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The human brain has evolved to solve the problems it encounters in multiple 
environments. In solving these challenges, it forms mental simulations about 
multidimensional information about the world. These processes produce 
context-dependent behaviors. The brain as overparameterized modeling organ is 
an evolutionary solution for producing behavior in a complex world. One of the 
most essential characteristics of living creatures is that they compute the values 
of information they receive from external and internal contexts. As a result of 
this computation, the creature can behave in optimal ways in each environment. 
Whereas most other living creatures compute almost exclusively biological values 
(e.g., how to get food), the human as a cultural creature computes meaningfulness 
from the perspective of one’s activity. The computational meaningfulness means 
the process of the human brain, with the help of which an individual tries to make the 
respective situation comprehensible to herself to know how to behave optimally. 
This paper challenges the bias-centric approach of behavioral economics by 
exploring different possibilities opened up by computational meaningfulness with 
insight into wider perspectives. We concentrate on confirmation bias and framing 
effect as behavioral economics examples of cognitive biases. We conclude that 
from the computational meaningfulness perspective of the brain, the use of these 
biases are indispensable property of an optimally designed computational system 
of what the human brain is like. From this perspective, cognitive biases can 
be rational under some conditions. Whereas the bias-centric approach relies on 
small-scale interpretable models which include only a few explanatory variables, 
the computational meaningfulness perspective emphasizes the behavioral 
models, which allow multiple variables in these models. People are used to 
working in multidimensional and varying environments. The human brain is at its 
best in such an environment and scientific study should increasingly take place 
in such situations simulating the real environment. By using naturalistic stimuli 
(e.g., videos and VR) we can create more realistic, life-like contexts for research 
purposes and analyze resulting data using machine learning algorithms. In this 
manner, we  can better explain, understand and predict human behavior and 
choice in different contexts.
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Introduction

When making judgments or decisions, it is said that people often 
rely on simplified information processing strategies called heuristics, 
which may lead to systematic errors called cognitive biases (Berthet, 
2021). Cognitive biases are considered human behaviors that violate 
normative standards of rationality from perspectives of classic logic 
and mathematics, described for example by the Expected Utility 
Theory (EUT; Von Neumann and Morgenstern, 2007). According to 
Gigerenzer (2018), the irrationality argument has become the 
backbone of behavioral economics. In this paper, we challenge such 
bias-centric approach to behavioral economics by exploring different 
possibilities by opening a wider perspective through the analysis of the 
phenomenon of computational meaningfulness.

It is a generally accepted idea that rationality is reasoning 
according to certain rules. Aristotle developed the logical syllogism 
and enthymeme as norms of human rationality. Logical syllogism 
links together a set of known premises to reach deductive conclusions, 
whereas enthymeme is suitable when a human has only limited 
knowledge about premises (Clayton, 2021). Furthermore, Descartes 
regarded the ability to use language during reasoning process as the 
hallmarks of rationality (Oaksford and Chater, 1994). However, most 
contemporary researchers emphasize, that rational rules should 
be described by rules of logic and mathematics. This idea of a rational 
decision-maker applying classical logic and mathematics is perhaps 
best described by EUT (Von Neumann and Morgenstern, 2007).

According to EUT, a rational decision-maker is a utility maximizer 
and s/he chooses the best option from those available (Kőszegi, 2010). 
Furthermore, EUT makes strong assumptions about rational decision-
makers. First, they have stable and accurate representations of 
preferences and people respond to the options available to them 
independent of context and unaffected by other alternatives or 
temporal order (Suomala, 2020). Finally, a rational decision-maker 
behaves consistently and has all the necessary information to make a 
rational decision (Von Neumann and Morgenstern, 2007).

However, EUT produces predictions that are quite different from 
human behavior. It came under attack from researchers Tversky and 
Kahneman (1974) and Kahneman and Tversky (1979), who showed 
that humans cannot make rational decisions in the way that EUT and 
other normative theories had shown (Mckenzie, 2005). This BIAS-
centric approach to BEHavioral Economics (BIASBEHA) has found a 
large number of cognitive biases and fallacies related to human choice 
(Tversky and Kahneman, 1974; Shafir and LeBoeuf, 2002; Ariely, 2009; 
Thaler, 2016). What the BIASBEHA has clearly shown is that the 
assumptions of the rationality of human behavior according to EUT 
do not have the power to explain, describe and predict human 
behavior in natural contexts. BIASBEHA has shown that people’s 
decision-making is predictably irrational because they use simple 
heuristics, which lead to systematic errors, or biases relative to EUT 
(Leonard, 2008; Ariely, 2009; Thaler, 2016).

When BIASBEHA has shown that a human’s decision-making 
does not follow the traditional principles of rationality, it falls into 
two serious fallacies. First, it does not take into account the 
complexity and flexibility of the human brain and real-life behavior 
with uncertainty. Behavioral research has traditionally been based 
on simplified models in which a certain behavioral phenomenon is 
explained by two or a few parameters. For example, Plato divided the 
mind into reason and emotion, and Descartes into the soul and 

body. Similarly, Kahneman (2011) follows Stanovich and West 
(2000), dividing thinking into system 1 (fast belief system) and 
system 2 (slow conscious and critical system). Although such simple 
divisions are fruitful metaphors for thinking, they are not capable of 
grasping the multidimensionality and flexibility of human thought. 
Second, it has mostly stripped the decision-maker of essential 
information—like prior beliefs—from its experimental setups. To 
move forward in the behavioral sciences, we should study people in 
those environments where they can use different sources of 
information in their behavior. We do not argue that BIASBEHA-
approach has not any value in behavioral science. Of course, this 
tradition has increased our understanding of human behavior in 
different contexts. However, traditional experimental setups in 
psychology and other behavioral science are often too simple to 
capture the multidimensional human behavior and decision-making 
that takes place in different real-life contexts. We suggest that new 
neuroscientific and machine learning methods give new 
opportunities to provide an opportunity to bridge the gap between 
experimental research and real-life behavior (Jolly and Chang, 2019).

In this case, what is essential in a person’s behavior and decision-
making is computational meaningfulness (Suomala, 2020; Suomala 
and Kauttonen, 2022), with which a person makes decisions in 
complex situations of everyday life. The computational meaningfulness 
approach assumes, that the brain/mind operates in different contexts 
by inquiring directly from the structure of the real world by optimizing 
multidimensional—with millions of parameters—information 
relating to the contexts. Previously, both the satisficing (Simon, 1955) 
and the bounded rational model (Gabaix et al., 2006) emphasize the 
study of human behavior in realistic and meaningful contexts. 
However, the model of computational meaningfulness takes into 
account the enormous parameter space of the brain, which is missing 
from the mentioned models.

According to the contextual approach to human behavior and 
decision-making, the task of the human brain/mind is to interpret the 
continuous complex information it encounters in a meaningful way 
in terms of one’s subjective goals and activities. There are thousands 
of potentially informative demographics-, dispositional-, personal-, 
genetic-, and neurobiological variables that correlate and affect human 
behavior. This process is inevitably very multidimensional and 
complex. Therefore, behavioral science needs tools to describe, explain 
and predict human behavior through models, which include hundreds 
or maybe thousands of parameters (variables; Yarkoni and Westfall, 
2017; Jolly and Chang, 2019; Hasson et  al., 2020). In addition, 
we describe the functioning of the human brain as a typical example 
of a biological computer processing huge information flows. The 
human brain’s basic processes are inductions and approximations and 
cognitive biases are a by-product of a process where the brain 
processes huge amounts of information utilizing induction and 
approximation. These are essential features of an optimally designed 
computing system, like the human brain.

With the recent development in machine learning and 
neuroscientific methodology as well as the increasing availability of 
large-scale datasets recording human behavior, we have good tools to 
understand better human behavior in real-life contexts (Yarkoni and 
Westfall, 2017). Therefore, from the computational meaningfulness 
perspective of the brain/mind, the use of cognitive biases may not 
be  foolish at all and can be  rational under some conditions 
(Gershman, 2021).
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The article is organized as follows. We begin by describing typical 
assumptions of the BIASBEHA tradition. In addition, we describe 
more specifically cognitive heuristics relating to confirmation bias and 
framing effect. In conclusion of these, we  highlight the problems 
relating to this tradition. Then, we describe a contextual approach with 
the recent development in machine learning and neuroscientific 
methodology. We end with our conclusions and suggestions on how 
to move forward BIASBEHA tradition.

The heuristics and biases approach

The main aim of BIASBEHA was to study people’s beliefs about 
uncertainty and the extent to which they were compatible with the 
normative rules of EUT and other traditional logical calculus. This 
research program has been quite successful with thousands of 
scientific articles, Nobel laureates Daniel Kahneman and Richard 
Thaler in economics, and practical applications [e.g., Behavioral 
Insight Team in the United Kingdom government; popular non-fiction 
books: (Thaler and Sunstein, 2009; Kahneman, 2011)]. Moreover, new 
cognitive biases are constantly being discovered (Baron, 2008; Berthet, 
2022), which give a rather pessimistic picture of human rationality. It 
is impossible to cover all these thinking biases in one article, so we will 
choose only two quite common and much-studied cognitive biases. 
These are the confirmation bias and framing effect. Below we describe 
typical example studies of both of them and the different 
interpretations made of them from the perspective of 
human rationality.

Confirmation bias as an example of 
irrational human reasoning

The behavioral literature on how people should form and test 
hypotheses has borrowed heavily from the logic of scientific discovery. 
People tend to seek and interpret evidence in a way that supports their 
beliefs and opinions and reject information that contradicts them. 
This tendency has been regarded as confirmation bias (Nickerson, 
1998; Austerweil and Griffiths, 2008; Gershman, 2021). The proclivity 
toward confirmation bias is considered one manifestation of people’s 
inability to think rationally (Wason, 1960, 1968; Popper, 2014). For 
example, Popper (2014) argued that science progresses through 
falsification, i.e., disconfirmation. A descriptive example of this is the 
discovery of helicobacter pylori.

In June 1979—on his 42nd birthday—Robin Warren saw 
something surprising with the new electron microscopy he had just 
adopted. A sample taken from the stomach of a patient with gastritis 
appeared to contain new types of curved bacteria. Although according 
to the bacteriology of that time, bacteria cannot live in the stomach 
because of its acidity, Robin Warren believed his eyes almost 
immediately (Warren, 2005). He was ready to disconfirm (i.e., falsify) 
the current theory of gastritis and started to find human and material 
resources, to make experiments to prove his observation correct 
(Thagard, 1998).

Despite strong opposition from his colleagues, he  worked 
purposefully and decisively. Eventually, he  was able to reform 
bacteriology with his colleague Barry Marshall related to the fight 
against diseases caused by helicobacter pylori in the stomach, and in 

2005 they received the Nobel Prize in Medicine for their work 
(Warren, 2005).

Without a doubt, inventing something new is perhaps the highest 
degree of human mental ability and the clearest manifestation of 
human rationality. The cognitive-historical studies have shown that 
often scientific-, technological-and business breakthrough starts from 
unexpected perceptions (Suomala et  al., 2006; Thagard, 2009). 
Warren’s case is a good example of this. The discovery of helicobacter 
pylori and demonstration of its effect in the development of gastritis 
and gastric ulcer is also a textbook example of the power of falsification 
in scientific discovery. The theory of bacteriology at the time was 
contradicted by Warren’s observation. Similarly, Galileo disconfirmed 
his time’s common theory that Moon has not any mountains. He made 
observations of mountains on the Moon with his new telescope and 
disconfirmed previous wrong theories. As Popper argued, science 
advances by falsification of current theories and hypotheses rather 
than by continually supporting theories (Popper, 2014). Typical for 
Warren’s and Marshall’s as well as Galileo’s case was that other 
scientists were against them and came up with several explanations 
with which they tried to save the old theories.

However, most ordinary people—like many scientists—do not 
apply disconfirmation as an inference strategy. Rather, they try to find 
support for their current knowledge and beliefs. The tendency to use 
confirmation means people’s proclivity to embrace information that 
supports their current beliefs and rejects information that contradicts 
them (Austerweil and Griffiths, 2008).

Illustrative examples of confirmation bias are attitude experiments 
about the death penalty (Lord et al., 1979) and the right to bear arms 
(Kahan et al., 2017). In the death penalty study, its supporters and 
opponents were asked to familiarize themselves with two fictional 
empirical studies. Individuals who supported capital punishment 
subsequently strengthened their belief in the effectiveness of the death 
penalty after reading the two studies, whereas individuals who 
opposed capital punishment subsequently strengthened their beliefs 
in its ineffectiveness. The conclusion of the effect of the data 
evaluations is that opinion shifts of the participants increase attitude 
polarization (Lord et al., 1979; Gershman, 2021). The same body of 
evidence confirms people’s individual beliefs in opposite directions 
indicating humans’ tendency to confirmation bias.

While the content of the study of Lord et al. (1979) above was a 
complex and emotional social issue, does the effect of confirmation 
bias decrease, when the content is not so emotionally charged content? 
The attitude study about the right to bear arms (Kahan et al., 2017) 
tackled this question. In the study, the participants were presented 
with a difficult problem that required numeracy—a measure of the 
ability to make use of quantitative information. As expected, 
participants highest in numeracy did to a great extent better than less 
numerate ones when the data were presented as results from a study 
of a new skin-rash treatment. However, when the content of the 
inference changed from fact-based to emotionally charged content, 
the situation changed. Now, the participants evaluated the results from 
the fictional study of a gun-control ban. Now subjects’ responses 
became less accurate and politically polarized. Such polarization did 
not abate among subjects highest in numeracy, rather, people who 
were good at numeracy used their talent to strengthen their own 
beliefs similarly to people with lower numeracy.

The rule learning task of Wason (1960) and selection task of 
Wason (1968) are the most cited examples relating to confirmation 
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bias. Human reasoning in these tasks has been considered an apt 
exemplification of human irrationality. In the rule learning task, 
participants need to generate triples of numbers to figure out what 
the experimenter has in mind. This task is a more demanding 
version of the generally known object recognition task with 20 
questions (Navarro and Perfors, 2011). The allowable queries in 
both queries are in the general form “Does x satisfy the rule?,” 
where x is an object in 20 question game and a number in Wason’s 
rule learning game (Navarro and Perfors, 2011). Wason gave the 
triple “2-4-6” as an example of the rule. Then the participants 
were asked to construct a rule that applies to a series of triples of 
numbers to test their assumptions about the rule the experimenter 
had in mind. For every three numbers the subjects will be coming 
up with, the experimenter will tell them whether it satisfies the 
rule or not, until the subject comes up with the right rule 
(Wason, 1960).

Most participants first formed a hypothesis about the rule: a 
sequence of even numbers. Then they tested this rule by proposing 
more sequences of numbers typically “4-8-10,” “6-8-12,” and 
“20-22-24.” The feedbacks to all these sequences were positive. 
The participants produced a few more tries until they felt sure 
they have already discovered the rule. Most participants did not 
discover the rule, which was simply “increasing numbers.” Wason 
(1960) showed that most of the participants avoided falsifying 
their hypotheses and instead sought to find confirmation for 
their hypotheses.

In the selection task (Wason, 1968), participants are presented 
with four cards (A, K, 2, and 7), each with a number on one side and 
a letter on the other, and a rule “If a card has a vowel on one side, 
then it has even number on the other side.” Thus, the rule has a 
general form “if p, then q.” Participants have to select those cards 
that they must turn over to infer whether the rule is true or false. 
Following the argument of Popper (2014) about falsification 
(disconfirmation), the correct choice is to turn over the vowel card 
(A) and the odd card (7) because finding an odd number behind the 
vowel or a vowel behind the odd number would reveal the 
hypothesis to be  false. In other words, according to Popperian 
rationally, the correct answer follows a falsificationist (i.e., 
disconfirmation) strategy. It appeared that only 4% of subjects used 
the disconfirmation strategy. By contrast, the vast majority of 
participants used the confirmation strategy by either only turning 
over the vowel card (A; 33%) or turning over the vowel (A) and 
even cards (2; 46%). In other words, people seem to be following a 
confirmation test strategy, turning over cards that confirm the rule.

The studies described above regarding confirmation bias have 
been taken as strong evidence that humans are fundamentally 
irrational in their reasoning. This shows up as an irrational belief 
updating of individuals (Kunda, 1990; Gershman, 2021) and a strong 
tendency to strong logical errors in individuals reasoning (Wason, 
1960, 1968; Johnson-Laird and Wason, 1970; Kahneman, 2011; Thaler, 
2016). These experiments show that participants violated Popper’s 
normative rule, according to which a rational actor pays attention to 
things that contradict the reasoner’s presuppositions. Instead, 
participants tested their hypotheses in a way that would lead them to 
be confirmed. We as humans gather information in a manner that 
leads us to believe or to strengthen our subjective presuppositions 
regardless of their correctness.

Confirmation bias as an example of the 
adaptability of human reasoning

However, wider interpretations of the phenomena of confirmation 
bias have been presented (Oaksford and Chater, 1994; Mckenzie, 2005; 
Navarro and Perfors, 2011; Gershman, 2021). In addition, many 
philosophers of science have rejected falsificationism as unfaithful to 
the history of science and to be anyway unworkable (Lakatos, 1970; 
Kuhn, 1996; Churchland, 2002). These new interpretations emphasize 
that confirmation bias can be  rational under some conditions 
(Gershman, 2021). We present some of them below.

According to this broader view, when a person acts in a certain 
situation, the person tries to grasp those environmental cues that 
increase his/her understanding of this situation. Especially, the 
interpretation of an event is an inferential process and during this 
process, an individual tries to increase knowledge and decrease 
uncertainty. In this case, the confirmation approach can be the most 
effective strategy.

Whereas Warren’s and Marshall’s discovery of helicobacter pylori 
is a good example of Popper’s understanding of scientific discovery 
(Popper, 2014); science progresses by falsification. However, there are 
also contrasting examples in the history of science. When astronomers 
discovered Uranus in 1781 and noticed that it was deviating from its 
predicted orbit, they did not try to disconfirm the prevailing 
Newtonian theory of gravitation (Clayton, 2021; Gershman, 2021). 
Thus, they behaved in similar ways as participants in Wason’s 
experiments. They persistently sought a Newtonian-compatible 
explanation for Uranus’ unusual trajectory and Le Verrier and Adams 
in 1845 independently completed calculations showing that the 
unusual trajectory of Uranus could be entirely explained by the gravity 
of a previously unobserved planetary body (See Gershman, 2021). 
Eventually, a year later Johann Gottfried Galle found through 
telescopic observation Neptune in the night sky almost exactly where 
Le Verrier and Adams predicted it had to be. These astronomers 
succeeded in two ways: they discovered a new planet, and they rescued 
the Newtonian theory from disconfirmation (Gershman, 2019).

Moreover, contemporary research has argued that belief 
polarization might arise from different auxiliary hypotheses about the 
data-generating process (Jaynes, 2003; Jern et al., 2014; Cook and 
Lewandowsky, 2016; Gershman, 2019). The mental simulations of 
people’s brains do not include perfect natural, mental, and cultural 
events. As Gershman (2021) argues, resistance to disconfirmation can 
arise from the rational belief updating process, provided that an 
individual’s intuitive theories include a strong prior belief in the 
central hypothesis, coupled with an inductive bias (Suomala and 
Kauttonen, 2022) to posit auxiliary hypotheses that place a high 
probability on observed anomalies. Jern et al. (2014) explained the 
findings of Lord et al. (1979) by using a rational Bayesian framework. 
When subjects in the experiment do not trust the results of the 
research, then reading a report about the ineffectiveness of capital 
punishment may strengthen their belief. These beliefs in research bias 
could include doubt about the validity of the experimenter, data 
source of stimuli, and other auxiliary arguments against the evidence 
presented during experiments as a whole (Corner et  al., 2010). 
Similarly, Cook and Lewandowsky (2016) demonstrated that belief 
polarization and contrary updating are consistent with a normative 
rational approach using the Bayesian framework. Thus, various 
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auxiliary hypotheses are almost always in play when a human makes 
inferences. When one’s beliefs about auxiliary hypotheses will change, 
then the interpretation of observations will also change (Gershman, 
2021). Next, we will look at the new interpretations of the results of 
Wason’s tasks.

Several researchers consider that the structure of Wason’s tasks is 
such that it favors the confirmation strategy in reasoning. Klayman 
and Ha (1987) found that confirmation bias can be understood as 
resulting from a basic hypothesis-testing heuristic, which they call the 
Positive Test Strategy (PTS). According to PST, people tend to look at 
instances where the target property is assumed to be present. Klayman 
and Ha (1987) emphasized that most task environments are 
probabilistic and then it is not necessarily the case that falsification 
provides more information than verification. What is the best strategy 
depends on the characteristics of the specific problem at hand.

For example, the true rule in the rule learning task, which the 
experimented has in mind (“increasing numbers”) is more general 
than the tentative plausible hypotheses in participants’ minds 
(“increasing intervals of two”; typically “4-8-10″, “6-8-12″, “20-22-
24″). In this case, people tend to test those cases that have the best 
chance of verifying current beliefs rather than those that have the best 
chance of falsifying them (Klayman and Ha, 1987). Furthermore, PTS 
is more likely when testing cases people expect will not work to lead 
to disconfirmation when people are trying to predict a minority 
phenomenon (Klayman and Ha, 1987; Mckenzie, 2005). These two 
conditions are commonly met in real-world reasoning situations and 
the confirmation strategy appears to be  the rational strategy 
during reasoning.

Furthermore, Oaksford and Chater (1994) argue that turning the 
A and the 2 cards (confirmation) in Wason’s card selection task is the 
most informative for determining if the rule is true or not. The 
confirmation strategy epitomizes general findings that rare events are 
more informative than common events (Klayman and Ha, 1987; 
Mckenzie, 2005). Thus people infer that the rule includes rare items—
as vowels in English are—then the PTS shows the rational approach 
to the task contrary to Wason’s interpretations and many other 
researchers’ interpretations (Wason, 1960, 1968; Johnson-Laird and 
Wason, 1970; Kahneman, 2011; Thaler, 2016).

A descriptive example of the human ability for adaptable 
reasoning is manifested in a version of the game “Battleship” 
(Hendrickson et al., 2016). The game took place on a 20 by 20 grid 
partially covered by 5 ships (gray rectangles). The task of participants 
in this game is to discover the correct arrangement of the ships in the 
grid. They could ask where the ships were located (confirmation 
strategy) or where they were not located (disconfirmation strategy). 
Participants were told that their goal was to position the ships in their 
correct positions. The correct positions were randomly selected from 
a large set of possible configurations (Hendrickson et  al., 2016). 
Participants were randomly assigned to one experimental condition 
in which the size of the ships was manipulated such that the portion 
of the grid covered by the ships ranged from 10% to 90%. In small ship 
conditions, there were many more legal candidate hypotheses than in 
large ship conditions since there were many more possibilities in 
which no ships overlapped in small ship conditions (Hendrickson 
et al., 2016).

The research demonstrated that there is a clear relationship 
between hypothesis size (i.e., legal potential position) and the degree 
to which people prefer confirmation strategy. In the 10% condition the 

average preference for confirmation strategy (i.e., questions, where the 
ships are located) was 86%, whereas, in the 90% condition, it was only 
36%. Consistent with optimal information-acquisition strategy, when 
the size of ships increased (i.e., legal potential positions decreased), 
the confirmation request declined. The study showed that the request 
for positive evidence (confirmation) declined as the size of hypotheses 
(literally the size of ships) increased, consistent with the optimal 
information-acquisition strategy.

When the findings of confirmation biases have been regarded as 
a manifestation of irrational human behavior, contemporary 
research—as we described above—has shown that this traditional 
approach is too narrow. Preference for confirmation reflects the 
structure of how people represent the world (Gershman, 2021). The 
ability to adapt, to act actively and flexibly in different environments 
is an indication of human rationality, although can sometimes lead to 
preposterous beliefs. Now we concentrate on other cognitive biases 
presented in heuristics and bias tradition, namely the framing effect.

Framing effect as an example of irrational 
human reasoning

The framing effect occurs when people’s choices systematically 
depend more on how the information of objects or outcomes is 
described than the substance of the pertinent information (Mckenzie, 
2005; Leong et al., 2017). It is considered cognitive bias because an 
individual’s choice from a set of options is influenced more by how the 
information is worded than by the information itself.

In attribute framing tasks one frame is usually positive and one 
negative (Levin et al., 1998). Ground beef is evaluated as better tasting 
and less greasy among participants when it is described in a positive 
frame (75% lean) rather than in a negative frame (25% fat; Levin and 
Gaeth, 1988). Similarly, when a basketball player’s performance is 
described in terms of performance of shots “made” (positive frame) 
rather than “missed” (negative frame), participants rate the player as 
better in terms of abilities in positive than negative condition (Müller-
Trede et al., 2015).

Furthermore, the attribute framing effect is found in contexts of 
plea bargaining (Bibas, 2004) and among economists (Gächter et al., 
2009). The analysis of plea-bargaining literature has brought up the 
effect of framing on the criminal justice system (Bibas, 2004). The 
effect of framing appears to be a crucial component in the process, 
although skillful lawyering may ameliorate its effect. Similarly, the 
framing effect of conference payment for the participants of a scientific 
conference for behavioral economics has been studied (Gächter et al., 
2009). The results showed that while the junior experimental 
economics was influenced by the framing effect, the more senior 
economists were not (Gächter et al., 2009). In a similar vein, people 
who are knowledgeable about an attribute’s distribution (i.e., what is 
the typical number of free throws scored per season by an athlete 
playing basketball in the NBA) exhibited a reduced framing effect in 
the basketball framing scenario. However, the framing effect was 
unaltered among the same people in the medical framing scenario, of 
which they had no prior knowledge (Leong et al., 2017).

It is worth noticing that the information framed above examples 
is not the outcome of a risky choice but an attribute or characteristic 
of the goods. However, the best-known examples of framing effects 
involve choosing between a risky and a riskless option that is described 
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in terms of either gains or losses (Kahneman and Tversky, 1979, 1984; 
Tversky and Kahneman, 1981). When the options are framed as risk-
level, gains, and losses, the reference point has an important role. 
Moreover, people are more willing to take risks when the information 
is framed negatively but seek to avoid risks when the information is 
framed positively (Tversky and Kahneman, 1981).

According to Prospect Theory (Kahneman and Tversky, 1979), a 
decision maker transforms objective values of offers to subjective 
values at the present of the reference point according to the S-shaped 
value function. In this case, a human feels the loss relatively stronger 
than the gain about a reference point. At first, the Prospect Theory has 
described human choice in contexts, where a decision maker’s status 
quo at the time of each choice dictates the subjective reference point 
(Kahneman, 2003). In these situations, a decision maker perceives any 
negative departure from her status quo as a loss, while perceiving any 
positive departure from the same status quo as a gain (Tversky and 
Kahneman, 1981; Louie and De Martino, 2014). Later, there is growing 
evidence that people evaluate the outcomes in light of the expectations 
or their subjective goals which act as a reference point, similar to the 
status quo as a reference point (Camerer et al., 1997; Heath et al., 1999; 
Koszegi and Rabin, 2006; Abeler et al., 2011; Suomala et al., 2017). 
Therefore, the prospect theory is crucial to understanding the framing 
effect. It describes how people evaluate their losses and acquire 
insight asymmetrically.

This phenomenon is aptly described in the famous Asian disease-
study (Tversky and Kahneman, 1981). In the study, the participants were 
asked to choose between two options for treatment for 600 people, who 
suffer from a dangerous imagined Asian disease. The first treatment was 
likely to result in the deaths of 400 people, whereas the second treatment 
had a 66% possibility of everyone dying and a 33% possibility of no one 
dying. These two treatments were then described to the participants of 
the experiment with either a negative framing (describing how many 
would die) or a positive framing (relating how many would live). The 
result of the study (Tversky and Kahneman, 1981) showed that 72% of 
participants chose the first option for treatment when it was framed 
positively, i.e., as saving 200 lives. However, only 22% of participants 
chose the same option when it was framed negatively, i.e., resulting in 
the deaths of 400 people. Similarly, when survival rates of a surgery or 
other medical procedure are emphasized, people are more likely to 
approve of the procedure than when the mortality rates of the procedure 
are emphasized (Levin et al., 1998).

Despite there being some evidence that the framing effect was 
attenuated for those participants knowledgeable about the context 
(Gächter et al., 2009; Leong et al., 2017), it is widely considered to 
provide clear-cut evidence of irrationality and systematic violations of 
the axioms of rationality in decision-making in the same way as the 
confirmation bias (Kahneman and Tversky, 1979; Kahneman, 2011). 
Framing effect violates especially the description invariance-principle 
(Von Neumann and Morgenstern, 2007) essential normative principle 
in EUT (Mckenzie, 2005). However, recent studies—as we described 
below—have shown that this is not necessarily the case.

Framing effects as an example of the 
adaptability of human reasoning

Recent studies related to human behavior have shown, that 
humans and other mammals are sensitive to the context as a whole 

(Gallistel and Matzel, 2013; Müller-Trede et al., 2015). The context 
as a whole has often a stronger effect on behavior than single objects 
or objects’ attributes. Even when participants process information 
about artificial objects (i.e., stimuli) in decontextualized experiments, 
participants have a proclivity to form rich and versatile mental 
simulations, which include not only the stimuli but also the likely 
context and its latent causes in which these stimuli typically occur 
(Gershman et  al., 2015; McKenzie et  al., 2018; Cushman and 
Gershman, 2019). In these experimental as well as in real-life 
contexts, an individual infers based on her/his prior experience and 
expectation relating to a context as a whole (Baum, 2004; Gershman 
and Niv, 2013; Suomala, 2020; Suomala and Kauttonen, 2022). For 
example, when the above-described task includes the wording “the 
ground beef is 75% lean,” a participant likely tries to understand this 
wording from the point of view of either the experimenter or the 
butcher (Leong et al., 2017). Then this context leaks information 
about the experimenter’s and the butcher’s intentions, and these 
informative signals are different in different options, despite options 
being logically equivalent (McKenzie and Nelson, 2003; 
Suomala, 2020).

Each real-life context contains an almost infinite number of 
configurations in terms of human interpretation ability. The human 
resolves this problem of abundant information flows by utilizing prior 
experiences (i.e., memories) and contextual information. When a 
researcher constructs the experiment, the narrative, and single words 
form the information context for participants. Mckenzie (2005) and 
Sher and McKenzie (2006) argues that the frame chosen by the 
researcher and its linguistic expression constitute the information 
content for the test subjects with reference points chosen by the 
researcher. In these cases, logically equivalent frames can signal 
relevant information beyond the chosen frame’s literal content. For 
example, McKenzie and Nelson (2003) found that the “speaker” 
participants were more likely to express a cup with liquid at the 
halfway mark as “half empty” rather than “half full” when the cup had 
initially been full and was therefore empty. Then “Listener” 
participants, in turn, “absorbed” the information signaled by the 
speaker’s choice of frame and were more likely to infer that a cup was 
originally full when it was described as “half empty.” In other words, 
listeners’ inferred reference points matched the actual reference points 
that guide speakers’ frame selection. McKenzie and Nelson (2003) 
conclude that logically equivalent frames can often implicitly convey 
different information and participants are sensitive to this different 
information. Then logically equivalent frames can convey choice-
relevant information and participants in the experiments exploit this 
information effectively (McKenzie and Nelson, 2003; Sher and 
McKenzie, 2006).

Human behavior from sensory observation to mental simulation 
constructions is guided by the principle of meaningfulness (Suomala, 
2020; Suomala and Kauttonen, 2022; Gershman, 2023). This sense-
making process emphasizes certain features of the context at the 
expense of other features. The human brain integrates incoming 
extrinsic information with prior intrinsic information to form rich, 
context-dependent models of situations as they unfold over time 
(Yeshurun et al., 2021). How individuals can weigh different elements 
when constructing the important elements of the context? An 
illuminating example is the study (Sher and McKenzie, 2014), which 
provided experiments, where the participants were asked to evaluate 
a suitable salary for coders and buy CDs.
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In the salary experiment, participants saw three things about two 
applicants. Both had graduated from the University of San Diego with 
majors in programming. The average grade of Applicant A was 3.8 
(max 4.0) and Applicant B was 3.1. In addition, A had programmed 
10 programs in the YT programming language, while B had 
programmed 70 programs in the same language. The essential point 
here is that knowledge relating to the University of San Diego and 
grade were familiar to the participants, whereas the YT programming 
language was unknown to them. The participant groups, which 
evaluate individual applicants, based their evaluation on the known 
attributes. In this case, A applicant got a better salary suggestion than 
B applicant. This is understandable because the A applicant was better 
in grade than the B applicant. These individual evaluation groups 
ignored the effect of programming experience because they likely did 
not understand its meaning. However, the third group of participants 
evaluated both A and B applicants’ salaries at the same time. In this 
case, participants suggested better salaries for B applicants. Despite the 
YT programming language being unknown among participants in this 
group, they were likely sensitive the relatively large difference (10 
programs vs. 70 programs) between applicants.

Similarly, in CD study, participants showed their willingness to 
pay for different CD boxes. When individual CD-box was presented, 
unknown attributes were ignored by participants. However, when 
different versions of CD-boxes were presented at the same time, 
participants were capable to evaluate different versions and they also 
interpret unknown attributes of each other to make suitable price 
estimates (Sher and McKenzie, 2014). Thus, people are very sensitive 
to both implicit and explicit contextual clues, when trying to make 
sense of the context.

It is possible to assume, that the researchers planning an 
experiment form specific frames and reference points, and these 
original choices affect test subjects’ inference processes about these 
frames. For example, the medical tasks described above illustrate that 
describing the treatment in terms of percent survival signals that the 
treatment is relatively successful, whereas describing it in terms of 
percent mortality signals that the treatment is relatively unsuccessful. 
This speaker–listener interpretation help explain also people’s behavior 
in other framing contexts, which we described above.

The speaker-listener framework is reminiscent of Gricean notion 
of conversational implicature (Grice, 1975; Corner et  al., 2010). 
According to conversational implicature, information is not contained 
in the literal content of an utterance but can be  implied from the 
context in which it is given (Grice, 1975). Corner et  al. (2010) 
emphasized that participants may infer more about the experiment 
than is contained in the literal content of the instructions and 
participants might have different ideas about what key task parameters 
are—such as the diagnosticity of evidence in belief 
revision experiments.

Similarly, people try to interpret the content of information based 
on plausibility (Jaynes, 2003). For example, in the case of Asian disease 
(Tversky and Kahneman, 1981) described above, it is very difficult to 
imagine that such a treatment would exist in real life. Recent research 
(Cohen et al., 2017) on the ability to reason in medical cases showed, 
that people’s inference is rational in the traditional sense when the 
probabilities were believable. Similar logically consistent reasoning 
has been observed in syllogistic reasoning, where beliefs about the 
plausibility of statements based on everyday experience influence 

truth judgments (Revlin et al., 1980). Jaynes (2003) emphasizes that 
people’s inference is neither deductive nor inductive, but it is plausible 
reasoning. It has strong convincing power, and a human decides this 
way all the time (Suomala and Kauttonen, 2022). Thus, people’s 
reasoning process is not necessarily purely syntactic or computational. 
Rather, it is sensitive to meaningful properties of the combination 
formed by observation and prior experience. When the occurrence of 
objects and their frames and their relationships are meaningful from 
an individual perspective, her/his reasoning process appears to 
be rational (Gershman, 2021).

Above we  have described examples of heuristic and biased 
approaches to the confirmation bias and the framing effect. Results in 
these studies appear to show that people do not reason according to 
the principles of classical rationality. In both confirmation effect—and 
framing effect experiments people’s performance appears biased when 
compared with the standards of logic, probability theory, and 
EUT. However, contemporary critical studies showed that the human 
mind is more flexible, context-sensitive, and capable to interpret 
environmental features based on an individual’s prior experiences. 
These studies considered misleading the purely negative view of 
human performance implied by the BIASBEHA approach.

Despite the current new critical approach to heuristics and biases, 
tradition has taken important steps in contextualizing human 
behavior, we must go further. As most of the empirical studies of 
human behavior—also these critical studies—suffer from the flatland 
fallacy (Jolly and Chang, 2019).

Term Flatland fallacy refers to Edwin Abbott’s famous Novella 
Flatland: a Romance of Many Dimensions (Abbott, 2019), in which 
the creatures (Flatlanders) with limited perceptual capacities (i.e., 
seeing in only two dimensions) come to reason in a limited way. They 
ignored the complexity of the world and believed that their perceptions 
are veridical. Jolly and Chang (2019) argued that much like Flatlanders, 
humans exhibit strong biases in their reasoning about a complex and 
high-dimensional world due to finite limitations on their cognitive 
capacities. They claim that most psychological researchers are like 
Flatlanders and try to understand human behavior with impoverished 
models of human behavior. We agree and suggest that most of the 
results of BIASBEHA-tradition are a result of not taking the 
multidimensionality of human behavior into account. To overcome 
this fallacy, we  should study human behavior under as natural 
conditions as possible. In the following chapters, we describe this 
approach more specifically.

Computational meaningfulness as the 
core of the human rationality

To move forward in the behavioral sciences, it is central to 
understand the behavior of people in real-life contexts. Our mind is 
not a photocopier. Rather it is a biological computer that extracts 
meaningful patterns from contexts to know how to behave adaptively 
in each context (Suomala, 2020). In this chapter, we describe factors 
that, according to our understanding, help behavioral scientists to 
conduct better research that takes into account human operating 
naturalistic environments. At first, we need a theoretical model of 
human behavior. Such a model should include the following factors 
(Hofstadter, 1979; Gallistel, 2009):
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 1. It realistically describes the signals that humans process, and 
how those signals are processed to yield action.

 2. It realistically identifies meaningful actions.
 3. Research results increase our understanding of human 

behavior in natural environments.

We claim that BIASBEHA approach does not include the three 
factors listed above. Next, we  describe the foundation for a new 
behavior model based on the criteria described above.

The signals that humans process

Living creatures, from single-celled organisms to humans, always 
function in a certain context (Suomala, 2020). For a human, these 
contexts are usually cultural environments, the meanings of which a 
growing child learns to understand. When behaving in a certain 
context, a person computes information from the context to serve her 
activities. We  call this process of transformation and utilization 
computation. Computation means the process by which the human 
brain transforms the contextual information and combines these with 
mental simulations previously adopted by the individual in order to 
behave in optimal ways (Tegmark, 2017; Suomala and 
Kauttonen, 2022).

This means that a person always develops, learns, and acts in a 
certain cultural context. This is aptly illustrated by the study (DeCasper 
and Spence, 1986) that showed that a child learned to prefer the fairy 
tale “The Cat in the Hat” during the fetal period, which one’s mother 
read regularly at the end of the waiting period. Thus, children’s 
preferences begin to be biased toward certain cultural things—in this 
case specific fairy tales—that are present in their environments. In 
other words, a child begins to embrace important cultural entities and 
to behave in this specific cultural context adaptable. Whereas the early 
learning of a child is likely limited to reasoning about objects and 
agents in their immediate vicinity, the wider cultural artifacts, values, 
and habits develop later with interactions of the child and other people 
and official institutions. During this process, the most crucial aspect 
of the human mind is the motivation to share culturally meaningful 
aspects with others (Tomasello et al., 2005; Tomasello, 2014; Suomala 
and Kauttonen, 2022). So, the contexts include not only the physical 
objects but above all the cultural entities. These contexts offer a person 
potential behavioral opportunities, which we call cultural affordances. 
A person learns and acquires knowledge and skills and may develop 
into an expert in some field. Growing into an expert is situational 
in nature.

Humans process signals from their contexts, which include 
constellations of cultural affordances. Described in this way, the 
concept of cultural affordances is related to Gibson’s concept of 
affordance (Gibson, 1979) and Hasson’s direct-fit approach (Hasson 
et al., 2020). The human brain constructs continuous experiences 
about the world to behave in optimal ways in a specific context. The 
real-life contexts in our society are complex, dynamic and uncertain, 
containing typically “countless” numbers of objects, the path of 
objects, people, and their interactions.

Thus, the world—physical and cultural—around us includes an 
almost infinite amount of information from a human point of view. 
The human resolves this problem of abundant information flows by 
using prior experiences (i.e., memories) and contextual information. 

In other words, from the point of view of humans, the world contains 
much more potential information than one can convert into 
knowledge according to her/his purposes.

The human brain computes the meaningful constellations about 
the contexts. It can extract meaningful patterns from complex and 
information-rich environments because the human brain has evolved 
specifically to function in complex and uncertain contexts. Despite the 
absolute number of neurons in the human brain remaining unknown, 
the approximation is that it has about 85 billion neurons (Azevedo 
et al., 2009) and it is each cubic millimeter contains roughly 50,000 
neurons. Because these neurons may support approximately 6,000 
adjustable synapses with other cells, this structure yields about 300 
million parameters in each cubic millimeter of the cortex and over 100 
trillion adjustable synapses across the entire brain (Azevedo et al., 
2009; Hasson et al., 2020). Thus the human brain is overparameterized 
organ and it can produce flexible, adaptive behavior in a complex 
world (Hasson et al., 2020).

Even though the brain is efficient, an individual is only able to 
compute a small part of the information in the context with it. Let us 
imagine a six-year-old child buying penny candies with 10 different 
candies. The child is allowed to choose 10 candies. Mathematically, 
and following the rules of EUT, 10 different candy combinations in 
this context can form 92,378 different options. If it took 15 s to collect 
one bag, it would take a child a good 384 h, or a good 16 days, to try 
all these candy combinations if she did nothing else during that time. 
However, in real life, she can choose candies in a few minutes. We all 
make this kind of decision daily and despite the department store 
including over 100,000 items, we rarely spend more than an hour 
there. We  do not behave according to EUT (Bossaerts and 
Murawski, 2017).

In a conclusion, people process only part of potential signals 
in a context. People are developed and learned to see easily things 
that our culture hands us ready-made as cultural affordances in 
different contexts (Hofstadter, 2001; Zadbood et  al., 2021). If 
these meaningful constellations are lacking—like in typical 
BIASBEHA experiments—people still try to interpret minor 
context clues to make them understandable to themselves. This 
leads to false conclusions about behaviors that do not align with 
those made in real life.

People learn most frequently encountered cultural constellations 
over a lifetime. The learned constellations are stored in long-term 
memory as multidimensional and dynamic experiences. We call 
these stored memories as mental simulations because these 
memories are more vivid and dynamic movies than static object-
like properties (Barsalou, 2009). Through these learned 
constellations, the past is intertwined with a person’s present and 
future (Gallistel, 2017). Mental simulations of the contexts in the 
brain are dynamics networks where context-related information is 
stored in nodes. The links are synapses that carry messages from 
nodes to other nodes.

The meaningful actions as the human 
represent it

Like the contexts surrounding the individual, the mental 
simulations relating to the contexts stored in the individual’s brain are 
also “countless.” An individual has constructed them of experienced 
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contexts during her/his lifetime. These context-based simulations are 
strongly domain-specific and intuitive. These mental simulations 
support an individual to produce flexible and meaningful behavior in 
a complex world.

The meaning of a context and meaningful actions are formed by 
the weights of individual nodes and their links to other elements of 
the context (and between contexts) in the brain (Hofstadter, 2001; 
Yeshurun et al., 2021). This forms a graph where context and actions 
are interconnected, not independent from each other. In other words, 
the elements of mental simulations, which need more memory 
resources, are more meaningful for a subject than elements that need 
just a few resources.

The objects, other people, cultural artifacts, and conventions and 
their interactions happen in specific contexts, and humans learn to 
behave in these contexts gradually. We  are not born with an 
understanding of entities and their roles in specific contexts. This 
understanding must be learned from experience. As a child grows up, 
one’s starts to perceive constellations of events. Then a growing child 
begins to construct fragments from life’s streams as constellations as 
high-level wholes (Hofstadter, 2001). These learned complex 
constellations are constructed based on the principle of computational 
meaningfulness. This principle means, that the human brain can 
produce a set of constraints concerning the distinction between 
different constellations (a bunch of stimuli) of cultural affordances. 
Thus, computational meaningfulness is the result of human’s ability to 
differentiate constellations from one another on a given set of 
observations. To do that, humans need the mental resources to choose 
the most meaningful features of the environment to behave in optimal 
ways in this environment (Ratneshwar et al., 1987; Suomala, 2020; 
Suomala and Kauttonen, 2022). In this way, a person learns to extract 
important aspects of the experienced context (Gallistel and 
Matzel, 2013).

Since each real-life situation contains an almost infinite number 
of possible configurations in terms of human interpretation ability, the 
human ability to assign meanings to certain constellations at the 
expense of others can be considered rational behavior (Hofstadter, 
1979, 2001; Ratneshwar et al., 1987; Suomala, 2020).

Above we described the properties of contexts, the human brain, 
and mental simulations. When an individual acts in the context, s/he 
tries to find meaningful constellations about the current context and 
tries to figure out, how these constellations support her/his personal 
goals. How do these comprehensive processes and the human ability 
to find meaningful constellations in different contexts manifest 
human rationality?

Computational meaningfulness means the process of the human 
brain, with the help of which an individual tries to make the respective 
situation comprehensible to herself to know how to behave optimally 
in a specific context. Then rationality means four things. First, it 
means that the brain makes different contexts understandable by 
inquiring directly from the structure of the real world by recognizing 
the relative importance of different elements in these contexts by 
optimizing multidimensional—with millions of parameters—
information relating to these contexts (Hofstadter, 1979; Hasson et al., 
2020). Second, it means that a human can respond to contexts very 
flexibly and can make sense of ambiguous or contradictory messages 
(Hofstadter, 1979; Geary, 2005; Gershman, 2021). Third, it means that 
an individual can set complex goals and finally, it means that an 
individual can achieve these goals (Geary, 2005; Tegmark, 2017). In 

summary, computational meaningfulness embodies the human 
capacity for rationality.

Research results of behavioral studies 
should increase our understanding of 
human behavior in natural environments

When we  take understanding human behavior in natural 
environments as a criterion to build a theory of behavior, it means that 
we are better able to describe, explain and predict human behavior 
(Gallistel, 2009, 2020; Yarkoni and Westfall, 2017; Jolly and 
Chang, 2019).

To better understand human behavior, as researchers we should 
leverage as natural stimuli and problems as possible in our experiments 
to capture realistic behavior. Despite the naturalness of stimuli in 
experiments lying along a spectrum, there can be described by three 
factors (Hamilton and Huth, 2020). First, a stimulus should represent 
a situation that a participant might reasonably be exposed to outside 
of an experimental setting. Second, the stimulus should appear in the 
same context as it would in real life. Third, the participants’ motivation 
and feeling to solve problems or make decisions should be as similar 
as possible in the experiments as in real life. These properties are 
reminiscent of previous requirements that psychologists should focus 
on the structure of natural environments that the mind relies on to 
perform inferences and to guide behavior (Brunswik, 1955; Simon, 
1955; Todd and Gigerenzer, 2007; Holleman et al., 2020). We argue 
that these three factors are absent from typical BIASBEHA studies.

However, most current ecological studies have shown that we can 
bridge the gap between theoretically simple traditional psychological 
experimental setups and real-life human behavior. We describe these 
studies as follows. Generally, the effect of a stimulus or other message 
on people has been studied from the point of view of the recipient of 
the message. However, the expression of the original context by the 
person who conveys the message is also important for how the 
recipient understands the message. Whether it is a single message or 
an entire experiment setup, it oozes latent meaning that the receiver 
instinctively interprets (McKenzie and Nelson, 2003).

Examples of studies that use natural 
stimuli in their experiments

The need for ecologically valid models has been also realized in 
the field of neuroscience (Nastase et al., 2020). As stated by Nastase 
(2021, 46): “We’re left with a veritable zoo of piecemeal models that 
are difficult to synthesize and, considered individually, account for a 
disappointing amount of variance under natural conditions.” Below 
we describe studies, which have used naturalistic and multidimensional 
stimuli in their experiments. Natural stimuli are videos, real 
advertisements, real health messages, stories, and immersive VR and 
AR technologies (Mobbs et  al., 2021). Two groups of students 
participated in the Buzz study (Falk et al., 2013). A group of message 
communicators watched and evaluated new entertainment program 
concepts in the fMRI scanner intended for television. Immediately 
after the fMRI scan each message communicator presented the 
concepts outside of the scanner during video-interview. Then another 
group of students, who were message recipients, watched these videos. 
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Finally, message recipients were asked how willing they were to 
recommend the concept proposals they saw to their friends. The study 
showed that successful ideas were associated with neural responses 
initially measured by fMRI in the mentalizing system and the reward 
system of message communicators when they first heard, before 
spreading them during video-interview. Similarly, message 
communicators more able to spread their preferences to others 
produced greater mentalizing system activity during initial encoding. 
Thus, people are very sensitive to the semantics of the messages and 
can interpret the intention of the sender (in this case message 
communicators), not only the literal meanings of these messages. It is 
also valuable that the results of the fMRI-experiment generalize 
beyond the experimental situation to the natural video interview and 
its viewing, as well as the personal preference caused by viewing.

Similarly, Falk et  al. (2011, 2012) examined how smokers’ 
neurophysiological responses to antismoking advertisements predict 
subsequent smoking behavior. They found that the brain activation 
patterns in the valuation network of participants, when they were 
exposed to an anti-smoke message in the fMRI-scanner, more 
accurately predicted participants’ proclivity to quit smoking 1 month 
after the initial fMRI than traditional behavioral measurements. Even 
more noteworthy is that the activity in the same region of the mean 
brain activation patterns in the valuation network of participants 
predicted population-level behavior in response to health messages 
and provided information that was not conveyed by participants’ self-
reports (Falk et al., 2012). Therefore, neural activity in the brain’s 
valuation network predicted the population response, whereas the 
self-report judgments did not. Thus, the participants’ neural patterns 
activation during fMRI-experiments “leaks” information about their 
valuation and desires, which have predictive power to real-
like contexts.

In the same way, the research group of Genevsky and Knutson 
(2015); Genevsky et al. (2017) sought to find brain networks in 
laboratory samples to forecasted real microloans (Genevsky and 
Knutson, 2015) and crowdfund success (Genevsky et al., 2017) on the 
Internet. They found that the sample’s average activity in the part of 
the brain’s valuation network forecasted loan appeal and crowdfund 
success on the Internet. Findings demonstrate that a subset of the 
neural predictors in the valuation network of individual choice can 
generalize to forecast the market-level behavior of consumers.

Naturalistic stimuli as the path toward 
novel findings in neurosciences

Heretofore we  have argued that we  humans are sensitive to 
meanings and semantics of the messages in contexts (Grice, 1975; 
Corner et al., 2010), not so much their literal content from a purely 
logical perspective, as the BIASBEHA-approach assumes. One of the 
pioneer researchers who used naturalistic context as stimuli is Uri 
Hasson. He  has not so much looked for ways to predict people’s 
behavior outside of experimental situations, but rather he has tried to 
find a general common ground, especially for human communication 
and generally for human experiences. For example, in his seminal 
brain study (Hasson et  al., 2004), the participants lay in a brain 
scanner and watched the Western film The Good, the Bad, and the 
Ugly. When the brain activations of all the participants measured by 
fMRI were looked at as a whole, the researchers found that the brains 

of the individuals activated in a very similar way to the important 
points of that classic Western movie. It was about the similar activation 
profile of individuals’ brains, i.e., synchronization in certain movie 
scenes. Especially emotionally powerful moments in the film 
synchronize the brains of the participants. Such emotional moments 
were stages that contained excitement, surprise, and joy. In addition, 
emotional activation also increased at points where the theme changed 
to another. Other researchers have found that scenes featuring people 
or animals generally and the other person’s eyes and face especially are 
especially powerful emotion stimulants and synchronize people’s 
brains in similar ways (Sharot and Garrett, 2016).

Hasson and colleagues have studied the basis of the human 
communication system and narrative processing in the brain (Lerner 
et al., 2011; Silbert et al., 2014; Yeshurun et al., 2021). The human 
communication system is an effective storyteller and it does record an 
individual’s memories, ideas, and dreams and transmits them to the 
brains of other people’s communication systems. Similarly, like 
watching a Western film, also when listening to a meaningful story, 
the participant’s brain showed similar activation patterns (i.e., 
synchronization) during the story listening. This occurred even when 
the same story was presented in Russian to subjects who were native 
speakers of Russia (Honey et al., 2012). Synchronization in higher-
order brain regions, such as frontal, temporal, and parietal lobes, 
occurs regardless of the specific format of the narrative, e.g., textual or 
visual (Tikka et al., 2018). In other words, the meaning of the story 
(semantic structure) activates the human brain in similar ways even 
though the story is presented in a different syntax. More broadly, it is 
about a human’s capability to compute holistic meanings in their 
surroundings (=computational meaningfulness) and this process 
operates mostly based on meanings. However, BIASBEHA-approach 
operates almost exclusively at the level of stimulus forms and syntaxes.

Furthermore, Hasson and colleagues have found that the Default 
Mode Network (DMN) in the brain has an essential role on the 
individual level when an individual integrates extrinsic and intrinsic 
information and when s/he tries to establish shared meaning, 
communication tools, shared narratives, and social networks 
(Kauttonen et  al., 2018; Yeshurun et  al., 2021). DMN is usually 
considered an “intrinsic” region, specializing in internally oriented 
mental processes such as daydreaming, reminiscing, future planning, 
and creativity (Raichle et al., 2001; Heinonen et al., 2016). DMN with 
other brain networks together forms the comprehension system, 
which allows the formation of the meaning of the narrative on 
individual levels and allows it to couple across the speaker’s and 
listener’s minds during the production and comprehension of the 
same narrative. Nevertheless, this common ground for understanding 
breaks easily, when a certain part of the story is not understandable to 
the listener or if some part of the element does not belong in the story 
(Lerner et al., 2014; Yeshurun et al., 2017b). Elements that disturb the 
understanding of the story include, for example, scrambled sentences, 
nonsense sounds, and speaking sentences too quickly (Lerner et al., 
2014). Even one unclear word can make it difficult to interpret the 
whole story (Zadbood et al., 2021).

Moreover, certain types of cultural products, such as stories, films, 
pieces of music, and speeches by well-known persons, cause the 
meaningful areas of people’s brains to activate in a very similar way 
(Schmälzle et al., 2015; Sharot and Garrett, 2016; Tikka et al., 2018; 
Zadbood et al., 2021). However, differences in people’s beliefs can 
substantially impact their interpretation of a series of events. When 
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researchers manipulated participants’ beliefs in an fMRI study, this led 
two groups of participants to interpret the same narrative in different 
ways. They found that responses in the communication network of the 
brain tended to be  similar among people who shared the same 
interpretation, but different from those of people with an opposing 
interpretation (Yeshurun et al., 2017b). This study showed that brain 
responses to the same narrative context tend to cluster together among 
people who share the same views. Similarly, small changes in the word 
of a story can lead to dramatically different interpretations of 
narratives among people despite the grammatical structure being 
similar across stories (Yeshurun et al., 2017a).

Confirmation bias and framing effect as 
artifacts of impoverished experimental 
conditions

The brain studies described above give indications that human 
behavior is guided by the principle of meaningfulness. This sense-
making process gives weight to certain features of the context at the 
expense of other features. The human brain combines incoming sensory 
information with prior intrinsic information—i.e. mental simulations 
in memory—to form rich, context-dependent models of contexts as 
they unfold over time (Yeshurun et al., 2021). The task of people’s brains 
is not to copy the physical world as accurately as possible via the senses 
but to support and participate in useful behaviors (Purves et al., 2015; 
Suomala, 2020; Suomala and Kauttonen, 2022).

Most previous studies of BIADBEHA literature assume discrete 
trials with no reference to participants’ real-life contexts. In addition, 
the experiments often are organized in ways, in which a subject 
chooses between only two options. In addition, these options are 
usually unfamiliar to participants and they cannot learn the meanings 
of these options. Therefore, the results according to the heuristics and 
biases framework relating to confirmation bias and framing effects 
give a too pessimistic picture of human behavior. When we take as a 
starting point the human ability to survive and adapt to countless life 
contexts, experiences of meaning and complexity enter the explanatory 
pattern. Some of the reason for this impoverished experimental 
tradition is a consequence of the fact that in the past it has been very 
difficult to study people in meaningful experimental settings. Today, 
the situation is different and as we described above, researchers can 
create real-like experiments, in which human participants could feel 
these situations are meaningful.

Previous examples showed, how it is possible to bring the 
multidimensionality of real contexts to brain studies and collect brain 
data in these situations in real time while the subject construct 
representations of contexts or solves various tasks in these experiments. 
In everyday life, a multitude of cognitive functions and the brain 
networks that subserve them are seamlessly and dynamically integrated 
(Snow and Culham, 2021). Rather than trying to isolate stimulus or task 
features, the idea of data-driven analysis strategies is that features that 
co-occur in the real world are likely jointly represented in brain 
organizational principles. When studying the fluctuations of human 
brain activations with fMRI—as previously described studies above—a 
huge amount of data is obtained from each subject. While the results 
based on this big data is sometimes difficult to interpret (i.e., difficult to 
explain the phenomenon behind the data), the benefits of enormous 
data from people’s brain are, that it can generalize to real-life situations 

and the ability to predict people’s choices in real-life situations (Knutson 
and Genevsky, 2018; Doré et al., 2019).

The term big data often refers to amounts of datasets that are 
enormous orders of magnitude larger than the datasets that behavioral 
scientists work with. In this case, data sets are sized terabytes or even 
petabytes in size (Yarkoni and Westfall, 2017). Similarly, the 
applications of big data have increased about people’s behavior. The 
possibility to access mobile and online data, coupled with a collect of 
enormous archival datasets from social networks and other websites, 
means that studies based on sample sizes of tens of thousands of 
participants (Schulz et al., 2019) to even sample sizes of millions of 
participants (Yarkoni and Westfall, 2017) is today possible. In addition 
to the fact that big data can be used to predict people’s future behavior 
(Knutson and Genevsky, 2018; Doré et al., 2019), its great advantage 
is that they provide a natural guard against overfitting (Yarkoni and 
Westfall, 2017; Hasson et al., 2020). The larger the data, the more 
representative it is of the population’s real behavior it is drawn from 
and it becomes increasingly difficult for a statistical model to capitalize 
on patterns that occur in the training data but not in the broader 
population (Yarkoni and Westfall, 2017). An essential challenge for 
this situation is how to analyze such enormous amounts of data. The 
development of machine learning algorithms gives tools to solve this 
challenge (Suomala and Kauttonen, 2022).

Machine learning algorithms for 
analyzing multidimensional data 
relating to human behavior

How do the above complexity and multidimensionality affect 
designing and executing behavioral experiments? To describe, explain 
and predict human behavior better than before, it is useful to collect 
big datasets and analyze these data with data-driven methods and 
machine-learning algorithms. In recent years, machine learning has 
been able to solve difficult problems in many disciplines (Suomala and 
Kauttonen, 2022). Indeed, cognitive neuroscience is finally at a 
crossroads where we have enough data to start understanding brain-
behavior associations (Zhou and Zuo, 2023). Together with increasing 
computational power and data set availability have led to 
breakthroughs in machine learning and artificial intelligence. 
Illustrative of this development is DeepMind’s program AlphaFold, 
which can predict the shape of almost all proteins based on their 
amino-acid sequences (Callaway, 2020). This problem has been 
biology’s grandest challenge for decades. Similar progress has been 
found in the context of geology (Beroza et al., 2021).

Machine learning algorithms allow researchers to fit large sets of 
parameters including both linear and non-linear functions and a goal 
state. When a large amount of data is given to these algorithms, they 
can find approximated functions that best explain the final result. In 
this way, for example, the amino acid chains associated with each 
protein pattern have been found. Machine learning is useful in 
understanding complex phenomena—like human behavior—in the 
following ways (Glaser et al., 2019; Suomala and Kauttonen, 2022). It 
helps to build better predictive models, identify predictive variables by 
applying regularization and finding causal relationships, benchmark 
linear and non-linear models, and serve as a model of the brain/mind 
to compare against algorithms. Due to the complexity of behavioral 
and neurophysiological datasets that can be  both non-linear and 
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recurrent, it is beneficial to apply machine learning methods that can 
extract meaningful dynamics and structures (Glaser et al., 2019).

The classical statistical modeling—which BIASBEHA uses almost 
exclusively—relies on inference rather than predictive power, and is 
insufficient when trying to find working principles of neurophysiology 
and behavior of humans (Yarkoni and Westfall, 2017; Jolly and Chang, 
2019; Hasson et al., 2020). In a recent study by Schrimpf et al. (2021), 
researchers demonstrated that specific language models based on deep 
neural networks and transformer architecture could predict human 
neural and behavioral responses to linguistic input with perfect 
predictivity relative to the noise ceiling. The researcher suggests that 
“testing model ability to predict neural and behavioral measurements, 
dissecting the best-performing models to understand which components 
are critical for high brain predictivity, developing better models 
leveraging this knowledge, and collecting new data to challenge and 
constrain the future generations of neutrally plausible models of 
language processing” (Schrimpf et al., 2021). We argue that a similar 
approach should be pursued to other behavior as well beyond language. 
With enough data, artificial neural networks can handle the messy 
complexities of the natural world, including nonlinearities, redundancies, 
and interactions, as does the brain itself (Snow and Culham, 2021).

To make the discussion of impoverished experiments, irrational 
decisions, multidimensionality, and usefulness of machine learning 
techniques more concrete, let us consider an illustrative example of a 
hypothetical behavioral experiment. Imagine that an investigator wants 
to find out how the need and cost affect a decision to buy a certain 
product. The investigator asks 400 people how much they need this 
product (variable X) and whether they would buy the product at a specific 
price (variable Y). For simplicity, let us assume that these two variables are 
on an arbitrary scale between 0 (minimum value) and 1 (maximal value). 
The result is depicted in Figure 1A. The decision boundary appears clean 
and can be fitted well using a linear logistic regression model with 2 
parameters. Using a typical 80–20 train-test data split (i.e., 80% for model 
training and 20% for testing), the error rate is 3.4%. Now, imagine another 
scenario where the same survey is performed by a brick-and-mortar 
shopkeeper, and the responders are expected to come by physically and 
buy the product. Now the physical distance between the shop and the 
customer (variable Z) will be a new variable. As depicted in Figure 1B, the 
decision boundary now appears as a non-linear function of the three 
variables. If this new data is plotted on X-Y plane, omitting Z, data appear 
noisy and some decisions irrational; even with a very high need for the 
product (close to 1) and very low product price (close to 0), some buying 
decisions are still negative and wise-versa. If we try to fit a model to this 
lower-dimensional data, results are poor as neither linear nor non-linear 
models work well. This is demonstrated in Figure 1C using linear (3 
parameters) and quadratic (5 parameters) logistic regression models, and 
a neural network classifier model (3 hidden layers, 88 parameters). The 
models resulted in testing error rates 18.9%, 14.9%, and 14.9%. However, 
when all variables are included in the model, a good approximation of the 
original decision boundary can be found using a neural network model 
(98 parameters, error rate 0%) as shown in Figure 1D.

With the above example, we highlighted three aspects: context-
dependent decision making, the difference between controlled 
(laboratory) experiments vs. messy complexities of real-life behavior, 
and the usefulness of machine learning and data-driven analysis 
favoring predictive power over model simplicity. In real-life scenarios, 
human decisions are affected by factors that are difficult to anticipate 
and emulate in impoverished, highly-controlled experimental settings. 
What may appear as irrational decisions in the second situation, are 

in reality rational when considering the constraints of real life, which 
in this case was the effort needed to buy the product. This highlights 
the importance of the multidimensional nature of ecological decision-
making. Of course, our example is an oversimplification as a 
researcher cannot collect a dataset with all possible variables that 
could affect human behavior. However, this difficulty is not an excuse 
to omit ecological data collection completely.

As a summary, we  may conclude that tightly-controlled 
(laboratory) experiments are useful for testing hypotheses about the 
contributions of components, e.g., which variables should be included 
in a model, ecological experiments are useful for testing whether those 
hypotheses generalize to natural settings, and for generating new 
hypotheses that consider the complexities of the organism in its 
environment (Nastase et  al., 2020; Snow and Culham, 2021). 
Hypotheses should be formulated with ecological considerations in 
mind and rather than constraining data collection, data should 
be collected in representative contexts for the ecological behaviors that 
you want to study (Nastase et al., 2020).

Summary and conclusion

The article describes typical BIASBEHA studies relating to 
confirmation bias and framing effects. Whereas these studies have 
shown that human reasoning differs decisively from the EUT’s concept 
of rationality, we presented a more realistic view of human rationality. 
We  share the view of Gigerenzer (2018) to omit the ideas of 
irrationality and bias-centric view in behavioral economics, however, 
we need to take steps further toward life-like experimental settings 
and predictive modeling.

According to our approach, human is rational, because they can 
compute meaningful constellations and produce mental simulations of 
these, i.e., behave according to the principle of computational 
meaningfulness. Then rationality means firstly, that the human brain 
makes different contexts understandable by recognizing the relative 
importance of different elements in these contexts by optimizing 
multidimensional information relating to these contexts (Hofstadter, 1979; 
Hasson et al., 2020). Secondly, it means that a human can respond to 
contexts very flexibly and can make sense of ambiguous or contradictory 
messages. Third, it means that an individual can set complex goals and 
finally, it means that an individual can achieve these goals.

To understand human behavior and its multidimensionality, we need 
to study human behavior in real-life contexts. We presented some fMRI-
studies, which have successfully shown, how using multidimensional data 
collected from real-like situations (by using videos, stories, real 
advertisements, and real health messages) can help our understanding 
and help to predict human behavior in real-life contexts. By using 
multidimensional stimuli and machine learning methodology we can go 
toward a better theory of human behavior. This means moving away from 
overly simplified, few-parameter models that generalize poorly with 
actual behavior and between subjects, and explaining behavior with a bias 
when decisions are meaningful from an individual’s point of view. One 
practical way to do this is to take advantage of immersive VR and AR 
technologies that allow building experiments closer to ecological 
conditions while also allowing experimental control.

Formalizing behavioral theories using neuroscientific and 
computational models provides a way to overcome the Flatland fallacy 
through the consideration of high-dimensional explanations of 
behavioral phenomena. Jolly and Chang (2019, p. 442) argue: “We 
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believe the use of computational models will likewise better enable 
researchers to capture this complexity within psychological theories.” 
We agree and this article aims to sketch the theory of human behavior 
based on the principle of computational meaningfulness.
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FIGURE 1

Hypothetical illustration of a decision to buy a certain product surveyed from 400 respondents. (A) Survey results in a laboratory setting depend on 
only two parameters: Price (X) and need (Y) for the product. Decision boundary fitted using a linear logistic regression model with red and green points 
corresponding to negative and positive decisions to buy. (B) A repeat of the experiment outside the laboratory with a third variable (Z) as a customer 
distance to the shop. The decision boundary is a complex, non-linear function. (C) Three models fitted to data with only two parameters included; 
models are linear (orange), quadratic (green), and neural network (blue). (D) Neural network model fitted to the full data with all three variables.
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