

Mike Vainio

Practical Framework for Continuous
Security

Metropolia University of Applied Sciences

Master’s Degree

Degree Programme in Business Informatics

Master’s Thesis

20.11.2023

Abstract

Author:
Title:
Number of Pages:
Date:

Mike Vainio
Practical Framework for Continuous Security
77 pages + 1 appendix
20 November 2023

Degree:
Degree Programme:

Master of Business Administration
Business Informatics

Instructor: Antti Hovi, Senior Lecturer

This thesis seeks to identify a structured way for integrating security seamlessly with
a DevOps driven software development and delivery process. Instead of relying on
specialised security personnel, this thesis describes methods and practices that aim
to be easy adopt and actionable for anyone working within the software development
or delivery process.

This thesis used applied action research as its research approach. The research
design consisted of five steps and three data collection rounds. The first data
collection round was for the current state analysis of the case company’s security
processes and practices, it consisted of one-to-one interviews, workshops, and a
survey. The second data collection round was for proposal building, it consisted of
peer-reviews, interviews and a workshop. The third data collection round for
validation of the initial proposal, it consisted of a workshop.

The current state analysis describes and analyses the case company’s existing
security processes and practices. The findings from the current state analysis helped
to identify areas for the literature and best practice search that resulted in building
the conceptual framework. The findings from both current state analysis and existing
knowledge helped to shape the initial proposal in the next stage, proposal building.

The proposal was built in three steps. First, initial scoping and planning was done in
small workshops to find a suitable structured approach to security that is relevant in
the case company's context. Second, the initial materials were distilled into a draft of
the proposal, and feedback and suggestions on the draft was gathered. Third, with
the feedback from the second step, the draft of the proposal was updated and more
practical information and examples were developed into the proposal.

As the outcome, the thesis demonstrated how security can be integrated into a
DevOps driven software development and delivery process via a security framework.
The identified structured way for integrating security practices into the DevOps driven
process provides both high level strategic guidance for effective communication and
low level practical guidance for actionable steps. The practical implementation of the
structured approach lays a foundation for secure implementations of future projects.

Keywords Cybersecurity, Security, DevSecOps, Continuous
Delivery

Contents

Glossary

List of Figures

1 Introduction 1

1.1 Business Context 1
1.2 Business Challenge, Objective and Outcome 2
1.3 Thesis Outline 2

2 Method and Material 3

2.1 Research Approach 3
2.2 Research Design 4
2.3 Data Collection and Analysis 5

3 Current State Analysis of Security Practices and Processes 9

3.1 Overview of the Current State Analysis 9
3.2 Description of Current State of Security Practices and Processes 10
3.3 Analysis of Current State of Security Practices and Processes 12

3.3.1 Software Security Lifecycle Phases 12
3.4 Key Findings from the Current State Analysis 19

3.4.1 Strengths and Weaknesses of the Current Security Practices and
Processes 19
3.4.2 Selected Key Areas for Improvements 20

4 Existing Knowledge on Securing Software Modern Software Delivery 22

4.1 DevSecOps 22
4.1.1 DevOps Driven Software Delivery Process 22
4.1.2 Continuous Integration and Continuous Delivery 23
4.1.3 DevSecOps 26
4.1.4 Shift Left Security 26
4.1.5 Test Driven Security 27

4.2 Software Security Lifecycle Phases 27
4.2.1 Develop 30
4.2.2 Distribute 30
4.2.3 Deploy 31

4.2.4 Runtime 31
4.3 Software Supply Chain Security 32

4.3.1 Signing 36
4.3.2 SLSA 37
4.3.3 SBOM 38

4.4 Secrets Management 39
4.4.1 Secrets Sprawl 40
4.4.2 Secrets Managers 41

4.5 Securing Source Code 41
4.5.1 Access Control 42
4.5.2 Monitoring 43

4.6 Conceptual Framework 44

5 Building Proposal for Continuous Security Framework for the Company 47

5.1 Overview of the Proposal Building Stage 47
5.2 Findings from Data Collection 2 48
5.3 Initial Proposal 51

5.3.1 Element 1 of the Initial Proposal: DevSecOps Culture and Methods 53
5.3.2 Element 2 of the Initial Proposal: Secure Software Development
Lifecycle Phases 55
5.3.3 Element 3 of the Initial Proposal: Foundational Security Practices 59
5.3.4 Element 4 of the Initial Proposal: Security Landscape 61

6 Validation of the Proposal 64

6.1 Overview of the Validation Stage 64
6.2 Developments to the Initial Proposal 65

6.2.1 Developments to Element 1: DevSecOps Culture and Methods 67
6.2.2 Developments to Elements 2: Secure Software Development Lifecycle
Phases 67
6.2.3 Developments to Elements 3: Foundational Security Practices 69
6.2.4 Developments to Element 4: Security Landscape 69

6.3 Final Proposal 70
6.4 Implementation 72

7 Conclusion 74

7.1 Executive Summary 74
7.2 Thesis Evaluation 76
7.3 Closing Words 77

References 78

Appendices

Appendix 1. Current State Analysis Survey

Glossary

CI Continuous Integration. Practice of testing changes from multiple

developers to find issues and conflicts as soon as possible. Term

continuously means it is done often, ideally multiple times a day.

CD Continuous Delivery. Term used to describe a way of working where

application code in a repository is always ready to be delivered, in other

words every addition to the code base (commit) is a potential release.

IaC Infrastructure as Code. Term used with tools that allow describing

infrastructure in text files, when the tool is executed it creates the

corresponding infrastructure resources.

SCM Source Control Management. System designed for storing and managing

source code, synonym for Version Control System.

VCS Version Control System. Synonym for SCM, system designed for storing

and managing source code.

List of Figures

Figure 1. Research design of this study. ... 4
Figure 2. Example Deployment Pipeline, re-drawn. (Continuous Delivery, p 3-4, 106).

 25
Figure 3. Re-drawn diagram of the Lifecycle Phases (CNCF 2022, 10, 12, 18). 29
Figure 4. Runtime Lifecycle Phase (CNCF 2022, 19). .. 32
Figure 5. Diagram of the amount of observed Software Supply Chain attacks between

2019-2023 (Sonatype 2023) .. 34
Figure 6. Supply Chain Threats. (SLSA.dev 2023). .. 35
Figure 7. Software Bill of Materials visualized along with baseline software component

information (Figure 1, NTIA 2020). .. 38
Figure 8. Conceptual Framework for a security framework. 45
Figure 9. Enhanced Deployment Pipeline. .. 54
Figure 10. Continuous Integration and Continuous Delivery scoped in the Deployment

Pipeline 54
Figure 11. Security Landscape ... 62
Figure 12. View of the Software Security Lifecycle Phases on the company´s website.

 72
Figure 13. Navigation bar of the website. ... 73

1

1 Introduction

With the ever-increasing threat of cyberattacks and data breaches, organizations must

start to take security more seriously than ever. Most organizations and individuals rely

on digitalized solutions in their daily operations that makes their life easier, or their

business prosper. Many also software applications also deal with and store sensitive

data, which must be protected from unauthorised access or exfiltration. Thanks to

advances technology such as ad hoc infrastructure available from Cloud Providers such

as AWS, and new methodologies in software development such as Agile and more

recently DevOps, applications are being deployed and evolved faster than ever and new

features make it to the hands of the users faster than ever. These users trust the

application vendors to deliver a secure and reliable experience, keeping the users credit

card and other personal information private.

Unfortunately, the increased speed in the software industry development and delivery

cycle causes significant challenges for security experts and their existing processes.

High performing development teams are deploying new releases of their software

multiple times per day, and there’s no time for a security audit when the deployments are

fully automated. (Forsgren et al. 2018, 42-43) It means, security practices and processes

must evolve to meet the needs of these high performing teams. IT professionals in

various roles should bake in security for all the processes and operations, however not

everyone has the experience and skills required to implement secure solutions on their

own. (Vehen 2018, 2-3)

This thesis studies how security practices can be integrated into the development and

delivery workflow of high performing teams practicing DevOps.

1.1 Business Context

Verifa is a small IT consultancy focusing on cloud architecture and continuous software

development and delivery processes. Instead of writing the software application itself,

Verifa consultants aid with the process of continuously integrating and delivering that

software. Helping teams reach their full potential and unlock bottlenecks in the process.

The software delivery process is meant to be largely automated with today's industry

standards and security should be considered in every step of the way from the source

2

code repository to the final deployment to a public cloud platform or a private cloud.

Verifa consultants need up-to-date and actionable knowledge on how to integrate

security into their consulting projects.

1.2 Business Challenge, Objective and Outcome

The business challenge is to identify right tools and practices that enhance the security

awareness and knowledge of the consultants, so that consultants know what security

practices to implement when working in customer projects. Also, consultants need this

knowledge to gain confidence that they can have the right approach, tools, and skills to

ensure security is baked into every customer delivery. Thus, the objective of this thesis

is to create a practical continuous security framework which would equip consultants with

the tools for effective customer communication and effective security practices for

implementing projects.

The outcome of the thesis is the first iteration of the continuous security framework which

can be taken into use in internal and customer projects. Creation of the framework should

also raise awareness around security and help with producing related marketing

material, such as blog posts. This first iteration can then be further evolved within the

company, guided by the feedback from various projects.

1.3 Thesis Outline

The scope of this thesis is to create a continuous security framework for all the

consultants of the case company since security affects every are of IT, although

consultants have with different specialisations and backgrounds. This thesis is

conducted by mixing implementation, data and feedback collection, and literature

research on existing knowledge.

This thesis contains seven sections. Section 1 is the introduction to the topic and the

business context. Section 2 describes the methods and materials used in this thesis.

Section 3 dives into the current state of security practices and processes of the case

company. Section 4 dives into literature on selected focus areas from the current state

analysis. Section 5 describes the initial proposal of the continuous security framework.

Section 6 is dedicated to testing and validating the initial proposal. Finally, Section 7 in

for the executive summary and the closure of the thesis.

3

2 Method and Material

This section describes the research methods, research design and data collection

methods used in this Thesis.

2.1 Research Approach

The choice of research approach and methods depends on the research problem.

(Kananen 2013, 28). The two most popular research families are quantitative research

and qualitative research. Quantitative research, as the name suggest, deals with

statistical analysis of numerical data. (Adams et al. 2013, 6) However, research

approaches are often a mix of quantitative and qualitative research methods.

Common research strategies include case studies and action research, which both utilise

quantitative and qualitative research methods. Action research aims at finding a practical

solution to a real business problem via change, whereas case study aims to merely

observe the phenomenon and produce knowledge. (Kananen 2013, 28-29, 37-39)

Applied Action Research (also known as Design Research) aims to research a business

problem by carrying on a development work and then researching that in the context of

the case company, without trying to generalise the results. Result from a such a study

can be a new product, service, concept or improved issues thanks to the change.

In this thesis, qualitative research methods are the main methods used in this Thesis.

Some quantitative elements are also used to analyse the numerical data from the data

collection, for example, data from a survey, but the majority of the methods used are

qualitative research methods and data gathered from interviews, workshops, along with

the analysis of internal documents and systems. Thus, Applied action research (also

known as Design Research) is used as the research approach of this Thesis. It fits well

into a thesis objective and a single iteration of its research design versus multiple

iterations such as in Action Research. The thesis aims to combine research and

development, and to produce a solution that can be evaluated by presenting the

implementation results and gathering feedback from different stakeholders for further

development. The solution is a security framework, and the author is involved in the

building of this framework working together with peer consultants of the case company.

4

2.2 Research Design

The research design of this thesis is a single iteration research and development process

split into five steps where each step has an input and output. Three of the steps in the

design include data collection that is then analysed during the step and affects their

outputs. Figure 1 below shows the research design of this study.

Figure 1. Research design of this study.

As shown in Figure 1, the design starts with setting the objective, which is creating a

framework for continuous security. The second step is the current state analysis which

is supported by data collected from internal staff interviews, workshops, and a survey. In

the current state analysis, the collected data is analysed, and the outcome of the current

state analysis are the strength and weaknesses and focus areas that feed into the

conceptual framework.

5

Step three is the conceptual framework where existing knowledge around the identified

focus areas is explored to find and identify suitable industry best practices and patterns

that could be utilised in the initial proposal. Outcome of the step three is the conceptual

framework.

Step four is the initial proposal which is again supported by data collected from internal

staff in the form of interviews, conversations, and development workshops. This data is

used for early feedback to guide the proposal design and implementation. Focus for the

initial proposal is to address the pains identified during current state analysis, address

low hanging fruits and implement the initial version of the security framework. Outcome

of the step four is the initial proposal.

Step five is the validation and testing of the initial proposal. Step five is again supported

by data which is collected from the internal testing of the proposal and from interviews

with peers and management, and internal workshops. Outcome of the step five is the

final proposal.

2.3 Data Collection and Analysis

This study draws from a variety of data sources, the data was collected in several

iterations over a time period of almost a year between fall of 2022 and fall of 2023. Table

1 shows the details of Data collection 1-3 used in this study.

6

Table 1. Details of data collection 1-3 used in this study.

Participants / role Data type Topic, description Date, length Documented as

Data 1, Current state analysis / scoping

Internal
stakeholders

Workshop (face-to-
face and online)

Current security practices.
Core security competences
and weaknesses.

Q3 2022, 1-1.5
hour sessions.

Field notes.
Interactive canvas
(excalidraw)

Peer Cloud
Architects

Interview (face-to-
face and online)

Current security practices.
Core security competences
and weaknesses.

Q1 2023, 30
minutes.

Recordings
(online), field
notes (face-to-
face)

Internal
stakeholders Survey Core security competences

and areas for improvement. Q1 2023 Survey analysis
notes

Data 2, for Proposal building (action)

Internal
stakeholders Demo

Overall structure of the
continuous security
framework.

Q1 2023, 1h
Field notes.
Interactive canvas
(excalidraw)

Peer Cloud
Architects Peer review Implementation details on

different elements.
Q1-Q2 2023,
15-30 minutes Field notes

Peer Cloud
Architects Interview

Suggestions and comments
on scope of the continuous
security framework.

Q1-Q2 2023,
5-15 minutes. Field notes

Data 3, from Validation

Internal
stakeholders

Workshop (face-to-
face)

Feedback on initial
implementation. Suggestions
for improvements and
clarifications to the
continuous security
framework.

Q3 2023, 1.5
hours. Field notes

As seen in Table 1, the data for the study was collected in three rounds: Data 1, Data 2,

and Data 3. Data 1 was collected for the current state analysis step, and Data 2 for the

proposal building step and finally Data 3 for the for the validation, testing and building of

the final proposal.

In the first round, Data 1 was collected to gain a deep understanding of the current

security processes and practices of the case company. The data was gathered using a

combination of interviews, workshops, and a survey. First, an online workshop was held

where the idea for creating a security framework was introduced to everyone present, all

case company consultants were invited to the workshop. Second, based on the

conversations in the initial workshop, few people were selected or individual interviews

as they had interest towards security and insights about current the security practices

and processes. The interviews were held both online and face-to-face, because of

different office locations face-to-face was not possible with everyone. Finally, a survey

7

was created and everyone in the case company was invited to take time to answer the

survey. The questions for the survey can be found in Appendix 1.

In the second round, Data 2 was collected to gather feedback on the implementation,

design, and scope of the proposal. The data was gathered using a combination of free-

form interviews, peer-reviews and a short workshop with technical consultants of the

case company. First, a workshop was held to get everyone’s opinions on the overall

structure of the continuous security framework and what the different elements would be.

Second, free-form peer reviews happened with consultants from the same office during

short co-working sessions with peer consultants that were interested in the topic. Finally,

free-form conversations that influenced the structure of the framework happened

organically at the office during the proposal building. All the feedback and suggestions

for Data 2 were gathered as field notes and some visual ideas for the structure captured

in an interactive canvas.

In the third round, Data 3 was collected to validate and test the initial proposal. Based on

feedback from this data collection, the final proposal was built. The data was gathered in

a workshop where the implementation of the initial proposal was presented and then

free-form feedback from peers was recorded as field notes. The Data 3 was collected

during a yearly company conference with most of the company staff present. The

continuous security framework was voted as one of the topics that would be in the

agenda as a workshop session. During the workshop a presentation was held that

consisted of demonstrating the initial proposal as the initial website implementation, after

the demonstration a free form feedback session was held when participants raised

various points of feedback and suggestions for next steps. The feedback was gathered

as field notes.

The interviews were carried out both online via video conferencing and face-to-face at

the company premises. The interview questions were prepared beforehand, and the

online interviews were recorded while field notes were made of the face-to-face

interviews to record the conversation. Also, workshops were held both online via video

conferencing and face-to-face. Workshops were always recorded as field notes. Finally,

Data 1 also included a survey which consisted of ultimately open-ended questions, but

some suggestions and ready-made example choices were given to the participants.

8

The biggest data collection effort and analysis effort was done in the first step for the

current state analysis to gain a deep understanding of the state of the current security

processes and practices of the case company. The findings of the current state analysis

are discussed in Section 3 below.

9

3 Current State Analysis of Security Practices and Processes

This section of the thesis analyses the current state of security practices and processes

at the case company. The description of current Security Practices and Processes

establishes the current way of working with regards to security in software development,

delivery, and operations of the case company. The analysis seeks to understand the

problems with the current ways of working and then find out what could be improved and

what is missing in order to enhance the security posture of all internal and customer

projects.

3.1 Overview of the Current State Analysis

The goal of the current state analysis is to establish the current state of the security

practices and processes, roles and responsibilities and tools used. To gather the data

for the analysis, internal interviews and workshops were conducted between January

and June 2022. Both internal and external projects (customer work) were discussed

during the interviews and workshops to identify common pains and frustrations in current

way of working.

First, interviews were carried out partly face to face and partly in an online meeting due

to the company employees locating in different countries. The online meetings were

recorded, and field notes were taken for both type of interviews. Second, a workshop

was conducted face-to-face in an internal conference with almost all employees present

in the workshop. The input from the workshop was written down as field notes

interactively during the session. Third, several short “opt-in” workshops were conducted

online with participants that were interested and available to join the discussion. The

input from the workshop was summarised in field notes and the meetings were recorded

for later reference. Finally, a survey was conducted to which half of the consultants

answered. The answers and statistics of the survey were stored in the survey tool itself.

The survey was intentionally the last data gathering phase so that the questions would

be informed by the data already gathered.

The current state analysis is split into two parts. The first part describes the current

practices backed by the data gathered and the second part analyses which development

areas were identified given the current state.

10

3.2 Description of Current State of Security Practices and Processes

The case company offers consultancy services for customer organisations that create

software applications, instead of writing those the code for those applications, the

consultants support that process in various ways. This can range from workshops with

Value Stream Mapping exercises to hands-on coaching and implementation work to

setup a tool that a team needs. Often some amount of strategical coaching and

consulting is needed to truly discover the bottlenecks and waste in the current way teams

of the customer organisation are working and build a road map before any hands-on

implementation can be started.

The case company consultants naturally have different backgrounds and specialisations,

but ultimately though, the technical aspects of a most customer projects consist of similar

concepts although tools and technologies would be different. Projects can be split

roughly two categories: Cloud and DevOps. The Cloud category consists of projects

where a customer is looking migrate into a cloud platform or improve their existing

processes and architecture around the cloud platform. The DevOps category is broader,

customer organisation might be struggling to adopt and evangelize a DevOps strategy

and culture in their organisation or customer organisation might need help with the

technical aspects of setting up new tools and driving user-adoption of those solutions.

Between the two categories there is also often overlap, many customer organisations

have realised that operating in a cloud platform with a lot of “as a Service” tooling

available, can provide a much-needed speed and agility to operations that can help to

foster a DevOps culture as opposed to operating in on premises data centres.

When it comes to technical, hands-on and architectural work the case company

consultants do need to work with security related concerns, but it’s rarely the main value

that a customer organisation is seeking from the delivery. Instead, customers are

interested in shipping higher quality software, faster and only last, securely. Security has

a value, but security done right is often transparent and not obvious that it’s done as part

of a larger design and implementation. Also, often specialised experts from the customer

organisation are brought in close to the end of an implementation project to audit or

review the security aspects of the design or implemented solution. Consultants work in

senior roles with customer organisation peers, such as Cloud Architects or Senior Cloud

Engineers and are there to guide the organisation on best practices in the technical and

cultural areas of Cloud and DevOps. Whilst security is present in the daily work for many

11

of the consultants, it’s not obvious how it should be included in customer work and how

security integrates with a DevOps strategy implemented on top of a cloud platform.

Next, some findings from the data collection from internal stakeholders are discussed,

diving deeper into the daily tasks of different consultants.

The interviews were done with consultants working on different projects, this was

intentional to gather a wide view of the current practices and processes, including various

customers and their requirements.

In the interviews, one of the questions was about how seriously we take security into

account in our customer work, in one of the interviews a consultants shared the following:

“We talk about security like it’s important, but in reality we have no established

way of doing security. I feel security could follow a common model for all

customer projects.” (Consultant 1)

The consultant is referencing to the fact that internally there is documentation or

guidance about security practices. But this does not mean that security best practices

are not followed or customer solutions would be insecure, it is just not well defined within

the organisation what those practices are. Another interview questions was do we

explicitly include security in the design and implementation for customer projects. The

same interviewed consultant replied:

“It depends fully on the consultant. We do some basics like firewall

configurations consistently, but not much more than that.” (Consultant 1)

In a workshop, when talking about how our customers approach security we could see

a common trend of companies trying to “shift left” with security, meaning security scans

and other activities would happen earlier in the software development process. However,

these initiatives were just known for the consultants, and they had no actual impact in

their workflow during development. At the same time in the interviews, it was clear that

customers deeply care about security and see it critical for business continuity. Where

these initiatives do show is when a centralised security team does scanning of

infrastructure and application landscape.

12

Overall, we could quickly derive that our consultants don’t work on directly security

related tasks other than very rarely or when it’s triggered by an event/request external to

the development team that the consultant is in (for example a mandatory review before

going into production with a new service). Security is often an afterthought which is dealt

with if time and resources allow, and consultants don’t have a concrete view of the

security posture, nor do they get continuously feedback during development on security

posture of the code.

During the workshops it was also discussed if security tooling is something that

consultants want to work with, and the answer was purely positive, this is something that

should be paid more attention to. In an interview one consultant shared his view on what

kind of impact that might have as well:

“Yes, it's like CI [Continuous Integration] - first you think who needs that, then

you do it and you start to long for it.” (Consultant 2)

Although it was clear that security is a key non-functional requirement for any project and

many consultants expressed, that they feel they don’t have the necessary knowledge.

And the survey results show that security tasks either don’t exist or they have low priority.

3.3 Analysis of Current State of Security Practices and Processes

This analysis categorizes the findings from the data gathered during interviews,

workshops, and the survey. The analysis tries to point out pain points and potential points

of improvement.

3.3.1 Software Security Lifecycle Phases

In order to structure the findings of the most technical parts of the current state analysis,

the lifecycle of modern software development, operations and maintenance is split into

lifecycle phases and foundational security practices. In this thesis, the lifecycle phases

are presented as a modified version of the lifecycle phases described in the CNCF Cloud

Native Security Whitepaper, the original lifecycle phases from the whitepaper are

examined in the existing knowledge chapter, and the modified model is explained in the

proposal chapter.

13

The four lifecycle phases are: (1) Develop and Integrate, (2) Test and Distribute, (3)

Deploy, and (4) Monitor. The current state analysis findings will be discussed next under

each of these categories to present and analyze them more clearly in the structure of

several upcoming sections of the thesis.

3.3.1.1 Develop and Integrate

As the consultants of the case company don’t write application code, the findings in the

CSA are related to other type supporting code and configuration that does not directly

go into the running software products of the customers. The case company consultant

development consists largely of Infrastructure as Code (IaC) configuration, internal tool

development and Continuous Integration (CI) and Continuous Delivery (CD) pipelines.

In a workshop conducted by most of the case company consultants present, a consultant

shared an experience of using a tool for static analysis of Terraform configuration using

an open-source tool.

“I run a scan with tfsec in my previous project for the IaC I had implemented

for them and the results from the scan were useful, however I only did it

once” (Consultant 3)

This example shows that tools that are easy to run and available for free are very useful

when they are run. But unfortunately, they are not run continuously which means the

feedback might come too late and refactoring of the configuration is needed after work

is considered finished, instead of during the work, which causes rework. Then, there’s a

need to go back and change the configuration because a security flaw is discovered.

In a workshop, there was a discussion on what existing practices the consultants practice

what is important for security. Surprisingly it was nothing directly security related that

was found. Rather it was discovered that working in a certain way enables the use of

security tools that can do static analysis. All the consultants are committed to using best

practices for the technical aspects of DevOps and Continuous Delivery, which means a

high level of automation and “Everything as Code” is the typical goal.

14

This was an important finding because it provides a firm foundation for the static analysis

tools, such as tfsec, to be used to automatically scan all the work done by the

consultants. When developing something new in small, iterative steps, a tool such as

tfsec could be introduced in the Continuous Integration pipeline. It is run on whenever a

commit is pushed to the Version Control System, providing timely and continuous

feedback to the developer and others working with the same codebase. If consultants

were not already practicing these best practices, it would be impossible to use tools early

in the process, and instead most likely the runtime environment would have to be

scanned after the infrastructure running and possibly already in a vulnerable state.

3.3.1.2 Test and Distribute

Between “Develop” and “Build and Distribute” phases, the scans might be very similar

as what can be checked directly when the code is developed if everything is written “as

code”. However, now it is also possible to build the project and run more long running

tests. During the interviews and workshops with the consultant, it was noticed that there’s

very little security related tests that they write, thus there was very little data gathered

about this topic. Instead of writing security related tests, most enterprise customers use

Commercial Off-The-Shelf (COTS) products that are integrated in the build and test

pipelines, or simply run on schedule. Some of the example tools discovered were: (1)

Black Duck, (2) SonarQube, and (3) JFrog Xray.

These tools check either the source code directly or the produced artifacts, naturally

some of these tools are also integrated in the Continuous Integration pipeline, but that’s

not possible if they scan produced artifacts from a build. Setting up these integrations

with tools is often done by the case company consultants.

In the interview with a consultant, he brought up that the customer is looking into using

an off-the-self solution to scan all container images and other software artifacts. One of

the benefits of using this solution is that it goes to work when built artifacts are pushed

into the system that holds those artifacts. This means there’s not much coordination

needed to enable this integration for different products as everyone is already using the

artifact storage system. This seamless integration with the existing workflow is seen as

an extremely useful perk of the system.

15

It was also discovered from the discussion that metadata from the build environment and

the artifacts produced are becoming increasingly important, and new steps are needed

to produce this sort of metadata.

Consultants of the case company are often very involved with the build steps, but still

they found that rarely they are responsible to implement security controls when pulling

in third party dependencies and introducing something like signing or producing SBOMs

(Software Bill of Material). However, lately there has been more demand from customers

and from the industry in software supply chain security, and many consultants see it as

a mandatory addition to their work in the near future.

During the workshop conducted with most of the case company consultants present, a

consultant shared that recently a new requirement was needed in the customer project

he was working in. The customer had a need to cryptographically sign all the artifacts

that go into their software product and in addition to signing they were also looking to

implement Software Bill of Material (SBOM) document to be created whenever a

releasable software artifact is built. This example shows that the software supply chain

security practices are starting to show up in customer projects, but consultants still

largely lack knowledge of how to approach these requirements in practice.

3.3.1.3 Deploy

During the deploy phase, the goal is to run pre-flight checks that make sure the

deployment configuration is secure. During discussions in workshops and interviews, it

was identified that there are two types of “pre-flight” checks that consultants had

experience with:

1. Kubernetes Admission Controllers

2. Built-in policy and compliance tools in Cloud platforms.

Kubernetes itself provides many platforms features you might expect from a cloud

provider, and thus it’s very popular to deploy an admission controller on a Kubernetes

cluster that can check deployment configuration for misconfigurations or insecure

defaults. Three consultants said they have worked with Kubernetes admission

16

controllers in the past and found them useful, although sometimes the writing the rules

proved challenging since the languages used for defining the rules are not that well

known to the consultants.

When consultants have been working in a public cloud environment, there might also be

some policies in the cloud platform that are used to enforce certain guardrails to avoid

insecure configurations. Defining these policies is not that common for the case company

consultants, instead re-usable and safe modules of configuration/code are more

common. However, having guardrails is seen useful and positive by most consultants.

Both the Kubernetes admission controllers and the cloud platform provided policy tools

are great in theory, but consultants expressed frustrations especially with one customer

that has a very broad set of policies set in their cloud platform subscriptions. When

working with these policies in the cloud platform it becomes very cumbersome to work

as the consultants are used to with other customers, as many things have to be done

either through raising a ticket or going through a custom self-service portal/API. During

the interview, a consultant working with this particularly policy-enforcing client expressed

their concern:

“Whenever there is friction, then the users are going to take a shortcut in

skip the process” (Consultant 2)

The consultants had seen many situations where these security guardrails prevent daily

work, if the policies get in the way of working. In this situation, the development teams

will look for alternative ways of achieving their goals and often succeed to shortcut the

process and end up lowering the security posture of the product or system.

3.3.1.4 Monitor

In the monitor phase, the solutions built by consultants are running in a cloud or on-

premises environment and they must be continuously monitored for unexpected

behaviour that might be caused by a threat actor targeting the solution.

Because consultants are rarely involved building and improving the monitor phase, the

findings from consultants are that every now and then they would receive feedback from

17

a centralized security team that some solution in the runtime environment has been

scanned or otherwise analyzed and what were the security findings. From the workshop

conducted with most of the consultants of the case company present, a consultant

shared the following experience:

“Security experts conducted an audit on the running system [after it had

been designed and implemented fully] and handed over a report with very

useful finding and suggestions for improving the security” (Consultant 4)

Clearly the security experts and the tools used did a great job and the feedback was

great. But the fact that the feedback came after the design and implementation was done

could have caused a substantial amount of re-work to alter the design and

implementation to fix the found security implications. In this case this was not the case,

only minor changes were needed which could be implemented quickly. The consultant

who shared the experience wished these audits would happen more frequently and

earlier in the design and implementation process. The automated parts of this audit could

perhaps be introduced in the CI/CD pipeline during “Test and Distribute” phase of the

lifecycle.

During the day-to-day activities in another customer project, a few of the consultants

from the case company were struggling with a similar audit and automated scanner

process which was mandatory for the solution they were responsible for building and

maintaining. In this case, the main issue was that this solution was a Commercial off-

the-shelf (COTS) product. All that the consultants could do would be to find ways to

mitigate the found issues if it was to be done at the load balancer or firewall level and

report the remaining issues to the software vendor. This audit was largely not relevant

for the consultants and better use of time would have been for the security findings to be

reported directly to the software vendor. In other words, a large portion of the time spent

discussing and analysing the findings was wasted, no meaningful improvements could

be made to the security posture.

These two wildly different experiences show that perhaps it would be better for the team

responsible for the solution/system to be more in charge the process of continuous

security scanning.

18

3.3.1.5 Foundational Practices

The results from the internal survey show that topics that fit into the foundational

practices are the ones that consultants find most important. In the survey, there was a

question about which security practice is the most important, with 11 different practices

listed covering all the phases of the secure software lifecycle and foundational practices.

The four most popular answers were all in the foundational practices category:

- Secrets Management (6 votes)

- Supply Chain Security (3 votes)

- Version Control System Security (3 votes)

- Peer Review (3 votes).

As the results show, secrets management is seen as the most important foundational

practice. In an interview with one of the consultants, secrets management also was

brought up when discussing customers´ security practices. A consultant shared an

experience where he has experienced secrets shared in plain text over chat applications

(such as Microsoft Teams). Of course, if there’s no dedicated tool for sharing secrets,

this is understandable as work must get done, but this could be improved certainly.

Software Supply Chain Security, Version Control System (VCS) security and peer review

were all seen equally important according to the survey results. In the survey, the

consultants were also asked which of these practices were most actionable. The results

show that VCS security and peer reviews are seen as easily actionable, but software

supply chain security is more difficult as consultants are not aware what could be done.

Secrets management is also a bit tricky because it in practice always requires changes

to everyone’s workflow and to get them to use a new tool, this was a challenge with one

customer. Many of the other consultants also agree that one of the biggest challenges

of improving a foundational security practice is that it often involves changing existing

workflows and way of working. The bigger the change, the more difficult this naturally is.

Finding the ways that have the least friction with existing workflow seems crucial.

19

3.4 Key Findings from the Current State Analysis

The findings from the current state are summarised below as strengths and weaknesses

identified, and then focus areas are selected for further studying to find improvements in

those areas.

3.4.1 Strengths and Weaknesses of the Current Security Practices and Processes

From the data and analysis of it, several key strengths and weaknesses were identified:

Strengths

1. Infrastructure as Code is valuable tool to quickly identify and fix security issues

with infrastructure.

2. Strong competence in CI/CD makes it easy to start implementing additional

security steps in pipelines.

3. Growth mindset, consultants are comfortable to learn the new tools and start

implementing new type of work (security).

4. Everyone cares about protecting secrets and tries to do their best at it, we also

have people with expertise on some popular secret management tools.

Weaknesses

1. Lack of experience with security tools and difficulties identifying suitable tools to

recommend and implement.

2. No security framework for what practices to adopt and at what point of the

lifecycle phases.

3. Security work is done ad-hoc instead of continuously, often triggered by an

external team either by automated scan or full security audit.

20

3.4.2 Selected Key Areas for Improvements

A continuous security framework is needed for consultants to have clear structure for

implementing security and communicating effectively with customers. Adopting

continuous practices will enhance the feedback loop from writing code to knowing the

security posture of it. Consultants need additional upskilling in security tooling and

practices, which makes it easier to integrate security tooling into their customer work.

Especially some foundational security practices that many of the consultants found

interesting should be further investigated and practical recommendations gathered, the

main areas would be secrets management and VCS security based on the survey

results.

Competence and knowledge of software supply chain security practices should be

improved to prepare for the demand already seen in one customer project. Additional

security checks can be easily incorporated into existing build and CI/CD pipelines, in

order to help consultants implement these additional checks the framework can help to

identify the right tools and provide guidance on the how-to. Some tools and processes

could happen earlier in the lifecycle and those could be “shifted-left” to happen earlier

and provide faster feedback.

After analysing the gathered data, identified strengths and weaknesses and other

findings from the conversations with the case company, the following five elements were

identified as specific focus areas for a literature review to discover applicable existing

knowledge:

1. DevSecOps

2. Software Security Lifecycle Phases

3. Software Supply Chain Security

4. Secrets Management

5. Securing Source Code Management.

21

Summarising the focus areas for this thesis: First, evolving from DevOps to DevSecOps

culture by extending continuous delivery practices to security. Second, practical security

practices to take during the different Software Security Lifecycle Phases. Third, Software

Supply Chain Security. Fourth, Secrets Management. Fifth, Securing Source Code

Management systems.

Next, in section 4 these focus areas will be discussed to prepare for Section 5, proposal

building.

22

4 Existing Knowledge on Securing Software Modern Software Delivery

This section of the Thesis discusses the existing knowledge on how to implement and

integrate security into modern DevOps driven software development process. It’s

important to understand that the case company focuses their consulting services around

improving the DevOps and Continuous Delivery practices of customers, thus it’s

essential for the thesis to find out how security related processes can be integrated into

those practices and workflows. In addition to focusing on integrating security into these

highly automated processes, it’s also important to find out what other fundamental

practices are important for software development and delivery teams in the modern day.

4.1 DevSecOps

In order to understand DevSecOps, it is first important to understand the original DevOps

movement and what are the core practices that go into a DevOps strategy and make it

highly effective for delivering reliable software at a fast pace. The next sub-section

introduces these concepts. After introduction to DevOps, the DevSecOps term and it’s

significancy will be discussed in a dedicated sub-section.

4.1.1 DevOps Driven Software Delivery Process

Modern day software development and delivery processes utilise a DevOps approach to

delivery software at high speed and volume. Mature organisations practicing DevOps

are known to deploy new versions/releases of their software services multiple times per

day.

DevOps is a way of thinking and a way of working, it’s a framework for enabling teams

to practice their crafts in effective and lasting ways. (Davis et al. 2016, 3.) A world where

product owners, development, QA, IT operations and infosec work together towards a

common goal and are always working on ways to reduce friction for the team. Creating

systems that enable developers to be more productive and get better outcomes, by

adding the expertise of QA, IT operations and infosec into delivery teams, and automated

self-service tools and platforms, teams can use that expertise without being dependent

on other teams. These are the outcomes that result from DevOps. (Kim et al. 2021, 2.)

23

Many think of DevOps as specific tools, but tools alone are not DevOps. What makes a

tool DevOps friendly is the manner of its use, not the tool itself. (Davis et al. 2016, 3.)

The foundation of DevOps come from Lean, the Theory of Constraints, and the Toyota

Kata Movement, but many also view DevOps as logical continuation of the Agile

movement that began in 2001. (Kim et al. 2021, 15.) DevOps borrows techniques such

as Value Stream Mapping and Kanban boards from Lean, which were techniques

codified for the Toyota Production System in the 1980s. These techniques are all focused

on how to create an efficient and effective flow of value to the customer. One of the key

principles in the Agile Manifesto (Agilemanifesto.org 2001), which was signed by the

leading thinkers in software development in 2001, was to deliver working software

frequently and emphasized small batch size and incremental releases instead of

waterfall releases. (Kim et al. 2021, 16-17.) One of the key metrics that teams practicing

DevOps should pay attention to is the deployment lead time, which is the time between

a code being checked into version control and that change successfully running in

production. Focusing on having the testing and operations happening simultaneously to

the design/development, enables fast flow and high quality when working in small

batches instead of large batches that are designed/developed ahead of time before

testing and operations. (Kim et al. 2021, 19.)

The 2017 State of DevOps Report shows that high performers deploy code 46 times

more often that low performers, which haven’t adopted DevOps effectively. The State of

DevOps Reports and the research behind clearly shows that when measured, the teams

practicing DevOps deliver software faster and with higher quality/less defects. (Forsgren

et al. 2018, 42-43.)

The main technical practices that teams should be practicing when practicing a DevOps

strategy is Continuous Integration and further, Continuous Delivery which takes

Continuous Integration to its logical conclusion, integrated and deployable software.

(Vehen 2018, 2-3; Farley et al. 2010, 4.) Next, these important practices will be

introduced in more detail.

4.1.2 Continuous Integration and Continuous Delivery

Continuous Integration was first introduced in Kent Beck’s book Extreme Programming

Explained which was published in 1999. The core idea of Continuous Integration is that

24

when multiple people work on the same code base, they should integrate their work as

often as possible. And the innovative solution to this was to use a centralised build server

that merges code from multiple developers and then runs tests to make sure the software

still builds and runs. If the automated Continuous Integration build and test process fails,

the development team should immediately fix the build before moving on with the

development tasks, which means Continuous Integration isn’t only a technical practice

or process that can be put in place without consensus amongst the development team.

(Farley et al. 2010, 55-57.)

In 2010, David Farley and Jez Humble published a book called Continuous Delivery,

which popularised the term Continuous Delivery. Continuous Delivery at its core means

that software should be always releasable. Which is achieved through practically

extending the Continuous Integration practice to test each change to the code base well

enough so that it could be released to the users. In order to practically achieve this goal,

the book describes a concept called the deployment pipeline. The Continuous Delivery

book describes deployment pipeline like this: “The deployment pipeline has its

foundations in the process of continuous integration and is in essence the principle of

continuous integration taken to its logical conclusion.” (Farley et al. 2010, 4.)

25

Figure 2 below shows an example Deployment Pipeline:

Figure 2. Example Deployment Pipeline, re-drawn. (Continuous Delivery, p 3-4, 106).

As seen in the left side of Figure 2, the deployment pipeline is triggered by code pushed

into the Version Control System (VCS), pushing the code creates a new version of the

software which is typically referred as a release candidate.

Ideally, the deployment pipeline is a fully automated and run for every change to the

code base. This means that every change becomes a release candidate and if it passes

the tests in the pipeline, it can be released. Ideally, these changes are small, and the

deployment pipeline is run multiple times a day. Although not shown in Figure 2, the

pipeline can, and should, run multiple tests/steps in parallel whenever possible since the

faster the pipeline reaches a failing test, the faster the developer gets the feedback and

can implement a fix. (Continuousdelivery.com 2010)

Same as with Continuous Integration the people working on the software product are all

responsible to fix the source code if the pipeline fails (Farley et al. 2010, 3-4). As

Continuous Delivery needs to test the software in a production-like environment, the

operations team(s) need to be involved in the process of building the pipeline or it will

never prove the release readiness of the release candidate. In Continuous Delivery

everyone is responsible for the delivery process and people with different roles inside

the organisation should all collaborate into the deployment pipeline tests to assure the

release candidate can be released if it passes the tests. (Farley et al. 2010, 28.)

In this thesis, the terms Continuous Integration and Continuous Delivery can also be

expressed as acronyms CI and CD, respectively, and the Deployment Pipeline is also

called Delivery Pipeline interchangeably, since that’s also common in literature.

26

4.1.3 DevSecOps

The “DevOps movement” has transformed how software is developed, built, and

delivered. DevOps makes developers responsible for also operating the software,

famously dubbed “you build it, you run it” by AWS CTO Werner Vogels (Gray et al. 2006;

Podjarny 2021). In many cases, security is however not truly the responsibility of the

development team, even in organisations that boast DevOps culture. Typically, security

is owned by a separate, often centralised, teams which causes a bottleneck. Developers

don’t get timely feedback when their work is evaluated by the security team after the

development is done, or worse, the software is already released. Also, this causes a gap

where the security team lacks information of the application, and the developers lack

information about security. (Podjarny 2021). To close the gap, the development team

must take additional ownership and closely collaborate with the security team, this is a

shift from DevOps to DevSecOps culture. However, this does not mean there should be

a DevSecOps team, instead the teams just collaborate with the same tooling and in the

same delivery pipelines to “bake in security” into the application instead of trying to add

it on top. (Podjarny 2021; Bird 2016.)

4.1.4 Shift Left Security

Organisations should strive to “Shift Left” with security in order to “bake in” security, what

this means in practice is that security tests and checks are done earlier (as early as

possible) in the delivery pipeline. (Bird 2016) (Forsgren et al. 2018, 81) Making this shift

permanently means that an organisation must move from DevOps to a DevSecOps

culture within the development, operations, and security teams. This means teams

should come together and include continuous security and test-driven security practices

in the delivery pipelines. (Vehen 2018, 8-9) Developers should take responsibility of

security when it comes to what they build.

“A security strategy that isn’t owned by the engineering teams won’t survive

for long and will slowly degrade over time. It’s critical for the security team

to define, implement, and test, but it’s equally critical to delegate ownership

of key components to the right people.” (Vehen 2018, 12)

According to the Accelerate research on the data between years 2014-2016 of the State

of DevOps Reports, high performing teams that include security personnel and security

27

checks in the delivery process does not slow down the development process, but instead

it can even improve the delivery performance of the teams. (Forsgen et al. 2018, 80,92.)

The team already practising Continuous Delivery should have no problems adopting

additional, automated, security tests in the delivery pipelines. Security can be seen as

just an additional non-functional requirement testing.

4.1.5 Test Driven Security

Many security vulnerabilities come down to simple misconfigurations due to lack of

knowledge or simply typos. By creating tests, a security expert can share their expertise

to development teams in an executable format, when executed, the test can then

statically analyse the code or the running application for security-related threats and

misconfigurations. Manual testing in DevOps is considered the exception and automated

testing the norm, thus these tests should be automated and continuously executed in the

pipelines. It’s worth noting that test driven security does not eliminate the need for

continuous monitoring of production environments, but it does significantly reduce the

risk of a security breach. (Vehen 2018, 10-12.)

In this section the best practices discussed on how to integrate security practices into

modern development and delivery processes are core knowledge for the conceptual

framework of this thesis. The foundational DevOps strategy and the main technical

techniques and practices, Continuous Integration and Continuous Delivery should

include security in the process as well. In addition to the techniques and tooling, shifting

security left and fostering DevSecOps culture is a key element to foster a successful

organisational change in security practices.

4.2 Software Security Lifecycle Phases

Cloud Native Computing Foundation (CNCF) published “Cloud Native Security

Whitepaper” in 2020, and the second revision of the paper in 2022. (CNCF 2022) This

paper contains a very practical and detailed model of what security practices to

implement for “Cloud Native” application delivery. Before discussing the contents, it’s

important to understand what CNCF means by “Cloud Native”, below is the CNCF’s

definition of “Cloud Native”:

28

”Cloud native technologies empower organizations to build and run scalable applications

in modern, dynamic environments such as public, private, and hybrid clouds. Containers,

service meshes, microservices, immutable infrastructure, and declarative APIs exemplify

this approach.” (CNCF 2018)

As seen by the definition, cloud native applications are a modern take on how

applications should be built and what kind of supporting technologies are common. This

has implications especially for the tooling used for securing the development and delivery

of these applications, next we will discuss some of the key ideas in the paper that are

relevant for this thesis.

The CNCF Cloud Native Security Whitepaper splits the Cloud native application

development into four lifecycle phases: (1) Develop, (2) Distribute, (3) Deploy, and (4)

Runtime (CNCF 2022). This split makes it easier to grasp and makes it concrete what

best practices to apply at each phase and what kind of tools can be used. The lifecycle

phases can also be useful to map to different roles in an organisation, making

responsibilities clearer when it comes to security. Figure 3 below shows a visualisation

of the four lifecycle phases and how the workflow follows through the pipeline:

29

Figure 3. Re-drawn diagram of the Lifecycle Phases (CNCF 2022, 10, 12, 18).

As seen in Figure 3, the first three lifecycle phases form a pipeline that starts with the

develop lifecycle phase and ends at the runtime lifecycle phase. This journey is called a

lifecycle pipeline in the paper. This pipeline is effectively a Continuous Delivery

deployment pipeline with a release candidate progressing through it. It’s also noteworthy

that not only the custom source code is checked for security, but also the supporting

code, such as IaC code, this is important because in a cloud native environments a lot

of the infrastructure concerns can be declared in code before deployment, allowing

effective security and compliance check to be done prior to deployment itself. (CNCF

2022, 5-6.)

Next is a brief description of each lifecycle phase and what activities and best practices

should be applied at each phase.

30

4.2.1 Develop

In the development phase developers write code and configuration such as application

source code, Infrastructure as Code (IaC) and container manifests. These artifacts can

be analysed by automated tools for known misconfigurations or internal policy violations.

These tools can be used for security checks that can be run as early as in the Integrated

Development Environment (IDE) of the developer, or in the commit stage of the CI

pipeline. One of the main goals for these checks is to provide fast feedback to the

developer who can then ideally deal with the security threat immediately before it goes

any further in the pipeline or into production. These tests can typically be run in parallel

in an already in-place CI pipeline, thus not slowing down the development cycle. (CNCF

2022, 5-6.)

Misconfigurations are the biggest reason for cybersecurity incidents in the cloud

according the Check Point’s 2023 Cloud Security Report (Check Point 2023). Teams

practicing best practices, such as, Infrastructure as Code (IaC) can utilise security

scanners to gain feedback on obvious misconfigurations within seconds. These

misconfigurations are incredibly common (Truffle Security 2022; Sheridan 2020) and in

most cases a security scanner would be able to catch the most obvious issues, such as

publicly open S3 buckets, if only they were integrated into the development flow and the

changes are made using IaC tooling.

In addition to automated tests, the develop phase can also contain additional code

review. This can be done in a pull request in the VCS, for example. (CNCF 2022, 11-12)

4.2.2 Distribute

After the development of new code or configuration, the software should be built and the

artifacts distributed to a central registry. Teams practising continuous delivery have

sophisticated CI/CD pipelines in use and run automated tests to holistically test the

software’s releasability. At this stage often additional third-party dependencies, such as

open source components are introduced when the software is built. It’s important to

conduct security scans on all third-party dependencies. Often open-source

dependencies can be checked for known vulnerabilities by tools automatically, including

such step in the CI/CD pipelines is low effort and huge gain for the overall security

31

posture. In addition to the security checks done during the develop phase, it’s possible

to build the software now for dynamic security tests. (CNCF 2022, 12-17.)

At the distribute lifecycle phase, many software supply chain practices are also

important, those are described below in the Software Supply Chain Security section, this

includes practices such as signing artifacts and generating meta data about the build

process and environment.

4.2.3 Deploy

The deploy lifecycle phase can be thought of as “pre-flight” checks. It’s adamant to

validate the application configuration and the integrity of the artifacts before a

deployment to a production environment is carried on. It’s also possible to include tests

for compliance, such as verifying tagging or labelling of the deployment at runtime.

(CNCF 2022, 18.)

4.2.4 Runtime

Runtime lifecycle phase, also referred to as “Runtime Environment” in the paper, differs

from the first three lifecycle phases because at this point the deployment pipeline is done,

and the application is running in the production environment. The runtime lifecycle phase

is empowered by the earlier phases, most issues should already be caught at this point

but some threats, such as previously unknown vulnerabilities, might still be able to be

exploited and thus there must be continuous work to monitor and analyse the runtime

environment. Runtime phase consists of three critical areas: (1) Compute, (2) Access,

and (3) Storage. (CNCF 2022, 19.)

A modern Cloud-Native infrastructure typically consists of many layers in which all these

three areas present themselves, the application itself runs in the top layer. Figure 4 below

shows a typical layered runtime architecture.

32

Figure 4. Runtime Lifecycle Phase (CNCF 2022, 19).

As seen in Figure 4, the runtime lifecycle phase is very complex and fundamentally

different compared to the lifecycle phases prior to the actual deployment of the

application. Main activity during runtime is monitoring and auditing, and there are many

things to monitor and many logs to audit. As seen in Figure X, there commonly are three

layers: (1) Application, (2) Workload Orchestration, and (3) Cloud/Environment. (CNCF

2022, 19.) In all these layers are common building blocks.

In addition to the three critical areas compute, access, and storage, there are concerns

around networking and large amount of so called “Security Foundations” that support the

security posture of all the layers. The most relevant of these foundational security

practices, for the case company, are discussed next in this section of the thesis.

4.3 Software Supply Chain Security

A supply chain is a process of getting a product to the customer. In software development

and delivery, there is also a supply chain which consists of producers and consumers of

software components. (CNCF 2021) More technically, software supply chain is the

sequence of steps a producer takes that result in the creation of a software artifact for a

consumer. (SLSA.dev 2023).

33

According to the CNCF Software Supply Chain Security Whitepaper (CNCF 2021, 8),

the main difference between a traditional supply chain of physical products and the

software supply chain is that the software supply chain is:

- Intangible – software is intangible, made up of virtual and digital components

which makes it difficult to count, discover and understand end-to-end

- Mercurial – software changes faster than the physical work, the supply chains

are under constant and rapid change

- Iterative reuse – one supply chain depends on other supply chains, that again

rely on other supply chains (of downstream software components) (CNCF 2021,

8-9.)

Software supply chain security affects almost all software being develop today as almost

all software products include open-source dependencies. According to the Synopsys

Open Source Security and Risk Analysis report 96% of codebases analyzed in the report

contained open source dependencies. (Synopsys 2023.)

These open source and even commercial dependencies possess a risk for the

application that depends on them as they might change unexpectedly or become

unmaintained and never receive important security patches. Keeping track of these

dependencies and the transitive dependencies is becoming increasingly important as the

threat actors are increasingly targeting the supply chain in their attacks, as seen in Figure

5 below.

34

Figure 5. Diagram of the amount of observed Software Supply Chain attacks between 2019-
2023 (Sonatype 2023)

Figure 5 above shows how the malicious packages discovered in the Sonatype research

is increasing rapidly, clearly indicating that the software supply chain is being targeted

by cyberattacks more and more every year.

Securing the software supply chain against threat is a very extensive problem, as

illustrated by Figure 6 below.

35

Figure 6. Supply Chain Threats. (SLSA.dev 2023).

Figure 5 shows a worrying picture of the many threats that a software supply chain faces.

Looking at the figure closely, it’s clear that the software could be compromised and

tampered with at any point of the supply chain if none of these threats are addressed.

The SLSA website also gives a real-world example of each of the threats being exploited,

so the threat is not just theoretical. (SLSA.dev 2023.)

According to the CNCF Software Supply Chain Security Whitepaper (CNCF 2021, 8),

there are major security threats to organizations due to lack of visibility into consumed

software products and implicit trust placed on producers. Instead of trusting producers

there’s a need to verify the trustworthiness and integrity of software products when an

organization is ingesting software dependencies or products. (CNCF 2021, 3-4.) To

mitigate these security threats and to improve the security posture of the software supply

chain, next we will discuss three important technical practices: signing, provenance and

SBOMs.

36

4.3.1 Signing

All software artifacts built within an organization should be digitally signed in a way that

the signature can be cryptographically verified against the party that is expected to have

signed the artifacts. (CNCF 2021, 5) According to the CNCF (2021), Software Supply

Chain Security Whitepaper signing and verification should happen at every step:

”The signing of artefacts should be performed at each stage of its life cycle,

along with the verification of signatures from prior stages, to ensure end-

to-end trust.” (CNCF 2021, 34)

As mentioned in the above quote, the signatures provided by the producer of an artifact

should be verified by the consumer or otherwise there’s no improvement to the security

posture.

Signing is not limited to the built software that is often thought as the artifact. In addition

to signing the software artifacts, in high assurance environments additional information /

metadata about how the artifact is produced should be signed as well, below are some

examples of what can be signed in addition to the software package:

- Commits are signed by developers before pushing to the Version Control System

(CNCF 2021, 34-35)

- Inputs, outputs and logs of a build step are collected and signed (CNCF 2021,

11-12)

- Signing configuration files (CNFC 2022, 17).

As seen from the above, signing can be quite a complex problem to solve for each

organization. But luckily there are excellent open-source projects such as sigstore, in-

toto framework and Tekton Chains that aim to make these tasks easier for everyone in

the industry. (Linux Foundation 2023; Linux Foundation 2023a; Linux Foundation

2023b.)

37

4.3.2 SLSA

SLSA is a set of incrementally adoptable guidelines for supply chain security, established

by industry consensus. SLSA consists of different tracks and incremental levels of

maturity allowing organizations to gradually adopt the framework. However, current

SLSA v1.0 specification only addresses build threats that were shown in the figure 5. In

future SLSA will likely expand to include advice against additional threats such as source

and build infrastructure. (SLSA.dev 2023a.)

For the SLSA build track the main new activity a software producer needs to adopt is

creation of provenance attestation from the build pipelines. Provenance is metadata from

a build pipeline, and it is a type of attestation. But what is an attestation in the software

context? In the real world an attestation can be your driver’s license, it is proof that you

are allowed to drive a car (and/or other vehicles). But a software attestation according to

SLSA website is:

“A software attestation is an authenticated statement (metadata) about a

software artifact or collection of software artifacts.” (SLSA.dev 2023b).

SLSA framework includes a provenance format which is in practice just fields that need

to be filled with metadata gathered during the build, but in a very specific way to ensure

the integrity and trustworthiness of the provenane. Publishing a provenance document

along with the software artifact(s) allows the consumer to verify how the artifact was

produced. For example, SLSA provenance can help consumers answer these questions:

- Which exact version of the source code is in this software artifact?

- From which source code repository does it software artifact come from?

In order to trust the provenance document information, the provenance document must

also be digitally signed in a way that the consumer can verify that the identity of the signer

matches with the consumer’s expectation. Verifying this trust chain today is challenging

because tools don’t often support such verification steps out-of-the-box, and the

standards are still being actively developed and unstable. However there are some

notable tools that can help, for example with signing the Linux Foundation’s sigstore

project provides free-to-use public infrastructure which is easy to use. (Linux Foundation

38

2023) And recently the Node Package Manager (npm) tool started supporting both

generating and verifying SLSA provenance as a built-in feature in the core command-

line tool. (DeHamer et al. 2023.)

4.3.3 SBOM

Software Bill of Materials was deemed important and was championed in the US by the

National Telecommunications and Information Administration (NTIA) starting from 2018.

(NTIA 2018) However, it wasn’t until the software supply chain was attacked in cases

such as the SolarWinds SUNSPOT malware (Crowdstrike.com 2021) that affected many

organizations and governments across the globe. Quickly after, in 2021 the US and EU

legislation finally started to demand organizations to provide SBOM documents if they

want to sell software to the government. (White House 2021; White House 2021a;

European Commission 2022.)

Software Bill of Material lists all the dependencies (typically libraries) that are bundled

into an artifact. Figure 7 below visualizes this mapping.

Figure 7. Software Bill of Materials visualized along with baseline software component
information (Figure 1, NTIA 2020).

Figure 7 also includes the NTIA defined Baseline Software Component Information which

is the bare minimum that is needed as metadata of each component in the SBOM.

Unfortunately, there is still multiple competing data formats for SBOMs, mainly SPDX

and CycloneDX, but both are very actively used and being developed. For producers

39

and consumers a single standard format would be more practical, but hopefully in future

one format becomes the standard approach. (NTIA 2020.)

These SBOM documents can be used for many things, such as scanning the list of

“materials” for known vulnerabilities, producing release notes or analyzing the impact of

a newly found vulnerability by querying a catalog of SBOMs for all the products within an

organization. Especially for identifying known vulnerabilities the SBOMs are very

relevant today since the Sonatype’s State of the Software Supply Chain report shows

that over 96% of the downloaded vulnerable packages from Maven Central ecosystem

had versions available with the vulnerabilities patched, meaning that in 96% of the cases

using a known-vulnerable package could have been avoided. (Sonatype 2023.)

There are many open source tools that can help a producer to generate an SBOM such

as Syft, and there are also projects aiming to help with keeping a catalog of SBOMs for

queries such as Guac. (Anchore 2023; Guac.sh 2023.)

Software supply chain security is still a fast-evolving space but it has quickly become an

interesting and important area that affects everyone working with software development

or delivery, thanks to it being relevant on both the producers and consumers of software

artifacts. The foundational nature of the security threat imposed by poor software supply

chain practices makes it an important part of the foundational security practices of the

conceptual framework of this thesis.

4.4 Secrets Management

Users of software have had secrets management techniques for as long as there has

been secrets, these systems range from really good (password managers, physical

safes) to extremely bad (post-it note under the keyboard). (Dotson 2019, 36.) Secrets

management provides assurance that resources, platforms, and cloud environments can

only be accessed by authenticated and authorized entities, not only humans but also

applications, automation tools and scripts. (Cyberark 2023) Secrets management is thus

somewhat up to the user to figure out, or a dedicated system might be used (such as a

password manager software). Also not only are human users concerned when it comes

to secrets management but also the way secrets are provided to or stored in applications

and in automated scripts.

40

Secrets are used by humans and applications when building and operating software

applications and infrastructure. Secrets are anything that is presented by a human or

application to access a system. For example, secret can be a password or an API token.

Securing applications is especially tricky because they cannot complete a challenge such

as Multi-Factor Authentication which humans can do on their phone as an example.

When an application needs to authenticate, for example, when connecting to a database,

there needs to be either the secrets for the authentication already present on the server

for the application, or the application can rely on an external service to fetch those secrets

when needed. However, this still has an obvious problem; how does the application

authenticate with the external “secrets” service? Such a problem is typically solved by

bootstrapping application servers or workloads with some sort of identity, such as a

certificate that is signed by a trusted, internal, authority. However, in public cloud

platforms such as AWS and GCP, there’s a metadata service available for workloads

that can be used by the workloads to discover their identity and some metadata about

themselves, which can be used as proof of identity when authenticating. Using these

services can save an organisation from a lot of complexity compared to the organisation

self-hosting such workload identity infrastructure. (Dotson 2019, 36-40.)

Next, we will discuss a more specific problem faced by many fast moving DevOps driven

software teams and organisations, secrets sprawl.

4.4.1 Secrets Sprawl

Application infrastructure and the speed of development has been greatly accelerated

by the advances made in technology and by new offerings such as cloud platforms that

make it possible to provision infrastructure ad hoc instead of waiting for servers to be

delivered to your datacenter. As the development speed has increased, it also means

more and more secrets to manage for organisations which it has caused a problem called

Secrets Sprawl where secrets are scattered around the organisation on developers’

laptops and sticky notes. This exposes organisations to risks if these secrets are leaked,

so secrets management requires special tooling and discipline to help manage these

sprawling secrets in a centralised and controlled manner. (Dadgar 2018)

41

4.4.2 Secrets Managers

To mitigate these problems many organisations use special software for secrets

management to keep secrets stored in one secure place instead of spread all over the

application landscape. In addition to storing the secrets, the secret management

software helps to provide a detailed audit log of who/what accessed and which secrets.

When secrets are not centrally stored there’s no central source of truth for rotating

secrets either and it’s hard to share a secret with a colleague securely. (Dadgar 2018)

Many cloud providers have their own secrets manager/management service that is

typically easy to use when operating inside the provider’s cloud platform. For on

premises or multi-cloud use-cases one popular option is to use HashiCorp Vault.

(HashiCorp 2023) It’s worthy to note that these applications are not meant for humans

to store passwords for their personal logins, but for operators to manage secrets for

application workloads.

4.5 Securing Source Code

Version control systems, also known as source control systems or source code

management tools, are software tools that help software teams manage changes to

source code. The version control system software keeps track of every modification to

the code in a specialised database. (Atlassian.com 2023) Version Control is a system

that records changes to a file or set of files over time. It’s commonly used for software

source code, but it can be used with nearly any type of file on a computer. (Chacon et

al. 2014, 10.) Version control systems are used to track changes to source code, not

only are developers using version control systems but also other professionals can use

it to track their changes to scripts or whatever text-based files they have to store. When

using a Version Control System it’s possible to collaborate with others easily with

everyone having access to the versioned files from the system. (Chacon et al. 2014 10-

13.) Securing access to source code is important for many reasons, like Atlassian states

in their website:

”For almost all software projects, the source code is like the crown jewels -

a precious asset whose value must be protected.” (Atlassian.com 2023)

42

Productised Version Control Systems (VCS) such as GitHub and GitLab have quickly

become an essential and central place for developers, operators and other stake holders

to contribute on source code. Source code is not only limited to application source code

thanks to technologies such as IaC which allow operations to develop re-usable

infrastructure configuration/templates that are versioned and persisted in a VCS as best

practice. VCS systems also are commonly used to trigger build and deployment

pipelines, and other kind of automated tasks. Which means it’s an extremely valuable

target for threat actors. Not only can they tamper with, leak, or encrypt (for ransom) all

the application source code, through the deployment pipeline credentials, a threat actor

can gain highly privileged access of the cloud infrastructure and private data of the target

organisation. (OpenSSF 2023)

Luckily, popular VCS platforms such GitHub and GitLab have realised these threats and

have started offering more and more security enhancing features that can be activated

to protect source code from tampering, some of these common features are described

next in the following sub-sections.

4.5.1 Access Control

The most basic level of access control is the visibility (the ability to view or edit) of the

version control repository, depending on the system used there can be different controls

available, but depending on the sensitivity of the code stored in the repository, only

authorised personnel should have access to it. The visibility is extremely important to

protect against human mistakes, such as accidently adding secrets into the repository, if

the repository is only visible to few people the incident is less severe than if the repository

is visible for anyone with the link to it. (GitLab 2023.)

GitGuardian (GitGuardian 2023) is a code security platform that kindly scans public

GitHub repositories for secrets and notifies the users that have committed them into the

repository to remove the leaked secrets (GitGuardian 2023a). However, having a tightly

controlled visibility does not mean that secrets should end up in version control system,

this is considered a bad practice. The section on Secrets Management described these

problems and potential solutions in more detail. (GitGuardian 2023a.)

Some of the other basic features that should be enabled from a security perspective are

multifactor authentication for users and branch protection rules. Multifactor

43

authentication is crucial because passwords can be leaked and it can be easily enforced

at organisation, for example in GitHub. (Vehen 2018, 153.)

Branch protection can protect the code base against unauthorised changes for example,

you can enable a rule requiring a peer developer to approve any code change before it

is merged to the main branch, making it harder to tamper with the source code even if a

developer’s credentials were leaked. (GitHub 2023.)

4.5.2 Monitoring

In addition to the security controls described above around access control if a user is

compromised those settings can potentially be altered by impersonating the user of the

compromised credentials themselves. Thus, it’s important to monitor the events and the

configuration of different version control repositories of an organisation over time.

OpenSSF Allstar (OpenSFF 2023a) is a project built specifically for GitHub monitoring to

make sure the configuration adheres to security best practices. The tool can be used to

define the policies that organisation must adhere to and then continuously monitor that

the configuration matches the policies. If a policy is violated, Allstar can either change

the configuration setting automatically or alert on it. (OpenSFF 2023a.)

It’s also important to monitor for changes needed to user permissions, for example

removing users that have left the organisation. Automating this might require writing

custom scripts, depending on where user accounts are stored. (Vehen 2018, 153.)

Beyond than what can be included in this thesis. In 2023, OpenSource Software Security

Foundation (OpenSSF) released Source Control Management (SCM) Best Practices

Guide which is an extensive set of best practices for GitHub and GitLab SCM platforms

which are the industry giants. These best practices cover areas such as:

- Hardening CI/CD pipelines against supply chain attacks

- Branch protection policies for healthy coding workflows

- Recommended access controls and permissions

44

- Server-level policies for globally enforced best practices. (OpenSSF 2023b)

In addition to the set of best security practices, the guide recommends tools in addition

to the already mentioned Allstar (OpenSSF 2023a) that can be used to continuously

monitor and audit that all the source code repositories under the organisation use the

security best practices (OpenSSF 2023a). These tools are good examples of the

continuous security mindset, it’s not enough to document and recommend the security

best practices, instead they should be continuously monitored and audited to identify

risky configurations or potential security incidents.

As mentioned at the beginning of this section, securing the version control system is

important to protect the organisations “crown jewels”. When DevOps and continuous

delivery practices are tightly integrated into with the version control systems, securing

the access and effective use of the available security controls of the given tool is are

crucial best practices for this thesis and one of the core foundational security elements

of the conceptual framework.

4.6 Conceptual Framework

Figure 8 below shows the conceptual framework of this thesis. The conceptual

framework is split into two major parts: people and processes, and implementation. This

is to highlight the fact that the literature shows that it’s not enough to only take in use and

implement new tools, but the whole organisation needs to undergo a change to

collaborate across team borders when it comes it security.

45

DevSecOps Culture (Bird 2016) and
Methods (Shift-left Security; Test-Driven Security) (Vehen 2018)

Secure Software
Development Lifecycle
Phases (CNCF 2022;
Farley et al. 2010)

Develop & Integrate Test & Distribute Deploy Monitor

1. What is the activity?

2. What information
and artifacts are
available?

3. What could be
checked for? & Most
important?

4. How to
check/achieve it?
(tool/practice)

Foundational Security
Practices

(CNCF, 2022)

Software Supply Chain Security (SLSA.dev 2023; CNCF 2021)

Secrets Management (Dotson 2019)
Version Control System Security (OpenSSF 2023)

Figure 8. Conceptual Framework for a security framework.

Starting with the People and processes in Figure 8 above, it’s further split into two parts:

culture and methods. First, Figure 8 shows that a DevSecOps culture is an important

consideration for improving security posture of for an organization. It’s important to note

that this move will be harder for organisations that don’t have a strong existing DevOps

culture. Second, literature shows that high performing teams include security personnel

early in the development process, thus shifting security left is an important method. This

is where the Test-Driven Security method comes in. According to (Farley et al. 2010, 13-

14.), security checks should be automated and added as part of the deployment pipeline.

This will give the developers quick feedback and allows them to act on the feedback

without waiting for the security personnel to check their work after it's fully completed.

In addition to people and processes, the second part of the conceptual framework is the

Implementation. First, there’s the core implementation which builds security practices on

top of (ideally) existing Continuous Delivery culture and deployment pipeline. Software

Security Lifecycle Phases refers to the lifecycle phases defined in the CNCF Cloud

Native Security Whitepaper. This practical guidance is the framework for the core

practices and steps to add into the deployment pipeline. Second, there are many

foundational security practices that could be included in the foundational part of the

46

implementation, but guided by the current state analysis three core practices were

deemed most relevant and interesting to tackle first: secrets management, software

supply chain security and VCS security. For all three of these important categories there

are clear best practices and steps that can be taken to improve the security posture of

an organization and protect it against threat actors.

This concludes the existing knowledge section of this thesis. Next, in Section 5 the

proposal building and the initial proposal will be discussed.

47

5 Building Proposal for Continuous Security Framework for the
Company

This section is about building the initial proposal of the continuous security framework

for the case company. The proposal is informed by the findings from the current state

analysis (Data 1), by the relevant elements of existing knowledge of the conceptual

framework, and by the input from the stakeholders (Data 2).

5.1 Overview of the Proposal Building Stage

This section describes the steps in the proposal building. The aim of the proposal is to

propose the security framework that would address the weaknesses identified during the

current state analysis and provide actionable initial plan for implementation on

improvements on key focus areas. Also, the best practices identified in the key focus

areas of the conceptual framework are transformed into practical, tailor-made,

suggestions so that they best serve the needs of the case company as the security

framework.

The outcome of the proposal building is a continuous security framework. The initial

proposal was built in three steps. First, initial visualisations and scoping was done in

small workshops to co-create the shape and scope of the continuous security framework.

This was a pre-requisite for starting with practical work to dive deeper into the topics and

produce the practical information on each element of the framework.

Second, the initial materials were presented as a draft of the initial continuous security

framework and feedback was gathered thoroughly based on the comments. During the

second step, there were also informal one-to-one interviews on the various elements

with different experts of the case company, that helped to deepen the focus and better

scope the framework and problems it can solve. The elements and the scope of the

framework needed to be clearly defined before the implementation of any practical work

can be started. Otherwise, there’s a risk the implementation won’t be used and delivers

no value. To achieve a clear and suitable initial framework, many early ideas were

discussed in workshops with the case company consultants, and later initial drafts were

co-created and discussed further to distil the early ideas and help achieve a reasonable

scope for the first iteration.

48

Third, the draft of the continuous security framework design was updated and then the

information was merged from virtual canvases and notes into a website that would be

the live up-to-date version of the framework going forward. After this step, the framework

would only live in this single place, backed with version control, and it would be easy for

others to collaborate with ideas following a well-known process from daily work.

Thus, building the initial proposal in these three steps unsured that everyone is heard,

and every idea can be easily incorporated into the framework during first two steps, and

it’s easy to change in the beginning. In step three, the website was created to make sure

all information and future collaboration happens in a single controlled environment,

although it’s a bit harder to change drastically. Input from stakeholders was taken not

only in workshops but also at individual level, to make sure everyone would speak their

mind and the inputs were very influential to scoping and sharpening the focus of the

framework. It was important to focus on topics that the case company stakeholders deem

necessary and important, instead of blindly following existing knowledge that might be

aimed for a different context.

5.2 Findings from Data Collection 2

In the very first initial planning and brainstorming workshops, the stakeholders were

provided an early draft in the form of an interactive, collaborative, virtual canvas, the

canvas was prefilled with early design which was then modified during the workshops

with also field notes taken of the suggestions. In addition to working with a virtual canvas,

a single face-to-face workshop was held where key information from the conceptual

framework was first shared in the form of a short presentation, followed with discussions

and brainstorming. Field notes were taken from the face-to-face workshop session.

The early feedback and interest towards the topic was important, and many of the topics

identified during the current state analysis were still found interesting and were discussed

among the stakeholders during workshops. Also, elements from the conceptual

framework, notably Test-Driven Security were found useful to help drive implementation.

In Table 2, Data 2 findings are presented in a way that pulls together the current state

analysis findings, conceptual framework and Data 2 suggestions gathered from co-

creation.

49

Table 2. Key suggestions from stakeholders (Data 2) based on initial draft, in relation to the
findings from the CSA (Data 1).

 Key focus areas from
CSA (from Data 1)

Inputs from
literature (CF)

Suggestions from
stakeholders for the
Proposal, summary
(from Data 2)

Descriptions of their
suggestions (in detail)

1 Incorporating security
checks into pipelines /
shifting left with
security processes.

Securing DevOps
(Vehen 2018)

a) The topic is really
big, needs to be
better scoped.

Security affects all
phases of the
development lifecycle
and remains important
also in production, it's
an overwhelmingly big
topic.

b) It's not what
we're tasked with.

Working on security
enhancements is
rarely the core
responsibility of our
consultants.

2 Foundational security
practices that should
be further investigated
and practical
recommendations
gathered, the main
areas would be secrets
management and VCS
security.

Practical Cloud
Security (Dotson
2019)
VCS System
Security (OpenSSF
2023)

a) Getting people to
change their
workflow and adopt
a new tool (e.g.
secrets manager) is
the challenge, not
setting up the tool.

Setting up a secret
management system
is peanuts. Rolling out
the use of a secret
management system
for a multinational
enterprise with many
users of varying levels
of boneheadedness is
another thing entirely.

3 Competence and
knowledge of software
supply chain security
practices should be
improved to prepare
for the demand.

Software Supply
Chain Security
(SLSA.dev 2023)
(CNCF 2022)
(CNCF 2021)

a) Write a blog post
about SLSA.

Many consultants are
interested to know
more about some of
the terms (for example
SLSA) that they know
are related to supply
chain security, but
don't have experience
with yet.

4 Need for a clear
structure for
implemetation and for
effective customer
communication about
security.

a) Add a Security
Landscape diagram
to the security
framework

A diagram sketched
in workshops was
found useful and
should be used in the
framework as well.

As seen in Table 2 above, first, there were two suggestions from stakeholders on the

way security processes could be integrated into existing deployment pipelines and how

to shift security left. In the conceptual framework the literature gives good suggestions

on how to secure software delivery processes under a DevOps strategy, however it is

more from the perspective of a dedicated security personnel. The stakeholders were

concerned with regards to the scope of the security framework as a whole and whether

it will be practical for consultants that don’t specialize in security.

50

One of the consultants expressed their worry in the following way:

“...when work will be done around this, picking up the roadmap will surely be

challenging.” (Consultant 1)

This feedback was key to make sure the initial scope of the framework is fairly limited in

order to accurately match with the context of the case company. To address the concern

with regards to whether these security tasks match with the typical line-of-work, it was

decided to focus on security practices that consultants find most actionable and easiest

to adopt in existing or typical projects.

Second, there was a suggestion regarding the foundational security practices around

secrets management and version control system security. The consultant raised the

suggestion in following way:

“Setting up a secrets management system is peanuts. Rolling out the use of a

secrets management system for a multinational enterprise with many users of

varying levels of bone headedness is another thing entirely.” (Consultant 2)

As the quote above mentions, the challenge for secrets management and version control

security is not a purely technical one. When addressing these security concerns, the literature
best practices show that using a tool is common. Taking the secrets management system as
an example, this tool would be setup centrally for multiple teams or even for the whole

organization, and its purpose is to store secrets that application workloads can then access
from this single place, the secrets management system. Adopting the new system requires

changes to all existing deployments and to developers and/or operators’ workflows when

they need to add new secrets or make other changes in the system.

In the framework, this suggestion was taken into account and in further discussions there
were additional ideas how to approach the problem still in daily project work. In a nutshell,

this suggestion guided the framework towards making sure when adopting a new tool, it’s
done using the simplest way possible first and in a way that best fits the existing workflow.

Once the solution gains adoption, it’s then possible to take into use more advanced and
secure ways of utilizing the system. Also using a solution that is already available, instead of

spinning up a new system, is preferred in most cases. A good example of a solution that’s

often available is one that is already provided as a service in the cloud provider used.

51

Third, there was a suggestion with regards to software supply chain security specifically,

although it’s part of the foundational practices. Software supply chain security is still

evolving quickly and there’s a lot of confusion around what should be done and how.

Thanks to the legislation mandating certain minimum practices (mainly an Software Bill

of Materials), it’s impossible for organizations to ignore this area of security. The

suggestion was to write a blog post about the SLSA framework to raise awareness both

internally and externally as a form of marketing. Although the suggestion is out-of-scope

for this thesis, it affected the proposal building to make sure effort is put especially into

supply chain security content into the framework. As there is clearly interest among the

consultants in this topic and demand from customers on software supply chain security

and not a lot of concise, actionable knowledge available.

5.3 Initial Proposal

The initial proposal consists of two practical elements: Secure Software Development

Lifecycle Phases and Foundational Security Practices. Supported by a higher level, more

of a strategic element; DevSecOps Culture and Methods, which serves as an umbrella

of guiding principles for the practical elements.

The Secure Software Development Lifecycle Phases element is a slightly modified

version of the lifecycle phases described in the CNCF Cloud Native Security Whitepaper

(CNCF 2022), the changes and the rationale behind the changes are described later in

this section. The DevSecOps Culture and Methods are largely inspired by the literature

on best practices on securing DevOps development and delivery processes. The

Foundational Security Practices are informed by the leading projects in the

corresponding foundational security area and the best practices found from literature.

For all the best practices identified from existing knowledge, the framework goes further

into practical suggestions on how to adopt them and where to focus first, in the context

of the case company based on the improvements and weaknesses identified in the

current state analysis, and the suggestions gathered during the proposal building. Table

3 below shows the initial proposal for the Continuous Security Framework.

52

Table 3. Initial Proposal for the Continuous Security Framework.

Culture and Methods

Shift-left Security
Test-Driven Security

DevSecOps culture
Secure Software
Development Lifecycle
Phases

Develop & Integrate Test & Distribute Deploy Monitor

What is the activity?

Writing code and
configuration incl.

deployment
manifests and IaC.

Building, testing and
distributing

artifacts: container
images, binaries,
VM images, other

packages.

Production
deployment.

Monitoring
production

infrastructure
and workloads.

What information and
artifacts are available?

Static text files. Software that builds
and runs.

Deployment
configuration,

signatures,
SBOM,

provenance,
test results.

Metrics, logs
(app, network,
OS), Cloud APIs

and
configuration.

What could we check for?

Known vulnerabilities
in dependencies,

insecure patterns in
code/config.

Compliance,
insecure runtime

configuration,
functionality,

integrity.

Production
readiness

according to
policies and
compliance.

Suspicious
activity,
unstable

software, over-
privileged
identities.

What is most important?

Fast feedback cycle,
CI pipeline must

complete in <5min.
Catch known issues

fast before developer
context switches.

Running software
and configuration is
tested and scanned
in production-like

environment.
Provide timely

feedback in <1h.
Produce signed

artifacts, SBOMs
and provenance
from build for
distribution.

Verify and
enforce integrity

(signature,
provenance),
compliance
(tags, labels

etc.) and
runtime

configuration in
pre-flight
checks.

Alerts and
reports.

How to check/achieve it?
(tool/practice)

Static Analysis tools:
trivy, tfsec, conftest
etc. Custom policies

for misconfigurations.
Peer review for major

changes (on top of
automated checks).

Production-like test
environments and
automated tests.
SLSA provenance,

syft (SBOM),
sigstore.

Admission
controllers
(Kyverno),

conftest/OPA,
custom checks.

Steampipe,
Trivy Operator,
Tetragon/Falco.

Foundational Security
Practices

Software Supply Chain Security

Secrets Management

Version Control System Security

Security Landscape

As seen in Table 3, the framework emphasizes the Secure Software Development

Lifecycle Phases, and this is indeed the core of the framework. The Foundational

53

Security Practices support the core practices, and the Culture and Methods serve as the

high-level strategy of guiding principles. Finally, the Security Landscape helps users of

the framework to map the practices with an example application development and

delivery stack. Next, all four elements of the initial framework proposal will be discussed

in detail.

5.3.1 Element 1 of the Initial Proposal: DevSecOps Culture and Methods

In order to have success with a security strategy in a DevOps driven organisation,

security cannot come late in the delivery process when all the code is ready for a release,

nor cannot it slow down the development teams working in small iterations. Thus, a

successful Continuous Security strategy and framework should focus on enabling teams

to work in a secure way, instead of disabling teams from working in an insecure way. By

focusing on enabling the teams, the security processes support the overall delivery and

enhance the quality, and naturally, security of the solution. The main methods of enabling

DevOps teams to work in a secure way are Shift-Left Security and Test-Driven Security.

By shifting security left, the developers will get the feedback they need to secure their

code sooner rather than later in the process. Getting the feedback as soon as possible

is important to minimize context-switching, meaning that the developer can immediately

make the necessary fix to the code or configuration instead of having to come back to

code or configuration days or weeks later, when the developer has moved on to other

tasks. Not every security related scan or check process can be shifted left, but it’s a

guiding principle for all stakeholders in the development and delivery process to check

the work as soon as possible in the pipeline. For example, a misconfiguration or known

insecure patterns in code can be checked already at the commit phase to provide

feedback on these issues in minutes, not in hours. For the case company a key

enablement for shifting left is to practice the best practice for infrastructure provisioning,

Infrastructure as Code (IaC). When writing the infrastructure definition as a configuration

file, it can be checked by a static analysis tool in seconds to provide quick feedback.

Writing everything possible as code is a key practice to enabling effective shift-left

security strategy.

The Test-Driven Security concept is put into practice by adding tests to the deployment

pipeline. Figure 9 below is an example of how the example pipeline shown in the Existing

Knowledge section figure <TODO> can be enhanced with additional security tests.

54

Figure 9. Enhanced Deployment Pipeline.

Importantly, the testing starts with static tests at the commit stage which shows the

emphasis on shift-left security to provide fast feedback for the development team. Then

the time-consuming dynamic testing is done later in the pipeline in a production-like

environment, ideally the issues found in dynamic testing could be caught earlier with

custom static security tests, the would be a practical example of shifting security left to

improve time to feedback.

The static vs dynamic security tests can also be positioned into CI and CD categories as

seen in Figure 10 below.

Figure 10. Continuous Integration and Continuous Delivery scoped in the Deployment Pipeline

In Figure 10, the CI and CD practices are roughly scoped above the practical steps in

the deployment pipeline. The deployment pipeline should always be co-owned by the

Development, Operations and Security teams in an organization practicing DevSecOps

culture. Following the Test-Driven Security principle, a security test can be added by

anyone working with the software being developed, and at any phase of the pipeline.

55

This allows people with different backgrounds and specializations to collaborate and

share their knowledge to improve the overall quality and security posture of the software.

It’s important to acknowledge that this way of integrating security testing into the software

delivery and development process does require certain maturity from the organisation

developing the software. Teams should be practicing the core practices of Continuous

Integration and ideally Continuous Delivery to easily integrate the security checks and

tests described in this section into their workflow. Next the element 2 of the initial

proposal dives deeper into what kind of tests should be added and at what phase of the

pipeline.

5.3.2 Element 2 of the Initial Proposal: Secure Software Development Lifecycle Phases

The second element of the framework aims to make it as easy as possible to identify

when and where a tool or practice should be implemented and what outcomes should

be expected. This second element acts as the core and the most content rich part of the

framework implementation. The Secure Software Development Lifecycle Phases model

is inspired by the lifecycle phases described in the CNCF Cloud Native Security

Whitepaper (CNCF 2022). The model has been modified to make the model more

aligned with continuous delivery concepts and thus also with the context of the case

company. The modifications to the original model and the purpose of each phase are

described next per lifecycle phase.

5.3.2.1 Develop and Integrate

In the original CNCF Cloud Native Security Whitepaper (CNCF 2022), the first lifecycle

phase is called “Develop”. In the original model the security checks are done with a pre-

commit hook. However, pre-commit hooks are problematic because they cannot be

enforced to be used by developers, since they are configured locally on developers’

machines. Instead of pre-commit hooks, the framework recommends implementing

these practices in the continuous integration stage in the pipeline. Because of this

recommendation, the name of the lifecycle phase became “Develop and Integrate” to

indicate the continuous integration phase of the deployment pipeline is in scope of this

phase.

56

At this phase, the developer is working on code, but the scope is not just application

code since with the platforms available today also many of the infrastructure and runtime

requirements can be described as code or configuration. After the code is checked into

the source code repository, it’s also possible to request a peer review on the changes.

However not every change needs to be checked, or at least it should not be a blocking

and gatekeeping activity that slows down the development flow.

Basically, at this phase for an automated security check the information available is text

files such as source code or infrastructure as code configuration. These files can be

analyzed by a static security analysis tool which can pick up obvious misconfigurations

out of the box, and with custom tools or policies more advanced issues can be notified.

Developing the more advanced checks could very well be done by a security expert on

the subject matter.

The continuous integration stage sometimes called the “commit stage”, is recommended

as the best way to implement these security checks so that they are truly done for every

commit to the code base. It’s important that the person making the change to the code

base should get fast feedback from the failing security check at the commit stage and

then make a corrective action, even if that’s a rollback of the change, to fix the failing

check. Ownership of this step can be shared, or it can be fully owned by the development

team, the purpose is to make the person introducing the problem aware and responsible

for the issue as soon as possible so that it does not come back as re-work later. There

are many open-source tools available that can be used with default configuration at this

phase and the ones recommended in the framework are all easy to use, helping to

implement them. Instead of focusing on what tool is the best, it’s more important to just

get the process in place.

5.3.2.2 Test and Distribute

In the original whitepaper CNCF Cloud Native Security Whitepaper (CNCF 2022), the

second lifecycle phase is called “Distribute”. This name was found confusing and not

descriptive of the full scope of the lifecycle phase. Thus, it was changed to “Test and

Distribute” which better captures the fact that after the initial commit stage, there will be

additional tests in a production like environment and long-running security tests can be

introduced at this stage.

57

Although the software should already be sanity checked and built during the commit

stage, the software is typically built again and packaged into a packaging format or an

image format such as a container image. When this happens there are many things to

consider from a security perspective, such as the base image used (in case of building

a container image) and what known vulnerabilities might be present given all the

dependencies of the software. It’s also important to consider supply chain security best

practices and produce metadata from the build, however those are discussed separately

as part software supply chain security in the foundational security practices section since

it’s a large topic.

At this phase, the scanning for known vulnerabilities should be done since all

dependencies should be present when a release candidate is built into an artifact. In

addition to scanning for known vulnerabilities, also dynamic security scanners can be

used to target the running software to check if the software can be compromised in some

way. It’s worthy to note that these tests are not sole responsibility of the developer team,

especially at this stage all teams can collaborate to create a test suite that automatically

determines whether the software (at this commit) can be released. Since these tests are

executed in a production-like environment, it should be natural that the Operations and

Security teams have collaborated to the setup of this environment and misconfigurations

should be caught. There are many excellent open-source tools available for security

scanning, and the framework recommends using tools that are easy to take into use to

make the implementation effort in the beginning small and establish the foothold for this

process in the deployment pipeline.

The actual act of releasing and deploying the software is left to the “Deploy” phase

discussed next.

5.3.2.3 Deploy

The third lifecycle stage, “Deploy”, is left named and scoped the same as in the original

CNCF Cloud Native Security Whitepaper (CNCF 2022). This is a crucial step where the

decision to deploy the software to production can be made manually or automatically (in

case of continuous deployment). This is the final stage where so called “pre-flight” checks

are run that should run quickly but ultimately enforce the policies in the production

environment, blocking all insecure deployments.

58

In an ideal world, the pre-flight checks are mostly just criteria based on existing test

results and verifications on the integrity of the software, introducing new gatekeeping

checks at the deploy phase should be considered an anti-pattern since that makes the

feedback loop slow and is against the shift-left principle.

The pre-flight check is in practice a double-check to verify that all configurations and

artifacts are compliant with the policies set by Dev, Ops and Sec. Taking the DevSecOps

driven deployment pipeline to its logical conclusion, this software release candidate is

releasable if it passes the tests. No manual testing is needed afterwards even if the

decision to release the software is manual, it should only be a push of a button.

There are many excellent open-source tools available to help implement the deploy

phase. Again, the framework suggests tools that are easy to use and get into place,

instead of tools with most features. There’s also some contextual decision to be taken

on technically how the pre-flight checks stage can be implemented given the

technologies used by the customer, the framework tools depend on this context.

5.3.2.4 Monitor

In the original whitepaper CNCF Cloud Native Security Whitepaper (CNCF 2022), the

fourth and final lifecycle phase is called “Runtime”. In order to emphasize the main

activity that the teams should be doing during runtime operations, it was decided to

rename the lifecycle phase to “Monitor” in the framework.

During the monitor phase, the main source of information is different telemetry that is

collected from the workloads, typical examples include metrics and logs. The most

important practice is to create reports and alerts. Reports help to visualize the large

amount of information and highlight possible security threats. Alerts that notify people

should be used sparingly to avoid alert fatigue, but still they are important to setup to be

notified about suspicious activities such as large amount of failed login attempts.

While this lifecycle phase is important for the security posture of any organization, it’s

not seen as the main area of focus for accelerating the security posture given the nature

and scope of typical customer projects of the case company. The framework suggests

59

few tools in this space that are easy to use and get started with the process, but ultimately

the content of the framework is quite light on this phase compared to earlier phases.

5.3.3 Element 3 of the Initial Proposal: Foundational Security Practices

The third element of the initial proposal of the framework includes three carefully selected

foundational security practices: Software Supply Chain Security, Secrets Management

and Version Control System Security. A lot goes into a holistic security strategy and

many of the practices can be seen as foundational, but these three practices were

identified as essential for the case company based on both the interest and relevancy

given the typical customer assignment. Next the best practices and recommendations

from the framework are discussed under each foundational security practice.

5.3.3.1 Software Supply Chain Security

As noted in the existing knowledge section of this thesis, software supply chain security

is an important part of security posture for organizations. Frameworks such as SLSA and

in-toto are still in their infancy and this field is evolving quickly, thus it’s important for case

company consultants to understand not just the current state, but also understand future

roadmap of these frameworks and the larger ecosystem around them.

As discussed in the Test and Distribute lifecycle phase, the most fundamental part of

software supply chain security happens there since the signing, SBOM generation and

build provenance generation all happen at the build time when release candidate is

packaged into an artifact. Also, importantly in the Deploy lifecycle phase there’s a need

to verify the integrity and source of artifacts before deploying them to a production

environment.

Practically, there are three core practices that should be adopted by an organization that

is producing software: (1) Signing, (2) SBOM, and (3) Build Provenance.

There are open-source tools and ecosystems around all these three concerns that are

recommended in the framework for practical implementation. In addition, there’s a deep

dive on achieving the highest, level 3, SLSA framework v1.0 compliancy for an example

artifact. The example also includes signing and SBOM generation as part of the

60

documented deep dive, serving as an example implementation for the consultants.

Future roadmap for the supply chain security is looking good with vendors adding

features to automatically generate SBOMs and packaging ecosystem tooling is starting

to adopt the SLSA framework for producing and verifying provenance, along with

signatures.

5.3.3.2 Secrets Management

Secrets management was found the most important foundational topic amongst the

consultants in the current state analysis. Also, there are some clear best practices that

were identified from the existing knowledge on secrets management.

One the most important practices is to adopt a dedicated secrets management system.

This will help with practical issues in modern DevOps driven environments, such as

secrets sprawl which can be mitigated by placing secrets into a central system.

Based on the suggestions during the proposal building there was additional fine tuning

to the initial proposal. Decision was to focus on basic usage of a tool and drive the

adoption with an approach that’s easy to implement, instead of focusing on the advanced

features of secrets management systems the aim is to simply have one in use. By

utilizing a secrets management system or pushing the initiative that one should be in

place, the consultants can set an example and help others adopt the tool by gaining

practical experience on the available tools.

5.3.3.3 Version Control System Security

All of the case company’s consultants work with version control systems daily, and it’s

also often highly coupled with the deployment pipelines, thus covering it in the security

framework was seen essential.

OpenSSF released the SCM [Source Code Management] Security Best Practices guide

during the writing process of this thesis, and it quickly became the reference existing

knowledge used in the framework for what security best practices should be in-place. In

addition the OpenSSF guide, the framework also recommends open-source projects for

continuous monitoring and compliance auditing for the leading VCS platform GitHub. As

61

the recommended first then, when working in customer projects the consultants can

make sure to configure their own repositories according to these best practices.

5.3.4 Element 4 of the Initial Proposal: Security Landscape

The initial proposal has a strong core that consists of the Secure Software Development

Lifecycle phases, that is then supported by the overarching DevSecOps culture and

guiding principles. The core sits on top of the three most important foundational security

practices for the case company. During Data 1 and Data 2 discussions, it was essential

to get input on how to scope the initial proposal. From the discussions regarding the

scope, a diagram was created as an extra visual aid to map security practices with an

example application stack.

As seen in Figure 11 below, the security landscape for a typical application stack is

extensive:

62

Figure 11. Security Landscape

Figure 11 shows the security landscape, with an example application stack illustrated in

the middle, building on top of layers of infrastructure at the bottom and development

tooling at the top of the applications themselves. This diagram was created to help map

the framework elements to real world software development processes and a typical

production environment, public or private cloud. Instead of only showing the framework

as it’s scoped, this diagram helps to also understand what’s not covered in the framework

as of now, as an example the diagram includes many practices in the right side (e.g.

IAM, auditing, awareness) that are not explicitly covered in the framework to keep it

focused on the case company context.

63

Summing up, the initial proposal leaves room for future improvement, but most

importantly it has a core that is meant to get all the consultants onboard no matter what

their current task is, there should be a relevant security practice they can take into use

from the framework. Next, Section 6 focuses on validation of the initial proposal and then

present the final version of the proposal.

64

6 Validation of the Proposal

This section discusses the validation stage and the third data collection round (Data 3)

gathered from the validation comments and overall feedback from the stakeholders. At

the end of this section, the final proposal is presented.

6.1 Overview of the Validation Stage

The initial proposal was a draft of the continuous security framework, which with

elements focusing on addressing the weaknesses identified during the current state

analysis. The framework draft was also informed by best practices from the conceptual

framework that were fit for the context of the case company, and additionally, the

suggestions gathered from the data collection (Data 2) done during initial proposal

building.

The initial proposal included four elements: DevSecOps Culture and Methods, Secure

Software Development Lifecycle Phases and Foundational Security Practices. Aim of the

validation is to gather feedback on the initial proposal to develop a final proposal and

then move on to complete the implementation of the first iteration of the framework. The

validation was performed in a single session during an internal conference, with most of

the case company experts present. This full validation process consisted of three steps:

First, a face-to-face presentation was given. During the presentation the internal website

containing the draft of the initial proposal was shared and additional context was given

verbally on each of the main elements and how to interpret the structure of the

framework. Second, questions, comments and other feedback was gathered from free-

form discussion in the room after the presentation. This feedback was recorded as field

notes. Third, based on the feedback gathered there were developments to the initial

proposal. After these developments were done the final proposal was created by

updating the website. The next section discusses the comments and feedback gathered

during the validation session and presents the developments that followed.

65

6.2 Developments to the Initial Proposal

This section discusses the comments and feedback received during the validation stage

and points to further developments to the initial proposal. At the end of the section, the

final proposal and implementation of the first iteration of the continuous security

framework are presented. Table 4 below presents the comments and feedback gathered

during the validation session, and the further developments to the initial proposal.

66

Table 4. Expert suggestions for the initial proposal.

 Element of the
Initial Proposal

Parts commented
in Validation

Description of the
comment/
feedback by
experts

Development to the Initial
Proposal

1 Element 1:
DevSecOps
Culture and
Methods

a) Methods; Test-
Driven Security
and Shift-Left
Security

Test-Driven
security is a
helpful term with
customer
discussion on how
we approach
implementing
security in
practice.

Make sure the terminology is
consistently used throughout the
framework implementation, to
make it part of the core
'language' when discussing
security.

2 Element 2:
Secure Software
Development
Lifecycle Phases

a) Develop and
Integrate Phase

How exactly
should the peer
review be done,
and when?

Peer review wasn't well defined,
it was decided to drop it from the
scope of the first iteration of the
framework.

b) Test and
Distribute Phase

What about
application
security, could we
scan the
application in
testing
environment?

The question was about using
dynamic application security
testing tools, after a conversation
it was decided these tools are
not in scope due to required
expertise. Instead a static
analysis tool for application
source code (gosec as an
example) in the Develop and
Integrate phase, since static
analysis tools don't require as
much expertise.

c) Deploy Phase The artifacts
available between
Deploy phase and
the previous (Test
and Distribute)
phase are
confusing.

Clarify the "What information and
artifacts are available?" column
by making it more high level and
descriptive.

3 Element 3:
Foundational
Security
Practices

a) Software
Supply Chain
Security

Can we take this
into use for
internal projects?

Align the technologies used in
the software supply chain
security examples with what is
used for internal projects, to
make it easy to adopt internally.

As seen in Table 4, there were several useful suggestions from the stakeholders during

the validation session which led into further development of the initial proposal. In the

next sub-sections the feedback on all four elements of the proposal will be discussed in

detail.

67

6.2.1 Developments to Element 1: DevSecOps Culture and Methods

Element 1 of the initial proposal is less tangible compared to the technical practices

described in the element 2 and element 3. As seen in table 4, the development to the

initial proposal was to make sure the “Test-Driven Security” term is used consistently in

the implementation of the framework, because stakeholders found that it’s descriptive of

the core idea of how the framework aims to implement the security practices; using

automated tests that are run continuously alongside development. There was no further

feedback on the element 1. However, one of the comments gathered from the validation

session might explain why:

“A lot of time and effort has been put into the framework, now we just need

to start using this.” (Consultant 1)

As the quote above mentions, the framework needs to be tested in practice and then the

feedback from the consultants and customers can help to further validate the methods

described in the element 1. Unfortunately, there was no time to conduct meaningful real-

world testing of the security framework for this thesis that might have revealed further

developments necessary. Positively, the framework is found useful based on the

feedback and the consultants are eager to try out the various practices it describes,

including the Test-Drive Security and Shift Left security methods described in the

element 1 of the initial proposal.

6.2.2 Developments to Elements 2: Secure Software Development Lifecycle Phases

Element 2 of the initial proposal received the most scrutiny that led into further

developments of the proposal out of the four elements.

First, there was a comment on how the peer review could be done during the Develop

and Integrate lifecycle phase. During conversations one of the consultants expressed

their view:

“Security peer review process if definitely something we should establish,

but I feel it might take some time to find a format that works for us, we will

have to practice and iterate on this.” (Consultant 2)

68

The above quote summarises the conversation well. Overall there was a consensus that

the practice is useful but it needs additional development and testing. The development

that came out of this feedback was that the peer review was dropped from the scope of

the first iteration of the framework, but there’s still a placeholder for it in the website

waiting for further development.

Second, there was a comment on what could be done with regards to application security

during the Test and Distribute lifecycle phase. More specifically, if the framework

describes some dynamic security scanner(s) that could be run against a running

application. It was further discussed that such tools had been briefly tried during the initial

proposal building when identifying tools to recommend in the initial framework. However,

those tools were far and few between, and the from the ones tried the results were much

harder to analyse without an application security expertise, thus such tools were not

recommended in the initial proposal of the framework. Instead of using dynamic

application security scanners, there was a development to the framework to make sure

it includes at least one example of a static application security scanning tool which can

be run already at earlier phase of the lifecycle and the results are easier to understand

without application security expertise.

Third, the wording of the What information and artifacts are available? -column for the

Deploy lifecycle phase was found confusing. One of the stakeholders gave the following

comment:

“Why are the provenance and SBOM artifacts in the Deploy phase,

shouldn’t those be in the previous stage?” (Consultant 3)

As the quote above mentions, the fact that SBOM and (SLSA) provenance are

mentioned in both Test and Distribute and Deploy lifecycle phase is a source of

confusion. This naturally led into a development of the wording used in the framework.

The explicit mention of SBOM and a provenance artifact was replaced with a mention of

“metadata”, which is then further opened in the framework’s practical content under this

section.

69

6.2.3 Developments to Elements 3: Foundational Security Practices

The element 3 of the initial proposal was foundational security practices, it consists of

three sub-elements: Software Supply Chain Security, Secrets Management and Version

Control System Security.

Software Supply Chain Security received the most attention and feedback during the

session. Many of the consultants though of concrete use-cases and benefits of

generating SBOM, and there were in-depth discussion about what exactly is SLSA

provenance and overall on the SLSA framework. One the stakeholders commented the

following:

“We should make our internal projects SLSA level 3 compliant!” (Consultant 4)

As seen from the quote above, there was lots of enthusiasm around the topic to put it

into practice and learn more. This also lead into a further development of the initial

proposal to make sure the content on software supply chain security align with the

technologies used for the case company’s internal projects to make it easy to use the

content as reference for implementation of the security practices for internal use.

The two other sub-elements of the foundational security practices: Secrets Management

and Version Control System Security didn’t receive any feedback that would have lead

into further developments.

6.2.4 Developments to Element 4: Security Landscape

The element 3 of the initial proposal was security landscape which is a diagram created

to help map the overall elements of the security framework with an example application

stack.

During the validation session there was no suggestions on how the security landscape

could be improved or changes. The stakeholders found the element useful and

supported the existing elements as it is in the initial proposal.

70

6.3 Final Proposal

This section presents the final proposal that was created after the validation stage

suggestions were accounted for. The final proposal is also followed, in the next sub-

section, by a brief discussion about the actual implementation of the first iteration of the

continuous security framework website that was the main delivery for the case company.

71

Table 5. Final Proposal of the Continuous Security Framework

Culture and Methods

Shift-left Security

Test-Driven Security

DevSecOps culture
Secure Software
Development Lifecycle
Phases

Develop & Integrate Test &
Distribute Deploy Monitor

What is the activity?

Writing code and
configuration incl.

deployment manifests
and IaC.

Building, testing
and distributing

artifacts:
container

images, binaries,
VM images,

other packages.

Production
deployment.

Monitoring
production

infrastructure
and workloads.

What information and
artifacts are available?

Static text files. Software that
builds and runs.

Software artifacts
and their

metadata,
deployment

configuration, test
results.

Metrics, logs
(app, network,
OS), Cloud APIs

and
configuration.

What could we check
for?

Known vulnerabilities
in dependencies,

insecure patterns in
code/config.

Compliance,
insecure runtime

configuration,
functionality,

integrity.

Production
readiness

according to
policies and
compliance.

Suspicious
activity, unstable
software, over-

privileged
identities.

What is most
important?

Fast feedback cycle, CI
pipeline must

complete in <5min.
Catch known issues

fast before developer
context switches.

Software and
configuration is

tested and
scanned. Provide
timely feedback
in <1h. Produce
signed artifacts,

SBOMs and
provenance

from build for
distribution.

Verify and enforce
integrity

(signature,
provenance),

compliance (tags,
labels etc.) and

runtime
configuration in

pre-flight checks.

Alerts and
reports.

How to check/achieve
it? (tool/practice)

Static Analysis tools:
trivy, tfsec, conftest,

gosec etc. Custom
policies for

misconfigurations.

Automated
tests. SLSA

provenance, syft
(SBOM),
sigstore.

Admission
controllers
(Kyverno),

conftest/OPA,
custom checks.

Steampipe, Trivy
Operator,

Tetragon/Falco.

Foundational Security
Practices

Software Supply Chain Security

Secrets Management

Version Control System Security

Security Landscape

72

As seen in Table 5 above, the final proposal is structurally unchanged from the initial

proposal seen in Table 4. The validation stage provided good improvements and

improved the clarity of the framework, while the overall shape and elements remained

the same. In the next section the practical implementation of the framework is discussed.

6.4 Implementation

The objective of this thesis work was to create a practical continuous security framework

which would provide consultants tools for effective customer communication and with

effective security practices for implementation in projects. As an outcome on the thesis

work, a website was created that goes into much more details on the elements and sub-

elements of the framework than what is possible to describe in this thesis. Figure 12

below is a screenshot of one the pages of the website that was created.

Figure 12. View of the Software Security Lifecycle Phases on the company´s website.

As seen in Figure 12 above, the Software Security Lifecycle Phases are included as a

set of pages that go into lots of details on the different phases and the technical practices

that are described only on high-level in this thesis. In addition to the lifecycle phases,

73

there are other tabs in the website that cover the other elements. Navigation bar of the

website is shown in Figure 13 below.

Figure 13. Navigation bar of the website.

As seen in Figure 13, the website clearly contains the elements 2 and 3 described in the

final proposal, and less explicitly the element 1 is described in the home page since it’s

the main methodology and strategy supporting the technical implementation work.

Also as seen in Figure 13, the website was named as VeriSecure, following the internal

naming conventions of the case company, for example the yearly internal conference is

called VeriConf. There have been discussions on whether the name should be shortened

to VeriSec, but no consensus has been reached at the time of writing this.

In addition to the website, also one blog post was released during the thesis writing

process and likely in future there will be more blog posts about the technical topics

inspired by the contents of the website. After more of the ideas on the website are put

into practice, hopefully the website will keep growing and through future iterations of the

framework maybe it will transform to either cover more ground or to focus on specific

element(s) more and more. Best way to further iterate on the website is to look for

opportunities in customer projects to apply a practice from the framework, and contribute

back with feedback and practical knowledge gained from the implementation of the

practice.

The following section will discuss the conclusion of the thesis. Section 7 below includes

the executive summary, discussion of next steps for the framework, thesis evaluation

and finally some closing words.

74

7 Conclusion

This section summarises the thesis results in an executive summary. In addition, the

thesis is evaluated and concluded with some closing words.

7.1 Executive Summary

The objective of this thesis was to create a continuous security framework that would

equip the case company consultants with tools for effective customer communication

and, provide practical guidance on effective security practices that should be

implemented in customer projects. Increased speed in software development and

delivery process due to DevOps movement requires changes to the cybersecurity

processes and practices in many organisations to make sure the increased speed of

software delivery does not translate into decreased security posture. The case company

focuses on DevOps and Cloud Architecture consulting services, and it’s important that

the consultants are well informed and up to date with suitable security best practices to

help the specialised security experts and teams of customer organisations by being

proactive and leading by example with regards to security practices in customer projects.

The research approach used in this thesis is applied action research and mainly

qualitative research methods. This research approach was selected to arrive at clear

results by implementing a practical change towards the business challenge without trying

to generalise the results for different contexts. The qualitative methods were applied

during three data collection rounds conducted during the thesis work, the data was

collected from interviews, analysis of internal documents and systems, workshops and

a survey.

The first data collection round (Data 1) was for the current state analysis which gathered

information inside the case company on what and how security related tasks and

practices are currently implemented in customer projects throughout the company. It was

found that there is no structured process or documentation around security practices

currently, so an analysis was needed on what is happening in projects to identify the

current strengths and weaknesses, and areas for improvement. After analysing the

current state, the following key focus areas were selected for a literature review to identify

suitable best practices that could be applied in the context of the case company: (1)

75

DevSecOps, (2) Software Security Lifecycle Phases, (3) Software Supply Chain

Security, (4) Secrets Management and finally (5) Securing Source Code Management.

The outcome of the literature review was a conceptual framework that touches on best

practices for people and processes as well as for implementation.

An initial proposal was created based on the focus areas identified through the current

state analysis and the best practices found from literature that were distilled into the

conceptual framework. This initial proposal is the first draft of the elements of the

continuous security framework. The first draft was then presented to the case company

experts for feedback and the initial proposal was further developed into a final proposal

based on this feedback. During the proposal building the scope and shape of the

continuous security framework was adjusted and made sure that the framework is fit for

the case company context, instead of being generalised. The proposed continuous

security framework consists of four elements: (1) an overarching DevSecOps strategy

and methods to guide the implementation and decision making, (2) secure software

lifecycle phases as a core practical guidance for steps to implement in each phase, (3)

foundational security practices to help secure foundation on which the lifecycle phases

execute, and (4) security landscape diagram that helps to map the security practices with

an example application development and delivery stack. Following the final proposal the

first iteration of the framework was implemented as an internal website that is a collection

of practical guides and examples on the elements described in this thesis.

The proposal was validated in a face-to-face session with all the key stakeholders

present. The website was shown to stakeholders and then most points of interest in the

content and the future were discussed. Overall, the feedback was that there’s lots of

effort put into the framework, but it needs to be put into implementation to figure out the

next steps and further iterate.

The continuous security framework built was well received and the data collection

process also helped to raise awareness and solidify the need for explicit focus on security

in customer work. Some of the practices from the framework have already found their

way into internal projects and hopefully contributions from various case company

consultants will help to shape the future iterations of the framework to something even

more fitting for the case company needs.

76

7.2 Thesis Evaluation

The need for the thesis was to create a security framework that integrates well with the

specialisation area (DevOps/Cloud) that the case company provides expert services in.

The original spark for the idea came from a small amount of experience using open-

source security scanning tools in recent projects, they were easy to use, and the

feedback was positive and useful. However, running a few tools in a CI pipeline versus

designing a full framework for “all projects” of the case company was a bigger challenge.

A lot of the existing knowledge studied was written by full-time security professionals,

when analysing the best practices from those sources it was difficult to judge if it fits in

the context of the case company or if it’s too grandiose and specialised.

When moving into the practical work on the proposal, there was a constant problem with

trying to scope the framework into concrete and practical elements. Recommended tools

must be easy to use and quick to learn, and the way to integrate them into the existing

workflows must be seamless. For example, these are some of the questions that kept

coming up: Can we make sense of the output from the tool, or does it require expertise?

What is applicable in the typical role the consultants are in customer assignments? How

would the customer react to proposing implementing a tool X for security enhancements?

These were hard questions because the company does not focus explicitly on security,

the scope of the recommended security practices needs to be carefully balanced with

the expectation of customers on time spend on security when it’s not the main value of

the delivery. Additionally, there was a risk when starting the work that the consultants

don’t understand or see the value in the practices that the framework would promote.

Fortunately, in the current state analysis it was clear that the consultants do care about

security topics, a lot, and the initiative was well received although scope kept changing

in the initial stages.

Ultimately, the scope of the framework in the end is still arguably too wide, some of the

elements did not receive much scrutiny during the validation and it could have been great

to reduce the scope more aggressively before implementation. The framework could

have been just a small core of the very essential practices and guidance. This small core

would have been much easier to grasp for the consultants and easier to put in practice

to gather feedback, and then iterate in small steps to increase the scope of change the

elements based on reflections on practical work. Some elements that received most

attention, notably software supply chain security, could have worked as the main topic

77

of the thesis alone, but that space is moving fast and putting in lots of effort now might

not be a great investment in the longer run as the ecosystems and tools are still quickly

evolving.

7.3 Closing Words

During the thesis work, there were a lot of good conversations with colleagues, it was

surprising how much people really care about security. Idea for the framework was to

find ways to make these consultants effective and efficient when looking to apply security

in their existing or future projects, or in other words, make it as easy as possible for the

peer consultants to add security into the mix, without adding a lot to their cognitive load.

The author learned a lot from the thesis and will be there for the peer consultants to help

with security advice and coaching.

During the research, development and practical implementation work done for the thesis,

the author also became more and more conscious of the amount of complexity in today’s

cloud native application environments. Securing all the layers of infrastructure is hard,

on the other hand, failing to do so in one place can lead into an easy opening for a

cybercriminal. Perhaps as an industry we would do everyone involved a favour if we

would stop adding complexity and just worked for a while on what we already have,

making that easy to use, stable, and secure by default before jumping into the next new

hype train.

78

References

Adams, John & Khan, Hafiz T. A. & Raeside, Robert 2013. Research Methods for
Business and Social Science Students. 2nd edition. New Delhi: SAGE
Publications

Agilemanifesto.org 2001. Agile Manifesto. Retrieved 17/11/2023.
https://agilemanifesto.org/

Anchore 2023. Syft, CLI tool and library for generating SBOM. Retrieved 2/11/2023.
https://github.com/anchore/syft

Bird, Jim 2016. DevSecOps. Chapter 3. Keys to Injecting Security into DevOps. (e-
book). Sebastopol: O’Reilly Media Inc. Retrieved 2/11/2023.
https://learning.oreilly.com/library/view/devopssec/9781491971413/

CNCF 2022. Cloud Native Security Whitepaper, version 2. Retrieved 2/11/2023.
https://github.com/cncf/tag-security/blob/main/security-
whitepaper/v2/CNCF_cloud-native-security-whitepaper-May2022-v2.pdf

CNCF 2018. CNCF Cloud Native Definition v1.0. Retrieved 2/11/2023.
https://github.com/cncf/toc/blob/main/DEFINITION.md

CNCF 2021. CNCF Software Supply Chain Best Practices. Retrieved 2/11/2023.
https://github.com/cncf/tag-security/blob/main/supply-chain-
security/supply-chain-security-paper/CNCF_SSCP_v1.pdf

Continuousdelivery.com 2010. Deployment Pipeline Anti-Patterns. Blog post 09/2010.
Retrieved 1/11/2023. https://continuousdelivery.com/2010/09/deployment-
pipeline-anti-patterns/

Cyberark 2023. Secrets Management. Retrieved 17/11/2023.
https://www.cyberark.com/what-is/secrets-management/

Dadgar, Armon 2018. What is “secret sprawl” and why is it harmful? Retrieved 2/11/2023.
https://www.hashicorp.com/resources/what-is-secret-sprawl-why-is-it-
harmful

Davis, Jennifer & Daniels, Katherine 2016. Effective DevOps. Building a Culture of
Collaboration, Affinity, and Tooling at Scale. Sebastopol: O’Reilly Media Inc

DeHamer, Brian & Harrison Philip 2023. Introducing npm package provenance. Blog post
19/04/2023. Retrieved 2/11/2023. https://github.blog/2023-04-19-
introducing-npm-package-provenance/

Dotson, Chris 2019. Practical Cloud Security: A Guide for Secure Design and
Deployment. Sebastopol: O’Reilly Media, Inc

https://agilemanifesto.org/
https://github.com/anchore/syft
https://learning.oreilly.com/library/view/devopssec/9781491971413/
https://github.com/cncf/tag-security/blob/main/security-whitepaper/v2/CNCF_cloud-native-security-whitepaper-May2022-v2.pdf
https://github.com/cncf/tag-security/blob/main/security-whitepaper/v2/CNCF_cloud-native-security-whitepaper-May2022-v2.pdf
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://continuousdelivery.com/2010/09/deployment-pipeline-anti-patterns/
https://continuousdelivery.com/2010/09/deployment-pipeline-anti-patterns/
https://www.cyberark.com/what-is/secrets-management/
https://www.hashicorp.com/resources/what-is-secret-sprawl-why-is-it-harmful
https://www.hashicorp.com/resources/what-is-secret-sprawl-why-is-it-harmful
https://github.blog/2023-04-19-introducing-npm-package-provenance/
https://github.blog/2023-04-19-introducing-npm-package-provenance/

79

European Commission 2022. Cyber Resilience Act. Retrieved 2/11/2023. https://digital-
strategy.ec.europa.eu/en/library/cyber-resilience-act

Farley, David & Humble, Jez 2010. Continuous Delivery. Reliable Software Releases
Through Build, Test and Deployment Automation. Boston: Pearson
Education, Inc

Forsgren, Nicole & Humble, Jez & Kim, Gene 2018. Accelerate. Building and Scaling
High Performing Technology Organizations. Portland: IT Revolution Press
LLC

GitGuardian 2023. GitGuardian. Product website. Retrieved 17/11/2023.
https://www.gitguardian.com/

GitGuardian 2023a. Secrets Detection. Retrieved 17/11/2023.
https://www.gitguardian.com/monitor-internal-repositories-for-secrets

GitHub 2023. GitHub security features. Product documentation. Retrieved 2/11/2023.
https://docs.github.com/en/code-security/getting-started/github-security-
features

GitLab 2023. The Ultimate Guide to Securing your Code on GitLab.com. Retrieved
17/11/2023. https://about.gitlab.com/blog/2023/05/31/securing-your-code-
on-gitlab/

Gray, Jim & Vogels, Werner 2006. A Conversation with Werner Vogels. Interview
30/06/2006. Retrieved 2/11/2023
https://queue.acm.org/detail.cfm?id=1142065

Guac.sh 2023. GUAC, Know your software supply chain. Retrieved 2/11/2023.
https://guac.sh/

HashiCorp 2023. Vault, manage secrets and protect sensitive data with Vault. Retrieved
2/11/2023. https://www.vaultproject.io/

Kananen. 2013. Design Research (Applied Action Research) as Thesis Research. A
Practical Guide for Thesis Research. Jyväskylä: Publication of JAMK
University of Applied Sciences

Kim, Gene & Humble, Jez & Debois, Patrick & Willis, John & Forsgren, Nicole 2021. The
DevOps Handbook. How to Create World-Class Agility, Reliability, &
Security in Technology Organizations. 2nd edition. Portland: It Revolution
Press LLC

Linux Foundation 2023. Sigstore. Mak Retrieved 2/11/2023. https://www.sigstore.dev/

Linux Foundation 2023a. in-toto Framework. Retrieved 2/11/2023. https://in-toto.io/

https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://www.gitguardian.com/
https://www.gitguardian.com/monitor-internal-repositories-for-secrets
https://docs.github.com/en/code-security/getting-started/github-security-features
https://docs.github.com/en/code-security/getting-started/github-security-features
https://about.gitlab.com/blog/2023/05/31/securing-your-code-on-gitlab/
https://about.gitlab.com/blog/2023/05/31/securing-your-code-on-gitlab/
https://queue.acm.org/detail.cfm?id=1142065
https://guac.sh/
https://www.vaultproject.io/
https://www.sigstore.dev/
https://in-toto.io/

80

Linux Foundation 2023b. Tekton Chains. Supply Chain Security in Tekton Pipelines.
Retrieved 2/11/2023. https://github.com/tektoncd/chains

NTIA 2020. Software Bill of Materials (SBOM). Retrieved 2/11/2023.
https://www.ntia.gov/files/ntia/publications/sbom_overview_20200818.pdf

OpenSSF 2023. OpenSSF Releases Source Code Management Best Practices Guide.
Blog post 14/09/2023. Retrieved 2/11/2023.
https://openssf.org/blog/2023/09/14/openssf-releases-source-code-
management-best-practices-guide/

Podjarny, Guy 2021. Cloud Native Application Security. Chapter 1: Accelerating
Technology Delivery. (e-book). Sebastopol: O’Reilly Media Inc. Retrieved
23/10/2023. https://learning.oreilly.com/library/view/cloud-native-
application/9781098105631/

Sheridan, Kelly 2020. Twilio Security Incident Shows Danger of Misconfigured S3
Buckets. News article 23/07/2020. Retrieved 20/11/2022.
https://www.darkreading.com/cloud/twilio-security-incident-shows-danger-
of-misconfigured-s3-buckets

SLSA.dev 2023. Supply chain threats. Retrieved 31/10/2023.
https://slsa.dev/spec/v1.0/threats-overview

SLSA.dev 2023a. About SLSA. Retrieved 31/10/2023. https://slsa.dev/spec/v1.0/about

SLSA.dev 2023b. Software attestations. Retrieved 31/10/2023.
https://slsa.dev/attestation-model

Sonatype 2023. State of the Sotware Supply Chain report 2023. Retrieved 2/11/2023.
https://www.sonatype.com/state-of-the-software-supply-chain/open-
source-supply-and-demand

Synopsys 2023. Open Source Security and Risk Analysis report. Retrieved 31/10/2023.
https://www.synopsys.com/software-integrity/resources/analyst-
reports/open-source-security-risk-analysis.html

Truffle Security 2022. An API Worm In The Making: Thousands Of Secrets Found In
Open S3 Buckets. News article 03/08/2022. Retrieved 20/11/2022.
https://trufflesecurity.com/blog/an-api-worm-in-the-making-thousands-of-
secrets-found-in-open-s3-buckets/

Vehen, Julien 2018. Securing DevOps. Security in the Cloud. Shelter Island: Manning
Publications Co

White House 2021. Executive Order on America’s Supply Chains. Retrieved 2/11/2023.
https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/02/24/executive-order-on-americas-supply-chains/

https://github.com/tektoncd/chains
https://www.ntia.gov/files/ntia/publications/sbom_overview_20200818.pdf
https://openssf.org/blog/2023/09/14/openssf-releases-source-code-management-best-practices-guide/
https://openssf.org/blog/2023/09/14/openssf-releases-source-code-management-best-practices-guide/
https://learning.oreilly.com/library/view/cloud-native-application/9781098105631/
https://learning.oreilly.com/library/view/cloud-native-application/9781098105631/
https://www.darkreading.com/cloud/twilio-security-incident-shows-danger-of-misconfigured-s3-buckets
https://www.darkreading.com/cloud/twilio-security-incident-shows-danger-of-misconfigured-s3-buckets
https://slsa.dev/spec/v1.0/threats-overview
https://slsa.dev/spec/v1.0/about
https://slsa.dev/attestation-model
https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-and-demand
https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-and-demand
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://trufflesecurity.com/blog/an-api-worm-in-the-making-thousands-of-secrets-found-in-open-s3-buckets/
https://trufflesecurity.com/blog/an-api-worm-in-the-making-thousands-of-secrets-found-in-open-s3-buckets/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/

81

White House 2021. Executive Order on Improving the Nation’s Cybersecurity. Retrieved
2/11/2023. https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

Appendix 1

 1 (1)

Appendix 1: Current State Analysis Survey

1. Which of these security controls do you think are most important? (top 3-5)

2. Out of the ones you chose, would you like to prioritise them?

3. Out of the ones you chose or any others, which would be the easiest one to

implement?

4. What's stopping you from doing these things as part of every day project work?

5. What tools would you use to implement controls such as static code scans and

IaC policies?

6. Should we explicitly include security into the design and implementation of

customer work?

7. Do you think it's possible to create a structured approach that can be useful in

any project?

8. Anything else you'd like to mention around security?

