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Abstract 
 
The technology is advancing rapidly and today object detection is becoming increasingly common. 
Using a camera and object detection in water level measurements is useful and affordable, as 
cameras are often readily available at such locations. In this thesis, an application was developed 
to measure water level from images of a staff gauge using a Yolov5m model. 
 
The quality of the captured images is often a problem. Strong light, reflections, and dirty staff 
gauges often cause the object detection to fail. To this category belongs also night-time and blurry 
images. A separate application was developed to handle this filtering. This application filters out 
these night-time and blurred images, images that otherwise the Yolov5m model would fail on. 
 
In this thesis, two alternatives for the water level measuring application were compared. In the first 
alternative Yolov5m was used for detecting the staff gauge and numbers on the staff gauge and 
image processing was used for locating the water line. In the second alternative, the Yolov5m model 
was used for all three detections, for the staff gauge detection, the numbers detection on the staff 
gauge, and for the water line detection on the staff gauge. The second alternative using the 
Yolov5m model for water line detection outperformed the first alternative. The second alternative 
estimated the water level correctly in 40% of the test images and 83% of the test images, it 
estimated the water level within 3 cm of the correct level. 
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Abbreviations 

 
CNN  Convolutional Neural Networks 
COCO  Common Objects in Context 
CUDA  Compute Unified Device Architecture 
GPU  Graphics Processing Unit 
IoU  Intersection over Union 
mAP  mean Average Precision 
mAP0,5  mean Average Precision for an IoU with a threshold equal to 0,5 and 

averaged over all classes 
mAP0,5:0,95  mean Average Precision for IoU with thresholds between 0,5 and 

0,95, averaged over all classes 
RCNN  Region-based Convolutional Neural Networks 
ReLU  Rectified Linear Unit 
SPPNet  Spatial Pyramid Pooling Networks 
SSD  Single Shot MultiBox Detector 
YOLO  You Only Look Once 
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1 Introduction 

Being able to assess, measure, and quantify things in the environment around us is 

something fundamental. It is of great importance to get a value of what things are, for many 

reasons. Measuring water levels has been done for many centuries or even millennia. There 

are records of water level measurements of the river Nile in Egypt, as early as 3000 BC.  

Water level measuring, especially in a country like Norway with its high mountains and 

deep and numerous valleys, is essential for flood prediction and prevention. The water is 

also a very important source of energy. In Norway, 98 % of all energy production comes 

from hydropower (Renewable Energy Production in Norway, 2016). Being able to measure 

the water levels in lakes and dams means that you are able to measure the energy content 

and theoretical output of a hydropower plant that uses the water from the lake or dam. It 

also allows you, together with other parameters, to predict and plan when to produce 

electricity and how much to produce.  

Today water level measuring in general is usually done using float-type, pressure, 

ultrasonic, microwave/radar, or optical sensors. These sensors and the whole setup needed 

can be expensive and the sensors also usually need some form of calibration. It can be a 

challenge to use these kinds of sensors in a country like Norway, that have very distinct 

seasons. During the winter season, these sensors also need heating or other measures to 

prevent freezing.  

A camera with an internet connection is usually a much cheaper investment and such 

equipment is in many locations already available. In many mountain lakes or dams from 

which water is used in energy production, a visual staff gauge is installed so that the public 

can follow the water level. A camera can capture images of this staff gauge and by using 

specialized computer software, the water level could be extracted from these images. 
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2 Literature review 

There are not that many articles that deal with water level measuring from images using 

object detection, but some that use traditional image processing techniques. When no 

object detection procedures are used, the region of interest needs to be manually located 

in the images and the field of view of the camera must not change during the capturing of 

images.  

Amongst the reviewed articles only one used image processing methods for finding the 

staff gauge. Dou et al. used image processing and an OpenCV function called 

“findContours” to identify the location of the staff gauge. After locating the staff gauge, 

number area, and scale line area, multiple images were captured in a row. This method is 

sensitive to disturbances as the camera must not move during image capturing as no new 

image detection was performed in between. (Dou et al., 2022)  

Only one article was found where they made use of machine learning in locating the staff 

gauge. Qiao et al. used Yolov5s to detect the staff gauge in the image. This approach 

showed good precision of the detection in most cases, except when there are reflections 

of the staff gauge on the water surface (Qiao et al., 2022). In the rest of the reviewed 

articles, the staff gauge was located manually within the images, before use. This, of course, 

makes the setup very vulnerable to interference, as Zhang et al. observed. Wind gusts made 

the camera shake, which made the region of interest move in relation to the captured staff 

gauge. (Zhang, Zhou, Liu, & Gao, 2019)  

The located staff gauge can be tilted and needs to be straightened. Dou et al. and Qiao et 

al. used Hough transform in their respective work, to identify and correct possible tilting. 

(Dou et al., 2022; Qiao et al., 2022) 

Out of the reviewed articles all but one applied image processing to locate the water line. 

The aim of the image processing was first to remove noise and disturbances, and then 

binarize the image. The hypothesis was that the water body is darker than the staff gauge 

and therefore the binarized image will clearly show the water line. The number of black 

pixels was then counted and summed up for each row and when the sum fell below a 

threshold value, this identified the water line. (Sabbatini et al., 2021; Dou et al., 2022;  

Zhang, Zhou, Liu, Zhang, et al., 2019; Zhang, Zhou, Liu, & Gao, 2019; Qiao et al., 2022) The 
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exception was de Oliveira Fleury et al. who proposed their own Convolutional Neural 

Network (CNN) model to find the water line and read out the water level (De Oliveira Fleury 

et al., 2020). They created the dataset by labelling images and classifying them according 

to the water level. They compared the performance of their own CNN model to two other 

CNN models, ResNet50 and MobileNetV2, and their CNN model was superior. Their model 

showed that the technology works, but the error their model had was still rather large, a 

root mean square error of 0,29(m), considering that their dataset had images with water 

levels in the range of 86,35 m to 88.89 m. (De Oliveira Fleury et al., 2020) 

To calculate the water level, generally, the pixel-to-cm ratio is first determined and then 

the pixels between a reference point and the located water line, are counted. A reference 

point could be the numbers on the staff gauge, as Zhang et al. proposed, or the top of the 

staff gauge itself as Qiao et al. suggest. (Zhang, Zhou, Liu, & Gao, 2019; Qiao et al., 2022)  

Qiao et al. used a Yolov5s model to locate the numbers on the staff gauge and another self-

developed CNN model to classify the detected numbers. These numbers were then used 

as a reference for the calculation of the water level. (Qiao et al., 2022) 

Many of the authors pointed out that image quality plays a role in the performance of the 

applications. Sabbatini et al. was one of two articles dealing with the image quality 

problem. They created an algorithm to sort out bad-quality images and split the good-

quality images into day and night images. The day and night images were then processed 

by different methods to find the water line. (Sabbatini et al., 2021) Zhang et al. took another 

approach to solving the problem with image quality due to bad weather conditions. They 

made use of infrared imaging. (Zhang, Zhou, Liu, & Gao, 2019) Staff gauge materials and 

the water body reflect infrared light differently than visible light, possibly enhancing the 

contrast (Mangold et al., 2013). After locating the water line, the same kind of image 

processing procedure was performed as described earlier. 

2.1 Purpose of the study 

The purpose of this thesis is to create an application that computes the water level from 

images. To use the Yolov5 model for object detection was decided after reviewing articles 

on automatic water level measuring. This thesis will include all the steps needed to create 

this application, except for collecting the images.    
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3 Theory 

The human eye detects the light that reaches the retina and converts the information to 

electrical signals. These electrical signals are then processed in the brain, into an image. A 

digital camera works similarly. The retina is replaced by a digital sensor that captures the 

light and converts it into binary form. The digital sensor is a two-dimensional matrix of 

photo-sensitive detectors, where each element only detects one colour, usually red, green, 

and blue. (Fraser, 2004) 

The captured image data is then stored in an unprocessed raw format. Before processing 

it needs to be converted into a more easily workable format, like the RGB format. For 

example, a colour image with a resolution of 256x256 pixels, contains three two-

dimensional matrices, one matrix per colour. Each of these matrices has the same size as 

the final image, 256x256 pixels, and each cell in the matrices contains the intensity value 

of one colour ranging from 0 to 255, as depicted in Figure 1. (Fraser, 2004) 

 

 

 

Figure 1. An RGB image illustrated in matrix format. 

 

A grayscale conversion of this image will merge the three matrices into one, retaining the 

resolution. The three colours are not necessarily merged in the same proportions, which 

means that the pixels in the grayscale image do not contain one-third of each colour 

intensity. A weighted method is usually used to make the image more natural-looking. The 

weighted method means that the three colour intensities are multiplied with a constant 

that defines their proportions in the grayscale image. These constants are 0,299 for the red 

colour, 0,587 for the green colour, and 0,114 for the blue. These values originate from the 

standard:” Studio encoding parameters of digital television for standard 4:3 and wide-

screen 16:9 aspect ratios”. (Radiocommunication Sector of International 

Telecommunication Union, 2011) 
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The colour in an image is defined by the intensity of the three colours described above. The 

edges of an object in an image are recognized by larger changes in the intensity values of 

neighbouring pixels. This is a feature that is one of the main things in object detection and 

object recognition. 

3.1 Object detection and object recognition 

Object detection and object recognition means the technology of using a computer to 

identify objects in digital images. These objects can usually be faces, humans, cars, or 

animals, but the possibilities are many. In 2001 Viola and Jones published the first real 

object detection application for facial detection and this was the beginning of a new era. 

(Zou et al., 2023)  

With the rebirth of the Convolutional Neural Networks, or CNN, and its introduction in 

object detection by Krizhevsky et al. (Krizhevsky et al., 2012) and Girshick et al. (Girshick et 

al., 2014) in the first half of the 2010s, the development started to gain momentum. The 

neural network mostly used in object detection is CNN. CNN is used in a myriad of models 

like Single Shot multibox Detector (SSD), You Only Look Once (YOLO), Retina-Net, Region-

based Convolutional Neural Networks (RCNN), and Spatial Pyramid Pooling Networks 

(SPPNet) among many others. (Zou et al., 2023) 

3.2 Convolutional neural networks – CNN  

Convolutional neural network is perhaps the most common type to be used for image 

recognition and that is for a reason. It is very effective in detecting features in an image. In 

2014 Girshick et al. published a technical report on object detection (Girshick et al., 2014). 

This work is one of the earliest works where the use of CNN is used in object recognition. 

After this publication, the evolution of object detection took off. (Zou et al., 2023) 

It is, as the name “neural network” implies, influenced by the human brain and the network 

of neurons it contains. The CNN is built up of layers grouped as input layer, hidden layers, 

and output layers (Du, 2018). The neurons, name also adapted from the human brain, are 

inter-connected between the layers. In these interconnections, multiplications are 

performed using weights and biases. (Khan et al., 2018; Zafar et al., 2018) In Figure 2 below, 

the neurons’ interconnections between layers are illustrated. 
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Figure 2. CNN neuron connections between layers. 

 

Activation functions are found between the layers, and they are attached to the output of 

each neuron. One commonly used activation function is the Rectified Linear Unit or ReLU. 

It maps the positive values of the neuron and if the value is negative it is mapped to zero, 

which is illustrated in the upper left square in the left and middle image, in Figure 3 below. 

The output of the activation function can further be modified using a pooling function. The 

pooling function reduces the size of the feature maps by compressing smaller regions of 

neurons. This is done by only keeping the highest number in each square. In Figure 3, the 

upper left circle in the rightmost image, number four is the result of max pooling. (Du, 2018; 

Khan et al., 2018; Zafar et al., 2018) 

 

 

 

Figure 3. Example of ReLU function and Pooling function (Max pooling function).  

 

The main building blocks in a CNN are the convolutional layers. It is in these layers all the 

computations occur. There are many of these layers in a CNN and they are processing the 

data, usually in sequence. Each of these layers is focused on detecting specific types of 

features. The first layers detect simple patterns like lines or curves and further along in the 

network the layers detect more complex features like for example faces or animals. (Du, 

2018; Khan et al., 2018) 
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Figure 4. A convolutional layer is illustrated. 

 

To detect these features the convolutional layers use a matrix that it convolves through an 

image from top-left to bottom-right. This matrix is called a filter or kernel and it consists of 

a square with the pixel size of 3x3, 5x5, or similar. This square contains random or pseudo-

random numbers or as Figure 5 below.  

 

 

 

Figure 5. A 3x3 filter or kernel used in CNN 

 

This filter, when it convolves across the image performs dot multiplication with the pixel 

values, i.e., pixel intensities (see Figure 6). This process is the base for feature detection in 

an image. With filter A, in Figure 7 below, the horizontal edges of an object are detected 

and with filter B vertical edges are detected. (Khan et al., 2018) 

 

    

 

  

  

Figure 6. Computation logic of the filter in convolutional neural networks 

   (-1,0 x 0,7) + (0,0 x 0,2) + (1,0 x 0,0) 
+ (-1,0 x 1,0) + (0,0 x 0,7) + (1,0 x 0,0) 
+ (-1,0 x 0,7) + (0,0 x 1,0) + (1,0 x 0,0) 
= -2,4 
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Figure 7. The function of different filters in convolutional neural networks. 

 

The filter format is modified during the training of the network, so the format of the filters 

in the beginning is not the most important thing and usually, the initialization of the weights 

is random. (Khan et al., 2018; Zafar et al., 2018) 

The learning process in a CNN is based on minimizing the prediction error, or loss. In this 

process usually two subprocesses are used, forward propagation and back propagation. In 

forward propagation, the network takes the input and moves through the network's all 

layers to produce the output. After this the loss is calculated, comparing the predicted 

result with the ground truth, thus evaluating the performance of the network. After this, 

the backpropagation is performed, where the impact of each weight on the loss is 

evaluated and the gradient is calculated with respect to these weights. This gradient shows 

the direction and how much the weight needs modifying to minimize the loss. An 

optimization function is then updating the weights based on these gradients, taking the 

defined learning rate into account. (Goodfellow et al., 2016; Zafar et al., 2018; Khan et al., 

2018) 

Many architectures in object detection, developed during the years use CNN in one form 

or the other. Yolov5, which will be described next, also makes extensive use of CNN in its 

own architecture. 
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3.3 Yolov5 

Yolo, You Only Look Once, was released in 2015 by Joseph Redmon et al. It was a new 

approach to object detection as previous approaches tried to reuse classifiers, but Yolo look 

at it as a regression problem. The image is divided into parts in a grid-like format, and it 

predicts bounding boxes, confidence, and class probabilities for these parts, all in one go. 

(Redmon et al., 2015) 

Redmon and Farhadi continued developing Yolo and they released two more versions 

before others took over. (Redmon & Farhadi, 2017; Redmon & Farhadi, 2018) Yolov4 was 

in turn released in 2019 by Alexey Bochkovskiy et al. (Bochkovskiy et al., 2020) Research in 

the subject continued and one company that jumped on the train was Ultralytics. They 

released their first version of Yolo in the summer of 2020. This version got the name Yolov5. 

This is the Yolo version that is used in this thesis. There are newer versions of Yolo out now 

and the most recent version, at the time of writing, is version 8 by Ultralytics. 

 

Figure 8. The timeline of the Yolo evolution up to version 5. 

 

The early versions of Yolo, version one through to version four, were developed using the 

Darknet neural network framework. Since the release of Yolov5, the model has been built 

on the PyTorch framework. Both Darknet and PyTorch are platforms for building and 

training neural networks, while they contain the needed libraries and tools. The move to 

use PyTorch is one of the main advances that was made in Yolov5 compared to previous 

versions. PyTorch is written in Python and, with more users, makes it more approachable 

than Darknet which is written in C. PyTorch also makes Yolov5 easier to install and deploy. 

(Jacob Solawetz, 2020b) 
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Yolov5 is a pre-trained model. It is pre-trained on the COCO dataset, which contains over 

200k labelled images. The Common Objects in Context dataset, or COCO is a large dataset 

provided by Microsoft. The advantage of using a pre-trained model is that you do not need 

to start from scratch and collect and label huge amounts of images. The pre-trained model 

is, as the name indicates, already trained to some extent and you do not need as many 

labelled images to train it for your specific application. Using a pre-trained model to train 

with your own dataset is called transfer learning. 

Yolov5 is a one-step object detection model. This means that when Yolov5 is detecting an 

object in an image it is, at the same time, predicting its class and calculating its position. A 

one-step model has the advantage of being fast but on the downside, its accuracy may 

suffer.  
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3.3.1 The Yolov5 architecture and features 

There are three main components in the Yolov5 architecture. They are called backbone, 

neck, and head. The backbone is the main part of the network, and it is where the features 

are detected. In the backbone architecture, a type of CNN structure is used, which has the 

purpose of facilitating the gradient flow through the network. The neck connects the 

different features and serves the head, which is the part generating the output. The head 

in Yolov5 is the same as in Yolov3. In Figure 9 is a graphical description of Yolov5. (Jocher 

& Waxmann, 2023)  

 

 

Figure 9. The Yolov5 v6.0 architecture (Jocher & Waxmann, 2023) 
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3.3.1.1 Grid cells 

One feature that has lived on since the first Yolo version is grid cells. The image is divided 

into NxN equally shaped cells, called grid cells. The localization of objects and the prediction 

of class are calculated in relation to each grid cell. The predictions’ probability and 

confidence values are also calculated for each cell. (Redmon et al., 2015) 

 

 

Figure 10. The grid cells with black outlines are cells that are responsible for the localization 

and prediction of the staff gauge object. 

 

After an object is detected in the image, a bounding box is predicted around it. The cells in 

which the object is located are identified and Yolov5 calculates the coordinates for these 

bounding boxes using regression (Jocher & Waxmann, 2023). The format of the vector that 

represents the bounding boxes is:  

(2.1) 

where  

pc is the probability value of the combined cells that contain the object, objectness score. 

bx and by are the coordinates of the center of the bounding box in relation to the grid cell 

it is found in. 

bh and bw is the height and width of the bounding box in relation to the grid cell it is found 

in and c1, c2... are the classes available. 
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Figure 11. The prediction of a bounding box. The dashed lined box is the anchor box prior 

from the model parameters and the solid lined box is the prediction.  

 

In Figure 11 above the black X is the center of the bounding box. The formulae to calculate 

bx, by, bh, and bw for the bounding box are: 

 

 

  

  

 

where pw and ph is the anchor box prior. 

tx and ty are normalized values of x and y coordinates by using the Sigmoid function. The 

center point offset range of the Sigmoid function is adjusted from (0,1) to (-0,5, 1,5). When 

the offset is used in this way, it allows the offset to easier become 0 or 1 (see Figure 12 

below). (Jocher & Waxmann, 2023) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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Figure 12. The normal sigmoid function is in black and the modified in red 

3.3.1.2 Intersection over Union and non-maximum suppression 

The objects often cover several grid cells and can therefore have multiple grid cell 

candidates for prediction. The idea of the intersection over union, or IoU in short, is to 

identify the relevant grid cells and only keep them. The user defines a threshold value for 

IoU as a parameter during inference. Yolov5 then calculates a value for each grid cell in 

which the object resides. In the case that the bounding box covers several grid cells, the 

threshold will be important. The value is the intersection area divided by the union area. If 

the value is less than the defined threshold, that grid cell is then ignored. This is called non-

maximum suppression, which means that only those grid cells with the highest probability 

value are kept. IoU is illustrated in Figure 13 below. (Jocher & Waxmann, 2023) 

 

Figure 13. Intersection area in each grid cell illustrated. Intersection area is blue, and the 

union area is red and blue. 

before 
after 



 20

3.3.2 Build targets 

Building targets is an important process for making training efficient and the model 

accurate. Yolov5 tries to localize the ground truth bounding boxes and assign them to a grid 

cell in the output map. The model scales the anchor box templates and tries to match the 

scaled versions to the ground truth. A limit of 4 is set for the ratio in the model. Larger 

scaled versions of the anchor box templates are not tested. The anchor bounding box 

template that totally surrounds the bounding box will then have the maximum ratio (Figure 

14 below). (Jocher & Waxmann, 2023)  

 

 

 

 

 

 

 

where  

r is the ratio, w is width, h is height, gt is ground truth, and at is anchor bounding 

box template. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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Figure 14. a) shows a failed matched anchor box template. Making the anchor box template 

smaller or larger will not cover the bounding box from the custom data set. Figures b) and 

c) shows successful matching. Enlarged anchor box templates will cover the bounding box 

from the custom data set. (Jocher & Waxmann, 2023) 

3.3.3 Yolov5 labelling 

To be able to train Yolov5 the images need to be labelled. This is easiest done by using a 

dedicated software. The software used in this thesis is called labelImg.exe (v1.8.1) (Lin, 

2018). The more accurately the labelling is performed, the better. With this software, the 

object instances in each image are boxed to mark the exact location of the objects. Leaving 

space around the box will also lessen the accuracy of the final custom-trained model. The 

format of the label file is presented in Figure 15 below. 

 

 

 

Figure 15. A staff gauge with a bounding box. 

b) 

a) 

c) 
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The x and y coordinates are normalized values of the image containing values from 0,0 to 

1,0. The value 0,0 for the x-coordinate means a point at the leftmost edge of the image and 

1,0 a point at the rightmost edge of the image. For the width and height, the value 0,5 

would mean that the width is half of the width of the image or for height half of the height 

of the image. The label file is a text file (.txt) and it has the same name as the image file it 

belongs to. The labels of all objects in an image are stored in one label file. 

3.3.4 Performance metrics 

Yolov5 detects objects in images based on the knowledge it has acquired from the labelled 

images in the training dataset. To be able to measure the performance of the models, some 

metrics are needed. The basis for these metrics is intersection over union.  

3.3.4.1 Intersection over Union 

Intersection over union, or IoU in short, is a measure of how well the predicted bounding 

box matches the ground truth bounding box. IoU is calculated as the overlapping area 

between the bounding box and the object, divided by their union. If the IoU perfectly 

matches the ground truth the result is one and if the predicted bounding box is not 

overlapping the ground truth bounding box at all the result is zero. The IoU result can have 

values from zero to one. (Zafar et al., 2018)  

 

 

 

 

Figure 16. IoU and its performance illustrated. 

3.3.4.2 Precision and recall 

Precision and recall are two important metrics in machine learning. They are a measure of 

the model’s ability to localize bounding boxes correctly based on the IoU. Precision metrics 

describe how many detections are correctly made and recall, or sensitivity means how 

IoU = 

IoU = 0,82 

IoU = 0,35 

IoU = 0,95 

          Good        Poor               Excellent  
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many actually correct detections are made (Padilla et al., 2021). These two metrics will have 

values between 0 and 1. These two metrics are used together and for a well-performing 

model, the values for the metrics must both be as high as possible. 

To be able to calculate these values each detected bounding box must be defined as one 

of the following: 

- True positive detection, or a correctly detected ground truth bounding box. 

- False positive detection, or an incorrectly detected bounding box for an existing 

object, or detection of a wrong object. 

- False negative detection, or a ground truth bounding box not detected. 

The value for precision is calculated as follows: 

 

The formula for calculating the recall value is the following: 

 
 

3.3.4.3 Average precision 

The average precision or AP is the precision averages across all values between zero and 

one. AP can also be described as the area under the precision-recall curve. The mean 

average precision or mAP is the average precision over one or multiple IoU thresholds. The 

metrics that are commonly used are mAP0,5 and mAP0,5:0,95. mAP0,5 corresponds to the 

average precision for an IoU with a threshold equal to 0,5 and averaged over all classes. 

The mAP0,5:0,95 metric corresponds to the average precision for IoU with thresholds 

between 0,5 and 0,95, averaged over all classes. The higher these values are the better the 

model is performing.  
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3.3.4.4 Loss functions 

The loss is what the Yolov5 model is trying to minimize when training. In Yolov5 the loss 

calculations are divided into three parts: Classes loss, objectness loss, and location loss. 

(Jocher & Waxmann, 2023) 

- Classes loss is a measure of the error in the classification of the objects. 

- Objectness or confidence loss measures the error in the detection of objects in grid 

cells, that is whether there is an object located in a grid cell or not. 

- Location loss calculates the localization error of an object in a grid cell. 

All three loss functions are calculated as mean square errors and the errors are also 

affected by a defined constant or the IoU value between the prediction and ground truth. 

(Zafar et al., 2018)  

The terms 𝟙 , 𝟙 and 𝟙 , used in the equations below, are used to modify the loss 

in specific circumstances (Zafar et al., 2018). They will be explained together with their 

respective equation.  

The equation for the entire loss function is as follows. 

 

 

    

           

 

 

 

 

 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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As mentioned earlier the loss function is divided into three parts and the first part of the 

equation is location loss. The term 𝟙  in equations 2.17 and 2.18 will have the value 1 if 

the bounding box j has the highest IoU score and it matches cell i, otherwise, the value will 

be 0. 

 

(2.17) 

 

where B is the number of bounding boxes and S2 is the number of grid cells in the image. 

Further x and y are the coordinates of the predicted bounding box and 𝒙  and 𝒚 are the 

coordinates of the ground truth data in the training dataset. 𝛌𝒄𝒐𝒐𝒓𝒅 is a weight used for 

increasing the influence of bounding box location errors on the total loss. (Zafar et al., 2018)  

A similar equation is also found for the width and height of the bounding boxes. 

 

(2.18) 

 

where w is the width and h is the height of the predicted bounding box. 𝒘 and 𝒉 is the 

width and height from the ground truth training dataset. To make the errors in small 

bounding boxes more important than small errors in large bounding boxes, a square root 

is added to the equation and the weight 𝛌𝒄𝒐𝒐𝒓𝒅 is given the value 5, as default. (Zafar et al., 

2018) 

The next part of the loss function is dealing with the confidence score. The term 𝟙  in 

equation 2.19 will have the value 1 if the bounding box j has the highest IoU score but does 

not match cell i, otherwise, the value will be 0.  

 

(2.19) 
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where C is the confidence score and Ĉ is the confidence score for the predicted bounding 

box and the ground truth. To lessen the influence of this loss when no object is found the 

weight 𝛌𝒄𝒐𝒐𝒓𝒅 is set to 0,5, by default. (Zafar et al., 2018) 

Classification loss is the third part of the loss function. In equation 2.20 below the term 𝟙  

will have the value 1 if cell i contains an object and if not, the value will be 0.  

 

(2.20) 

 

This loss is calculated as the error squared. As mentioned earlier the term 𝟙  is zero if no 

object exists in the grid cell i. This means that the classification loss is not taken into account 

in terms of the entire loss function if no object is found. (Zafar et al., 2018) 

3.3.5 Yolov5 configuration 

Yolov5 is a well-constructed model that can be used as is, but a few parameters are worth 

addressing to improve the chances of getting better results. Below is a description of these 

parameters: 

- batch size: defines how many samples are processed before the model's internal 

parameters are updated. It is recommended to set this parameter as large as the 

computer hardware allows. A larger value means faster training. (Jason Brownlee, 

2022) The best value for this parameter can only be found by testing. 

- epochs – the number of rounds of training through the whole dataset. During one 

epoch every image is analysed and contributes to the updated internal parameters 

of the model. One epoch usually contains more than one batch. The value for 

epochs needs to be sufficiently large so that the error from the model is low enough. 

The value is usually in the hundreds or thousands. (Jason Brownlee, 2022) When 

training with Yolov5 it is possible to continue training from the last round. The 

model stores both the best and the last custom-trained model, which makes it easy 

to continue training with more epochs. 

- weights — file path containing initial weights, which means the pre-trained model. 
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- cache —Yolov5 cache images for faster training. This is highly recommended to use. 

- img — image size in pixels (default — 640). Yolov5 has pre-trained models that 

accept 1280 pixel images. A larger image is more likely to improve the detection of 

smaller objects. The larger the image size mean the longer the training time and 

also the longer the inference time. It is recommended to use the same value for 

inference as was used in training. 

Yolov5 is a pre-trained model which means that fewer images are needed to train a custom 

model than if training from scratch. But the same fact still stands that the more labelled 

images there are the better the training results will be. The more diverse images there are 

in the dataset the better. (Jocher & Waxmann, 2023) 

The Yolov5 model comes in different sizes. Training with a larger model could improve the 

results, but the larger model used the slower the training and inference will be. Yolov5 

model’s different sizes are nano, small, medium, large, and extra large. Which model is 

which can be seen from the letter at the end of the model, for example, Yolov5m. The 

architecture of these models is the same, only the number of parameters increases with 

the size. 

Evolving parameters, or optimizing parameters, is also a method that could improve the 

training results. Evolving parameters is a function that modifies the model parameters to 

better suit the custom dataset. Performing parameter evolution is a time-consuming 

procedure, but it might be worthwhile. (Jocher & Waxmann, 2023) 
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4 Method 

Determining the water level from an image is a process consisting of several subtasks. The 

developed process divides the main part into 6 sub-tasks, each with its own objective. The 

objective of subtask number 5 is to find the water line in the image. In this developed 

process, there are two variants of this subtask. In one image processing is used and in the 

other one object detection and Yolov5. The work order is described in Figure 17. 

 

Figure 17. Workflow of the application versions 

 

In this thesis, a machine learning model named Yolov5 is used to detect the staff gauge, the 

numbers on the staff gauge, and the water line. This model needs labelled images for 

training and the training needs to be supervised so that the best possible results can be 

achieved. The version of the model used is Yolov5m. Below, in Figure 18, is a diagram of 

the workflow for creating the datasets, training, and optimizing the model. 
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Figure 18. The work process for the use of the machine learning model Yolov5. 

 

The code for the application is developed in Visual Studio Code using Python v3.10.7.  
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4.1 Image acquisition and the datasets 

4.1.1 The camera 

The location of the site is a dam for a hydropower plant in Norway. It has a tri-colored staff 

gauge mounted at the side of the dam near the actual dam construction. A camera is 

mounted on a pole attached to the dam wall. The camera used for capturing the images is 

a Hikvision DS-2CD2746G2T-IZS(C) with a 2,8-12mm zooming lens. The lens provides a 30-

108 degrees field of view horizontally and a 17-56 degrees field of view vertically. According 

to Horenstein (Horenstein, 2005) a lens with a greater field of view of 100 degrees will 

cause a fisheye effect. The fisheye effect is when the image is distorted and the objects 

further from the center of the image become curved (see Figure 19 below). 

                     

Figure 19. Mesh illustrating the distorted image a fisheye effect can give. To the left is no 

distortion and to the right there is fisheye distortion. 

 

The camera is equipped with infrared light to illuminate the field of view during low-light 

situations. It also has an IR-cut filter, which is a filter that filters out infrared light during the 

daytime and is automatically swivelled out during night-time to allow the camera to 

capture images during the night using infrared light.  

The maximum resolution is 2688x1520 pixels which means 4MP. The camera captures 

images every 10 minutes, all year round.  
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4.1.2 The datasets 

There are three different object detections to be performed. These are in task 2, in task 4, 

and in task 5.2. Therefore, three different datasets need to be prepared.  

4.1.2.1 The dataset for the staff gauge detection 

The dataset for training and validation is manually collected from a batch of 52610 images. 

The conditions at the location vary a lot, so a wide variety of images were chosen to form 

the first dataset, for the detection of the staff gauge. These images were chosen to best 

cover all different weather and illumination conditions as possible. To increase the number 

of images in the dataset, image augmentation was performed. The Yolov5 model performs 

its own augmentation on the dataset as well. The augmentation it carries out is random 

affine, MixUp, colour space adjustments, copy and paste, advanced mosaic augmentation, 

and albumentations. (Jocher & Waxmann, 2023) 

The image files are then split into two parts, one part for training and one part for 

validation. These files are saved in the following folder structure in a Yolov5 subfolder, as 

illustrated in Figure 20. 

 

 

 

 

Figure 20. Folder structure for the Yolov5 training dataset. 

For the staff gauge dataset, 1253 images were picked out with as great a variety as possible. 

These images were then labelled. To enlarge the dataset, some of the images were 

augmented by darkening, brightening, red-tinting, blue-tinting the images and by 

combining different patterns of dark and light areas in the images. The total number of 

augmented images was 963. 90 background images were also added. The background 

images did not contain any staff gauge and these images were, of course, not labelled 

either. The total number of images that were used in the staff gauge detection training was 
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2306. These were then divided into training and validation images in a ratio of 83% training 

and 17% validation.  

4.1.2.2 The dataset for the numbers and water line detection 

The samples for the dataset for the numbers object detection were taken from the same 

dataset that was used for the staff gauge detection. Images, where the numbers on the 

staff gauge were not clearly visible, were omitted and the raw dataset for the number 

detection consisted of 549 images. These images were then cropped using the software 

Gimp 2 and rotated to make the staff gauge close to vertical. These images were then 

augmented similarly as the staff gauge was, to make the dataset larger for training. The 

total number of images for the number training was 5904 and they were divided into 4666 

training and 1238 validation images. 21% of the images were validation images. 

For the water line detection training, the same 549 cropped images that were used for the 

number training, label file inclusive. The water line was labelled so that the height of the 

bounding box was approximately 4 cm, with the water line in the middle of the box. The 

width of the bounding box was slightly wider than the staff gauge, approximately 1 cm on 

each side of the staff gauge. This way the features next to the staff gauge at the water line 

are also captured (see Figure 22 below). To save time in labelling, the water line was 

labelled for one image. This fourth class was then copied to all the existing label files. This 

way, the labelled images only needed adjustment of the bounding box location for the 

fourth class in the labelling software instead of going through each image and adding the 

fourth class from scratch. These images were also augmented the same way as the other 

datasets making a total of 5868 images. These images were divided into 67% training and 

33% validation images. In Figures 21 and 22 examples of labelled images are presented. 
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Figure 21. Examples of staff gauges with labelled numbers. 

 

 

Figure 22. Close-up images of water line labelled on staff gauge. The red arrow marks the 

center of the bounding box, and the center line would be returned as the water line from 

the detection. The red arrow is just added for clarification, it is not part of the labelling.  

 
 

 

 

 



 34

4.1.2.3 The test dataset 
 

Finally, a test dataset was put together. For this dataset, all the images that the trained 

models should be able to detect on were visually checked. To make the selection process 

more objective, a Python code was constructed to gather images from between May and 

November, from the following hours 03, 06, 09, 12, 15, 18, and 21. Choosing images from 

around the clock would ensure different lighting conditions in the captured images and that 

the water level would vary if daily fluctuations occurred due to energy production.   

The images are captured every 10 minutes, which means that there are 6 images captured 

every hour, which in turn means approximately 42 images from every day within the time 

interval described above. Before collecting the test images, the blurry images and the night-

time images were removed using the filtering code, described in chapter 4.1.6. This means 

that there could be less than 42 images per day. The images were then manually checked, 

and images were removed to get a final count of one thousand test images.  

The test images were also verified so that none of them would also be included in the 

training datasets. To do this an application was created in Python, which calculated the 

SHA1 hash for both the selected test images and the images used in training.  

These images were then visually inspected, and the water level was documented to the 

nearest cm. 

4.1.3 The data analysis 

The training was done on a PC with an AMD Ryzen 9 5900x processor, 32GB of RAM, and a 

NVIDIA RTX 3080 graphics card. The operating system used was Ubuntu 22.04 LTS which 

was run from a USB drive. The GPU was used in the training and the CUDA version installed 

was 11.7. The software versions used were in accordance with, at the time, current 

requirements for Yolov5. 

Training started with the Yolov5 s model for all three detection parts and the number of 

epochs was set to 2000. 
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4.1.4 Staff gauge detection training 

The first training, the training for the staff gauge detection used 2306 images in total. 1920 

of these images were used for the actual training and 386 were validation images. The 

batch size was set to 20 and the number of epochs was 2000. All the other parameters 

were left as default. The best model is saved, as default in a specific folder. 

4.1.5 The numbers detection training 

The numbers training or the training for the detection of the numbers on the staff gauge 

used 4666 images for training and 1238 images for validation. As in the training for 

detection of the staff gauge, batch size was set to 20 and epochs to 2000. No other 

parameters were altered here either. The best model was also saved here in a specific 

folder. 

An attempt to improve the training results was made by first optimizing the hyper-

parameters using the evolve parameter’s function. The evolving was done for 10 epochs 

and 300 generations of optimizing. After the optimization was performed, the training was 

done again using the same parameters as before except for the new optimized hyper-

parameters. This optimization was performed on the dataset that includes the water line 

class.  
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Table 1. Yolov5 hyper-parameters. To the left are default parameters and to the right are 

the same parameters optimized. 

 

For a more thorough description of the separate parameters, please refer to the 

documentation at Ultralytics. (Jocher & Waxmann, 2023)  

4.1.5.1 Water line detection training 

The final training for the detection of the water line used 3912 images for the training and 

1956 images for the validation. The same settings were used here as in the previous training 

sessions, batch size 20 and 2000 epochs. Like in the other training runs, the best model for 

the water line detection could be found in a specific folder. 

To try to improve the training results an optimization was performed. This optimization is 

described in section 3.3.5 as the same dataset was used for both the numbers and water 

line detection training. 

Hyperparameters default optimized
lr0: 0,01 0,01082
lrf: 0,01 0,01

momentum: 0,937 0,98
weight_decay: 0,0005 0,00077

warmup_epochs: 3 1,7103
warmup_momentum: 0,8 0,9495

warmup_bias_lr: 0,1 0,08293
box: 0,05 0,07744

cls: 0,5 0,45676
cls_pw: 1 1,0538

obj: 1 1,4496
obj_pw: 1 0,89871

iou_t: 0,2 0,2
anchor_t: 4 5,6574

fl_gamma: 0 0
hsv_h: 0,015 0,01063
hsv_s: 0,7 0,60342
hsv_v: 0,4 0,29999

degrees: 0 0
translate: 0,1 0,07852

scale: 0,5 0,19589
shear: 0 0

perspective: 0 0
flipud: 0 0

fliplr: 0,5 0,5
mosaic: 1 1
mixup: 0 0

copy_paste: 0 0
anchors: 3,805
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4.1.6 Task 1 – Analyse the set of images and discard images that cannot be used 

For this thesis, there was a dataset of 52610 images to start with. These images are, as 

mentioned before, captured every 10 minutes day and night, which means that the range 

of quality of the images varies quite a lot. The camera is mounted in a fixed position, but 

the zooming factor can be changed. This was usually done little depending on the water 

level at that time. The image composition was fairly consistent throughout the sample set. 

Yolov5 can utilize a range of image qualities depending on the task. Determining the water 

level using Yolov5 requires relatively high image quality due to the subtle characteristics of 

the water line. The images need to have some sharpness and contrast to be able to find the 

edge that represents the water line on the staff gauge. Training with low-quality images 

does not necessarily improve model performance. It might in fact decrease the overall 

performance of the model. (Dodge & Karam, 2016)  

Sabbatini et al. used a method for filtering out unwanted images (Sabbatini et al., 2021). In 

this method, they calculated the image: 

- Root mean square of image saturation channel 

- The maximum difference between pixel intensities of all colour channels 

- Mean value of pixels of all colour channels  

 

No other pre-filtering out images were done in the review of articles done for this thesis, 

but many authors pointed out the importance of image quality (Sabbatini et al., 2021; 

Zhang, Zhou, Liu, Zhang, et al., 2019; Zhang, Zhou, Liu, & Gao, 2019; Qiao et al., 2022). 

When capturing images outdoors you will always be at the mercy of the elements. Poor 

illumination, rain, hail, snow, fog, bright sunlight, shadows, dirt, and debris are all things 

that influence the quality of the image. It is difficult if not impossible to prepare for all 

circumstances. In this thesis, a modified version of the one described by Sabbatini et al. 

(Sabbatini et al., 2021), is used. 

There are two categories of images that needed filtering out. The first category is night-

time images, as the numbers on the staff gauge are poorly visible in these images. The 

second type is blurred images. A blurred image will not have the sharper edges that are 

needed for finding the water level.  
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Night-time images are usually grayscale with a strong leaning towards black in the 

histogram. The contrast in these images is quite low and they mostly occur during the 

winter season. In these images the numbers are very difficult to read, so they are therefore 

discarded. To identify a night-time image the following values were calculated: 

- Root mean square of the image saturation 

- Maximum inter-pixel intensity difference  

- Mean intensity value of all colour channels 

 
To calculate the root mean square of an image saturation, the following formula is used: 

(3.1) 

where n is the number of pixels, or pixel saturation values and s is the saturation.  

The maximum inter-pixel intensity difference is calculated by taking the value of the pixel 

with the highest intensity in the image and subtracting the value of the pixel with the lowest 

intensity in the image. 

The mean intensity value of all colour channels is calculated using the following formula: 

 (3.2) 

where n is the number of pixels and x is the intensity.  

The tree values described above were calculated for each image and the threshold values 

used in the code were found experimentally and differ slightly from the values Sabbatini et 

al. used (Sabbatini et al., 2021). The three threshold values are listed in Table 2 below. 

 

 

Table 2. The thresholds for images being night-time.  

Some images were out of focus and therefore blurred and with low contrast. These kinds 

of images cannot be enhanced sufficiently, so these images also need filtering out. To 

Root mean square of the image saturation < 0,03
Maximum inter-pixel intensity difference > 190
Mean intensity value of all colour channels < 170
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identify a blurred image, the fact that a blurred image has fewer marked edges is used. In 

a sharp image, the general adjacent pixels intensity difference will be bigger than in an 

unsharp image. 

The Sobel operator is well-known when it comes to edge detection. When applied to an 

image, it returns a modified image with accentuated edges. Calculating the Sobel operator 

on both the x-axis and y-axis and then calculating the average value of the magnitudes gives 

an idea of the occurrence of edges in the image. Using this function alone as a filtering 

function will unfortunately also filter out such images that have poor contrast but could 

still be used. Using the average value of the Sobel magnitudes together with the standard 

deviation of the Dark channel prior proved to work better.  

The Dark channel prior is mainly used for dehazing images. It is based on the statistical fact 

that non-sky local regions in haze-free outdoor images have some pixels with very low 

intensity in at least one colour channel. On the other hand, in hazy images, these low-

intensity pixels will have higher intensities due to airlight. (He et al., 2009) Using the 

standard deviation of the dark channel prior of an image in blur detection is somewhat 

controversial, but it was experimentally found to work fairly well together with the Sobel 

magnitudes described above and therefore it will be included in the procedure. 

To reduce the computation time, the calculations were not performed on the whole image. 

The staff gauge is mainly found in the upper third of the left half of the images. The above 

calculations are therefore only done on this region. 

The threshold value used for the average gradient magnitudes is 24,5 and for the standard 

deviation of the dark channel variance 0,08. These threshold values were found 

experimentally. 

4.1.7 Task 2 – Perform object detection to find the staff gauge 

The staff gauge is detected using a Yolov5 model. For the inference, the IoU parameter was 

set to 0,90 and the confidence value to 0,10. The location of the bounding box for the 

detected staff gauge is stored for use in task 3. 
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4.1.8 Task 3 – Crop the image using the coordinates from the result of the 
detection 

The staff gauge detection detects the staff gauge in the image and the model returns the 

coordinates of the bounding box for the object (the staff gauge). This bounding box will not 

necessarily contain the water line, so the cropping area needs to be enlarged. During 

testing, it was found that enlarging the cropping area by 300 pixels along the y-axis 

downwards and 50 pixels along the x-axis to the right, was a suitable enlargement. With 

this larger area, it could be made sure that the water line will be located within. The image 

was cropped according to these coordinates. 

The detected staff gauge is not necessarily perfectly vertical and it might be tilted. To check 

for this a code snippet was created. The image is processed with the following functions. 

The image is: 

- converted to grayscale, using OpenCV. 

- blurred to remove noise, using Gaussian blur from the OpenCV library. 

- binarized to enhance the contrast, using Threshold and Otsu from the OpenCV 

library. 

- eroded to remove small artefacts, using Erode from the OpenCV library. 

- edge detected using Canny, from the OpenCV library. 

The Hough transform is finally performed to be able to reveal a possible rotation angle. The 

image is then rotated using this angle to get an almost vertical image of the staff gauge. 

4.1.9 Task 4 – Perform object detection to find the main numbers on the staff 
gauge 

A Yolov5 model is run to detect the numbers on the staff gauge. The parameters IoU and 

confidence value are set to 0,50 and 0,85 respectively. The locations for the bounding boxes 

for the numbers are stored and used by the next task. 

4.1.9.1 Task 5.1 – Find the water line using image processing  

The first of two methods for finding the water line in the images is using image processing. 

As a first step, the image is converted to grayscale using a function from the Open CV library 

in Python. This colour conversion function uses the format described above in theory 

chapter 2. After that, the image was blurred using an OpenCV function called 
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“bilateralFilter”. The blurring function removes small imperfections in the image. Then the 

image was binarized using an OpenCV function called Otsu and finally, all small areas in the 

image were filled using the function “binary_fill_holes” from the Scipy library. 

This binarized, black-and-white image is then looped through line by line starting from the 

100th last row and moving upwards. The reason for starting at the 100th row is that on the 

last rows, there are usually a lot of disturbances that would otherwise interfere. During the 

looping, the number of black pixels on each row was counted and when there were less 

than 90% black pixels on five consecutive rows, the first of these rows is then defined as 

the location of the water line.  

4.1.9.2 Task 5.2 – Find the water line using object detection and Yolov5 

Object detection for the water line on the cropped staff gauge is performed with IoU 

parameter 0,85 and confidence value 0,01. If a bounding box is found, the horizontal center 

line of the bounding box is defined as the water line. If no water line is detected, the 

function returns the water level 0,0. 

4.1.10 Task 6 – Calculate the water level 

The numbers detection done in task 4, will give the location of the detected numbers on 

the staff gauge. The location furthest down should be the number 305, but the 

classification is not necessarily correct. In the code section that calculates the water level, 

a verification of the detection is included.  

The first step is to verify if any bounding box has been detected. If no bounding box is 

detected, this function returns 0,0 as the water level. If at least one bounding box is 

detected, the following checks are performed. 

The checks are in three parts: 

1. If the midpoint of the bounding box is found to the right in the cropped image of 

the staff gauge, it must be number 306,5. 

2. If the midpoint of the bounding box is found to the left in the cropped image of the 

staff gauge and if it is located in the top half of the cropped image, it must be the 

number 306.   
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3. If the midpoint of the bounding box is found to the left and is located in the lower 

half of the cropped image of the staff gauge, it must be the number 305.   

The checks described above are done on all detected bounding boxes. If duplicates are 

found for checks 1 or 2, this is noted as an error. If a duplicate is found on check 3, the 

location of these two bounding boxes that is the furthest down, is discarded.  

The next step is to define the scale of the image and calculate the distance between the 

water line and a reference point. The scale of the image is calculated using the location of 

the bounding boxes that are the furthest apart. For example, if the bounding boxes for 

306,5 and 305 were found, their distance is 150 cm. 150 is then divided by the pixel 

difference of the two bounding boxes in the image. If only one bounding box is detected, 

its height is the base for the scale. The actual height of a bounding box is approximately 4 

cm and all bounding boxes have the same height. Four is then divided by the height of the 

detected bounding box in the image, in pixels, to get the scale cm/pixels. The water level is 

then calculated as the distance between the water line and the detected bounding box 

located the furthest down in the image using the scale described above. If the calculations 

fail, 0,0 is recorded as the water level. An example of labelled numbers is shown in Figure 

23. 

 

 

 

 

 

 

Figure 23. To the left, the staff gauge with labelled numbers, and to the right one labelled 

number in close up.  
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4.1.11 Interpretation of results 

To better be able to compare the results between the two applications, it was decided that 

the results are divided into four groups depending on their prediction error. The accuracy 

of the visually documented measurements on the test images is ±0,5 cm and thereby the 

first group contains the results with a prediction error within 0,5 cm. The intervals for the 

rest of the groups are based on experimental results.  

The groups are: 

- Result with a prediction error within 0,5 cm. 

- Result with a prediction error within 3 cm.  

- Result with a prediction error between 3 and 30 cm.  

- Result with a prediction error greater than 30 cm. 

The group with a prediction error within 0,5 cm is defined as a correct result. 
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5 Results 

The results are presented in different chapters. In the first chapter, the results of the first 

task are displayed. In the second chapter, the results of all the Yolov5 model training 

sessions are presented and in the last two chapters, the results of the two application 

versions are presented respectively.  

The task of reading out the water level from captured images was divided into six sub-tasks. 

This program contains all, but the first sub-tasks and reads out the water level from all 

images in a folder, in one run. Two versions of the application were developed and 

compared. Both image processing and object detection with Yolov5 were used to find the 

water line. The first sub-task is the image selection.  

5.1 Task 1 – Analyse the set of images and discard images that cannot be used 

The first task was to filter out the blurry images and night-time images. The number of 

images before the filtering was 52610 images and 22329 images defined as night-time 

images and 1958 images were defined as blurred images. This means that the remaining 

28323 images passed through. The filtering procedure takes quite a long time. It took 

roughly two hours on the testing PC, an i5-12400 CPU PC. 

There were a few images that were falsely not filtered out. How many images that were 

falsely filtered out or not filtered out is difficult to establish, because there is no exact 

definition nor a measure for a night image or a blurred image. Below in Figures 24 – 26 are 

examples of images that were picked up as blurry, as night-time images, or as not filtered 

out by the filtering code. 

 

 

 

 

 

 

Figure 24. Images defined as blurred by the filtering code in task one. 
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Figure 25. Three images filtered out as night-time images by the filtering code in task one. 

 

 

 

 

 

 

Figure 26. Example of images that passed the filtering in task one. 
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5.2 Results of training the Yolov5 models 

The training of the Yolov5 was done three times, with different aims and with somewhat 

different datasets. The methods are described in chapter 3. 

The first Yolov5 training was training the staff gauge detection model. The training took 

just over 4 hours, and it needed 318 epochs before it stopped training due to no 

improvements for the last 100 epochs. The best model was achieved after 218 epochs. This 

model contains 212 layers, 20852934 parameters, and no gradients. The training had a 

steep learning curve and the final model had a precision of 0,994, a recall of 1, a mAP0,5 

value of 0,993, and a mAP0,5:0,95 value of 0,98. The result is presented in the curves in 

Figure 27 below.  

 

 

 

 

 

 

 

 

 

 

Figure 27. Results of the staff gauge detection training. 

 

The second training concerned the numbers detection model. This training was done as 

two separate ones. The first one was done straight on the dataset with default hyper-

Precision-Confidence curve Precision-Recall curve Recall-Confidence curve 
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parameters and the second one was done using optimized hyper-parameters, described in 

chapter 3.3.5. 

This training took a little longer than the one for the staff gauge. Using default hyper-

parameters, it completed 1220 epochs in 22 hours and 40 minutes, and using optimized 

hyper-parameters it completed 1335 epochs in 23 hours and 54 minutes. The best model 

was found at epochs 1112 and 1235 respectively. The numbers model contains 212 layers, 

20861016 parameters, and no gradients and the combined model including the water line 

class contains 212 layers,20877180 parameters, and no gradients. Below, Table 3 is 

showing the results per class. In the training using optimized hyper-parameters the water 

line class was also included. This training was joint for both the numbers detection and the 

water line detection. The rest of the training results are shown in Figures 28-29 below. 

 

 

Table 3. Results of training of the numbers detection model. To the left is trained with 

default hyper-parameters and the table to the right is trained with optimized hyper-

parameters. The water line class was included in the training with optimized hyper-

parameters. 

 

 

 

 

 

 

  

Class Precision Recall mAP0,5 mAP0,5:0,95
All 1 1 0,995 0,977
306 1 1 0,995 0,972
305 1 0,999 0,995 0,973

306,5 1 1 0,995 0,992
level 0,999 1 0,995 0,97

Class Precision Recall mAP0,5 mAP0,5:0,95
All 1 1 0,995 0,987
306 1 1 0,995 0,991
305 1 1 0,995 0,979

306,5 1 1 0,995 0,992
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Figure 28. Results of the training of the numbers detection model with default 

hyperparameters.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Precision-Confidence curve Recall-Confidence curve Precision-Recall curve 



 49

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29. Further results of training of the numbers detection model with optimized 

hyper-parameters.  

 
 
The third training was the training of the water line detection model. This training took the 

longest. It was also done as two separate training runs. The first run was done using default 

hyper-parameters and the second run was using optimized hyper-parameters, described in 

chapter 3.1.5. The training with optimized hyper-parameters was joint with the numbers 

training. It took 30 hours and 23 hours and 54 minutes respectively and encompassed 1711 

and 1335 epochs. The best model was achieved 100 epochs earlier, at 1610 and 1235 

epochs respectively. The results of the training runs are shown in Table 4 and Figure 30 

below. 

 

 

Table 4. Results of training of water line detection model. To the left is trained with default 

hyper-parameters and the table to the right is trained with optimized hyper-parameters. 

Class Precision Recall mAP0,5 mAP0,5:0,95

level 0,999 1 0,995 0,949
Class Precision Recall mAP0,5 mAP0,5:0,95

level 0,999 1 0,995 0,97

Precision-Confidence curve Recall-Confidence curve Precision-Recall curve 
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Figure 30. Results of the water line training using default hyper-parameters. 

 

Further results using optimized hyper-parameters are found in Figure 29 above. 
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5.3 Application version 1 – Using image processing to find water line 

Two different runs were done for the application version 1, for comparison. The first run 

was using the numbers model trained with default hyper-parameters and the second run 

was using the model trained with optimized hyper-parameters. The results of both runs are 

found in Table 5 and Figures 31-32 below.  

 

Table 5. Results of the image processing application. In run 1 default hyper-parameters 

were used for Yolov5 and in run 2 optimized hyper-parameters were used. The percentage 

values are the percentage of the 1000 testing images minus the images where the numbers 

were not detected. 

 
 
 
 
 
 
 
 
 
Figure 31. Results of run 1 (to the left) and run 2 (to the right), presented as occurrences 
of water level estimation in intervals. 
 
 
 
 
 
 
 
 
 
 
 
 

Run 1 Run 2

Total number of images: 1000 1000
Number of images where staff gauge not detected: 0 0

Number of images where numbers not detected: 14 1,4 % 11 1,1 %

Number of images with > 30cm difference: 129 13 % 170 17 %
Number of images between 3cm and 30cm difference: 254 26 % 222 22 %

Number of images with < 3cm difference: 617 63 % 608 61 %

Number of images correctly estimated, within ±0,5cm: 255 26 % 143 14 %
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Figure 32. Results of run 1 and run 2. The chart above: Both runs presented as 
occurrences of water level estimation in intervals. The chart below: Both runs presented 
as cumulative occurrences of water level estimation.   
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5.4 Application version 2 – Using Yolov5 to find the water line 

Three runs were done for application version 2, to find the best detection model 

combination. The first run used the best performing separate model for the numbers 

detection and the first and separate training session for the water line detection. The 

second run used the combined training with optimized hyper-parameters for both the 

numbers and water line detection and the third run used the separate best-performing 

model for the numbers detection and the combined trained model with optimized hyper-

parameters for the water line detection. The same model for staff gauge detection was 

used in all three runs. 

The results of the three runs are presented in Table 6 and Figures 33-34 below.  

 

Table 6. Results of the object detection application. The percentage values are the 

percentage of the 1000 testing images minus the images where the numbers were not 

detected. 

  

Run 1 Run 2 Run 3

Total number of images: 1000 1000 1000
Number of images where staff gauge not detected: 0 0 0

Number of images where numbers not detected: 14 1,4 % 11 1,1 % 14 1,4 %
Number of images where water line not detected: 15 1,5 % 18 1,8 % 21 2,1 %

Number of images with > 30cm difference: 18 2 % 72 7 % 22 2 %
Number of images with > 30cm difference where both 

numbers and water line detected: 3 0,3 % 54 5 % 1 0,1 %
Number of images between 3cm and 30cm difference: 160 16 % 124 13 % 159 16 %

Number of images with < 3cm difference: 822 83 % 804 81 % 819 83 %
Number of images correctly estimated, within ±0,5cm: 368 37 % 247 25 % 398 40 %
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Figure 33. Results of run 1 (to the top-left), run 2 (to the top-right), and run 3 (below), 
presented as occurrences of water level estimation in intervals. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34. Results of all three runs. The chart above: All runs presented as occurrences of 
water level estimation in intervals. The chart below: All runs presented as cumulative 
occurrences of water level estimation.   
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6 Discussion 

The discussion chapter consists of subsections addressing different parts of the results. The 

subjects for discussion are training the Yolov5 model, the application version 1 that 

measures the water level using image processing, the application version 2 that measures 

the water level using Yolov5, and finally a general discussion.  

6.1 Discussion about the training of Yolov5 

The training started with the model for staff gauge detection. When training the Yolov5, 

the performance metrics described in chapter 2.3.4, were monitored to evaluate the 

results of the training. When training the staff gauge detection model the results were quite 

good already in the beginning. The precision topped at 0,994, the recall at 1, the mAP0,5 

value reached 0,993, and the mAP0,5:0,95 value 0,98. The training stopped at 318 epochs, 

and training was continued, but it stopped as no better results were achieved. It was 

decided to stop training this model as no improvements were achieved. 

The next training was the training of the numbers detection model. This model started with 

a result that also was quite good. The training stopped at 1220 epochs and no further 

improvement could be achieved with this dataset. Optimizing the hyper-parameters was 

done on the water line detection dataset, which was a joint dataset with the numbers. The 

results of the training with the optimized hyper-parameters are discussed in the following 

paragraph.  

The third training was the training of the water line detection model. In this training the 

dataset was pretty much the same as for the numbers training, just the water line bounding 

box labels were added to the dataset. This model’s hyper-parameters were then evolved, 

or optimized before another training run was done. The results of the two training sessions 

were very similar. The only difference was in the mAP0,5:0,95 values, where the first run 

gave 0,949 and the second run gave 0,97. So the evolution of the hyper-parameters gave 

an improvement in the training result for the water line detection model. When training 

with the optimized hyper-parameters the numbers model was trained at the same time, 

because it was in this training the same model. The result for the metrics for the numbers, 

the only improvement was for the number 306,5 which had an increase in the mAP0,5:0,95 

value, from 0,979 to 0,992. For the rest of the metric values, a slight deterioration could be 



 56

seen, which could be a sign of overfitting. Another reason for the deterioration could also 

be that a too steep learning rate was used. It was decided not to investigate this further as 

the results were still acceptable.   

The metric values are so high that it is very hard to say if the impact on the models' 

performance is noticeable. 

On the staff gauge there also exists a number 304,5, but as this number only was found on 

a few images it could not be included in the training. The code in the application is made 

to ignore this number, although it can be falsely detected as another number. The location 

of 304,5 is on the lower half and to the right on the staff gauge. Such a location for a number 

is disregarded by the code.  

Training was also done with larger models of Yolov5, but no improvement of results was 

noticed. The results were similar to the results of the Yolov5m model.  

6.2 Filtering out bad quality images  

Getting images filtered out correctly proved to be a difficult task. Images contain a lot of 

information, and it is difficult to find a method that works in every case. 

Images A and B in Figure 35 are treated equally by the filtering code. If one looks at image 

B and compares it to image A, they are visually similar. Image A is covered by a haze and 

image B is out of focus. The images are numerically different and react to image processing 

differently. Changing the thresholds in the program to correctly filter these images, caused 

other similar occurrences by other types of images. To create a filtering code that would 

correctly filter out only blurred images requires deep knowledge of image properties and 

processing. This was not the main goal of this thesis, so it was decided that the results 

achieved were acceptable. 

 

 

 

 

 

 



 57

 

 

 

 

 

 

 

Figure 35.   Image A is covered by a haze while image B is out of focus. 

 

6.3 Discussion on application version 1 – Using image processing to find the water line 

The first of the two application versions used image processing to locate the water line. 

There were two different runs executed with this application. The staff gauge was detected 

in all images, in both runs, which was a very good result. The background was very similar 

in all test images and the staff gauge location did not change in relation to the background 

and changed only slightly in relation to the image. The staff gauge itself has very clear 

borders and it is clearly distinguishable from the background, even in bad weather. These 

are factors that can explain the good results for the staff gauge detection. 

Numbers were not detected in a few of the images and the result was pretty similar for 

both runs. Run 1 was performing much better as the number of correctly estimated images 

was 255, against 143 for run 2. 255 correctly estimated images equal 26% of the test 

images. Both runs had similar results for estimating with a difference of less than ± 3 cm, 

617 and 608 respectively. This is 63% and 61% of the test images that are estimated within 

a ± 3 cm margin of the correct level. The number of images with a difference greater than 

± 30 cm to the actual water level was for run 1, 129 images to 170 for run 2. Looking at the 

cumulative chart in Figure 32, one can clearly see that run 1 performs better than run 2. 

As mentioned earlier, the first training session with default hyper-parameters resulted in 

slightly better results on all but one number detection. The results of this model’s 

performance on the test images are also slightly better than the model with optimized 

hyperparameters.  

A B 
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In this application, there was also image processing included. All but one article reviewed 

in this thesis relied on image processing to find the water line in the images. This requires 

that the lighting and weather conditions are very similar for the image quality to be stable. 

Small changes in the conditions ask for changes in parameters. However, it is also very 

difficult to find direct connections between the conditions and the parameters. Figure 36 

below is an example of images that are visually similar, but when applying the image 

processing to find the water line, the results are very different. The parameters or 

thresholds are the same for all three images. This part of the application is its Achilles heel.  

 

 

 

 

 

 

Figure 36. Different staff gauge images with their corresponding binarized image to find the 

water line. 

6.4 Discussion on application version 2 – Using Yolov5 to find the water line 

There were three different runs with application version 2 and the staff gauge was detected 

in all three runs. The first and the third run had clearly better results than the second run. 

The third run estimated the water level correctly in 40% of the test images. That is 398 

images. 83% of all test images, or 819 images, the water level was estimated to be within 

3cm of the actual level. This is a very good result for this application, and it performs much 

better than application version 1, which uses image processing. This shows that the 

machine learning model Yolov5 has huge capabilities.  

The calculation of the water level relies on a reference point and the scale of the image. 

The reference point is the detected bounding box that is the furthest down on the staff 

gauge. The scale is calculated as the actual distance between two of the detected bounding 
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boxes that are the furthest apart divided by the pixel difference. If only one bounding box 

is detected, its height which is 4cm is divided by the pixels it has in the image. In this case, 

if the bounding box is far from the water level, it can cause a measuring error due to the 

inexact scale. The inexact scale is due to the bounding box being small and then one pixel 

has much greater weight than if the bounding box or distance is bigger. Figure 37 below is 

an example of such a case. 

 

 

 

 

 

Figure 37. Only one bounding box is found, and it is far from the water line.  
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6.5 General discussion  

There are ways that might improve the performance of the water level measuring 

application version 2. One way could be by increasing the number of images in the datasets.  

Yolov5 performed worse in detecting the staff gauge when the images were distorted in 

some way. Image distortion could consist of strong lighting reflecting off the staff gauge, 

staff gauges with half of the staff gauge, in the vertical direction, covered by a shadow. 

Images with high reflections off the water body or staff gauges covered by dirt are also 

troublesome images for the model. The extreme in conditions is a problem for a machine-

learning model like Yolov5. This is no surprise as it is very difficult to visually detect these 

features as well. You could enlarge the datasets including more of these kinds of images, 

but then the question arises: “Will it actually enhance the performance of the model?” 

According to Dodge and Karam, it might make the performance worse. (Dodge & Karam, 

2016) 

 

 

 

 

 

Figure 38. Examples of images that are difficult for Yolov5 to detect the staff gauge and the 

numbers on. 

 

Another way could be by addressing the anchor box templates.  The Yolov5 model uses 

anchor box templates against which the bounding boxes in the training dataset are 

evaluated. (Jacob Solawetz, 2020a) These anchor box templates are calculated from the 

training with the COCO dataset and might differ from the custom dataset. The staff gauge 

is tall and narrow and has a slightly different form than the objects in the COCO dataset. It 

could therefore be an idea to alter the anchor box templates manually to better fit this 

custom dataset.  
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Adding a barrier around the staff gauge will reduce the amount of debris gathering around 

and on the staff gauge otherwise interfering with water line detection. This barrier should 

prevent or at least greatly reduce leaves, wooden sticks and branches, pollen, and other 

objects from coming too close to the staff gauge. This way there will be more good images 

to detect on. 

The challenge for Yolov5 to detect in images that are captured in extreme lighting 

conditions is big. Using a camera for near-infrared image capturing seems to give an 

advantage in finding the water line as the water body does not reflect infrared light the 

same way it reflects visible light. Water absorbs infrared light more than visible light, which 

causes the water line to be more clearly detectable. (Mangold et al., 2013) Zhang et al. 

found out in laboratory tests that different materials of staff gauges and paints reflect 

infrared light differently. (Zhang, Zhou, Liu & Gao, 2019) The images in Figure 39 below are 

examples of images captured in visible and infrared lighting. 

 

 

 

 

 

Figure 39. The image to the left is captured in normal visible light and the image to the right 

is captured in infrared light. 

 

Water reflections and strong direct sunlight proved to be a problem for the object 

detection. This should be, if possible, paid attention to when installing a staff gauge. 

Installing the staff gauge in a place where direct sunlight can shine on it should be avoided. 

The staff gauge could also be installed on a dark-colored background plate that reaches 

approximately 10cm on each side of the staff gauge. This would limit the interference from 

the background. 



 62

The grayscale conversion used in the process of finding the water level uses the standard 

weighted method. (Radiocommunication Sector of International Telecommunication 

Union, 2011) As this is not using an equal amount of all three colours. As almost 60% of the 

green intensity is used and only just over 10% of the blue, could this be unfavourable in 

certain light conditions? In the evenings just after sunset, the blue colour tends to be 

dominant as the red colour tends to be dominant the hour before sunset and the hour after 

sunrise. As images are numerical matrices, this could have an impact on how these images 

are processed.  

A polarizing filter will reduce the reflection on the water making the reflection darker. This 

could enhance the image so that the water line would be easier to detect. The polarizing 

filter is one of the filters that cannot be replicated by software due to that the image itself 

does not contain data of polarizing light. (Wikipedia, 2023) 

Clearly marking defined water levels on this background plate with a line could also have a 

beneficial effect on finding a reference point for the measurement. Reducing the external 

interfering factors might give less fluctuations in image quality thereby making it easier to 

develop a pre-processing setup and detect water levels.  
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7 Conclusions 

Yolov5 is a powerful machine-learning model. Looking at the results in this thesis it 

outperforms image processing when it comes to finding the water line. Image processing 

can be effective in good-quality images, but when it comes to images with less contrast or 

otherwise challenging features, Yolov5 works better. It would be interesting to look more 

closely at only using the infrared mode on the camera. Zhang et al. found out that certain 

materials of the staff gauge work better when using infrared cameras than others. (Zhang, 

Zhou, Liu & Gao, 2019) To find a staff gauge of such material, add a plate of suitable 

material and colour behind it, use of infrared imaging and constructing a barrier to prevent 

debris from attaching itself to the staff gauge, the results might be better and more stable.  
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Appendix A – Code for application alternative 1 
 
 
# daFinalCode_01.py  
# Find the staff gauge in an image using a custom trained Yolov5m model. The code also  
# finds the numbers (hundreds only, not singulars) using a custom trained Yolov5m  
# model.  
# Thereafter it finds the waterline using image processing and calculates the water level  
# using the found number as level reference. 
# Version 1.0 
# Author: Bo-Anders Näs - 2023 
 
import os 
import cv2 as cv 
import numpy as np 
import math 
import torch 
from skimage.transform import hough_line, hough_line_peaks 
from scipy.ndimage import binary_fill_holes 
 
# Assign directory where the image files are 
directory = 'D:/Thesis Images for final test/'  
 
# Assign a directory where the results are saved 
resultDirectory = 'D:/Results/' 
 
# Assign directory where the staff gauge model is 
staffGaugeDirectory = 'D:/WaterlevelMeasuring_Yolov5m/Yolov5_Custom_StaffGauge' 
 
# Assign directory where the numbers model is 
numbersDirectory = 'D:/WaterlevelMeasuring_Yolov5m/Yolov5_Custom_Numbers' 
 
# Assign directory where the Water line model is 
waterlineDirectory = 'D:/WaterlevelMeasuring_Yolov5m/Yolov5_Custom_Waterline' 
 
# Enlarges the crop area down and to the right (h, w) 
cropCorrection = [300, 50] 
 
# Convert normalized values for x, y, width and height to conform with the image size 
def convert(size,x,y,w,h): 
    coordinates = np.zeros(4) 
    dw = 1./size[0] 
    dh = 1./size[1] 
    x = x/dw 
    w = w/dw 
    y = y/dh 
    h = h/dh 
    coordinates[0] = x-(w/2.0) 
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    coordinates[1] = x+(w/2.0) 
    coordinates[2] = y-(h/2.0) 
    coordinates[3] = y+(h/2.0) 
 
    return (coordinates) 
 
# Identify a possible slanting angle of the staff gauge 
def getStaffAngle(image, imgLabel): 
 
    # Get the coordinates of the bounding coordinates4Box 
    imgLabel = imgLabel.tolist() 
    x0 = int(imgLabel[0][0]) 
    x1 = int(imgLabel[0][2]) 
    y0 = int(imgLabel[0][1]) 
    y1 = int(imgLabel[0][3]) 
 
    # Load image 
    img = cv.imread(image) 
     
    # Crop image a bit larger than the found coordinates4Box 
    # This because the found box is not necessary covering the whole staff nor including  
    # the water line  
    imgCropped = img[y0:y1+cropCorrection[0], x0:x1+cropCorrection[1]] 
     
    # Process the image to more easily find the borders of the measurement staff  
    imgGray = cv.cvtColor(imgCropped, cv.COLOR_BGR2GRAY) 
    imgBlur = cv.GaussianBlur(imgGray, (9, 9), 0) 
    imgThresh = cv.threshold(imgBlur, 0, 255, cv.THRESH_BINARY_INV +  

cv.THRESH_OTSU)[1] 
 
    # Apply erode to "remove" the small parts in the image. 
    # A smaller value for the kernel will more effectively remove the small parts. 
    kernel = cv.getStructuringElement(cv.MORPH_CROSS, (3, 3)) 
    imgErode = cv.erode(imgThresh, kernel, iterations=5) 
     
    # Canny will bring out the edges 
    image = cv.Canny(imgErode, 10, 10)                                                            
     
    # Straight-line Hough transform 
    # Set a precision of 0.5 degree, this means the range -pi/2 to pi/2 (-90 to 90 degrees) 
    # divided in 360 parts = 0,5 degrees precision. 
    tested_angles = np.linspace(-np.pi / 2, np.pi / 2, 360, endpoint=False) 
    h, theta, d = hough_line(image, theta=tested_angles) 
 
    returnAngle = [0]*100 
    i = 0 
    # Find the angle of the staff gauge 
    for _, angle, dist in zip(*hough_line_peaks(h, theta, d)): 
        (x0, y0) = dist * np.array([np.cos(angle), np.sin(angle)]) 
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        lineSlope = np.tan(angle + np.pi/2) 
         
        returnAngle[i] = math.degrees(np.tan(1/lineSlope)) 
        i +=1 
 
    return imgCropped, returnAngle[1] 
 
# Rotate the image around its center 
def rotateImage(image, angle: float): 
    # Get the shape of the image 
    (h, w) = image.shape[:2] 
 
    # Get center 
    center = (w // 2, h // 2) 
 
    # Define the rotation matrix 
    M = cv.getRotationMatrix2D(center, angle, 1.0) 
     
    # Create a white background 
    whiteBackground = np.zeros([h,w,3],dtype=np.uint8) 
    whiteBackground[:] = 255 
 
    # Rotates the image using the rotation matrix 
    newImage = cv.warpAffine(image, M, (w, h), flags=cv.INTER_CUBIC,  

  borderMode=cv.BORDER_WRAP) 
     
    return newImage 
 
# Crop the image using threshold 
def cropAgain(image, angle):  
    # This code calculates a new cropping area based on original labeling 
    # and the corrected rotation angle 
     
    # Get image measurements 
    height = image.shape[0] - cropCorrection[0] 
    width = image.shape[1] - cropCorrection[1] 
     
    # Calculate the possible reduction in width due to rotation  
    a = (height*math.tan((angle*3.141593)/180)/2) 
 
    # New coordinates for cropped image     
    x0 = int(a) 
    x1 = width - int(2*a/3) + cropCorrection[1] 
    y0 = 0 
    y1 = height + +cropCorrection[0] 
 
    # and crop the image ... again 
    imgCropped = image[y0:y1, x0:x1] 
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    return imgCropped 
 
# Locate the water line 
def findWaterline(image): 
 
    # Remove noise from the image using a bilateral filter.  
    def blurImage(image, d = 5, sigmaColor = 75, sigmaSpace = 50 ): 
 
        # Blur image to reduce noice 
        imgBlur = cv.bilateralFilter(image, d, sigmaColor, sigmaSpace) 
         
        return imgBlur 
 
    # Get image shape 
    h, w = image.shape[:2] 
 
    # Convert image to grayscale 
    imgGray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) 
 
    # Apply adaptive blurring to remove noise 
    imgBlur = blurImage(imgGray) 
 
    # Calculate the optimal threshold values using Otsu's method 
    _, thresh = cv.threshold(imgBlur, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU) 
 
    # Fill holes in the binary image 
    imgFilled = binary_fill_holes(thresh) 
     
    # Find the row where there are more than 10% white pixels 
    nonBlackCount = 0 
    rowMem = 0 
    # Loop through the image from almost bottom upwards, row by row and count number  
    # of black pixels 
    for i in range(len(imgFilled)-100, 0, -1): 
        # Count how many black pixel on each row 
        blackCount = np.sum(imgFilled[i,:] == 0) 
        # If there are more than 10% white pixels on more 5 rows in a row,  
        # the first row of these is the row where the waterline is     
        if blackCount < 0.9*w: 
            if nonBlackCount == 0: 
                rowMem = i 
            nonBlackCount += 1 
        else: 
            nonBlackCount = 0 
        if nonBlackCount > 5: 
            break 
 
    return rowMem 
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# Calculate the water level 
def calculateWaterLevel(boundingBoxes, waterlineRow, imageSize): 
 
    # Convert bounding box tensor to list 
    boundingBoxes = boundingBoxes.tolist() 
    h, w = imageSize 
    level = 0.0 
    duplicate = 0 
 
    # As some models also include the water level bounding box, this has to be removed to  
    # not interfere with the water level calculations 
    i=0 
    for row in coordinates4Boxes: 
        if row[-1].item() == 3.0: 
            boundingBoxes = np.delete(boundingBoxes, i, axis=0) 
        i=+ 1 
     
    # First element: Number to the left of image center line = 1 and number to the right = 0 
    # Second element: Is the number in the upper third of the image = 0,  
    # in the mid third = 1 or in the lower third = 2 
    # Third element: Is there two numbers to the left of the image center line = 1, else = 0  
    if len(boundingBoxes) > 0: 
         
        # Define on which level the bounding box(es) are 
        box = [] 
        position = [0,0,0] 
        error = ["error", 0.0, 0.0, 0.0] 
        for i in range(0, len(boundingBoxes)): 
             
            # Check if the midpoint of the bounding box is to the right of the cropped image  
            # center line 
            if (boundingBoxes[i][0] + boundingBoxes[i][2]) / 2 > w/2: 
                # Check if the lowest edge is above the center line of the cropped image 
                if boundingBoxes[i][3] < h/2 and position[0] == 0: 
                    box.append(("306.5", boundingBoxes[i][0], boundingBoxes[i][3],  

      abs(boundingBoxes[i][3] - boundingBoxes[i][1]))) 
                    position[0] = 1 
                else: 
                    box.append(error) 
            else: 
                # Check if the midpoint of the bounding box is above the center line of the  

   # cropped image 
                if (boundingBoxes[i][1] + boundingBoxes[i][3]) / 2 < h/2: 
                    if position[1] == 0: 
                        box.append(("306", boundingBoxes[i][2], boundingBoxes[i][3],  

       abs(boundingBoxes[i][3] - boundingBoxes[i][1]))) 
                        position[1] = 1 
                    else: 
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                        box.append(error) 
 
                if (boundingBoxes[i][1] + boundingBoxes[i][3]) / 2 > h/2: 
                    box.append(("305", boundingBoxes[i][2], boundingBoxes[i][3],  

   abs(boundingBoxes[i][3] - boundingBoxes[i][1]))) 
                    position[2] += 1 
         
        # If a duplicate of bounding box 3 is found (305), it is registered 
        if position[2] == 2: 
            duplicate = 2 
         
        if position[2] < 3: 
            # If a duplicate is found for the 305 bounding box, the bounding box furthest down  
            # is disregarded. 
            box4Use = [0,0,0,0] 
             
            tmpBox = [0,0,0,0] 
            for i in range(len(box)): 
                if box[i][0] == '306.5': 
                    box4Use[0] = box[i] 
                if box[i][0] == '306': 
                    box4Use[1] = box[i] 
                if box[i][0] == '305': 
                    if duplicate == 2: 
                        tmpBox = box[i] 
                        duplicate = 1 
                    elif duplicate == 1: 
                        if tmpBox[3] > box[i][3]: 
                            box4Use[2] = box[i] 
                        else: 
                            box4Use[2] = tmpBox 
                    else: 
                        box4Use[2] = box[i] 
         
            # Calculate the scale for the image by calculating the distance between the two  
            # bounding boxes that are the furthest vertically. 
            # Depending on if there exist one or several bounding boxes, calculate the  
            # difference and divide with the actual distance 50, 100 or 150cm, or if only one  
            #bounding box take the height of it and divide with 4cm as measured from staff   
            # gauge 
            if position[0] and position[2]:                     # 306,5 and 305 
                scale = 150 / (box4Use[2][2] - box4Use[0][2])   # scale = cm / pixel 
                pixelDifference = waterlineRow - box4Use[2][2] 
                level = 305.0 - (pixelDifference * scale) / 100     
            elif position[0] and position[1]:                   # 306,5 and 306 
                scale = 50 / (box4Use[1][2] - box4Use[0][2])    # scale = cm / pixel 
                pixelDifference = waterlineRow - box4Use[1][2] 
                level = 306.0 - (pixelDifference * scale) / 100  
            elif position[1] and position[2]:                   # 306 and 305 
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                scale = 100 / (box4Use[2][2] - box4Use[1][2])   # scale = cm / pixel 
                pixelDifference = waterlineRow - box4Use[2][2] 
                level = 305.0 -  (pixelDifference * scale) / 100 
            elif position[0] and not position[1] and not position[2]: 
                scale = 4 / box4Use[0][3]                       # scale = cm / pixel, the bounding box is  

       approximately 4cm high 
                pixelDifference = waterlineRow - box4Use[0][2] 
                level = 306.5 - (pixelDifference * scale) / 100  
            elif position[1] and not position[0] and not position[2]: 
                scale = 4 / box4Use[1][3]                       # scale = cm / pixel, the bounding box is  

       approximately 4cm high 
                pixelDifference = waterlineRow - box4Use[1][2] 
                level = 306.0 - (pixelDifference * scale) / 100 
            elif position[2] and not position[0] and not position[1]: 
                scale = 4 / box4Use[2][3]                       # scale = cm / pixel, the bounding box is  

       approximately 4cm high 
                pixelDifference = waterlineRow - box4Use[2][2] 
                level = 305.0 - (pixelDifference * scale) / 100 
            else: 
                level = 0.0 
        else: 
            level = 0.0 
         
    if level != 0.0: 
        return level, "Water level detected" 
    else: 
        return level, "No water line could be detected"    
 
# Load the custom trained Yolov5m models. Alternative 1 was the best performing model  
modelStaff = torch.hub.load(staffGaugeDirectory, 'custom', path=staffGaugeDirectory +  

          '/staffGauge/staffGaugeBest.pt', source='local') 
# modelNumbers = torch.hub.load(numbersDirectory, 'custom', path=waterlineDirectory  

        + '/Waterline/combinedBest.pt', source='local')   
# used in alternative 2 

modelNumbers = torch.hub.load(numbersDirectory, 'custom', path=numbersDirectory +  
      '/Numbers/best.pt', source='local')      # used in alternative 1 

 
# Set allowed confidence limit and Iou (intersection over union) 
# The IoU value is used to filter out unwanted overlapping bounding boxes 
modelStaff.conf = 0.1  # confidence threshold (0-1) 
modelStaff.iou = 0.9  # NMS IoU threshold (0-1)   
modelNumbers.conf = 0.50  # confidence threshold (0-1) 
modelNumbers.iou = 0.85  # NMS IoU threshold (0-1)   
 
# Get all the image file names in the folder 
images = [f for f in os.listdir(directory) if f.endswith('.jpg')] 
 
# Open a file for storing the results 
f = open(resultDirectory + 'inferenceResultsModel01_kontroll_2.csv','w') 
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for imgName in images: 
    # Define a new filename for the newly saved file 
    resFile = resultDirectory + "/ResMod01_" + imgName 
 
    # Locaction of image 
    imgIn = directory + imgName 
 
    # Run the detection and store in resultsStaff 
    resultsStaff = modelStaff(imgIn) 
 
    # Get coordiates for bounding box 
    coordinates4Box  = resultsStaff.xyxy[0] 
 
    # Initilaize variables 
    staffGaugeFound = "False" 
    numbersFound = "False" 
    numbers = 0 
    level = 0.0 
 
    # If staff gauge is found 
    if len(coordinates4Box) > 0: 
        # Staff gauge found 
        staffGaugeFound = "True" 
 
        # Crop image and straigthen it 
        img, angle = getStaffAngle(imgIn, coordinates4Box) 
        imgRotated = rotateImage(img, -angle) 
 
        # Get the cropped and straightened image size 
        h, w, _ = imgRotated.shape 
        imgSize = (h,w) 
 
        # Run the numbers detection and store in resultsNumbers 
        resultsNumbers = modelNumbers(imgRotated) 
 
        # Get coordiates for bounding boxes 
        coordinates4Boxes  = resultsNumbers.xyxy[0] 
 
        # Check if coordinates4Boxes contain numbers (extra check when the combined  
        # model is used to get numbers reference correct) 
        for row in coordinates4Boxes: 
            if row[-1].item() < 3.0: 
                numbers = 1 
 
        # If numbers on staff gauge is found... used as water level reference 
        if len(coordinates4Boxes > 0) and numbers == 1: 
            # Numbers found 
            numbersFound = "True" 
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            # Crop the image again to remove the background found at the side of the  
            # previously cropped image 
            imgCropped = cropAgain(imgRotated, angle) 
 
            # Find the water line and store the row at which the water line was found 
            row = findWaterline(imgRotated)   
                 
            # Calculate the water level based on the found number boxes and the row where  
            # the water line was found on.  
            # The water level is 0.0 if no water level could be calculated 
            # First level is aquired via image processing and second is using Yolov5 
            level, comment = calculateWaterLevel(coordinates4Boxes, row,  

        imgRotated.shape[:2]) 
            level = round(level, 2) 
             
            # Add lines to the image where the water line is located 
            cv.line(imgRotated, (0, row), (w, row), (255, 100, 100), 2)   # Red  
             
            # Add text to the image stating the water level 
            cv.putText(imgRotated, str(level), (5, row + 40), cv.FONT_HERSHEY_SIMPLEX, 1,  

      (255, 100, 100),  2, cv.LINE_AA) 
 
    # Write the result to a csv file 
    data = resFile + ", " + staffGaugeFound + ", " + numbersFound +", " + str(level) + "\n" 
    f.writelines(data)  
 
# Close the csv file 
f.close() 
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Appendix B – Code for application alternative 2 
 
 
# daFinalCode_02.py  
# Find the staff gauge in an image using a custom trained Yolov5m model. The code also  
# finds the numbers (hundreds only, not singulars) using a custom trained Yolov5m  
# model. Thereafter it finds the waterline and calculates the water level using the found  
# number as level reference. 
# Version 1.0 
# Author: Bo-Anders Näs - 2023 
 
import os 
import cv2 as cv 
import numpy as np 
import math 
import torch 
from skimage.transform import hough_line, hough_line_peaks 
 
# Assign directory where the image files are 
directory = 'D:/Thesis Images for final test/' 
 
# Assign a directory where the results are saved 
resultDirectory = "D:/Results/" 
 
# Assign directory where the staff gauge model is 
staffGaugeDirectory = 'D:/WaterlevelMeasuring_Yolov5m/Yolov5_Custom_StaffGauge' 
 
# Assign directory where the numbers model is 
numbersDirectory = 'D:/WaterlevelMeasuring_Yolov5m/Yolov5_Custom_Numbers' 
 
# Assign directory where the Water line model is 
waterlineDirectory = 'D:/WaterlevelMeasuring_Yolov5m/Yolov5_Custom_Waterline' 
 
# Enlarges the crop area down and to the right (h, w) 
cropCorrection = [300, 50] 
 
# Convert normalized values for x, y, width and height to conform with the image size 
def convert(size,x,y,w,h): 
    coordinates = np.zeros(4) 
    dw = 1./size[0] 
    dh = 1./size[1] 
    x = x/dw 
    w = w/dw 
    y = y/dh 
    h = h/dh 
    coordinates[0] = x-(w/2.0) 
    coordinates[1] = x+(w/2.0) 
    coordinates[2] = y-(h/2.0) 
    coordinates[3] = y+(h/2.0) 
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    return (coordinates) 
 
# Identify a possible slanting angle of the staff gauge 
def getStaffAngle(image, imgLabel): 
 
    # Get the coordinates of the bounding coordinates4Box 
    imgLabel = imgLabel.tolist() 
    x0 = int(imgLabel[0][0]) 
    x1 = int(imgLabel[0][2]) 
    y0 = int(imgLabel[0][1]) 
    y1 = int(imgLabel[0][3]) 
 
    # Load image 
    img = cv.imread(image) 
     
    # Crop image a bit larger than the found coordinates4Box 
    # This because the found box is not necessary covering the whole staff nor including  
    # the water line  
    imgCropped = img[y0:y1+cropCorrection[0], x0:x1+cropCorrection[1]] 
     
    # Process the image to more easily find the borders of the measurement staff  
    imgGray = cv.cvtColor(imgCropped, cv.COLOR_BGR2GRAY) 
    imgBlur = cv.GaussianBlur(imgGray, (9, 9), 0) 
    imgThresh = cv.threshold(imgBlur, 0, 255, cv.THRESH_BINARY_INV +  

cv.THRESH_OTSU)[1] 
 
    # Apply erode to "remove" the small parts in the image. 
    # A smaller value for the kernel will more effectively remove the small parts. 
    kernel = cv.getStructuringElement(cv.MORPH_CROSS, (3, 3)) 
    imgErode = cv.erode(imgThresh, kernel, iterations=5) 
     
    # Canny will bring out the edges 
    image = cv.Canny(imgErode, 10, 10)                                                            
     
    # Straight-line Hough transform 
    # Set a precision of 0.5 degree, this means the range -pi/2 to pi/2 (-90 to 90 degrees) 
    # divided in 360 parts = 0,5 degrees precision. 
    tested_angles = np.linspace(-np.pi / 2, np.pi / 2, 360, endpoint=False) 
    h, theta, d = hough_line(image, theta=tested_angles) 
 
    returnAngle = [0]*100 
    i = 0 
    # Find the angle of the staff gauge 
    for _, angle, dist in zip(*hough_line_peaks(h, theta, d)): 
        (x0, y0) = dist * np.array([np.cos(angle), np.sin(angle)]) 
        lineSlope = np.tan(angle + np.pi/2) 
         
        returnAngle[i] = math.degrees(np.tan(1/lineSlope)) 
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        i +=1 
 
    return imgCropped, returnAngle[1] 
 
# Rotate the image around its center 
def rotateImage(image, angle: float): 
    # Get the shape of the image 
    (h, w) = image.shape[:2] 
 
    # Get center 
    center = (w // 2, h // 2) 
 
    # Define the rotation matrix 
    M = cv.getRotationMatrix2D(center, angle, 1.0) 
     
    # Create a white background 
    whiteBackground = np.zeros([h,w,3],dtype=np.uint8) 
    whiteBackground[:] = 255 
 
    # Rotates the image using the rotation matrix 
    newImage = cv.warpAffine(image, M, (w, h), flags=cv.INTER_CUBIC, borderMode =  

         cv.BORDER_WRAP) 
     
    return newImage 
 
# Crop the image using threshold 
def cropAgain(image, angle):  
    # This code calculates a new cropping area based on original labeling 
    # and the corrected rotation angle 
     
    # Get image measurements 
    height = image.shape[0] - cropCorrection[0] 
    width = image.shape[1] - cropCorrection[1] 
     
    # Calculate the possible reduction in width due to rotation  
    a = (height*math.tan((angle*3.141593)/180)/2) 
 
    # New coordinates for cropped image     
    x0 = int(a) 
    x1 = width - int(2*a/3) + cropCorrection[1] 
    y0 = 0 
    y1 = height + +cropCorrection[0] 
 
    # and crop the image ... again 
    imgCropped = image[y0:y1, x0:x1] 
 
    return imgCropped 
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# Calculate the water level 
def calculateWaterLevel(boundingBoxes, waterlineRow, imageSize): 
 
    # Convert bounding box tensor to list 
    boundingBoxes = boundingBoxes.tolist() 
    h, w = imageSize 
    level = 0.0 
    duplicate = 0 
 
    # As some models also include the water level bounding box, this has to be removed to  
    # not interfere with the water level calculations 
    i=0 
    for row in coordinates4Boxes: 
        if row[-1].item() == 3.0: 
            boundingBoxes = np.delete(boundingBoxes, i, axis=0) 
        i=+ 1 
     
    # First element: Number to the left of image center line = 1 and number to the right = 0 
    # Second element: Is the number in the upper third of the image = 0, in the mid third =  
    # 1 or in the lower third = 2 
    # Third element: Is there two numbers to the left of the image center line = 1, else = 0  
    if len(boundingBoxes) > 0: 
         
        # Define on which level the bounding box(es) are 
        box = [] 
        position = [0,0,0] 
        error = ["error", 0.0, 0.0, 0.0] 
        for i in range(0, len(boundingBoxes)): 
             
            # Check if the midpoint of the bounding box is to the right of the cropped image  
            # center line 
            if (boundingBoxes[i][0] + boundingBoxes[i][2]) / 2 > w/2: 
                # Check if the lowest edge is above the center line of the cropped image 
                if boundingBoxes[i][3] < h/2 and position[0] == 0: 
                    box.append(("306.5", boundingBoxes[i][0], boundingBoxes[i][3],  

      abs(boundingBoxes[i][3] - boundingBoxes[i][1]))) 
                    position[0] = 1 
                else: 
                    box.append(error) 
            else: 
                # Check if the midpoint of the bounding box is above the center line of the  

   # cropped image 
                if (boundingBoxes[i][1] + boundingBoxes[i][3]) / 2 < h/2: 
                    if position[1] == 0: 
                        box.append(("306", boundingBoxes[i][2], boundingBoxes[i][3],  

       abs(boundingBoxes[i][3] - boundingBoxes[i][1]))) 
                        position[1] = 1 
                    else: 
                        box.append(error) 
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                if (boundingBoxes[i][1] + boundingBoxes[i][3]) / 2 > h/2: 
                    box.append(("305", boundingBoxes[i][2], boundingBoxes[i][3],  

   abs(boundingBoxes[i][3] - boundingBoxes[i][1]))) 
                    position[2] += 1 
         
        # If a duplicate of bounding box 3 is found (305), it is registered 
        if position[2] == 2: 
            duplicate = 2 
         
        if position[2] < 3: 
            # If a duplicate is found for the 305 bounding box, the bounding box furthest down  
            # is disregarded. 
            box4Use = [0,0,0,0] 
             
            tmpBox = [0,0,0,0] 
            for i in range(len(box)): 
                if box[i][0] == '306.5': 
                    box4Use[0] = box[i] 
                if box[i][0] == '306': 
                    box4Use[1] = box[i] 
                if box[i][0] == '305': 
                    if duplicate == 2: 
                        tmpBox = box[i] 
                        duplicate = 1 
                    elif duplicate == 1: 
                        if tmpBox[3] > box[i][3]: 
                            box4Use[2] = box[i] 
                        else: 
                            box4Use[2] = tmpBox 
                    else: 
                        box4Use[2] = box[i] 
         
            # Calculate the scale for the image by calculating the distance between the two  
            # bounding boxes that are the furthest vertically. 
            # Depending on if there exist one or several bounding boxes, calculate the  
            # difference and divide with the actual distance 50, 100 or 150cm, or if only one  
            # bounding box take the height of it and divide with 4cm as measured from staff  
            # gauge 
            if position[0] and position[2]:                     # 306,5 and 305 
                scale = 150 / (box4Use[2][2] - box4Use[0][2])   # scale = cm / pixel 
                pixelDifference = waterlineRow - box4Use[2][2] 
                level = 305.0 - (pixelDifference * scale) / 100     
            elif position[0] and position[1]:                   # 306,5 and 306 
                scale = 50 / (box4Use[1][2] - box4Use[0][2])    # scale = cm / pixel 
                pixelDifference = waterlineRow - box4Use[1][2] 
                level = 306.0 - (pixelDifference * scale) / 100  
            elif position[1] and position[2]:                   # 306 and 305 
                scale = 100 / (box4Use[2][2] - box4Use[1][2])   # scale = cm / pixel 
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                pixelDifference = waterlineRow - box4Use[2][2] 
                level = 305.0 -  (pixelDifference * scale) / 100 
            elif position[0] and not position[1] and not position[2]: 
                scale = 4 / box4Use[0][3]                       # scale = cm / pixel, the bounding box is  

       approximately 4cm high 
                pixelDifference = waterlineRow - box4Use[0][2] 
                level = 306.5 - (pixelDifference * scale) / 100  
            elif position[1] and not position[0] and not position[2]: 
                scale = 4 / box4Use[1][3]                       # scale = cm / pixel, the bounding box is  

       approximately 4cm high 
                pixelDifference = waterlineRow - box4Use[1][2] 
                level = 306.0 - (pixelDifference * scale) / 100 
            elif position[2] and not position[0] and not position[1]: 
                scale = 4 / box4Use[2][3]                       # scale = cm / pixel, the bounding box is  

        approximately 4cm high 
                pixelDifference = waterlineRow - box4Use[2][2] 
                level = 305.0 - (pixelDifference * scale) / 100 
            else: 
                level = 0.0 
        else: 
            level = 0.0 
         
    if level != 0.0: 
        return level, "Water level detected" 
    else: 
        return level, "No water line could be detected"    
 
# Load the custom trained Yolov5m models. Alternative 3 produced the best performing  
# model. 
modelStaff = torch.hub.load(staffGaugeDirectory, 'custom', path=staffGaugeDirectory +  

         '/staffGauge/staffGaugeBest.pt', source='local') 
# modelNumbers = torch.hub.load(numbersDirectory, 'custom', path=numbersDirectory +  

         '/Numbers/best.pt', source='local')           # used in alternative 1 & 3 
modelNumbers = torch.hub.load(numbersDirectory, 'custom', path =waterlineDirectory +  

         '/Waterline/combinedBest.pt', source='local')   # used in alternative 2 
# modelWaterline = torch.hub.load(numbersDirectory, 'custom', path =waterlineDirectory  

         + '/Waterline/combinedBest.pt', source='local')              
        # used in alternative 2 & 3 

modelWaterline = torch.hub.load(numbersDirectory, 'custom', path =waterlineDirectory +  
       '/Waterline/firstBest.pt', source='local')         # used in alternative 1 

 
# Set allowed confidence limit and Iou (intersection over union) 
# The IoU value is used to filter out unwanted overlapping bounding boxes 
modelStaff.conf = 0.1  # confidence threshold (0-1) 
modelStaff.iou = 0.9  # NMS IoU threshold (0-1)   
modelNumbers.conf = 0.50  # confidence threshold (0-1) 
modelNumbers.iou = 0.85  # NMS IoU threshold (0-1) 
modelWaterline.conf = 0.01  # confidence threshold (0-1) 
modelWaterline.iou = 0.85  # NMS IoU threshold (0-1) 
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# Get all the image file names in the folder 
images = [f for f in os.listdir(directory) if f.endswith('.jpg')] 
 
# Open a file for storing the results 
f = open(resultDirectory + 'inferenceResultsModel02_kontroll_alt_3.csv','w') 
 
# Loop through the images in the image folder 
for imgName in images: 
    # Define a new filename for the newly saved file 
    resFile = resultDirectory + "/Res_" + imgName 
 
    # Locaction of image 
    imgIn = directory + imgName 
 
    # Run the detection and store in resultsStaff 
    resultsStaff = modelStaff(imgIn) 
 
    # Get coordiates for bounding box 
    coordinates4Box  = resultsStaff.xyxy[0] 
 
    # Initilaize variables 
    staffGaugeFound = "False" 
    numbersFound = "False" 
    waterLineFound = "False" 
    numbers = 0 
    level = 0.0 
 
    # If staff gauge is found 
    if len(coordinates4Box) > 0: 
        # Staff gauge found 
        staffGaugeFound = "True" 
 
        # Crop image and straigthen it 
        img, angle = getStaffAngle(imgIn, coordinates4Box) 
        imgRotated = rotateImage(img, -angle) 
 
        # Get the cropped and straightened image size 
        h, w, _ = imgRotated.shape 
        imgSize = (h,w) 
 
        # Run the numbers detection and store in resultsNumbers 
        resultsNumbers = modelNumbers(imgRotated) 
 
        # Get coordinates for numbers bounding boxes 
        coordinates4Boxes  = resultsNumbers.xyxy[0] 
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        # Check if coordinates4Boxes contain numbers (extra check when the combined  
        # model is used to get numbers reference correct) 
        for row in coordinates4Boxes: 
            if row[-1].item() < 3.0: 
                numbers = 1 
 
        # Run the water line detection and store in resultsWaterline 
        resultsWaterline = modelWaterline(imgRotated) 
 
        # Get coordinates for water line (and numbers) bounding boxes 
        coordinates4WaterLineBoxes  = resultsWaterline.xyxy[0] 
         
        # If numbers on staff gauge is found... used as water level reference 
        if len(coordinates4Boxes > 0) and numbers == 1: 
 
            # Numbers found 
            numbersFound = "True" 
 
 
            # Crop the image again to remove the background found at the side of the  
            # previously cropped image 
            imgCropped = cropAgain(imgRotated, angle) 
 
            # Check if water line bounding box found and if so, calculated the coordinated of  
            # the midline of the box 
            # The row is stored at which the water line was found 
            for i in range(len(coordinates4WaterLineBoxes)):                                                  
                if coordinates4WaterLineBoxes[i][5] == 3: 
                    row = (coordinates4WaterLineBoxes[i][1] +  

      coordinates4WaterLineBoxes[i][3])/2 
                    # Convert tensor value to float 
                    row = round(float(row.item())) 
                    waterLineFound = "True" 
                    break 
                else: 
                    row = 0 
   
            # Calculate the water level based on the found number boxes and the row where  
            # the water line was found on.  
            # The water level is 0.0 if no water level could be calculated 
            level, comment2 = calculateWaterLevel(coordinates4Boxes, row,  

        imgRotated.shape[:2]) 
            level = round(level, 2) 
             
            # Add lines to the image where the water line is located 
            cv.line(imgRotated, (0, row), (w, row), (255, 100, 100), 2)   # Red  
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            # Add text to the image stating the water level 
            cv.putText(imgRotated, str(level), (5, row + 40), cv.FONT_HERSHEY_SIMPLEX, 1,  

      (255, 100, 100),  2, cv.LINE_AA) 
 
    # Write the result to a csv file 
    data = resFile + ", " + staffGaugeFound + ", " + numbersFound +", " + waterLineFound  

+", " + str(level) + "\n" 
    f.writelines(data)  
 
# Close the csv file 
f.close() 
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Appendix C – Code for image filtering 
 
 
# imageCheck.py 
# Check the image quality and discard the images that are not found to be suitable 
# The code will filter out images as night-time and blurred and move these images 
# to separate folders 
# Version 1.0 
# Author: Bo-Anders Näs - 2023 
 
import cv2 as cv 
import numpy as np 
import shutil 
import os 
 
def calculateSTDDarkChannel(image, windowSize): 
    # Convert the image to a floating-point data type and normalize the values 
    img = image.astype(np.float64) / 255.0 
 
    # Calculate the minimum value in each local window 
    darkChannel = np.min(img, axis=2) 
 
    # Create a structuring element for the filter 
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (windowSize, windowSize)) 
 
    # Apply the minimum filter to the dark channel 
    darkChannelFiltered = cv.erode(darkChannel, kernel) 
 
    # Calculate the standard deviation of the dark channel prior 
    stdValue = np.std(darkChannelFiltered) 
 
    return stdValue 
 
 
# Assign directories 
# Directory containing all the images that are to be checked 
directory = 'D:/Images to be checked/'  
 
# Destination directory for images that are discarded 
destinationNight = directory + 'Night time/'  
destinationBlurred = directory + 'Blurred/'    
 
# Get files in the directory 
FileList = os.listdir(directory) 
 
# Loop through all images (.jpg) in the directory  
for filename in FileList: 
    # Only look for image files ending with .jpg 
    if (filename.endswith(".jpg")): 
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        # Read image file    
        img = cv.imread(directory + filename) 
         
        # Calculate mean intensity value of all pixels in image 
        meanIntensity = np.mean(img) 
 
        # Calculate mean value of saturation channel of image in HSV color space  
        imgHSV = cv.cvtColor(img, cv.COLOR_BGR2HSV) 
        _, s, v = cv.split(imgHSV) 
         
        # Calculate RMS of saturation channel of image in HSV color space 
        rmsSaturation = np.sqrt(np.mean(np.square(s))) 
 
        # Calculate maximum inter-pixel difference 
        maxdifference = np.max(v) - np.min(v) 
 
        # Calculate gradients using the Sobel operator on a part of the image 
        height, width = img.shape[:2] 
        imgSlice = img[0:int(height/3), 0:int(width/2)] 
 
        # Convert to grayscale 
        imgSliceGray = cv.cvtColor(imgSlice, cv.COLOR_BGR2GRAY) 
         
        # Calculate the gradients using the Sobel operator 
        gradientX = cv.Sobel(imgSliceGray, cv.CV_64F, 1, 0, ksize=3) 
        gradientY = cv.Sobel(imgSliceGray, cv.CV_64F, 0, 1, ksize=3) 
 
        # Calculate the gradient magnitude 
        gradientMagnitude = np.sqrt(gradientX**2 + gradientY**2) 
     
        # Calculate the average gradient magnitude 
        AVG_gradientMagnitude = np.mean(gradientMagnitude) 
 
        # Calculate dark channel prior of part of the image 
        window_size = 15 
        stdValue = calculateSTDDarkChannel(imgSlice, window_size) 
 
        # Filter the images 
        if (rmsSaturation < 0.03 and maxdifference > 190 and meanIntensity < 170): 
            # Move the night time image to a separate folder 
            shutil.move(directory + filename, destinationNight + filename) 
        elif AVG_gradientMagnitude < 24.5 and stdValue > 0.08:             
            # Move the blurred image to a separate folder 
            shutil.move(directory + filename, destinationBlurred + filename) 
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