibrateScreen. During the

calibration stage, access to calibration solutions will be needed.

The waiting of the three minute period is asynchronous from a HW and SW point of view. During

this time the UI will be updated every three seconds informing the user how long is left of the

calibration process. The user will not be able to do anything though except wait for the calibration

to be done. The updating of the UI is done so that the user does not think that the device has

frozen.

!

Command Function Callback Description

S Instructs the
circuit to calibrate
for pH7 solution.

7.00 All OK

F Instructs the
circuit to calibrate
for pH4 solution.

4.00 Calibration Done

T Instructs the
circuit to calibrate
for pH10 solution.

10.00 Calibration Done

�53

During this time however, the SW still polls the HW in order to get the pH level and it will only set

the pH level for that calibration when the time has expired.

!
4.11 The Main Loop Controller
!
The controller is the main loop of an Arduino sketch. It acts as a way to link the UI and the

engine together. The best way to explain it is by showing it:

!
void loop()

{

 simpleTimer.run();

 loopCounter++;

 //Check sensor information every 5s (0.1s*50)

 if((loopCounter%50) == 0)

 {

 loopCounter = 0;

 //Get/update the sensors information

 Hydro_Eng.pHLevel();

 Hydro_Eng.airTemperatureHumidity();

 Hydro_Eng.dateAndTime();

 Hydro_Eng.waterTemp();

 Hydro_Eng.lightValue();

 Hydro_Eng.ECLevel();

 }

!
 //If the sensors or time have updated some values we may

need to show

 //those on the UI

 if(Hydro_Eng.doesScreenNeedUpdating())

 {

 //Update the UI of the latest Sensor Info

�54

Hydro_UI.updateInfoFromSensors(Hydro_Eng.getSensorInformat

ion());

 //Update the screen with the new info.

 Hydro_UI.refreshScreen();

 //Inform the engine that the UI has been updated.

 Hydro_Eng.screenUpdated();

 }

 //Any bigger delay and touch screen does not respond.

 //Quick enough.

 delay(100); //loop every 100ms/0.1s

 //If the screen is touched.

 Hydro_UI.CheckForScreenTouch();

 }

!
The controller is pretty straight forward. It gets the latest values from the HW sensors and if they

have changed from the last update, then the UI will be updated with that information.

!
The sensors are checked every five seconds as this is often enough to get an impression of live

continuous updates. The timer, which is shown on the screen only has to the minute accuracy

and so poses no problem.

!
The delay is added as this will put less stress on the HW and will reduce the power output of the

device somewhat. If the value is any bigger, then there is a noticeable affect on the UI in that it

does not respond to touches quick enough.

!
The value updates for the EC and pH level do not come direct from the HW libraries but via the

serial port callback void serialEvent2() for the pH level and void

serialEvent3() for the EC level.

!
!
!

�55

5 DISTRIBUTION OF THE SW
!
!
The SW license used for the whole project is the GNU v3 license. This was chosen as it is full

copyleft. This means that all derivative works coming from this, must themselves be open

sourced and free to be modified.

!
The lesser GNU license was disregarded as it would mean that the propriety SW could link to one

of my libraries, so being a disadvantage to free SW in general.

!
This SW license is well used and endorsed by numerous organisations involved in the open

source and free SW movement. Therefore, it seems like a safe option from a legal point of view.

!
The project will be hosted on GitHub at this location [26]

!
This includes the SW as well as the HW layout files. In this way the whole project is open

sourced and not just the SW.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�56

6 UI USABILITY STUDY
!
!
The UI will be designed to make the product enjoyable to use. The graphics used will be limited

however due to the restrictions of the HW. This is something that will form the basis of future work

and is out of scope for this thesis. For example, making use of the SD card to load more fancy

graphics.

!
In order to ensure that the UI would be easy to use, a UI test plan was made and people, who

knew nothing of the design, were used to try it out.

!
This chapter details the evaluation of the UI which has been created for the hydroponics

controller and needs usability testing. When tested here, the UI was in early phase development

and the results were used to see how easily the user can accomplish two tasks. Based on the

results, the UI can be changed in order to increase the usability of the system. The two tasks that

we will focus on here are,

!
• Calibrating the EC (Electrical Conductivity) HW ready for use

• Setting which pH levels are required

!
These two tasks have been chosen as they very closely match other operations that must be

carried out on the device. For example, setting up the pH HW and setting the air, water and EC

levels are all pretty much similar. So by executing these two tests a large part of the UI is tested.

!
The final goal of this study is to make the device more pleasurable to use. The feedback

gathered from the usability tests will be put back into the development of the system. It is hoped

that this cycle will continue until the development is complete. Only one cycle is detailed here but

the methodology will remain the same.

!
!
!
!
!

�57

6.1 Usage Scenarios

!
In this usability study we will detail two use cases. Many of the operations in the system

resemble each other and for this reason our use cases have been chosen to cover as much of

the UI usability as possible.

!
Typically, the user will use the controller when they have renewed the water in the tank or when

they have changed the plants that they are growing. Again our choices of use cases to examine

will cover both of these scenarios and so hopefully covering the maximum functions of the

system.

!
The first test: Calibrate the EC level
!
In this use case, the user has just changed the water for use when growing. Typically, a user

would change the water every few days in order to ensure that the quality remains good enough

for growing plants. The first step is to navigate to the EC screen and find the calibration screen.

We assume in each use case that the user will start from the home screen.

FIGURE 6. The Home Screen
!

�58

This is a pretty reasonable thing to assume as the home screen is where most of the device will

spend its time as this is the screen where the user gets details of the current levels and where

warnings will be shown if a certain level becomes too high or low.

!
As can be seen in Figure 6: There are four red circles, which tell the user that the given levels

are out of range for what they have set and when in range, they are green. They also double up

as buttons to navigate to the setup screens for that feature. By clicking the setup button, the user

can also navigate to the setup screens. The setup menu takes the user to Figure 7, and from

there, you can access the same features as the home screen plus a few more.
!!

FIGURE 7. The Settings Screen
!
Starting from the home screen the user has to then go to the EC screen. As said, there are two

ways to do this:

!
!
1. Just click on the EC circle from the home screen

2. Click on Settings and then EC

�59

In this scenario we will see if the user finds it easy to understand that they can click on the red

circle to get to the EC screen.

!
Once on the EC screen, the user then has to press the settings button and then the calibrate

button.
!

!
FIGURE 8. The EC Screen — Press Settings
!!!!!!!!!!!!!!

�60

FIGURE 9. The EC Settings screen - The calibrate button is bottom right
!
!
!

FIGURE 10. The start of the EC calibration
!!!

�61

After this, there is a calibration screen with instructions on what the user needs to do in order to

perform the calibration of the EC. Each screen will wait until the user presses the screen, at

which point the device will automatically save the data from the EC sensor and move on to the

next phase. The order of the phases and the time the user has to wait has been determined by

the HW sensor and so this part of the test case is fixed and cannot be changed even if it affects

usability. Each screen will give feedback on how much time is left until it is complete. It displays a

message “ x seconds left unit completion”. The note is updated every three seconds. As it takes

some time for the readings to stabilise, each phase of the calibration system will take some time,

usually around five minutes. At the end of the process the user is informed and the user may

exit. There are four phases in total, phase one is shown in Figure 10.

!
!
In addition to using the device, the system will give instructions on how the HW probe is to be

used to ensure that the calibration goes smoothly. In the usability study, how easily the user can

follow the instructions and put the HW probe into the right position was monitored.

!
This is the same process as when calibrating the pH level. The actual details given in the phases

of the screens are different but the process and layout of the calibration from the UI point of view

is the same. So, here we can see how both of these processes will work.
!!
Test 2: Setting adequate pH level settings
!
In this use case scenario the user has just changed which plants are growing and they need a

different pH level than the one which were there before. In order to change the pH level, the user

needs to navigate to the pH screen.

�62

!
FIGURE 11. The pH control screen
!
So, starting from the home screen, the user has to then go to the pH screen. There are two ways

to do this:

!
1. Just click on the pH circle from the home screen

2. Click on Settings and then pH

!
Once on the pH screen the user will be presented with two boxes, one that says min and the

other max. These boxes display the maximum and minimum at which the pH level is allowed to

go before the system will give an alert to the user informing them that they need to raise or lower

the pH level. The user can change the levels by pressing the plus and minus icons to the right.

The user then saves the changes by clicking on the Save button.

!
The same process applies when setting the air and water temperature as well as the EC level.

So, this one test case in essence tests the usability of all of these options.

!
�63

Again the main focus here will be to see how easily the user can understand the screens

meanings and do the required tasks.
!
6.2 Description of Test Procedure

!
As I am the person who has created the UI, I was not going to be the person who tested the

system. Instead a third party, who has never used the system did that and I made observations

based on their usage. This way it was ensured that a real test of the system took place as I am

too familiar with the system myself.

!
I told the person which task is required and I made notes on how the task was accomplished and

noted down any problems that were raised. The user was able to ask questions although I did

not answer them but just deferred them until after the test was over.

!
I sat with the user during the test just to make notes on how the user was trying to figure out what

to do and where they might get stuck or find something difficult to use. In addition, the user

chosen was not a computer guru and generally finds technical things daunting. From this point

of view too, they represented an average user.
!
6.3 Observations of the Execution

!
From the tests carried out I made the follow observations:

!
• The red/green circles that represent if the levels are in the predefined range made sense as

short cut keys.

• The circle buttons for min and max were confusing. The user thought the rectangle squares,

which represent the values were the buttons as all the other buttons were rectangles except for

those which are circles here. It took some time for the meanings of those buttons to be fully

understood.

• The save button was confusing as the user did not understand that it means go back.

• The calibration screens made sense and the feedback telling the user how much time is left

worked well and the user just waited for the process to finish.

�64

• The user did not fully understand what calibration was. Although a manual would clear this up,

it may be useful just to add a few lines in the start process to ensure that the user actually

wants to do this.

• After exiting the calibration screen, you go back to the EC screen and not to the home screen.

Although this is part of the hierarchy, the user did not remember this.

!
From these observations I have selected the three most important ones based on the amount of

confusion that it caused to the user.

!
1. I need to make sure that all the push buttons look the same.

2. As I am restricted in space, I need to use icons that would better represent, for example

Save and Exit together.

3. I could add some text as to what calibration means to the start of the process as this way the

user knows what is about to happen. Although a manual may solve this, many people will

not read that.
!
6.4 Recommendations

!
The first problem can be cleared up by following the “Golden rules of interface Design” rule 1

Strive for consistency, as outlined in [8]. In this case I need to ensure that all the buttons have the

same look and feel and do not just surprise the user with a change in this convention on a few

screens.

!
The second problem is fixed by following the rule “Consistency and standards” as stated in [9]. I

need to use words as they are defined and not assume that people will realise that saving means

closing the dialogue.

!
The third problem too, can be solved by following the rule “Help and documentation” as outlined

in [9]. Although documentation will be provided with the device, giving some help within the

device itself will ease the burden on the user in using the device.
!!!!

�65

6.5 Usability Conclusion

!
A lot of lessons were learnt from doing this test. Being too familiar with a system can bring

negative side effects from a UI point of view, when you are developing it as well. Trying to make

the UI a bit different in terms of adding some different buttons seemed like a good idea as I

thought it would make the UI more interesting but all it did was make it more confusing.

Assuming too much was a mistake I also made, when guessing that people would think saving a

screen would therefore mean exiting it too.

!
Some lessons learned were positive though, like giving feedback to the user informing how much

time a process will take was well received. It seems like those golden rules outlined in the

references really are golden. In the future I will make sure that my UI design adheres to those

rules as they have been built up over many projects and years, they most certainly are worth

keeping in mind.

!
I need to be creative with some of my icons. I cannot afford to have a lot of text, yet I need to give

the user some indication on what the buttons do. I will need to study more in these areas to

make my UI more standard in order to communicate meanings better.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�66

7 BUILD MANUAL
!
!
This section details how the HW can be built and the SW installed. It has been made relatively

easy. The only difficult stage is that of soldering. If the soldering is not done correctly, then the

device will not work at all or will be unstable. A soldering iron, solder and a screw driver are the

only tools needed.

!
Before building the device you will need to have the circuit board made.

!
The best way to do this is to get the Fritzing file from [26] and then order the PCB directly from

them. This has been tested and is guaranteed to work. Other alternatives are to generate some

Gerber files and have the circuit board manufactured elsewhere or print off the version as a PDF

and etch your own version of the printed circuit board.

!
The bill of materials, with recommended places to buy the HW is shown in table 11 below. The

Arduino Mega can also be replaced with a clone. This is legal and can be much cheaper. Some

clones are on sale for only 10 Euros.

!
If you choose not to buy from the location example, you must still buy the actual HW devices, for

example a DHT11 temperature circuit. Other similar circuits like DHT12 may or may not work.

Likewise for the pH and EC circuits, other versions may work just fine from Atlas Scientific but be

sure to check that first.

!
!
!
!
!
!
!
!
!
!

�67

TABLE 11. Bill Of Materials

!
Quantit

y
Component Price in Euros Location (Example)

1 pH Stamp 21 https://www.atlas-scientific.com/
product_pages/embedded/ph.html

1 EC Stamp 32 https://www.atlas-scientific.com/
product_pages/embedded/ec.html

1 TFT Screen +
Shield

17 http://www.sainsmart.com/sainsmart-3-2-
tft-lcd-display-sainsmart-tft-lcd-
adjustable-shield-for-arduino-2560-
r3-1280-a082-plug.html

1 DHT11 1.86 http://www.fasttech.com/products/
0/10000007/1144101-dht11-arduino-
compatible-digital-temperature-humid

1 RTC DS1307 13 http://www.adafruit.com/products/
255#Distributors

3 Wireless Plugs 27,90 http://www.verkkokauppa.com/fi/product/
9502/cctjg/Nexa-PB3-kauko-ohjattava-
virtakytkin-3-x-2300-W-230-V

1 Transmitter/
Receiver

1 http://www.aliexpress.com/item/RF-
wireless-receiver-module-transmitter-
module-board-Ordinary-super-
regeneration-315-433MHZ-DC5V-ASK-
OOK-10pair/705027555.html

1 Arduino Mega 48 http://www.lawicel-shop.se/prod/Arduino-
Mega2560-R3_854098/Arduino_63894/
ENG/EUR

1 Enclosure 5 e

1 Water Temp 3 e

2 BNC Adapters 12 https://www.atlas-scientific.com/
product_pages/components/bnc.html

20 Dupont wires 5 e http://www.fasttech.com/products/
0/10002017/1144700-female-to-
female-40-pin-dupont-breadboard-jumper-
w

1 PCB Board 25e Fritzing

1 Arduino
Stackable
Header set

2e

TOTAL 266,76

�68

https://www.atlas-scientific.com/product_pages/embedded/ph.html
https://www.atlas-scientific.com/product_pages/embedded/ec.html
http://www.sainsmart.com/sainsmart-3-2-tft-lcd-display-sainsmart-tft-lcd-adjustable-shield-for-arduino-2560-r3-1280-a082-plug.html
http://www.fasttech.com/products/0/10000007/1144101-dht11-arduino-compatible-digital-temperature-humid
http://www.adafruit.com/products/255#Distributors
http://www.verkkokauppa.com/fi/product/9502/cctjg/Nexa-PB3-kauko-ohjattava-virtakytkin-3-x-2300-W-230-V
http://www.aliexpress.com/item/RF-wireless-receiver-module-transmitter-module-board-Ordinary-super-regeneration-315-433MHZ-DC5V-ASK-OOK-10pair/705027555.html
http://www.lawicel-shop.se/prod/Arduino-Mega2560-R3_854098/Arduino_63894/ENG/EUR
https://www.atlas-scientific.com/product_pages/components/bnc.html
http://www.fasttech.com/products/0/10002017/1144700-female-to-female-40-pin-dupont-breadboard-jumper-w

Once the circuit has been made up, the software can be downloaded as described in the chapter

9.If you do not have the Arduino IDE installed on your computer then download it from the

Arduino website.Next you will need to make sure that the following external libraries are in the

Arduino Libraries folder [7], [17],[20],[21],[22],[23],[24],[25]

!
After this open the file HydroControl_UI.ino and then click verify. If there are any errors, most

likely due to a missing package then solve them. Once it compiles, attach the Arduino to the

computer and click upload.

!
After this you should see the main screen. The first steps to do are to set the time and calibrate

the pH and EC circuits.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�69

8 PROBLEMS FACED
!
The use of the DS3017 RTC caused too many problems with timing issues. The timings were

irregular and it was difficult to use SW to counter balance them. As stated earlier, the DS3234

was used instead.

!
A Phidgets pH board was used first as this was a few Euros cheaper. However the quality was

much lower as the calculations for the exact pH level had to be done in the SW. The Atlas

Scientific circuits do all the calculations on the HW and they come with a lot more features. The

calibration is also much easier with the Atlas Scientific, using the Phidgets board requires the SW

to do all of the calculation. This would have increased the code complexity and size too much,

therefore it was considered better from a quality point of view to just buy the better HW.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�70

9 FUTURE DEVELOPMENT POSSIBILITIES
!
There are numerous enhancements that could be made to the HW and SW. It is possible to:

!
1. Add internet support and update the readings to a server.

2. Create a computer application that can be used to read the readings from the HW and display

them nicely to the user.

3. Give BT support so that the controller can interact with phones and computers.

4. Improve the UI graphics.

5. Provide multi-language support.

!
These are some of the things that can be developed in later versions of the SW and HW.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�71

10 CONCLUSIONS
!
This thesis considered what hydroponics is and what are the key ingredients to successful

hydroponics growing. The findings from this study were used as inputs to the SW and HW design

of the controller.

!
The HW was then sourced so that it could meet these requirements — for example, by answering

questions such as whether they tolerate the right temperatures? Do they have enough accuracy?

How do you communicate with them? and What is their price?

!
The controller was chosen as the Arduino Mega 2560 due to its support, open nature, large array

of pins and interrupts as well as its large space for SW. A circuit was made up after prototyping on

breadboards as this will help others to build a more robust system. The plans for this have been

shared with the code and others can easily make up their own circuit from this.

!
The SW was then developed based on the HW features, for example, the pH and EC circuits use

the serial ports, and the RTC the SPI interface, etc. First, any existing open sourced SW that

could drive these devices were sought. The benefit being increased quality and development

time. The UI and the HW code was not mixed together to ensure that at a later stage the HW can

be updated with little work to the UI.

!
A UI usability report was conducted to ensure that the device is easy and intuitive to use. The

feedback from this report was fed back into the development of the SW. Further development of

the project could include developing the interface even more.

!
The last stage was that of testing, the main testing was done by emulating real world scenarios

and seeing if the device would work as expected. Ideally unit tests would be developed to ensure

that all of the code is covered as it is being written. If the project was done from the start again, I

would start the project as a test driven development project.

!
!
!
!

�72

REFERENCES

!
[1] Dr. Hector Munoz. (2010). Home Based Vegetable Production System. Date of retrieval

28.01.2014

http://www.iica.int/Eng/regiones/caribe/guyana/IICA%20Office%20Documents/Hydroponics

%20Manual/Hydroponics%20Manual.pdf.  
[2] Hydroponics. Date of retrieval 22.02.2014 
http://en.wikipedia.org/wiki/Hydroponics

[3] EC vs TDS. Date of retrieval 19.03.2014 
http://www.hydroponics.net/learn/debate_over_ec_and_tds.asp

[4] Fernandez, D. 2009. FAQ - Electrical Conductivity (EC) in Hydroponics. Date of retrieval

19.03.2014 
http://scienceinhydroponics.com/2009/02/faq-electrical-conductivity-ec-in-hydroponics.html

[6] Short Range Devices. Date of retrieval 18.06.2014 
https://en.wikipedia.org/wiki/Short_Range_Devices

[7] Karlsen, H 2014. UTFT Library. Date of retrieval 09.04.2014 
http://www.henningkarlsen.com/electronics/library.php?id=51

[8] Shneiderman, B. The Eight Golden rules of Interface Design. Date of retrieval 06.08.2014 
http://www.cs.umd.edu/~ben/goldenrules.html

[9] Nielsen, J. 1995. 10 Usability Heuristics for User Interface Design. Date of retrieval

06.08.2014 
http://www.nngroup.com/articles/ten-usability-heuristics/

[10] our.Windowfarms. Date of retrieval 26.02.2014 
http://our.windowfarms.org

[11] Fernandez, D. 2013. HydroBuddy. Date of retrieval 22.02.2014 
http://scienceinhydroponics.com

[12] 2013. HydroCal. Date of retrieval 22.02.2014 
http://hydrocal.sourceforge.net

[13] DHT11 Humidity & Temperature Sensor. Date of retrieval 01.02.2014 
http://www.micro4you.com/files/sensor/DHT11.pdf

[14] DS18B20 Programmable Resolution 1-Wire Digital Thermometer. Date of retrieval

12.02.2014  
http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf

�73

http://en.wikipedia.org/wiki/Hydroponics
http://www.hydroponics.net/learn/debate_over_ec_and_tds.asp
http://scienceinhydroponics.com/2009/02/faq-electrical-conductivity-ec-in-hydroponics.html
https://en.wikipedia.org/wiki/Short_Range_Devices
http://www.henningkarlsen.com/electronics/library.php?id=51
http://www.cs.umd.edu/~ben/goldenrules.html
http://www.nngroup.com/articles/ten-usability-heuristics/
http://our.windowfarms.org/
http://scienceinhydroponics.com/
http://hydrocal.sourceforge.net/
http://www.micro4you.com/files/sensor/DHT11.pdf
http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf

[15] Extremely Accurate SPI Bus RTC with Integrated Crystal and SRAM. Date of retrieval

16.05.2014 
http://datasheets.maximintegrated.com/en/ds/DS3234.pdf

[16] A Brief Introduction to the Serial Peripheral Interface (SPI). Date of retrieval 16.05.2014 
http://www.arduino.cc/en/Reference/SPI

[17] Karlsen, H 2014. UTFT Library. Date of retrieval 08.03.2014 
http://henningkarlsen.com/electronics/library.php?id=51

[18] Micro footprint electrical conductivity total dissolved solids salinity monitoring subsystem.

Date of retrieval 12.04.2014 
https://www.atlas-scientific.com/_files/_datasheets/_circuit/EC_Circuit_3.0.pdf

[19] Micro footprint pH monitoring subsystem. Date of retrieval 12.04.2014 
https://www.atlas-scientific.com/_files/_datasheets/_circuit/pH_Circuit_5.0.pdf

[20] Karlsen, H 2014. UTouch Library. Date of retrieval 03.02.2014 
http://henningkarlsen.com/electronics/library.php?id=55

[21] Karlsen, H 2014. UTFT_Buttons Library. Date of retrieval 03.02.2014 
http://henningkarlsen.com/electronics/library.php?id=61

[22] 2013. 433MHz for Arduino. Date of retrieval 03.02.2014 
https://bitbucket.org/fuzzillogic/433mhzforarduino/wiki/Home

[23] Karlsen, H 2014. DS3234 SW Library. Date of retrieval 19.06.2014 
http://henningkarlsen.com/electronics/library.php?id=71

[24] Dallas Temperature Control Library. Date of retrieval 14.05.2014 
http://www.milesburton.com/?title=Dallas_Temperature_Control_Library

[25] Robtillaart. 2013. A DHT11 Class for Arduino. Date of retrieval 14.05.2014 
http://playground.arduino.cc/Main/DHT11Lib

[26] Griffiths, M. 2014. HydroController. Date of retrieval 22.09.2014 
https://github.com/markcgriffiths/hydrocontroller

[27]Norman, N.A.(2002) The Design of Everyday Things. Basic Books

�74

http://datasheets.maximintegrated.com/en/ds/DS3234.pdf
http://www.arduino.cc/en/Reference/SPI
http://henningkarlsen.com/electronics/library.php?id=51
https://www.atlas-scientific.com/_files/_datasheets/_circuit/EC_Circuit_3.0.pdf
https://www.atlas-scientific.com/_files/_datasheets/_circuit/pH_Circuit_5.0.pdf
http://henningkarlsen.com/electronics/library.php?id=55
http://henningkarlsen.com/electronics/library.php?id=61
https://bitbucket.org/fuzzillogic/433mhzforarduino/wiki/Home
http://henningkarlsen.com/electronics/library.php?id=71
http://www.milesburton.com/?title=Dallas_Temperature_Control_Library
http://playground.arduino.cc/Main/DHT11Lib
https://github.com/markcgriffiths/hydrocontroller

